JP6591107B1 - Three-dimensional truss structure - Google Patents

Three-dimensional truss structure Download PDF

Info

Publication number
JP6591107B1
JP6591107B1 JP2019040864A JP2019040864A JP6591107B1 JP 6591107 B1 JP6591107 B1 JP 6591107B1 JP 2019040864 A JP2019040864 A JP 2019040864A JP 2019040864 A JP2019040864 A JP 2019040864A JP 6591107 B1 JP6591107 B1 JP 6591107B1
Authority
JP
Japan
Prior art keywords
cross
sectional area
upper chord
lower chord
diagonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019040864A
Other languages
Japanese (ja)
Other versions
JP2020143497A (en
Inventor
崇 宮▲崎▼
崇 宮▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2019040864A priority Critical patent/JP6591107B1/en
Application granted granted Critical
Publication of JP6591107B1 publication Critical patent/JP6591107B1/en
Publication of JP2020143497A publication Critical patent/JP2020143497A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

【課題】片持ちトラスを有するトラス構造において、支持部側に位置されるトラス部材に付加される荷重を低減することが可能な立体トラス構造を提供すること。【解決手段】下弦11と、上弦12と、前記下弦11と前記上弦12とを接合する斜材構造13と、を有する片持ちトラスを備えた立体トラス構造10であって、前記下弦11において軸方向に沿って見たときの断面積が前記後方側Rよりも前記前方側Fが小さい下弦断面積変化部と、前記上弦12において前記上弦12を軸方向に沿って見たときの断面積が前記後方側Rよりも前記前方側Fが小さい上弦断面積変化部と、前記斜材構造13において前記斜材部材130を軸方向に沿って見たときの断面積が前記後方側Rよりも前記前方側Fが小さい斜材断面積変化部とを有する断面形状変化部を備えていることを特徴とする。【選択図】図5In a truss structure having a cantilever truss, a three-dimensional truss structure capable of reducing a load applied to a truss member positioned on a support portion side is provided. A three-dimensional truss structure having a cantilever having a lower chord, an upper chord, and a diagonal structure that joins the lower chord and the upper chord. The cross-sectional area when the upper chord 12 is viewed along the axial direction in the upper chord 12 and the lower chord cross-sectional area changing portion whose cross-sectional area when viewed along the direction is smaller in the front side F than the rear side R. The upper chord cross-sectional area changing portion having a smaller front side F than the rear side R, and the cross-sectional area when the diagonal member 130 is viewed along the axial direction in the diagonal structure 13 is more than the rear side R. The front side F is provided with the cross-sectional shape change part which has the diagonal material cross-sectional area change part with small. [Selection] Figure 5

Description

本発明は、片持ちトラスを有する立体トラス構造に関する。   The present invention relates to a three-dimensional truss structure having a cantilever.

従来、トラス構造を設計する際には、例えば、最大曲げモーメントを軸力に変換して設計することが一般的である。
また、トラス構造の設計においては、施工、製作上の観点から、トラス構造における斜材の長さを統一することが一般的である(例えば、特許文献1参照。)。
したがって、トラス構造を設計する際には、トラス部材が最も大きな軸力(圧縮力、引張力)に耐え得るように設計する。
Conventionally, when designing a truss structure, for example, the maximum bending moment is generally converted into an axial force.
In designing a truss structure, it is common to unify the lengths of diagonal members in the truss structure from the viewpoint of construction and manufacturing (see, for example, Patent Document 1).
Therefore, when designing the truss structure, the truss member is designed to withstand the largest axial force (compression force, tensile force).

一方、近年、設計及び施工における有利さから、下弦部材、上弦部材、斜材部材を、ボールジョイント(ジョイント部)によって接合して構成する立体トラス(システムトラス)が広く適用されている(例えば、非特許文献1参照。)。
このような立体トラスの適用は、軽量化、コスト及び施工期間短縮の観点からも非常に有利である。
On the other hand, in recent years, three-dimensional trusses (system trusses) in which a lower chord member, an upper chord member, and a diagonal member are joined by a ball joint (joint portion) have been widely applied due to advantages in design and construction (for example, (Refer nonpatent literature 1.).
The application of such a three-dimensional truss is very advantageous from the viewpoint of weight reduction, cost, and shortening of the construction period.

特開平7−189424号公報JP-A-7-189424

URL:http://www.nsec-steelstructures.jp/data/spatial_structure/catalog_ns_truss.pdfURL: http://www.nsec-steelstructures.jp/data/spatial_structure/catalog_ns_truss.pdf

しかしながら、片持ちトラスを有する立体トラス構造では、トラス部材(下弦部材、上弦部材、斜材部材等、ジョイント部とジョイント部とを接合する棒状部材)に作用する応力は支持部付近と自由端付近とで大きく異なる。   However, in a three-dimensional truss structure with a cantilever truss, the stress acting on the truss member (rod-like member, upper chord member, diagonal member, etc., rod-like member that joins the joint part to the joint part) is near the support part and the free end. And very different.

したがって、支持部側のトラス部材に付加される荷重に合わせてトラス部材を設定すると、トラス部材のサイズが大きくなり、立体トラス構造の重量が増大するとともに建設コストが増加するという問題がある。   Therefore, when the truss member is set in accordance with the load applied to the truss member on the support portion side, there is a problem that the size of the truss member increases, the weight of the three-dimensional truss structure increases, and the construction cost increases.

本発明は、このような事情を考慮してなされたものであり、片持ちトラスを有するトラス構造において、支持部側に位置されるトラス部材に付加される荷重を低減することが可能な立体トラス構造を提供することを目的とする。   The present invention has been made in view of such circumstances, and in a truss structure having a cantilever truss, a three-dimensional truss capable of reducing a load applied to a truss member positioned on the support portion side. The purpose is to provide a structure.

上記課題を解決するために、この発明は以下の手段を提案している。
(1)この発明の第1の態様は、下弦と、上弦と、前記下弦と前記上弦とを接合する複数の斜材部材により構成される斜材構造と、を有し、少なくとも一部が支持部によって支持されるとともに前記支持部から離間された位置に自由端が形成された片持ちトラスを備えた立体トラス構造であって、前記下弦において、前記下弦を軸方向に沿って見たときの断面積が前記支持部側よりも前記自由端側が小さく形成された下弦断面積変化部と、前記上弦において、前記上弦を軸方向に沿って見たときの断面積が前記支持部側よりも前記自由端側が小さく形成された上弦断面積変化部と、前記斜材構造において、前記斜材部材を軸方向に沿って見たときの断面積が前記支持部側よりも前記自由端側が小さく形成された斜材断面積変化部と、の全てを有する断面形状変化部を備えていることを特徴とする。
In order to solve the above problems, the present invention proposes the following means.
(1) A first aspect of the present invention includes a lower chord, an upper chord, and a diagonal structure composed of a plurality of diagonal members that join the lower chord and the upper chord, and at least a part of the structure is supported. A three-dimensional truss structure provided with a cantilever truss supported by a portion and having a free end formed at a position spaced apart from the support portion, and when the lower chord is viewed along the axial direction in the lower chord In the lower chord cross-sectional area changing portion formed such that the cross-sectional area is smaller on the free end side than the support portion side, and in the upper chord, the cross-sectional area when the upper chord is viewed along the axial direction is greater than that on the support portion side. In the upper chord cross-sectional area changing portion formed to be smaller on the free end side, and the oblique member structure, the free end side is formed to have a smaller sectional area when the oblique member is viewed along the axial direction than the support portion side. and diagonal members cross-sectional area changing portion has, all Characterized in that it comprises a cross-sectional shape changing portion for.

この発明に係る立体トラス構造によれば、下弦と、上弦と、下弦に配置されたジョイント部と上弦に位置されたジョイント部とを介して下弦と上弦とを接合する複数の斜材部材により構成される斜材構造と、を有する片持ちトラスを備えた立体トラス構造が、下弦断面積変化部と、上弦断面積変化部と、斜材断面積変化部と、のうち、少なくともいずれかを備えているので、下弦断面積変化部、上弦断面積変化部、斜材断面積変化部の支持部側において、支持部側に位置されるトラス部材(下弦部材、上弦部材、斜材部材)に付加される荷重を低減することができる。
その結果、片持ちトラスを構成するトラス部材に生じる圧縮応力又は引張応力を小さくすることができる。
また、トラス構造が大型化することに起因する重量増大及び建設コストの増大を抑制することができる。
According to the three-dimensional truss structure according to the present invention, the lower truss, the upper chord, a plurality of diagonal members that join the lower chord and the upper chord via the joint portion disposed on the lower chord and the joint portion positioned on the upper chord A three-dimensional truss structure including a cantilever truss having at least one of a lower chord cross-sectional area change portion, an upper chord cross-section change portion, and an oblique cross-section change portion. Therefore, on the support side of the lower chord cross-sectional area change portion, upper chord cross-section change portion, and diagonal cross-section change portion, add to the truss members (lower chord member, upper chord member, diagonal member) located on the support side The load that is applied can be reduced.
As a result, the compressive stress or tensile stress generated in the truss member constituting the cantilever can be reduced.
Further, an increase in weight and an increase in construction cost due to an increase in size of the truss structure can be suppressed.

ここで、軸方向(長手方向)に沿って見たときの断面積とは、上弦、下弦、斜材構造を、それぞれを構成するトラス部材(下弦部材、上弦部材、斜材部材)の肉部分の断面積であり、中空部を有する場合には外形の断面積から中空部の断面積を差し引いた断面積をいう。
また、断面積の比較は、トラス部材本体同士の間で行うものとする。ここで、トラス部材本体とは、トラス部材のうち、ジョイント部と接続するために形成された部材又は部分(例えば、コーン部、スプライスプレート等)を除いた部分をいう。
また、断面積が支持部側よりも自由端側が小さく形成されているとは、支持部側位置における断面積と自由端側位置における断面積との大小関係をいい、支持部側位置と自由端側位置の間に、断面積が変化しない部分や断面積が一端拡大する部分が形成されていてもよい。
また、断面積変化部を特定する場合の支持部側位置と自由端側位置は、下弦、上弦、斜材構造を構成するひとつのトラス部材内、複数のトラス部材の間のいずれの間に構成されてもよい。
Here, the cross-sectional area when viewed along the axial direction (longitudinal direction) is the flesh portion of the truss member (lower chord member, upper chord member, diagonal member) constituting the upper chord, lower chord, and diagonal structure. In the case of having a hollow portion, it means a cross-sectional area obtained by subtracting the cross-sectional area of the hollow portion from the cross-sectional area of the outer shape.
Moreover, comparison of cross-sectional areas shall be performed between truss member main bodies. Here, the truss member main body refers to a portion of the truss member excluding a member or a portion (for example, a cone portion, a splice plate, etc.) formed to connect to the joint portion.
Further, the fact that the cross-sectional area is formed so that the free end side is smaller than the support part side means the size relationship between the cross-sectional area at the support part side position and the cross-sectional area at the free end side position. Between the side positions, a portion where the cross-sectional area does not change or a portion where the cross-sectional area expands at one end may be formed.
In addition, when specifying the cross-sectional area changing portion, the position on the support portion side and the position on the free end side are configured in one truss member constituting the lower chord, upper chord, and diagonal structure, or between any of the plurality of truss members. May be.

(2)上記(1)に記載の立体トラス構造であって、前記断面形状変化部は、前記下弦が複数の下弦部材をジョイント部で接合されて構成されるとともに、前記下弦において、前記支持部側に位置される第1下弦部材と前記第1下弦部材の前記自由端側に配置されて軸方向に沿って見たときの断面積が前記第1下弦部材よりも小さく形成された第2下弦部材とを有することにより構成された前記下弦断面積変化部と、前記上弦が複数の上弦部材をジョイント部で接合されて構成されるとともに、前記上弦において、前記支持部側に位置される第1上弦部材と前記第1上弦部材の前記自由端側に配置されて軸方向に沿って見たときの断面積が前記第1上弦部材よりも小さく形成された第2上弦部材とを有することにより構成された前記上弦断面積変化部と、前記斜材構造において、前記支持部側に位置される第1斜材部材と前記第1斜材部材の前記自由端側に配置されて軸方向に沿って見たときの断面積が前記第1斜材部材よりも小さく形成された第2斜材部材とを有することにより構成された前記斜材断面積変化部と、のうち、少なくともいずれかを備えていてもよい。 (2) The three-dimensional truss structure according to (1), wherein the cross-sectional shape changing portion is configured by joining the lower chord to a plurality of lower chord members at a joint portion, and in the lower chord, the support portion A first lower chord member positioned on the side and a second lower chord disposed on the free end side of the first lower chord member and having a cross-sectional area smaller than that of the first lower chord member when viewed in the axial direction said lower chord sectional area changing part configured by having a member, together with the top chord is constructed by joining a plurality of upper chord members at the joint portion, in the upper chord, a is positioned in the support part side 1 An upper chord member and a second upper chord member that is disposed on the free end side of the first upper chord member and has a cross-sectional area that is smaller than the first upper chord member when viewed in the axial direction. the upper chord cross-section which is A cross section of the change portion and the diagonal structure, the first diagonal member located on the support portion side and the free end side of the first diagonal member as viewed along the axial direction; There among the swash material cross-sectional area changing portion, which is configured by a second diagonal member member formed smaller than the first diagonal member member may comprise at least any.

この発明に係る立体トラス構造によれば、断面積変化部が、複数の下弦部材がジョイントで接合された下弦と、複数の上弦部材がジョイントで接合された上弦と、斜材構造と、のうち、少なくともいずれかに形成されているので、例えば、軸方向に沿って断面が一定に形成されたストレートな棒状のトラス部材(下弦部材、上弦部材、斜材部材)を用いることにより、容易に下弦断面積変化部、上弦断面積変化部、斜材断面積変化部を形成することができる。
その結果、簡単な構造によって、容易かつ効率的に立体トラス構造を形成することができる。
According to the three-dimensional truss structure according to the present invention, the cross-sectional area changing portion includes a lower chord in which a plurality of lower chord members are joined by a joint, an upper chord in which a plurality of upper chord members are joined by a joint, and a diagonal structure. Since it is formed in at least one, for example, by using a straight bar-like truss member (lower chord member, upper chord member, diagonal member) having a constant cross section along the axial direction, the lower chord can be easily A cross-sectional area changing portion, an upper chord cross-sectional area changing portion, and an oblique material cross-sectional area changing portion can be formed.
As a result, a three-dimensional truss structure can be easily and efficiently formed with a simple structure.

(3)上記(1)又は(2)に記載の立体トラス構造であって、前記断面形状変化部は、前記下弦が複数の下弦部材をジョイント部で接合されて構成されるとともに、軸方向に沿って見たときに前記自由端側の断面積が前記支持部側の断面積よりも小さく形成されたテーパ付き下弦部材と、前記上弦が複数の上弦部材をジョイント部で接合されて構成されるとともに、軸方向に沿って見たときに前記自由端側の断面積が前記支持部側の断面積よりも小さく形成されたテーパ付き上弦部材と、前記斜材構造において、軸方向に沿って見たときに前記自由端側の断面積が前記支持部側の断面積よりも小さく形成されたテーパ付き斜材部材と、のうち、少なくともいずれかを備えていてもよい。 (3) The three-dimensional truss structure according to (1) or (2), wherein the cross-sectional shape changing portion is configured by joining the lower chord to a plurality of lower chord members at a joint portion, and in an axial direction. A tapered lower chord member formed such that the cross-sectional area on the free end side is smaller than the cross-sectional area on the support portion side when viewed along, and the upper chord is formed by joining a plurality of upper chord members at a joint portion. In addition, in the tapered upper chord member formed so that the cross-sectional area on the free end side is smaller than the cross-sectional area on the support portion side when viewed along the axial direction, and in the diagonal structure, the axial structure is viewed along the axial direction. And at least one of a tapered diagonal member formed so that a cross-sectional area on the free end side is smaller than a cross-sectional area on the support portion side.

この発明に係る立体トラス構造によれば、断面積変化部が、下弦が複数の下弦部材をジョイント部で接合されて構成されるとともに、軸方向に沿って見たときに自由端側の断面積が支持部側の断面積よりも小さく形成されたテーパ付き下弦部材と、上弦が複数の上弦部材をジョイント部で接合されて構成されるとともに、軸方向に沿って見たときに自由端側の断面積が支持部側の断面積よりも小さく形成されたテーパ付き上弦部材と、斜材構造において、軸方向に沿って見たときに自由端側の断面積が支持部側の断面積よりも小さく形成されたテーパ付き斜材部材と、のうち、少なくともいずれかを備えているので、例えば、ジョイント部とジョイント部の間においても、容易に断面積変化部を形成することができる。
その結果、ジョイント部とジョイント部の間隔が長い区間において、トラス部材に付加される荷重を効率的に軽減することができる。
According to the three-dimensional truss structure according to the present invention, the cross-sectional area changing portion is configured such that the lower chord is formed by joining a plurality of lower chord members at the joint portion, and the cross-sectional area on the free end side when viewed along the axial direction. The lower chord member with a taper formed smaller than the cross-sectional area on the support portion side, and the upper chord is formed by joining a plurality of upper chord members at the joint portion, and when viewed along the axial direction, In the tapered upper chord member formed with a cross-sectional area smaller than the cross-sectional area on the support part side and the diagonal structure, the cross-sectional area on the free end side is larger than the cross-sectional area on the support part side when viewed along the axial direction. Since at least one of the tapered diagonal member formed small is provided, for example, the cross-sectional area changing portion can be easily formed even between the joint portions.
As a result, the load applied to the truss member can be efficiently reduced in the section where the distance between the joint portion is long.

(4)上記(3)に記載の立体トラス構造であって、前記断面形状変化部は、前記テーパ付き下弦部材が前記支持部から前記自由端側に向かって隣接配置されるとともに、前記支持部側に配置される第1テーパ付き下弦部材の前記自由端側の前記断面積が、前記自由端側に配置される第2テーパ付き下弦部材の前記支持部側の前記断面積以上に形成されているテーパ付き下弦部材列と、前記テーパ付き上弦部材が前記支持部から前記自由端側に向かって隣接配置されるとともに、前記支持部側に配置される第1テーパ付き上弦部材の前記自由端側の前記断面積が、前記自由端側に配置される第2テーパ付き上弦部材の前記支持部側の前記断面積以上に大きく形成されているテーパ付き上弦部材列と、前記テーパ付き斜材部材が前記支持部から前記自由端側に向かって隣接配置されるとともに、前記支持部側に配置される第1テーパ付き斜材部材の前記自由端側の前記断面積が、前記自由端側に配置される第2テーパ付き斜材部材の前記支持部側の前記断面積以上に形成されているテーパ付き斜材部材列と、のうち、少なくともいずれかを備えていてもよい。 (4) In the three-dimensional truss structure according to (3), the cross-sectional shape changing portion is configured such that the tapered lower chord member is disposed adjacent to the free end side from the support portion, and the support portion The cross-sectional area on the free end side of the first tapered lower chord member disposed on the side is formed to be greater than the cross-sectional area on the support portion side of the second tapered lower chord member disposed on the free end side. The tapered lower chord member row and the tapered upper chord member arranged adjacent to the free end side from the support portion, and the free end side of the first tapered upper chord member arranged on the support portion side A taper upper chord member array formed such that the cross-sectional area is larger than the cross-sectional area of the second tapered upper chord member disposed on the free end side on the support portion side, and the tapered diagonal member From the support The second taper is disposed adjacent to the free end side, and the cross-sectional area on the free end side of the first tapered diagonal member disposed on the support side is disposed on the free end side. You may provide at least any one among the taper diagonal member row | line | column currently formed more than the said cross-sectional area of the said support part side of a diagonal member.

この発明に係る立体トラス構造によれば、断面形状変化部が、テーパ付き下弦部材が隣接配置されるとともに第1テーパ付き下弦部材の自由端側の断面積が第2テーパ付き下弦部材の支持部側の断面積以上に形成されてたテーパ付き下弦部材列と、テーパ付き上弦部材が隣接配置されるとともに第1テーパ付き上弦部材の自由端側の断面積が第2テーパ付き上弦部材の支持部側の断面積以上に大きく形成されているテーパ付き上弦部材列と、テーパ付き斜材部材が隣接配置されるとともに第1テーパ付き斜材部材の自由端側の断面積が第2テーパ付き斜材部材の支持部側の断面積以上に形成されているテーパ付き斜材部材列と、のうち、少なくともいずれかを備えているので、テーパ付き下弦部材、テーパ付き上弦部材、テーパ付き斜材部材を、トラス構造において、断面積変化部をさらに有効に活用することができる。
また、テーパ付き下弦部材、テーパ付き上弦部材、テーパ付き斜材部材を用いたトラス構造の力学的な安定性、意匠的安定性を向上することができる。
According to the three-dimensional truss structure according to the present invention, the cross-sectional shape changing portion is arranged so that the tapered lower chord member is adjacently disposed, and the cross-sectional area on the free end side of the first tapered lower chord member is the support portion of the second tapered lower chord member The tapered lower chord member row formed to have a cross sectional area on the side and the tapered upper chord member are arranged adjacent to each other, and the cross sectional area on the free end side of the first tapered upper chord member is the support portion of the second tapered upper chord member A tapered upper chord member array formed larger than the cross-sectional area on the side and a tapered diagonal member are disposed adjacent to each other, and a cross-sectional area on the free end side of the first tapered diagonal member is a second tapered diagonal Since it has at least one of a tapered diagonal member array formed to have a cross-sectional area larger than the cross-sectional area on the support portion side of the member, a tapered lower chord member, a tapered upper chord member, and a tapered diagonal member In truss structure, it is possible to more effectively utilize the cross-sectional area changing portion.
In addition, the mechanical stability and design stability of the truss structure using the tapered lower chord member, the tapered upper chord member, and the tapered diagonal member can be improved.

本発明の立体トラス構造によれば、片持ちトラスを有するトラス構造において、支持部側に位置されるトラス部材に付加される荷重及びモーメントを低減することができる。   According to the three-dimensional truss structure of the present invention, in the truss structure having a cantilever truss, the load and moment applied to the truss member positioned on the support portion side can be reduced.

本発明の第1実施形態に係る立体トラス構造を適用した建築物の一例の概略構成を説明する斜視図である。It is a perspective view explaining the schematic structure of an example of the building to which the solid truss structure which concerns on 1st Embodiment of this invention is applied. 第1実施形態に係る立体トラス構造の概略構成を説明する斜視図である。It is a perspective view explaining the schematic structure of the solid truss structure concerning a 1st embodiment. 第1実施形態に係る立体トラス構造の概略構成を説明する側面から見た図である。It is the figure seen from the side surface explaining the schematic structure of the solid truss structure which concerns on 1st Embodiment. 第1実施形態に係る立体トラス構造の概略構成を説明する平面図である。It is a top view explaining the schematic structure of the solid truss structure concerning a 1st embodiment. 第1実施形態に係る立体トラス構造の詳細を説明する側面から見た概念図である。It is the conceptual diagram seen from the side surface explaining the detail of the solid truss structure which concerns on 1st Embodiment. 第1実施形態に係る立体トラス構造における断面積変化部の概略構成を説明する隣接配置されたトラス部材を、軸方向に沿って見たときの断面形状の概略を示す概念図であり、(A)は図5に矢視VIA-VIAで示す図であり、(B)は図5に矢視VIB-VIBで示す図である。It is a conceptual diagram which shows the outline of a cross-sectional shape when the truss member arrange | positioned adjacently explaining the schematic structure of the cross-sectional area change part in the three-dimensional truss structure which concerns on 1st Embodiment is seen along an axial direction, (A ) Is a view indicated by arrows VIA-VIA in FIG. 5, and (B) is a view indicated by arrows VIB-VIB in FIG. 5. 第1実施形態に係る立体トラス構造を構成するボールジョイントの一例を説明する概略構成図である。It is a schematic block diagram explaining an example of the ball joint which comprises the solid truss structure which concerns on 1st Embodiment. 第1実施形態の第1変形例に係る断面積変化部の概略構成を説明する隣接配置されたトラス部材を、軸方向に沿って見たときの断面形状の概略を示す概念図であり、(A)は図5に矢視VIA-VIAで示す図であり、(B)は図5に矢視VIB-VIBで示す図である。It is a conceptual diagram which shows the outline of a cross-sectional shape when the truss member arrange | positioned adjacently explaining the schematic structure of the cross-sectional area change part which concerns on the 1st modification of 1st Embodiment is seen along an axial direction, ( FIG. 5A is a view indicated by arrow VIA-VIA in FIG. 5, and FIG. 5B is a view indicated by arrow VIB-VIB in FIG. 5. 第1実施形態の第2変形例に係る立体トラス構造を構成するボールジョイントを説明する概略構成図である。It is a schematic block diagram explaining the ball joint which comprises the solid truss structure which concerns on the 2nd modification of 1st Embodiment. 本発明の第2実施形態に係る立体トラス構造の詳細を説明する側面から見た概念図である。It is the conceptual diagram seen from the side surface explaining the detail of the space truss structure concerning 2nd Embodiment of this invention. 第2実施形態に係る立体トラス構造を構成するテーパ付きトラス部材の概略構成を説明する軸線を含む縦断面図である。It is a longitudinal cross-sectional view containing the axis line explaining schematic structure of the taper truss member which comprises the solid truss structure which concerns on 2nd Embodiment. 本発明の第3実施形態に係る立体トラス構造の詳細を説明する側面から見た概念図である。It is the conceptual diagram seen from the side surface explaining the details of the space truss structure concerning a 3rd embodiment of the present invention. 本発明の第4実施形態に係る立体トラス構造の詳細を説明する側面から見た概念図である。It is the conceptual diagram seen from the side surface explaining the details of the space truss structure concerning a 4th embodiment of the present invention. 本発明の第5実施形態に係る立体トラス構造の詳細を説明する側面から見た概念図である。It is the conceptual diagram seen from the side surface explaining the detail of the solid truss structure which concerns on 5th Embodiment of this invention.

以下、図1〜図7を参照して、本発明の第1実施形態に係る立体トラス構造について説明する。図1は、第1実施形態に係る立体トラス構造を適用した建築物の一例の概略構成を説明する斜視図である。また、図2は、第1実施形態に係る立体トラス構造の概略構成を説明する上方から見た斜視図であり、図3は側面から見た概略構成図であり、図4は平面図である。また、図5は、第1実施形態に係る立体トラス構造の詳細を説明する側面から見た概念図である。また、図6は、下弦部材(トラス部材)を、軸方向に沿って見たときの断面形状の概略を示す概念図であり、(A)は図5に矢視VIA-VIAで示す図であり、(B)は図5に矢視VIB-VIBで示す図である。また、図7は、立体トラス構造を構成するボールジョイント(ジョイント部)の一例を説明する概略構成図である。   Hereinafter, with reference to FIGS. 1-7, the solid truss structure which concerns on 1st Embodiment of this invention is demonstrated. FIG. 1 is a perspective view illustrating a schematic configuration of an example of a building to which the three-dimensional truss structure according to the first embodiment is applied. 2 is a perspective view illustrating a schematic configuration of the three-dimensional truss structure according to the first embodiment viewed from above, FIG. 3 is a schematic configuration diagram viewed from the side, and FIG. 4 is a plan view. . FIG. 5 is a conceptual diagram viewed from the side for explaining details of the three-dimensional truss structure according to the first embodiment. 6 is a conceptual diagram showing an outline of a cross-sectional shape of the lower chord member (truss member) when viewed along the axial direction, and FIG. 6A is a view indicated by arrows VIA-VIA in FIG. Yes, (B) is a figure shown by arrow VIB-VIB in FIG. FIG. 7 is a schematic configuration diagram for explaining an example of a ball joint (joint portion) constituting a three-dimensional truss structure.

図1〜図7において、符号100は建築物を、符号10は立体トラス(立体トラス構造)を、符号11は下弦を、符号110は下弦部材を、符号12は上弦を、符号120は上弦部材を、符号13は斜材構造を、符号130は斜材部材を、符号14はボールジョイント(ジョイント部)を示している。また、符号10Fは片持ちトラスを示している。また、片持ちトラス10Fにおける支持部側を後方側R、自由端側を前方側Fとする。なお、下弦部材、上弦部材、斜材部材をとらす部材という場合がある。   1 to 7, reference numeral 100 denotes a building, reference numeral 10 denotes a three-dimensional truss (three-dimensional truss structure), reference numeral 11 denotes a lower chord, reference numeral 110 denotes a lower chord member, reference numeral 12 denotes an upper chord, and reference numeral 120 denotes an upper chord member. Reference numeral 13 denotes an oblique material structure, reference numeral 130 denotes an oblique material member, and reference numeral 14 denotes a ball joint (joint portion). Reference numeral 10F denotes a cantilever truss. Moreover, let the support part side in the cantilever 10F be the back side R, and let the free end side be the front side F. In some cases, the lower chord member, the upper chord member, and the diagonal member are called members.

第1実施形態に係る建築物100は、図1に示すように、例えば、複数(例えば、4本)の前方支持柱(支持部)101と、複数(例えば、4本)の後方支持柱102と、天井部材103と、複数(例えば、4組)の立体トラス(立体トラス構造)10と、横部材10Jと、を備えている。
ここで、前方支持柱(支持部)101、後方支持柱102、立体トラス(立体トラス構造)10の数については、任意の数(単数又は複数)に設定することが可能である。
As illustrated in FIG. 1, the building 100 according to the first embodiment includes, for example, a plurality (for example, four) of front support columns (support portions) 101 and a plurality of (for example, four) rear support columns 102. A ceiling member 103, a plurality of (for example, four sets) three-dimensional trusses (three-dimensional truss structure) 10, and a transverse member 10J.
Here, the number of the front support columns (support portions) 101, the rear support columns 102, and the three-dimensional truss (three-dimensional truss structure) 10 can be set to an arbitrary number (single or plural).

また、この実施形態において、立体トラス(立体トラス構造)10は、図示していないが、建築物100の左側Aから右側Bにわたって前方支持柱(支持部)101、後方支持柱102と対応して配置されていて、天井部材103を上方から保持する構成とされている。   In this embodiment, the three-dimensional truss (three-dimensional truss structure) 10 is not shown, but corresponds to the front support column (support unit) 101 and the rear support column 102 from the left side A to the right side B of the building 100. It is the structure which is arrange | positioned and hold | maintains the ceiling member 103 from upper direction.

前方支持柱(支持部)101は、天井部材103の前方側Fと後方側Rの中間位置において、天井部材103の左側Aの端部近傍と右側Bの端部近傍、及び両端部近傍の前方支持柱101の間に間隔(例えば、等間隔)をあけて配置され、立体トラス10を下方から支持している。   The front supporting column (supporting portion) 101 is located at the intermediate position between the front side F and the rear side R of the ceiling member 103, near the end portion on the left side A, near the end portion on the right side B, and in front of both end portions. It arrange | positions at intervals (for example, equal intervals) between the support pillars 101, and supports the solid truss 10 from below.

後方支持柱102は、天井部材103の後方側Rの端部において、天井部材103の左側Aの端部近傍と右側Bの端部近傍、及び両端部近傍の後方支持柱102の間に間隔(例えば、等間隔)をあけて配置され、立体トラス10を下方から支持している。   The rear support columns 102 are spaced between the rear support columns 102 in the vicinity of the left side A of the ceiling member 103, in the vicinity of the right side B end, and in the vicinity of both ends at the end on the rear side R of the ceiling member 103. For example, the three-dimensional truss 10 is supported from below by being arranged at equal intervals.

また、それぞれの立体トラス(立体トラス構造)10は、左側Aから右側Bに向かって間隔をあけて隣接配置されている。なお、隣接する立体トラス(立体トラス構造)10の間に間隔をあけるかどうかは任意に設定することが可能である。   The three-dimensional trusses (three-dimensional truss structures) 10 are arranged adjacent to each other with an interval from the left A toward the right B. Note that it is possible to arbitrarily set whether or not a space is provided between adjacent three-dimensional trusses (three-dimensional truss structure) 10.

横部材10Jは、例えば、立体トラス10の前後方向における任意の位置で、隣接する立体トラス10の下弦11を構成するボールジョイント(ジョイント部)14同士、及び上弦12を構成するボールジョイント(ジョイント部)14同士を左右方向で接合(必要に応じて斜材を用いてもよい)して、隣接する立体トラス10の間にトラス構造を構成している。なお、横部材10Jを配置する位置及び数については任意に設定することが可能である。   The horizontal members 10J are, for example, ball joints (joint portions) 14 constituting the lower chord 11 of the adjacent solid truss 10 and ball joints (joint portion) constituting the upper chord 12 at an arbitrary position in the front-rear direction of the solid truss 10. ) 14 are joined together in the left-right direction (an oblique material may be used if necessary) to form a truss structure between adjacent three-dimensional trusses 10. In addition, it is possible to set arbitrarily about the position and number which arrange | position the horizontal member 10J.

立体トラス(立体トラス構造)10は、図2〜図4に示すように、例えば、下弦11と、上弦12と、複数の斜材13と、複数のボールジョイント(ジョイント部)14と、複数の横部材10Mと、を備えている。   As shown in FIGS. 2 to 4, the three-dimensional truss (three-dimensional truss structure) 10 includes, for example, a lower chord 11, an upper chord 12, a plurality of diagonal members 13, a plurality of ball joints (joint portions) 14, and a plurality of A transverse member 10M.

また、立体トラス(立体トラス構造)10は、前側支持柱101の前方側Fに位置される片持ちトラス10Fを備えている。
片持ちトラス10Fは、支持部前側支持柱101を支持部とし、前方側Fの先端部が自由端とされている。
The three-dimensional truss (three-dimensional truss structure) 10 includes a cantilever 10 </ b> F positioned on the front side F of the front support column 101.
The cantilever 10F has a support portion front support column 101 as a support portion, and the front end F has a free end.

片持ちトラス10Fにおいて、下弦11と上弦の間隔で表されるデプスは任意に設定することが可能であるが、この実施形態では、例えば、片持ちトラス10Fのデプスは全長にわたって一定に設定されている。   In the cantilever 10F, the depth expressed by the distance between the lower chord 11 and the upper chord can be arbitrarily set. In this embodiment, for example, the depth of the cantilever 10F is set to be constant over the entire length. Yes.

下弦11は、図2〜図4に示すように、それぞれ前後方向(前方側Fから後方側Rに向かう方向)に沿って延在し、左右に並行して配置される二つの下弦部材列110・・・110と、横部材10Mと、を備えている。
また、下弦11は、例えば、同一平面状に形成され、後方側Rに対して前方側Fがわずかに上方に位置されている。
As shown in FIGS. 2 to 4, the lower chord 11 extends along the front-rear direction (the direction from the front side F toward the rear side R), and is arranged in two lower chord member rows 110 arranged in parallel to the left and right. ... 110 and the transverse member 10M.
Further, the lower chord 11 is formed in the same plane, for example, and the front side F is positioned slightly above the rear side R.

下弦部材列110・・・110は、前後方向に配列された複数の下弦部材110がボールジョイント(ジョイント部)14によって接合された構成とされている。
また、左右の下弦部材列110・・・110は、前後方向における対応する位置で、横部材10Mによって接合されている。
The lower chord member row 110... 110 has a configuration in which a plurality of lower chord members 110 arranged in the front-rear direction are joined by a ball joint (joint portion) 14.
The left and right lower chord member rows 110... 110 are joined by the transverse member 10M at corresponding positions in the front-rear direction.

また、下弦11は、図5に示すように、下弦部材111S、112S、113S(110)がボールジョイント(ジョイント部)14を介して接合された構成とされている。
また、下弦部材111S、112S、113S(110)は、それぞれ軸方向(長手方向)に沿って外形形状(外径)が同一とされそれぞれ軸方向に沿ってストレートに形成されている。
Further, the lower chord 11 is configured such that lower chord members 111S, 112S, 113S (110) are joined via a ball joint (joint portion) 14 as shown in FIG.
The lower chord members 111S, 112S, and 113S (110) have the same outer shape (outer diameter) along the axial direction (longitudinal direction), and are formed straight along the axial direction.

また、互いに隣接配置された下弦部材111S、112S、113S(110)は、軸方向に沿って見たときの断面積が、片持ちトラス10Fの支持部101側から先端側Fに向かって順次縮小(縮径)されている。その結果、ボールジョイント(ジョイント部)14ごとに断面積変化が生じる下弦断面積変化部を備えている。
ここで、下弦部材111S、112S、113S(110)は、後方側Rに治されるものを第1下弦部材、先端側Fに位置されるものを第2下弦部材とする。
また、それぞれの下弦部材110、横部材10Mは、配置された位置における圧縮力、引張力に耐え得うる強度を備えている。
In addition, the lower chord members 111S, 112S, 113S (110) arranged adjacent to each other have a cross-sectional area as viewed in the axial direction that gradually decreases from the support portion 101 side to the front end side F of the cantilever 10F. (Reduced diameter). As a result, each ball joint (joint portion) 14 includes a lower chord cross-sectional area changing portion in which a cross-sectional area change occurs.
Here, for the lower chord members 111S, 112S, and 113S (110), a member that is cured on the rear side R is a first lower chord member, and a member that is positioned on the distal end side F is a second lower chord member.
The lower chord member 110 and the transverse member 10M each have a strength that can withstand a compressive force and a tensile force at the arranged positions.

すなわち、(下弦部材111Sの断面積)>(下弦部材112Sの断面積)、(下弦部材112Sの断面積)>(下弦部材113Sの断面積)に設定されている。
また、この実施形態において、(下弦部材111Sの断面積)>(下弦部材112Sの断面積)は、図6に示すように、例えば、(下弦部材111Sの外形(外径)φD111S)>(下弦部材121Sの外形(外径)φD121S)、及び(下弦部材111Sの肉厚t111S)=(下弦部材121Sの肉厚t121S)であることによって実現されている。
また、(下弦部材112Sの断面積)>(下弦部材113Sの断面積)についても同様である。
That is, (the cross-sectional area of the lower chord member 111S)> (the cross-sectional area of the lower chord member 112S), (the cross-sectional area of the lower chord member 112S)> (the cross-sectional area of the lower chord member 113S) is set.
Further, in this embodiment, (the cross-sectional area of the lower chord member 111S)> (the cross-sectional area of the lower chord member 112S) is, for example, (external shape (outer diameter) φD111S of the lower chord member 111S)> (lower chord) The outer shape (outer diameter) φD121S of the member 121S) and (the wall thickness t111S of the lower chord member 111S) = (the wall thickness t121S of the lower chord member 121S).
The same applies to (cross-sectional area of the lower chord member 112S)> (cross-sectional area of the lower chord member 113S).

なお、図5では、下弦断面積変化部を、3つの下弦部材111S、112S、113S(110)によって示したが、第1実施形態に係る下弦断面積変化部は、片持ちトラス10Fの全長にわたって形成されている。   In FIG. 5, the lower chord cross-sectional area changing portion is shown by three lower chord members 111S, 112S, and 113S (110). However, the lower chord cross-sectional area changing portion according to the first embodiment extends over the entire length of the cantilever 10F. Is formed.

下弦部材110は、例えば、STK400、STK490、STKN400、STKN49により形成され、断面が中空円形に形成された円筒状の軸部材とされていて、軸方向における両端には、先端側が縮径されるコーン部が形成されている。(例えば、図7に示す上弦部材120と同様の構成とされている。)   The lower chord member 110 is formed of, for example, STK400, STK490, STKN400, STKN49, and is a cylindrical shaft member having a hollow circular cross section. A cone whose tip side is reduced in diameter at both ends in the axial direction. The part is formed. (For example, it is set as the structure similar to the upper chord member 120 shown in FIG. 7.)

横部材10Mは、前後方向に間隔をあけて配置され、前後方向において互いに対応する位置で左右の下弦部材列下弦部材列110・・・110に配置されたボールジョイント14同士を接合するように構成されている。
なお、横部材10Mは、例えば、STK400、STK490、STKN400、STKN49により形成されている。
The horizontal members 10M are arranged at intervals in the front-rear direction, and are configured to join the ball joints 14 arranged in the left and right lower chord member rows 110 ... 110 at positions corresponding to each other in the front-rear direction. Has been.
Note that the lateral member 10M is formed of, for example, STK400, STK490, STKN400, and STKN49.

上弦12は、図2〜図4に示すように、前後方向に配列された複数の上弦部材120がボールジョイント(ジョイント部)14によって接合された構成とされている。
また、この実施形態において、図3、図4に示すように、上弦12と下弦11とは並行して形成されている。
As shown in FIGS. 2 to 4, the upper chord 12 is configured such that a plurality of upper chord members 120 arranged in the front-rear direction are joined by a ball joint (joint portion) 14.
In this embodiment, as shown in FIGS. 3 and 4, the upper chord 12 and the lower chord 11 are formed in parallel.

上弦部材120は、例えば、STK400、STK490、STKN400、STKN49により形成され、図6に示すように、断面が中空円形に形成された円筒状の軸部材とされていて、軸方向における両端部には、先端側が縮径されるコーン部が形成されている。   The upper chord member 120 is formed of, for example, STK400, STK490, STKN400, and STKN49. As shown in FIG. 6, the upper chord member 120 is a cylindrical shaft member having a hollow circular cross section. A cone portion whose diameter is reduced on the tip side is formed.

また、上弦12は、前側支持柱101の後方側Rにおける最初のボールジョイント(ジョイント部)14までの片持ちトラス10Fでは、前方側Fから後方側Rに向かって次第に高くなり、片持ちトラス10Fの後方側Rでは、後方側Rに向かうにしたがってしだいに低くなる構成とされている。
また、上弦12は、図2、図4に示すように、例えば、平面視して左右二つの下弦部材列の中央に配置されている。
Further, in the cantilever 10F up to the first ball joint (joint portion) 14 on the rear side R of the front support column 101, the upper chord 12 gradually increases from the front side F toward the rear side R, and the cantilever 10F In the rear side R, the height gradually decreases toward the rear side R.
Further, as shown in FIGS. 2 and 4, the upper chord 12 is disposed, for example, at the center of the two left and right lower chord member rows in plan view.

また、上弦12は、図5に示すように、上弦部材121S、122S、123S(120)がボールジョイント(ジョイント部)14を介して接合された構成とされている。
上弦部材121S、122S、123S(120)は、それぞれ軸方向(長手方向)に沿って外形形状(外径)が同一とされそれぞれ軸方向に沿ってストレートに形成されている。
As shown in FIG. 5, the upper chord 12 is configured such that upper chord members 121 </ b> S, 122 </ b> S, 123 </ b> S (120) are joined via a ball joint (joint portion) 14.
The upper chord members 121S, 122S, 123S (120) have the same outer shape (outer diameter) along the axial direction (longitudinal direction), and are formed straight along the axial direction.

また、互いに隣接配置された上弦部材121S、122S、123S(120)は、軸方向に沿って見たときの断面積が、片持ちトラス10Fの支持部101側から先端側Fに向かって順次縮小(縮径)されている。その結果、ボールジョイント(ジョイント部)14ごとに断面積変化が生じる上弦断面積変化部を備えている。
ここで、上弦部材121S、122S、123S(120)は、後方側Rに治されるものを第1上弦部材、先端側Fに位置されるものを第2上弦部材とする。
また、それぞれの上弦部材120は、配置された位置における圧縮力、引張力に耐え得うる強度を備えている。
Further, the upper chord members 121S, 122S, and 123S (120) arranged adjacent to each other have a cross-sectional area as viewed in the axial direction that gradually decreases from the support portion 101 side to the distal end side F of the cantilever 10F. (Reduced diameter). As a result, each of the ball joints (joint portions) 14 includes an upper chord cross-sectional area changing portion in which a cross-sectional area change occurs.
Here, for the upper chord members 121S, 122S, 123S (120), the one that is cured on the rear side R is the first upper chord member, and the one that is positioned on the distal end side F is the second upper chord member.
Further, each upper chord member 120 has a strength capable of withstanding a compressive force and a tensile force at the arranged position.

すなわち、(上弦部材121Sの断面積)>(下弦部材122Sの断面積)、(下弦部材122Sの断面積)>(下弦部材123Sの断面積)に設定されている。
なお、(上弦部材121Sの断面積)>(下弦部材122Sの断面積)、(下弦部材122Sの断面積)>(下弦部材123S)の構成については、上述の図6で示した構成と同様であるので説明を省略する。
That is, (the cross-sectional area of the upper chord member 121S)> (the cross-sectional area of the lower chord member 122S), (the cross-sectional area of the lower chord member 122S)> (the cross-sectional area of the lower chord member 123S) is set.
The configuration of (the cross-sectional area of the upper chord member 121S)> (the cross-sectional area of the lower chord member 122S) and (the cross-sectional area of the lower chord member 122S)> (the lower chord member 123S) is the same as the configuration shown in FIG. Since there is, explanation is omitted.

なお、図5では、上弦断面積変化部を、3つの下弦部材121S、122S、123S(120)によって示したが、第1実施形態に係る上弦断面積変化部は、片持ちトラス10Fの全長(支持部から最も前方側F位置されるボールジョイント14までの範囲)にわたって形成されている。   In FIG. 5, the upper chord cross-sectional area changing portion is shown by three lower chord members 121S, 122S, 123S (120), but the upper chord cross-sectional area changing portion according to the first embodiment is the full length of the cantilever 10F ( A range from the support portion to the ball joint 14 positioned at the foremost side F).

上弦部材120は、例えば、STK400、STK490、STKN400、STKN490により形成され、図7に示すように、断面が中空円形に形成された円筒状の軸部材とされていて、軸方向における両端部には、先端側が縮径されるコーン部が形成されている。   The upper chord member 120 is formed of, for example, STK400, STK490, STKN400, STKN490, and is a cylindrical shaft member having a hollow circular cross section as shown in FIG. A cone portion whose diameter is reduced on the tip side is formed.

斜材構造13は、例えば、下弦11に配置されたボールジョイント(ジョイント部)14と上弦12に配置されたボールジョイント(ジョイント部)14を介して、下弦11と上弦12とを接合する複数の斜材部材130を備えている。
また、それぞれの斜材部材130は、配置された位置における圧縮力、引張力に耐え得うる強度を備えている。
そして、斜材部材130は、支持部材R側に位置されるボールジョイント14と、前方側Fに位置されるボールジョイント14とを、下弦11側と上弦12側とを交互に接合して斜めに配置されている。
The diagonal structure 13 includes, for example, a plurality of joints that connect the lower chord 11 and the upper chord 12 via a ball joint (joint portion) 14 disposed on the lower chord 11 and a ball joint (joint portion) 14 disposed on the upper chord 12. The diagonal member 130 is provided.
Each diagonal member 130 has a strength capable of withstanding a compressive force and a tensile force at the position where it is disposed.
Then, the diagonal member 130 obliquely joins the ball joint 14 positioned on the support member R side and the ball joint 14 positioned on the front side F alternately on the lower chord 11 side and the upper chord 12 side. Has been placed.

斜材構造13は、この実施形態において、図5に示すように、例えば、斜材部材130F(130)と、斜材部材131R(130)と、斜材部材131F(130)と、斜材部材132R(130)と、斜材部材132F(130)と、を備えている。   In this embodiment, as shown in FIG. 5, the diagonal member structure 13 includes, for example, an oblique member 130F (130), an oblique member 131R (130), an oblique member 131F (130), and an oblique member. 132R (130) and the diagonal member 132F (130).

また、斜材部材130F、斜材部材131R、斜材部材131F、斜材部材132R、斜材部材132Fは、それぞれ長手方向に沿って外形形状(外径)が同一に形成されそれぞれ軸方向に沿ってストレートに形成されている。   Further, the diagonal member 130F, the diagonal member 131R, the diagonal member 131F, the diagonal member 132R, and the diagonal member 132F have the same outer shape (outer diameter) along the longitudinal direction, and are each along the axial direction. It is formed straight.

また、斜材部材130F(130)、斜材部材131R(130)及び斜材部材131F(130)、斜材部材132R(130)及び斜材部材132F(130)は、軸方向に沿って見たときの断面積が、片持ちトラス10Fの支持部101側から先端側Fに向かって、上弦11側のボールジョイント(ジョイント部)14ごとに、順次縮小(縮径)されている。その結果、ボールジョイント(ジョイント部)14ごとに断面積変化が生じる斜材断面積変化部を備えている。
ここで、斜材部材130F、131R、131F、132R、132F(130)は、後方側Rに治されるものを第1斜材部材、先端側Fに位置されるものを第2斜材部材とする。
The diagonal member 130F (130), the diagonal member 131R (130), the diagonal member 131F (130), the diagonal member 132R (130), and the diagonal member 132F (130) are viewed along the axial direction. The cross-sectional area is gradually reduced (reduced diameter) for each ball joint (joint part) 14 on the upper chord 11 side from the support part 101 side to the front end side F of the cantilever 10F. As a result, each of the ball joints (joint portions) 14 includes an oblique material cross-sectional area changing portion in which a cross-sectional area change occurs.
Here, it is assumed that the diagonal members 130F, 131R, 131F, 132R, and 132F (130) are cured on the rear side R, the first diagonal member, and the one positioned on the tip side F is the second diagonal member. To do.

すなわち、(斜材部材130Fの断面積)>(斜材部材131Rの断面積)、(斜材部材131Rの断面積)=(斜材部材131Fの断面積)、(斜材部材131Fの断面積)>(斜材部材132Rの断面積)、(斜材部材132Rの断面積)=(斜材部材132Fの断面積)に設定されている。   That is, (cross-sectional area of diagonal member 130F)> (cross-sectional area of diagonal member 131R), (cross-sectional area of diagonal member 131R) = (cross-sectional area of diagonal member 131F), (cross-sectional area of diagonal member 131F) )> (Cross-sectional area of the diagonal member 132R), (cross-sectional area of the diagonal member 132R) = (cross-sectional area of the diagonal member 132F).

なお、(斜材部材130Fの断面積)>(斜材部材131Rの断面積)、(斜材部材131Fの断面積)>(斜材部材132Rの断面積)の構成については、上述の図6で示した構成と同様であるので説明を省略する。   The configuration of (cross-sectional area of the diagonal member 130F)> (cross-sectional area of the diagonal member 131R), (cross-sectional area of the diagonal member 131F)> (cross-sectional area of the diagonal member 132R) is described above with reference to FIG. Since the configuration is the same as that shown in FIG.

また、図5において、斜材断面積変化部は、3種類の斜材部材130F、斜材部材131R及び斜材部材131F、斜材部材132R及び斜材部材132Fにより示したが、第1実施形態に係る斜材断面積変化部は、例えば、片持ちトラス10Fの全長にわたって形成されている。
なお、斜材断面積変化部は、例えば、上弦11側のボールジョイント14及び下弦12側のボールジョイント14ごとに形成された構成とされていてもよい。
Further, in FIG. 5, the diagonal cross-sectional area changing portion is shown by three types of diagonal members 130F, diagonal members 131R and diagonal members 131F, diagonal members 132R and diagonal members 132F, but the first embodiment. The oblique member cross-sectional area changing portion according to is formed, for example, over the entire length of the cantilever 10F.
Note that the oblique member cross-sectional area changing portion may be formed for each of the ball joint 14 on the upper chord 11 side and the ball joint 14 on the lower chord 12 side, for example.

斜材部材130は、例えば、STK400、STK490、STKN400、STKN49により形成され、図7に示すように、断面が中空円形に形成された円筒状の軸部材とされていて、軸方向における両端部には、先端側が縮径されるコーン部が形成されている。   The diagonal member 130 is formed of, for example, STK400, STK490, STKN400, and STKN49. As shown in FIG. 7, the diagonal member 130 is a cylindrical shaft member having a hollow circular cross section. Is formed with a cone portion whose tip side is reduced in diameter.

ボールジョイント(ジョイント部)14は、図7に示すように、例えば、球形に形成されていて、球面には内方に向かって略U字形にくぼむ凹部14Uが形成されている。
また、ボールジョイント14には、球面から凹部14Uに貫通する複数のねじ穴14Tが形成されている。
As shown in FIG. 7, the ball joint (joint portion) 14 is formed in, for example, a spherical shape, and a concave portion 14 </ b> U that is recessed inward in a substantially U shape is formed on the spherical surface.
The ball joint 14 has a plurality of screw holes 14T penetrating from the spherical surface to the recess 14U.

そして、例えば、上弦部材120のコーン部に軸方向に沿って配置されスプリング15Sによって押圧、保持されたボルト15Aや、斜材部材130のコーン部に軸方向に沿って配置、保持されたボルト15Bが、ねじ穴14Tに螺合される構成とされている。
その結果、上弦部材120や斜材部材130とボールジョイント14とを接合するとともに、ボールジョイント14を介して上弦部材120と斜材部材130とを接合するようになっている。
For example, a bolt 15A arranged along the axial direction on the cone portion of the upper chord member 120 and pressed and held by the spring 15S, or a bolt 15B arranged and held along the axial direction on the cone portion of the diagonal member 130. Is configured to be screwed into the screw hole 14T.
As a result, the upper chord member 120 and the diagonal member 130 are joined to the ball joint 14, and the upper chord member 120 and the diagonal member 130 are joined via the ball joint 14.

なお、上弦部材120、斜材部材130に、ボルト15A及びスプリング15S、ボルト15Bのいずれを適用するかは任意に設定することが可能である。また、下弦部材110に対して上記構成を適用してもよい。   Note that it is possible to arbitrarily set which of the bolt 15A, the spring 15S, and the bolt 15B is applied to the upper chord member 120 and the diagonal member 130. Further, the above configuration may be applied to the lower chord member 110.

第1実施形態に係る立体トラス10によれば、下弦断面積変化部と、上弦断面積変化部と、斜材断面積変化部とを備えているので、下弦11、上弦12、斜材構造13の後方側Rにおいて付加される荷重を低減することができる。
その結果、片持ちトラス10Fを構成するトラス部材に生じる圧縮応力又は引張応力を小さくすることができる。
また、立体トラス10が大型化することに起因する重量増大及び建設コストの増大を抑制することができる。
According to the three-dimensional truss 10 according to the first embodiment, the lower chord cross-sectional area changing portion, the upper chord cross-sectional area changing portion, and the diagonal cross-sectional area changing portion are provided. The load applied on the rear side R of the can be reduced.
As a result, the compressive stress or tensile stress generated in the truss member constituting the cantilever 10F can be reduced.
In addition, an increase in weight and an increase in construction cost due to an increase in size of the space truss 10 can be suppressed.

また、第1実施形態に係る立体トラス10によれば、複数の下弦部材11がボールジョイント14で接合された下弦11と、複数の上弦部材12がボールジョイント14で接合された上弦12と、斜材構造13に形成されているので、ストレートに形成された下弦部材110、上弦部材120、斜材部材130を用いることにより、容易に下弦断面積変化部、上弦断面積変化部、斜材断面積変化部を形成することができる。
その結果、簡単な構造によって、容易かつ効率的に立体トラス構造を形成することができる。
In addition, according to the three-dimensional truss 10 according to the first embodiment, a lower chord 11 in which a plurality of lower chord members 11 are joined by a ball joint 14, an upper chord 12 in which a plurality of upper chord members 12 are joined by a ball joint 14, and a slant Since the lower chord member 110, the upper chord member 120, and the diagonal member 130 are formed straight, the lower chord cross-sectional area changing portion, the upper chord cross-sectional area changing portion, and the diagonal cross-sectional area are easily obtained by using the straight chord member 110, the upper chord member 120, and the diagonal member 130. A change part can be formed.
As a result, a three-dimensional truss structure can be easily and efficiently formed with a simple structure.

また、立体トラス10によれば、設計自由度が向上するとともに、片持ちトラス10Fを軽量化することが可能となり、片持ちトラス10Fを曲面的に配置して立体トラスの意匠性を向上することができる。   Further, according to the three-dimensional truss 10, the degree of freedom in design is improved and the cantilever 10F can be reduced in weight, and the design of the three-dimensional truss can be improved by arranging the cantilever 10F in a curved surface. Can do.

<第1実施形態(第1変形例)>
以下、図8を参照して、第1実施形態の変形例に係るトラス部材について説明する。図8は、第1実施形態の第1変形例に係る断面積変化部の概略構成を説明する隣接配置された下弦部材(トラス部材)120を、軸方向に沿って見たときの断面形状の概略を示す概念図であり、図8(A)は図5に矢視VIA-VIAで示す図であり、図8(B)は図5に矢視VIB-VIBで示す図である。
図8において、符号111S、112Sは、隣接配置された下弦部材(トラス部材)120を示している。なお、この変形例において、図5に示した下弦部材111S、112Sは、外形(外径)が同一に設定されているものとする。
<First Embodiment (First Modification)>
Hereinafter, a truss member according to a modification of the first embodiment will be described with reference to FIG. FIG. 8 is a cross-sectional shape of an adjacently arranged lower chord member (truss member) 120 explaining the schematic configuration of the cross-sectional area changing portion according to the first modification of the first embodiment when viewed along the axial direction. FIG. 8A is a diagram showing an outline, FIG. 8A is a diagram shown by arrow VIA-VIA in FIG. 5, and FIG. 8B is a diagram shown by arrow VIB-VIB in FIG.
In FIG. 8, reference numerals 111 </ b> S and 112 </ b> S indicate lower chord members (truss members) 120 arranged adjacent to each other. In this modification, it is assumed that the lower chord members 111S and 112S shown in FIG. 5 have the same outer shape (outer diameter).

第1実施形態の変形例では、例えば、図5において隣接配置された下弦部材(トラス部材)111S、下弦部材(トラス部材)112Sは、軸方向に沿って見たときの断面形状は、図8に示すように、例えば、外形が同径に形成され、かつ(上弦部材122Sの肉厚)>(第2上弦部材123Sの肉厚)に設定されている。   In the modification of the first embodiment, for example, the lower chord member (truss member) 111S and the lower chord member (truss member) 112S arranged adjacent to each other in FIG. As shown in FIG. 4, for example, the outer shapes are formed to have the same diameter, and (thickness of upper chord member 122S)> (thickness of second upper chord member 123S) is set.

その結果、外形が同径に形成されている場合であっても、軸方向に見たときに、(第1上弦部材122Sの断面積)>(第2上弦部材123Sの断面積)に設定することができる。
その結果、後方側Rにおけるトラス部材の荷重を軽減することができる。
なお、トラス部材は、下弦部材120に限定されることなく、上弦部材120、斜材部材130に適用してもよい。
As a result, even when the outer shapes are formed to have the same diameter, when viewed in the axial direction, (the cross-sectional area of the first upper chord member 122S)> (the cross-sectional area of the second upper chord member 123S) is set. be able to.
As a result, the load on the truss member on the rear side R can be reduced.
The truss member is not limited to the lower chord member 120 and may be applied to the upper chord member 120 and the diagonal member 130.

<第1実施形態(第2変形例)>
以下、図9を参照して、第1実施形態の変形例に係るボールジョイントについて説明する。図7は、第1実施形態に係る立体トラス構造を構成するボールジョイントの変形例を説明する概略構成図である。図7において、符号140はボールジョイント(ジョイント部)を示している。
<First Embodiment (Second Modification)>
Hereinafter, a ball joint according to a modification of the first embodiment will be described with reference to FIG. FIG. 7 is a schematic configuration diagram illustrating a modified example of the ball joint configuring the three-dimensional truss structure according to the first embodiment. In FIG. 7, reference numeral 140 denotes a ball joint (joint portion).

ボールジョイント(ジョイント部)140は、図7に示すように、例えば、球形に形成され、球面に内方に向かってくぼむとともに、内方が拡径された略C字形の凹部14Cが形成されている。
また、ボールジョイント140には、球面から凹部14Cに貫通する複数の貫通穴14Hが形成されている。
As shown in FIG. 7, the ball joint (joint portion) 140 is formed, for example, in a spherical shape, and has a substantially C-shaped concave portion 14 </ b> C whose inner diameter is increased while being recessed inwardly on a spherical surface. Yes.
The ball joint 140 is formed with a plurality of through holes 14H penetrating from the spherical surface to the recess 14C.

そして、貫通穴14Hを通じて上弦部材120のコーン部端面に軸方向に沿って形成されたねじ穴12Tや、斜材部材130のコーン部端面に軸方向に沿って形成されたねじ穴13Tに、凹部14C内に配置したボルト16Aやボルト15Bを螺合させるように構成されている。   A recess is formed in the screw hole 12T formed along the axial direction on the end surface of the cone portion of the upper chord member 120 through the through hole 14H or the screw hole 13T formed along the axial direction on the end surface of the cone portion of the diagonal member 130. The bolt 16A and the bolt 15B arranged in 14C are configured to be screwed together.

かかる構成により、上弦部材120や斜材部材130とボールジョイント140とを接合するとともに、ボールジョイント140を介して上弦部材120と斜材部材130とを接合するようになっている。なお、下弦部材110に対して上記構成を適用してもよい。
また、ボールジョイント(ジョイント部)14、140以外の構成のボールジョイント(ジョイント部)を用いてもよい。
With this configuration, the upper chord member 120 or the diagonal member 130 and the ball joint 140 are joined, and the upper chord member 120 and the diagonal member 130 are joined via the ball joint 140. Note that the above configuration may be applied to the lower chord member 110.
Further, a ball joint (joint portion) other than the ball joints (joint portions) 14 and 140 may be used.

<第2実施形態>
以下、図10を参照して、本発明の第2実施形態について説明する。
図10は、本発明の第2実施形態に係る立体トラスの詳細を説明する側面から見た概念図である。図10において、符号20は立体トラス(立体トラス構造)を、符号11Aは下弦を、符号111T〜113T(110)はテーパ付き下弦部材を、符号12Aは上弦を、符号121T〜123T(120)はテーパ付き上弦部材を、符号130F、131R、131F、132R、132F(130)は斜材部材を示している。なお、図10は、立体トラス20を部分的に示すものである。
Second Embodiment
Hereinafter, a second embodiment of the present invention will be described with reference to FIG.
FIG. 10 is a conceptual view seen from the side for explaining details of the space truss according to the second embodiment of the present invention. In FIG. 10, reference numeral 20 denotes a three-dimensional truss (three-dimensional truss structure), reference numeral 11A denotes a lower chord, reference numerals 111T to 113T (110) denote tapered lower chord members, reference numeral 12A denotes an upper chord, and reference numerals 121T to 123T (120). Reference numerals 130F, 131R, 131F, 132R, 132F (130) denote tapered upper chord members, and diagonal members. FIG. 10 partially shows the three-dimensional truss 20.

立体トラス(立体トラス構造)20は、図10に示すように、例えば、下弦11Aと、上弦12Aと、斜材構造13と、複数のボールジョイント(ジョイント部)14とを備えている。
また、立体トラス(立体トラス構造)20は、下弦断面積変化部と、上弦断面積変化部と、斜材断面積変化部と、を備えている。
As shown in FIG. 10, the three-dimensional truss (three-dimensional truss structure) 20 includes, for example, a lower chord 11 </ b> A, an upper chord 12 </ b> A, an oblique material structure 13, and a plurality of ball joints (joint portions) 14.
The three-dimensional truss (three-dimensional truss structure) 20 includes a lower chord cross-sectional area changing portion, an upper chord cross-sectional area changing portion, and an oblique material cross-sectional area changing portion.

下弦11Aは、図10に示すように、例えば、テーパ付き下弦部材111T(110)と、テーパ付き下弦部材112T(110)と、テーパ付き下弦部材113T(110)と、を備えている。
また、テーパ付き下弦部材111T、テーパ付き下弦部材112T、テーパ付き下弦部材113Tは、隣接配置される場合に、支持部が位置される後方側Rに配置されるものを第1テーパ下弦部材、自由端が位置される前方側Fに配置されるものを第2テーパ下弦部材とする。
As shown in FIG. 10, the lower chord 11A includes, for example, a tapered lower chord member 111T (110), a tapered lower chord member 112T (110), and a tapered lower chord member 113T (110).
In addition, when the tapered lower chord member 111T, the tapered lower chord member 112T, and the tapered lower chord member 113T are disposed adjacent to each other, the first tapered lower chord member, which is disposed on the rear side R where the support portion is located, is free. A member disposed on the front side F where the end is located is a second tapered lower chord member.

また、(テーパ付き下弦部材111Tの前方側Fの断面積)≧(テーパ付き下弦部材112Tの後方側Rの断面積)、(テーパ付き下弦部材112Tの前方側Fの断面積)≧(テーパ付き下弦部材113Tの後方側Rの断面積)に設定されていることが好適である。   Further, (cross-sectional area of the front side F of the tapered lower chord member 111T) ≧ (cross-sectional area of the rear side R of the tapered lower chord member 112T), (cross-sectional area of the front side F of the tapered lower chord member 112T) ≧ (tapered) It is preferable to set the cross-sectional area on the rear side R of the lower chord member 113T.

上弦12Aは、例えば、テーパ付き上弦部材121T(120)と、テーパ付き下弦部材122T(120)と、テーパ付き下弦部材123T(120)と、を備えている。
また、テーパ付き上弦部材121T、テーパ付き上弦部材122T、テーパ付き上弦部材123Tは、隣接配置される場合に、支持部が位置される後方側Rに配置されるものを第1テーパ上弦部材、自由端が位置される前方側Fに配置されるものを第2テーパ上弦部材とする。
The upper chord 12A includes, for example, a tapered upper chord member 121T (120), a tapered lower chord member 122T (120), and a tapered lower chord member 123T (120).
Further, when the taper upper chord member 121T, the taper upper chord member 122T, and the taper upper chord member 123T are disposed adjacent to each other, the first taper chord member, which is disposed on the rear side R where the support portion is located, is free. A member disposed on the front side F where the end is located is a second tapered upper chord member.

また、(テーパ付き上弦部材121Tの前方側Fの断面積)≧(テーパ付き上下弦部材122Tの後方側Rの断面積)、(テーパ付き上弦部材122Tの前方側Fの断面積)≧(テーパ付き上弦部材123Tの後方側Rの断面積)に設定されていることが好適である。   Further, (a cross-sectional area of the front side F of the tapered upper chord member 121T) ≧ (a cross-sectional area of the rear side R of the tapered upper chord member 122T), (a cross-sectional area of the front side F of the tapered upper chord member 122T) ≧ (taper) It is preferable that it is set to the cross-sectional area on the rear side R of the attached upper chord member 123T.

斜材構造13は、例えば、下弦11Aに配置されたボールジョイント(ジョイント部)14と上弦12Aに配置されたボールジョイント(ジョイント部)14を介して、下弦11Aと上弦12Aとを接合する複数の斜材部材130を備えている。その他は、第1実施形態と同様であるので説明を省略する。   The diagonal structure 13 includes, for example, a plurality of joints that connect the lower chord 11A and the upper chord 12A via a ball joint (joint portion) 14 disposed on the lower chord 11A and a ball joint (joint portion) 14 disposed on the upper chord 12A. The diagonal member 130 is provided. Since others are the same as those of the first embodiment, description thereof is omitted.

以下、図11を参照して、テーパ付き下弦部材110Tについて説明する。
テーパ付き下弦部材110Tは、図10に示すテーパ付き下弦部材111T、112T、113(110)の概略構成を説明する軸線を含む縦断面図である。
テーパ付き下弦部材110Tは、図11に示すように、例えば、軸線Oを含む断面において、後方側Rから前方側Fに向かって漸次縮径される略テーパ形円筒状に形成されている。
Hereinafter, the tapered lower chord member 110T will be described with reference to FIG.
The tapered lower chord member 110T is a longitudinal sectional view including an axis for explaining a schematic configuration of the tapered lower chord members 111T, 112T, and 113 (110) shown in FIG.
As shown in FIG. 11, the tapered lower chord member 110T is formed, for example, in a substantially tapered cylindrical shape whose diameter is gradually reduced from the rear side R toward the front side F in the cross section including the axis O.

また、テーパ付き下弦部材110Tは、この実施形態において、後方側Rの肉厚D1と、前方側Fの肉厚D2が同一に設定されている。
なお、テーパ付き下弦部材110Tの後方側Rの肉厚D1と前方側Fの肉厚D2については任意に設定することが可能であり、(後方側Rの肉厚D1)≧(前方側Fの肉厚D2)に設定してもよいし、軸方向に見たときに、後方側Rの断面積が前方側Fよりも小さくなる範囲で、(後方側Rの肉厚D1)<(前方側Fの肉厚D2)に設定してもよい。
Further, in the tapered lower chord member 110T, the thickness D1 on the rear side R and the thickness D2 on the front side F are set to be the same in this embodiment.
The thickness D1 on the rear side R and the thickness D2 on the front side F of the tapered lower chord member 110T can be arbitrarily set, and (thickness D1 on the rear side R) ≧ (the front side F (Thickness D2) or within the range in which the cross-sectional area of the rear side R is smaller than the front side F when viewed in the axial direction (thickness D1 of the rear side R) <(front side F thickness D2) may be set.

なお、テーパ付き上弦部材121T〜123T(120)の構成について、テーパ付き下弦部材110Tと同様であるので説明を省略する。   In addition, about the structure of the taper upper chord member 121T-123T (120), since it is the same as that of the taper lower chord member 110T, description is abbreviate | omitted.

第2実施形態に係る立体トラス20によれば、断面積変化部が、下弦11Aに配置されボールジョイント14で接合される複数のテーパ付き下弦部材111T〜113T(110)と、上弦12Aに配置されボールジョイント14で接合される複数のテーパ付き上弦部材121T〜123T(120)と、斜材構造13とを備え、下弦断面積変化部と、上弦断面積変化部と、斜材断面積変化部と、を備えているので、ので、テーパ付き下弦部材110、テーパ付き上弦部材120、斜材構造13を構成する斜材部材130の後方側Rにおける荷重を低減することができる。
その結果、片持ちトラスを構成するトラス部材に生じる圧縮応力又は引張応力を小さくすることができる。
また、立体トラス10が大型化することに起因する重量増大及び建設コストの増大を抑制することができる。
According to the three-dimensional truss 20 according to the second embodiment, the cross-sectional area changing portion is arranged on the upper chord 12A and the plurality of tapered lower chord members 111T to 113T (110) which are arranged on the lower chord 11A and joined by the ball joint 14. A plurality of tapered upper chord members 121T to 123T (120) joined by a ball joint 14 and an oblique material structure 13, and a lower chord cross-sectional area changing portion, an upper chord cross-sectional area changing portion, and an oblique material cross-sectional area changing portion; Therefore, it is possible to reduce the load on the rear side R of the tapered lower chord member 110, the tapered upper chord member 120, and the diagonal member 130 constituting the diagonal structure 13.
As a result, the compressive stress or tensile stress generated in the truss member constituting the cantilever can be reduced.
In addition, an increase in weight and an increase in construction cost due to an increase in size of the space truss 10 can be suppressed.

また、テーパ付き下弦部材111T〜113T(110)、テーパ付き上弦部材121T〜123T(120)を用いることにより、ボールジョイント14とボールジョイント14の間に、容易に下弦断面積変化部、上弦断面積変化部を形成することができる。
その結果、ボールジョイント14とボールジョイント14の間隔が長い区間において、トラス部材に付加される荷重を効率的に軽減することができる。
Further, by using the tapered lower chord members 111T to 113T (110) and the tapered upper chord members 121T to 123T (120), the lower chord cross-sectional area changing portion and the upper chord cross-sectional area can be easily formed between the ball joint 14 and the ball joint 14. A change part can be formed.
As a result, the load applied to the truss member can be efficiently reduced in the section where the distance between the ball joint 14 and the ball joint 14 is long.

また、第2実施形態に係る立体トラス20によれば、隣接配置されるテーパ付き下弦部材列111T及び112T、112T及び113T(110)、隣接配置されるテーパ付き上弦部材列121T及び122T、122T及び123T(110)において、それぞれの後方側Rに位置されるテーパ付きトラス部材(第1テーパ付きトラス部材)の前方側Fの断面積が、前方側Fに位置されるテーパ付きトラス部材(第2テーパ付きトラス部材)の後方側Rの断面積以上に設定されているので、立体トラス20において、断面積変化部をさらに有効に活用することができる。
また、立体トラス20における力学的な安定性、及び意匠的安定性を向上することができる。
Further, according to the three-dimensional truss 20 according to the second embodiment, the tapered lower chord member rows 111T and 112T, 112T and 113T (110) arranged adjacently, the tapered upper chord member rows 121T and 122T, 122T arranged adjacently, and In 123T (110), the sectional area of the front side F of the tapered truss member (first tapered truss member) positioned on the rear side R of each is a tapered truss member (second Since the cross sectional area of the rear side R of the tapered truss member) is set, the cross sectional area changing portion can be more effectively utilized in the three-dimensional truss 20.
Moreover, the mechanical stability and design stability in the three-dimensional truss 20 can be improved.

<第3実施形態>
以下、図12を参照して、本発明の第3実施形態について説明する。
図12は、本発明の第3実施形態に係る立体トラスの詳細を説明する側面から見た概念図である。図12において、符号30は立体トラス(立体トラス構造)を、符号11は下弦を、符号111S〜11S(110)は下弦部材を、符号12Aは上弦を、符号121T〜123T(120)はテーパ付き上弦部材を、符号130F、131R、131F、132R、132F(130)は斜材部材を示している。なお、図12は、立体トラス30を部分的に示すものである。
<Third Embodiment>
Hereinafter, a third embodiment of the present invention will be described with reference to FIG.
FIG. 12 is a conceptual diagram seen from a side surface illustrating details of a three-dimensional truss according to the third embodiment of the present invention. In FIG. 12, reference numeral 30 is a three-dimensional truss (three-dimensional truss structure), reference numeral 11 is a lower chord, reference numerals 111S to 11S (110) are lower chord members, reference numeral 12A is an upper chord, and reference numerals 121T to 123T (120) are tapered. Reference numerals 130F, 131R, 131F, 132R, and 132F (130) denote upper chord members, and diagonal members. FIG. 12 partially shows the three-dimensional truss 30.

立体トラス(立体トラス構造)30は、図12に示すように、例えば、下弦11と、上弦12Aと、斜材構造13と、複数のボールジョイント(ジョイント部)14とを備えている。
また、立体トラス(立体トラス構造)30は、下弦断面積変化部と、上弦断面積変化部と、斜材断面積変化部と、を備えている。
As shown in FIG. 12, the three-dimensional truss (three-dimensional truss structure) 30 includes, for example, a lower chord 11, an upper chord 12 </ b> A, an oblique material structure 13, and a plurality of ball joints (joint portions) 14.
The three-dimensional truss (three-dimensional truss structure) 30 includes a lower chord cross-sectional area changing portion, an upper chord cross-sectional area changing portion, and an oblique material cross-sectional area changing portion.

下弦11は、図12に示すように、下弦部材111S、112S、113S(110)がボールジョイント(ジョイント部)14を介して接合された構成とされている。
また、下弦部材111S、112S、113S(110)は、それぞれ軸方向(長手方向)に沿って外形形状(外径)が同一とされそれぞれ軸方向に沿ってストレートに形成されている。その他は、第1実施形態と同様であるので説明を省略する。
As shown in FIG. 12, the lower chord 11 is configured such that lower chord members 111 </ b> S, 112 </ b> S, 113 </ b> S (110) are joined via a ball joint (joint portion) 14.
The lower chord members 111S, 112S, and 113S (110) have the same outer shape (outer diameter) along the axial direction (longitudinal direction), and are formed straight along the axial direction. Since others are the same as those of the first embodiment, description thereof is omitted.

上弦12Aは、例えば、テーパ付き上弦部材121T(120)と、テーパ付き下弦部材122T(120)と、テーパ付き下弦部材123T(120)と、を備えている。   The upper chord 12A includes, for example, a tapered upper chord member 121T (120), a tapered lower chord member 122T (120), and a tapered lower chord member 123T (120).

また、(テーパ付き上弦部材121Tの前方側Fの断面積)≧(テーパ付き上下弦部材122Tの後方側Rの断面積)、(テーパ付き上弦部材122Tの前方側Fの断面積)≧(テーパ付き上弦部材123Tの後方側Rの断面積)に設定されていることが好適である。その他は、第2実施形態と同様であるので説明を省略する。   Further, (a cross-sectional area of the front side F of the tapered upper chord member 121T) ≧ (a cross-sectional area of the rear side R of the tapered upper chord member 122T), (a cross-sectional area of the front side F of the tapered upper chord member 122T) ≧ (taper) It is preferable that it is set to the cross-sectional area on the rear side R of the attached upper chord member 123T. Since others are the same as that of 2nd Embodiment, description is abbreviate | omitted.

斜材構造13は、例えば、下弦11に配置されたボールジョイント(ジョイント部)14と上弦12Aに配置されたジョイント部14とを介して、下弦11と上弦12Aとを接合する複数の斜材部材130を備えている。その他は、第1実施形態と同様であるので説明を省略する。   The diagonal structure 13 includes, for example, a plurality of diagonal members that join the lower chord 11 and the upper chord 12A via a ball joint (joint portion) 14 disposed on the lower chord 11 and a joint section 14 disposed on the upper chord 12A. 130 is provided. Since others are the same as that of 1st Embodiment, description is abbreviate | omitted.

<第4実施形態>
以下、図13を参照して、本発明の第4実施形態について説明する。
図13は、本発明の第4実施形態に係る立体トラスの一例の詳細を説明する側面から見た概念図である。図13において、符号40は立体トラス(立体トラス構造)を、符号11は下弦を、符号110は下弦部材を、符号12は上弦を、符号120は上弦部材を、符号130TR、130TFはテーパ付き斜材部材を示している。なお、図13は、立体トラス40を部分的に示すものである。
<Fourth embodiment>
Hereinafter, a fourth embodiment of the present invention will be described with reference to FIG.
FIG. 13: is the conceptual diagram seen from the side surface explaining the detail of an example of the three-dimensional truss concerning 4th Embodiment of this invention. In FIG. 13, reference numeral 40 is a three-dimensional truss (three-dimensional truss structure), reference numeral 11 is a lower chord, reference numeral 110 is a lower chord member, reference numeral 12 is an upper chord, reference numeral 120 is an upper chord member, reference numerals 130TR and 130TF are tapered bevels. The material member is shown. FIG. 13 partially shows the three-dimensional truss 40.

立体トラス(立体トラス構造)40は、図13に示すように、例えば、下弦11と、上弦12と、斜材構造13Aと、複数のボールジョイント(ジョイント部)14とを備えている。   As shown in FIG. 13, the three-dimensional truss (three-dimensional truss structure) 40 includes, for example, a lower chord 11, an upper chord 12, an oblique material structure 13 </ b> A, and a plurality of ball joints (joint portions) 14.

立体トラス(立体トラス構造)40は、斜材構造13Aに形成された斜材断面積変化部を備えている。
下弦11、上弦12に断面変化部を形成するかどうかは任意に設定可能であり、それぞれ第1実施形態に係る下弦11、上弦12、第2実施形態に係る下弦11A、上弦12Aを任意に適用してもよい。
The three-dimensional truss (three-dimensional truss structure) 40 includes an oblique member cross-sectional area changing portion formed in the oblique member structure 13A.
It is possible to arbitrarily set whether or not the cross-section changing portion is formed in the lower chord 11 and the upper chord 12. The lower chord 11, the upper chord 12 according to the first embodiment, and the lower chord 11A and the upper chord 12A according to the second embodiment are arbitrarily applied. May be.

斜材構造13Aは、図13に示すように、テーパ付き斜材部材131TR(130)と、テーパ付き斜材部材131TF(130)と、を備えている。
ここで、支持部が位置される後方側Rに配置されるテーパ付き斜材部材131TR(130)を第1テーパ付き斜材部材、自由端が位置される前方側Fに配置されるテーパ付き斜材部材131TF(130)を第2テーパ付き斜材部材とする。
The diagonal structure 13A includes a tapered diagonal member 131TR (130) and a tapered diagonal member 131TF (130), as shown in FIG.
Here, the tapered diagonal member 131TR (130) disposed on the rear side R where the support portion is positioned is the first tapered diagonal member, and the tapered diagonal member disposed on the front side F where the free end is positioned. The material member 131TF (130) is a second tapered tapered material member.

第1テーパ付き斜材部材131TRは、上弦12に配置され後方側Rに位置されるボールジョイント(ジョイント部)14と、下弦11に配置され前方側Fに位置されるボールジョイント(ジョイント部)14と斜めに接合する。   The first tapered diagonal member 131TR includes a ball joint (joint portion) 14 disposed on the upper chord 12 and positioned on the rear side R, and a ball joint (joint portion) 14 disposed on the lower chord 11 and positioned on the front side F. Join diagonally.

また、第1テーパ付き斜材部材131TRは、例えば、第2実施形態において図11に示したテーパ付き下弦部材110と同様に、軸線を含む断面において、後方側Rから前方側Fに向かって漸次縮径される略テーパ形円筒状に形成され、例えば、軸方向における肉厚が一定に形成されている。   In addition, the first tapered diagonal member 131TR is, for example, gradually from the rear side R toward the front side F in the cross section including the axis, similarly to the tapered lower chord member 110 shown in FIG. 11 in the second embodiment. For example, the wall thickness in the axial direction is constant.

第2テーパ付き斜材部材131TFは、下弦11に配置され後方側Rに位置されるボールジョイント(ジョイント部)14と、上弦12に配置され前方側Fに位置されるボールジョイント(ジョイント部)14と斜めに接合する。
また、第2テーパ付き斜材部材131TFは、例えば、第2実施形態において図11に示したテーパ付き下弦部材110と同様に、軸線を含む断面において、後方側Rから前方側Fに向かって漸次縮径される略テーパ形円筒状に形成され、例えば、軸方向における肉厚が一定に形成されている。
The second tapered diagonal member 131TF includes a ball joint (joint portion) 14 disposed on the lower chord 11 and positioned on the rear side R, and a ball joint (joint portion) 14 disposed on the upper chord 12 and positioned on the front side F. Join diagonally.
Further, the second tapered diagonal member 131TF, for example, in the same manner as the tapered lower chord member 110 shown in FIG. 11 in the second embodiment, gradually increases from the rear side R toward the front side F in the cross section including the axis. For example, the wall thickness in the axial direction is constant.

また、この実施形態において、第1テーパ付き斜材部材131TR(130)の前方側Fの断面積と、第2テーパ付き斜材部材131TF(130)の後方側Rの断面積の関係については任意に設定することが可能である。
この実施形態においては、例えば、第1テーパ付き斜材部材131TR(130)の前方側Fの断面積は、第2テーパ付き斜材部材131TF(130)の後方側Rの断面積以上に形成されている。
In this embodiment, the relationship between the cross-sectional area of the front side F of the first tapered diagonal member 131TR (130) and the cross-sectional area of the rear side R of the second tapered diagonal member 131TF (130) is arbitrary. Can be set.
In this embodiment, for example, the cross-sectional area of the front side F of the first tapered diagonal member 131TR (130) is larger than the cross-sectional area of the rear side R of the second tapered diagonal member 131TF (130). ing.

また、第1テーパ付き斜材部材131TR、第2テーパ付き斜材部材131TFの後方側Rの肉厚と前方側Fの肉厚については任意に設定することが可能であり、(後方側Rの肉厚)≧(前方側Fの肉厚)に設定してもよいし、軸方向に見たときに、後方側Rの断面積が前方側Fよりも小さくなる範囲で、(後方側Rの肉厚)<(前方側Fの肉厚)に設定してもよい。
また、同じ外径のテーパ付き斜材部材130を、後方側Rから前方側Fに複数配置してもよい。
Further, the thickness of the rear side R and the thickness of the front side F of the first tapered diagonal member 131TR and the second tapered diagonal member 131TF can be arbitrarily set, (Thickness) ≧ (thickness of the front side F), or within a range where the cross-sectional area of the rear side R is smaller than the front side F when viewed in the axial direction (on the rear side R (Thickness) <(thickness of front side F) may be set.
A plurality of tapered diagonal members 130 having the same outer diameter may be disposed from the rear side R to the front side F.

第4実施形態に係る立体トラス(立体トラス構造)40によれば、斜材構造13Aが、テーパ付き斜材部材を用いて形成されているので、後方側Rに位置されるトラス部材にかかる荷重をより効率的に軽減することができる。   According to the three-dimensional truss (three-dimensional truss structure) 40 according to the fourth embodiment, since the diagonal structure 13A is formed using a tapered diagonal member, the load applied to the truss member positioned on the rear side R Can be reduced more efficiently.

<第5実施形態>
以下、図14を参照して、本発明の第5実施形態について説明する。
図14は、本発明の第5実施形態に係る立体トラスの詳細を説明する側面から見た概念図である。図14において、符号50は立体トラス(立体トラス構造)を、符号11Cは下弦を、符号110Hは下弦部材を、符号12Cは上弦を、符号120Hは上弦部材を、符号13Cは斜材構造を、符号130DR、130DF(130D)は斜材部材を、符号14Gは接続部材(ジョイント部)を示している。なお、図14は、立体トラス50を部分的に示すものである。
<Fifth Embodiment>
Hereinafter, a fifth embodiment of the present invention will be described with reference to FIG.
FIG. 14 is a conceptual diagram seen from a side surface for explaining details of the space truss according to the fifth embodiment of the present invention. In FIG. 14, reference numeral 50 indicates a three-dimensional truss (three-dimensional truss structure), reference numeral 11C indicates a lower chord, reference numeral 110H indicates a lower chord member, reference numeral 12C indicates an upper chord, reference numeral 120H indicates an upper chord member, reference numeral 13C indicates a diagonal structure, Reference numerals 130DR and 130DF (130D) denote diagonal members, and reference numeral 14G denotes a connection member (joint portion). FIG. 14 partially shows the three-dimensional truss 50.

立体トラス(立体トラス構造)50は、図14に示すように、例えば、下弦11Cと、上弦12Cと、斜材構造13Cと、複数の接続部材(ジョイント部)14Gとを備えている。
また、立体トラス(立体トラス構造)50は、例えば、斜材部材構造の全長にわたって斜材断面積変化部が形成されている。
As shown in FIG. 14, the three-dimensional truss (three-dimensional truss structure) 50 includes, for example, a lower chord 11C, an upper chord 12C, an oblique material structure 13C, and a plurality of connecting members (joint portions) 14G.
Further, in the three-dimensional truss (three-dimensional truss structure) 50, for example, an oblique member cross-sectional area changing portion is formed over the entire length of the oblique member structure.

下弦11Cは、図14に示すように、例えば、軸方向(長手方向)に沿って見たときに断面形状が一定とされた一本の下弦部材110Hを備えている。
この実施形態において、上弦部材120Hは、例えば、上面及び下面にフランジ部を配置したH形鋼により構成されている。
また、下弦11Cには間隔をあけて複数の接続部材(ジョイント部)14Gが配置されている。
As shown in FIG. 14, the lower chord 11 </ b> C includes, for example, one lower chord member 110 </ b> H whose cross-sectional shape is constant when viewed along the axial direction (longitudinal direction).
In this embodiment, the upper chord member 120H is made of, for example, an H-shaped steel in which flange portions are arranged on the upper surface and the lower surface.
In addition, a plurality of connecting members (joint portions) 14G are arranged at a distance from the lower chord 11C.

なお、立体トラス50に下弦断面積変化部が形成された構成としてもよい。また、下弦11Cに下弦断面積変化部を形成する際には、例えば、H形鋼のウエブに後方側Rから先端側Fに向かうにしたがってウエブ高さが低くなる傾斜部を加工して、軸方向に沿って見たときの断面積が、支持部側よりも自由端側が小さく形成されたトラス部材(テーパ付きH形鋼)を用いてもよいし、断面積が順次小さくなる複数のトラス部材(例えば、H形鋼等)を接合して下弦断面変化部を構成してもよい。
また、下弦の断面形状については任意に設定することが可能であり、例えば、H形鋼に代えて、他の形状の形鋼、多角形や断面円形の中実又は中空の棒状部材により構成してもよい。
Note that the lower truss cross-sectional area changing portion may be formed on the three-dimensional truss 50. When the lower chord cross-sectional area changing portion is formed in the lower chord 11C, for example, an inclined portion having a web height that decreases from the rear side R toward the front end side F is formed on the H-shaped steel web. A truss member (tapered H-section steel) having a cross-sectional area as viewed along the direction that is smaller on the free end side than the support part side may be used, or a plurality of truss members whose cross-sectional area sequentially decreases. (For example, H-section steel etc.) may be joined to constitute the lower chord cross-section changing portion.
In addition, the cross-sectional shape of the lower chord can be arbitrarily set. For example, instead of the H-section steel, the lower chord is constituted by a shape steel of another shape, a solid or hollow rod-shaped member having a polygon or a circular cross-section. May be.

上弦12Cは、例えば、軸方向(長手方向)に沿って見たときに断面形状が一定とされた一本の上弦部材120Hを備えている。
この実施形態において、上弦部材120Hは、例えば、上面及び下面にフランジ部を配置したH形鋼により構成されている。
また、上弦12Cには、下弦11Cに配置された接続部材(ジョイント部)14Gと交互に複数の接続部材(ジョイント部)14Gが配置されている。
The upper chord 12C includes, for example, one upper chord member 120H having a constant cross-sectional shape when viewed along the axial direction (longitudinal direction).
In this embodiment, the upper chord member 120H is made of, for example, an H-shaped steel in which flange portions are arranged on the upper surface and the lower surface.
The upper chord 12C has a plurality of connecting members (joint portions) 14G arranged alternately with connecting members (joint portions) 14G arranged on the lower chord 11C.

なお、立体トラス50に上弦断面積変化部が形成された構成としてもよい。また、上弦12Cに上弦断面積変化部を形成する際には、例えば、H形鋼のウエブに後方側Rから先端側Fに向かうにしたがってウエブ高さが低くなる傾斜部を加工して、軸方向に沿って見たときの断面積が、支持部側よりも自由端側が小さく形成されたトラス部材(テーパ付きH形鋼)を用いてもよいし、断面積が順次小さくなる複数のトラス部材(例えば、H形鋼等)を接合して上弦断面変化部を構成してもよい。
また、上弦の断面形状については任意に設定することが可能であり、例えば、H形鋼に代えて、他の形状の形鋼、多角形や断面円形の中実又は中空の棒状部材により構成してもよい。
In addition, it is good also as a structure by which the upper chord cross-sectional area change part was formed in the solid truss 50. FIG. When the upper chord cross-sectional area changing portion is formed in the upper chord 12C, for example, an inclined portion whose web height decreases from the rear side R toward the front end F is formed on the H-shaped steel web. A truss member (tapered H-section steel) having a cross-sectional area as viewed along the direction that is smaller on the free end side than the support part side may be used, or a plurality of truss members whose cross-sectional area sequentially decreases. (For example, H-section steel etc.) may be joined to constitute the upper chord cross-section changing portion.
In addition, the cross-sectional shape of the upper chord can be arbitrarily set. For example, instead of the H-section steel, it is configured by a shape steel of another shape, a solid or hollow rod-shaped member having a polygon or a circular cross-section. May be.

斜材構造13Cは、例えば、下弦11Cに配置されたカセットプレート(ジョイント部)14Gと上弦12Cに配置されたカセットプレート(ジョイント部)14Gを介して下弦11Cと上弦12Cとを接合する複数の斜材部材130Dを備えている。   The diagonal structure 13C includes, for example, a plurality of diagonals that join the lower chord 11C and the upper chord 12C via a cassette plate (joint portion) 14G disposed on the lower chord 11C and a cassette plate (joint portion) 14G disposed on the upper chord 12C. A material member 130D is provided.

斜材部材130Dは、例えば、軸方向(長手方向)に沿って見たときの断面形状がそれぞれ一定な円形状とされた、ストレートな中実丸棒により形成されている。
また、斜材部材130Dの両端部には、ジョイント部14Gと接続するためのスプライスプレート130Sが形成されている。また、スプライスプレート130Sは、周知のものを適用することができる。
The diagonal member 130D is formed of, for example, a straight solid round bar having a circular shape with a constant cross-sectional shape when viewed in the axial direction (longitudinal direction).
Splice plates 130S for connecting to the joint portion 14G are formed at both ends of the diagonal member 130D. Moreover, a well-known thing can be applied to the splice plate 130S.

なお、斜材部材130Dを軸方向に沿って見たときの断面形状は任意に設定することが可能であり、例えば、H形鋼、断面形状が多角形の形鋼のほか、断面形状が円形や多角形の中空パイプ等を適用してもよい。   In addition, the cross-sectional shape when the diagonal member 130D is viewed along the axial direction can be arbitrarily set. For example, the cross-sectional shape is circular in addition to the H-section steel, the shape steel having a polygonal cross-section. Alternatively, a polygonal hollow pipe or the like may be applied.

斜材構造13Cにおける斜材断面積変化部は、図14に示すように、例えば、斜材部材(第1斜材部材)130DRと、斜材部材(第2斜材部材)130DFと、を備えている。
そして、斜材断面積変化部は、(斜材部材(第1斜材部材)130DRの断面積)>(斜材部材(第2斜材部材)130DFの断面積)に設定されている。
なお、斜材構造において、斜材断面変化部をどの範囲に形成するかは任意に設定することが可能であり、全長にわたって形成してもよいし一部に形成してもよい。
As shown in FIG. 14, the diagonal material cross-sectional area changing portion in the diagonal material structure 13 </ b> C includes, for example, an diagonal material member (first diagonal material member) 130 </ b> DR and an diagonal material member (second diagonal material member) 130 </ b> DF. ing.
The diagonal member cross-sectional area changing portion is set to (Cross sectional area of diagonal member (first diagonal member) 130DR)> (Cross sectional area of diagonal member (second diagonal member) 130DF).
In the diagonal structure, it is possible to arbitrarily set the range in which the diagonal section change portion is formed, and it may be formed over the entire length or a part thereof.

ジョイント部14Gは、例えば、ガゼットプレートにより構成されている。また、ガゼットプレートは、周知のものを適用することができる。
そして、ジョイント部14は、ボルト等の接続部材により摩擦力によって斜材部材130Dを接合する。
The joint portion 14G is constituted by, for example, a gusset plate. Moreover, a well-known thing can be applied for a gusset plate.
And the joint part 14 joins the diagonal member 130D by frictional force with connection members, such as a volt | bolt.

なお、本発明は、上記実施の形態に限定されるものではなく、発明の趣旨を逸脱しない範囲において、種々の変更をすることが可能である。
例えば、上記実施形態においては、断面積変化部が片持ちトラス10Fの全長にわたって形成されている場合について説明したが、断面積変化部を片持ちトラス10Fに長手方向の一部に形成してもよい。
Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the invention.
For example, in the above-described embodiment, the case where the cross-sectional area changing portion is formed over the entire length of the cantilever 10F has been described, but the cross-sectional area changing portion may be formed on the cantilever 10F in a part in the longitudinal direction. Good.

また、上記実施形態においては、断面積変化部が、下弦断面積変化部と、上弦断面積変化部と、斜材断面積変化部とを備える場合について説明したが、下弦断面積変化部と、上弦断面積変化部と、斜材断面積変化部のうち、いずれに形成するかは任意に設定してもよく、下弦断面積変化部と、上弦断面積変化部と、斜材断面積変化部のうち一部だけを備えていてもよい。
また、下弦断面積変化部、上弦断面積変化部、斜材断面積変化部を形成する場合のトラス部材(下弦部材、上弦部材、斜材部材)の数、位置に着いては任意に設定することができる。
In the above embodiment, the case where the cross-sectional area changing unit includes a lower chord cross-sectional area changing unit, an upper chord cross-sectional area changing unit, and an oblique material cross-sectional area changing unit is described. The upper chord cross-section change portion and the diagonal cross-section change portion may be arbitrarily set. The lower chord cross-section change portion, the upper chord cross-section change portion, and the diagonal cross-section change portion. You may be provided with only a part.
In addition, the number and position of truss members (lower chord member, upper chord member, diagonal member) when forming the lower chord cross-sectional area changing portion, the upper chord cross-sectional area changing portion, and the diagonal chord cross-sectional area changing portion are arbitrarily set. be able to.

また、上記実施形態においては、下弦部材110、上弦部材120、斜材13が、軸方向に沿って見たときに、断面が中空円形に形成されている場合について説明したが、これらの断面形状については任意に設定することが可能であり、例えば、中実や多角形(例えば、角形)に形成されていてもよい。   In the above embodiment, the case where the lower chord member 110, the upper chord member 120, and the diagonal member 13 are formed in a hollow circular shape when viewed along the axial direction has been described. Can be arbitrarily set, and for example, it may be formed in a solid or polygonal shape (for example, a square shape).

また、ストレートなトラス部材、テータ付きとトラス部材を任意に組み合わせて断面変化部を形成してもよい。
また、複数の断面形状変化部を形成する場合に、断面形状変化部と断面形状変化部の間に、断面が変化しない部分、断面が増大する部分を配置してもよい。
Further, the cross-section changing portion may be formed by arbitrarily combining a straight truss member or a truss member and a truss member.
Moreover, when forming a some cross-sectional shape change part, you may arrange | position the part which a cross section does not change between the cross-sectional shape change part and a cross-sectional shape change part, and the part where a cross section increases.

また、上記第5実施形態においては、立体トラス(立体トラス構造)50が斜材断面変化部のみを備えている場合について説明したが、例えば、下弦断面変化部や上弦断面変化部を備えた構成としてもよい。また、下弦断面変化部や上弦断面変化部を形成する場合に、軸方向に沿って見たときの断面積が支持部側よりも自由端側が小さく形成されたトラス部材により形成してもよいし、断面積が順次小さくなる複数のトラス部材を接合して形成してもよい。   Moreover, in the said 5th Embodiment, although the case where the solid truss (three-dimensional truss structure) 50 was provided only with the diagonal section change part was demonstrated, for example, the structure provided with the lower chord cross section change part and the upper chord cross section change part It is good. Further, when forming the lower chord cross section changing portion and the upper chord cross section changing portion, the cross section when viewed along the axial direction may be formed by a truss member formed so that the free end side is smaller than the support portion side. Alternatively, a plurality of truss members whose cross-sectional areas are sequentially reduced may be joined.

また、上記第5実施形態においては、斜材断面変化部が、斜材部材130Dを軸方向に沿って見たときの断面積が、後方側Rから前方側Fに向かって順次小さくなる複数の第1斜材部材130DR、第2斜材部材130DFを用いて構成されている場合について説明したが、例えば、支持部側に比べて自由端側の断面積が小さく形成されたテーパ付き斜材部材を用いてもよいし、上記構成とテーパ付き斜材部材とを組み合わせて断面積変化部を構成してもよい。   Further, in the fifth embodiment, the oblique material cross-section changing section has a plurality of cross-sectional areas when the oblique material member 130D is viewed along the axial direction, which gradually decreases from the rear side R toward the front side F. The case where the first diagonal member 130DR and the second diagonal member 130DF are used has been described. For example, the tapered diagonal member having a smaller cross-sectional area on the free end side than the support side is formed. Alternatively, the cross-sectional area changing portion may be configured by combining the above configuration and the tapered diagonal member.

また、上記実施形態においては、トラス構造を構成する下弦部材110、上弦部材120、斜材13が、ボールジョイント14、140においてボルトで接合される場合について説明したが、ボルト以外の締結部材を用いて接合してもよい。
また、ジョイント部の形態については、ボールジョイントに限定されることなく球形以外の多面体を用いてもよい。
Moreover, in the said embodiment, although the lower chord member 110, the upper chord member 120, and the diagonal member 13 which comprise a truss structure were demonstrated with the ball joint 14 and 140 with a volt | bolt, fastening members other than a volt | bolt are used. May be joined.
Moreover, about the form of a joint part, you may use polyhedrons other than a spherical form, without being limited to a ball joint.

また、上記第1〜第4実施形態においては、下弦部材、上弦部材、斜材、横部材を互いに接合する際に、ボールジョイント(ジョイント部)を適用する場合について説明したが、ジョイント部の構成については適宜設定することが可能である。例えば、ノードであるボールジョイント(ジョイント部)、コーン部、ボルト等を有するトラス用機械式継手に代えて、又はトラス用機械式継手とともに高力ボルト接合による接合を適用してもよい。
また、上記第5実施形態におけるガゼットプレートに代えて、周知の接合部材を用いてもよい。
In the first to fourth embodiments, the case where the ball joint (joint portion) is applied when the lower chord member, the upper chord member, the diagonal member, and the horizontal member are joined to each other has been described. Can be set as appropriate. For example, instead of a truss mechanical joint having a ball joint (joint part), a cone part, a bolt, or the like which is a node, or joint with a truss mechanical joint may be applied.
Further, a well-known joining member may be used in place of the gusset plate in the fifth embodiment.

また、上記実施形態においては、上弦12が下弦11よりも前方側Fに延在する片持ちトラスである場合について説明したが、例えば、下弦11が上弦12よりも前方側Fに延在し、先端の斜材13Fが下弦11を構成する下弦部材110のジョイント部に接合される片持ちトラスに適用してもよい。   Moreover, in the said embodiment, although the case where the upper chord 12 was a cantilever truss extended to the front side F rather than the lower chord 11, the lower chord 11 extended to the front side F rather than the upper chord 12, for example, The front diagonal member 13F may be applied to a cantilever truss joined to the joint portion of the lower chord member 110 constituting the lower chord 11.

また、上記実施形態においては、建築物100が、支持部101に対して一方側(前方側F)に片持ちトラス10Fを備える場合について説明したが、例えば、図1に示す符号R側にも片持ちトラスが形成されていてもよい。
また、基端側Rから先端側Fを見たときの左側Aと右側Bのいずれか一方又は双方に片持ちトラスを備える構成とされていてもよい。
Moreover, in the said embodiment, although the building 100 demonstrated the case where the cantilever 10F was provided in the one side (front side F) with respect to the support part 101, for example, the code | symbol R side shown in FIG. A cantilever truss may be formed.
Moreover, when the front end side F is seen from the base end side R, it is set as the structure provided with a cantilever truss in any one or both of the left side A and the right side B.

以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and the configuration can be changed, combined, deleted, and the like without departing from the gist of the present invention. Is also included.

10、20、30、40、50 トラス構造
10F 片持ちトラス
11、11A、11C 下弦
110、111S、112S、113S 下弦部材
110H 下弦部材
110、110T、111T、112T テーパ付き下弦部材
12、12A、12C 上弦
120、121S、122S、123S 上弦部材
120、120T、121T、122T テーパ付き下弦部材
120H 上弦部材
13、13A、13C 斜材構造
130F、131R、131F、132R、132F 斜材部材
131TR、131TF テーパ付き斜材部材
130D、130DR、130DF 斜材部材
14、140 ボールジョイント(ジョイント部)
14G カセットプレート(ジョイント部)
15A、15B、16A、16B ボルト(締結部材)
100 建築物
10, 20, 30, 40, 50 Truss structure 10F Cantilever truss 11, 11A, 11C Lower chord 110, 111S, 112S, 113S Lower chord member 110H Lower chord member 110, 110T, 111T, 112T Tapered lower chord member 12, 12A, 12C Upper chord 120, 121S, 122S, 123S Upper chord member 120, 120T, 121T, 122T Tapered lower chord member 120H Upper chord member 13, 13A, 13C Diagonal structure 130F, 131R, 131F, 132R, 132F Diagonal member 131TR, 131TF Tapered diagonal member Member 130D, 130DR, 130DF Diagonal member 14, 140 Ball joint (joint part)
14G cassette plate (joint part)
15A, 15B, 16A, 16B Bolt (fastening member)
100 buildings

Claims (4)

下弦と、上弦と、前記下弦と前記上弦とを接合する複数の斜材部材により構成される斜材構造と、を有し、少なくとも一部が支持部によって支持されるとともに前記支持部から離間された位置に自由端が形成された片持ちトラスを備えた立体トラス構造であって、
前記下弦において、前記下弦を軸方向に沿って見たときの断面積が前記支持部側よりも前記自由端側が小さく形成された下弦断面積変化部と、
前記上弦において、前記上弦を軸方向に沿って見たときの断面積が前記支持部側よりも前記自由端側が小さく形成された上弦断面積変化部と、
前記斜材構造において、前記斜材部材を軸方向に沿って見たときの断面積が前記支持部側よりも前記自由端側が小さく形成された斜材断面積変化部と、の全てを有する断面形状変化部を備えていることを特徴とする立体トラス構造。
A lower chord, an upper chord, and a diagonal structure composed of a plurality of diagonal members that join the lower chord and the upper chord, and at least a part thereof is supported by and separated from the support portion. A three-dimensional truss structure with a cantilever truss with a free end formed at the position,
In the lower chord, a lower chord cross-sectional area changing portion formed such that a cross-sectional area when the lower chord is viewed along the axial direction is smaller on the free end side than the support portion side;
In the upper chord, an upper chord cross-sectional area changing portion in which a cross-sectional area when the upper chord is viewed along the axial direction is formed smaller on the free end side than on the support portion side,
In the oblique material structure, a cross section having all of the oblique material cross-sectional area changing portion formed such that the cross-sectional area when the oblique material member is viewed along the axial direction is smaller on the free end side than on the support portion side. A three-dimensional truss structure comprising a shape changing portion.
請求項1に記載の立体トラス構造であって、
前記断面形状変化部は、
前記下弦が複数の下弦部材をジョイント部で接合されて構成されるとともに、前記下弦において、前記支持部側に位置される第1下弦部材と前記第1下弦部材の前記自由端側に配置されて軸方向に沿って見たときの断面積が前記第1下弦部材よりも小さく形成された第2下弦部材とを有することにより構成された前記下弦断面積変化部と、
前記上弦が複数の上弦部材をジョイント部で接合されて構成されるとともに、前記上弦において、前記支持部側に位置される第1上弦部材と前記第1上弦部材の前記自由端側に配置されて軸方向に沿って見たときの断面積が前記第1上弦部材よりも小さく形成された第2上弦部材とを有することにより構成された前記上弦断面積変化部と、
前記斜材構造において、前記支持部側に位置される第1斜材部材と前記第1斜材部材の前記自由端側に配置されて軸方向に沿って見たときの断面積が前記第1斜材部材よりも小さく形成された第2斜材部材とを有することにより構成された前記斜材断面積変化部と、のうち、少なくともいずれかを備えている
ことを特徴とする立体トラス構造。
The three-dimensional truss structure according to claim 1,
The cross-sectional shape changing part is
The lower chord is configured by joining a plurality of lower chord members at a joint portion, and the lower chord is disposed on the free end side of the first lower chord member and the first lower chord member positioned on the support portion side. said lower chord change in sectional area portion configured by a second lower chords member cross-sectional area is smaller than the first lower chords member when viewed along the axial direction,
The upper chord is configured by joining a plurality of upper chord members at a joint portion, and in the upper chord, the first upper chord member positioned on the support portion side and disposed on the free end side of the first upper chord member. said upper chord cross-sectional area change portion configured by a second upper chord member cross-sectional area is smaller than the first upper chord member when viewed along the axial direction,
In the diagonal structure, the first diagonal member positioned on the support portion side and the first diagonal member disposed on the free end side of the first diagonal member and having a cross-sectional area when viewed along the axial direction are the first diagonal member. said diagonal members cross-sectional area change portion configured by a second diagonal member member formed smaller than the slant members members among the three-dimensional truss structure characterized by comprising one at least.
請求項1又は2に記載の立体トラス構造であって、
前記断面形状変化部は、
前記下弦が複数の下弦部材をジョイント部で接合されて構成されるとともに、軸方向に沿って見たときに前記自由端側の断面積が前記支持部側の断面積よりも小さく形成されたテーパ付き下弦部材と、
前記上弦が複数の上弦部材をジョイント部で接合されて構成されるとともに、軸方向に沿って見たときに前記自由端側の断面積が前記支持部側の断面積よりも小さく形成されたテーパ付き上弦部材と、
前記斜材構造において、軸方向に沿って見たときに前記自由端側の断面積が前記支持部側の断面積よりも小さく形成されたテーパ付き斜材部材と、のうち、少なくともいずれかを備えている
ことを特徴とする立体トラス構造。
The three-dimensional truss structure according to claim 1 or 2,
The cross-sectional shape changing part is
The lower chord is formed by joining a plurality of lower chord members at a joint portion, and a taper formed such that a cross-sectional area on the free end side is smaller than a cross-sectional area on the support portion side when viewed along the axial direction. With a lower chord member,
The upper chord is formed by joining a plurality of upper chord members at a joint portion, and when viewed in the axial direction, the free end side cross-sectional area is smaller than the support portion side cross-sectional area. With an upper chord member,
In the diagonal structure, at least one of a tapered diagonal member formed such that a cross-sectional area on the free end side is smaller than a cross-sectional area on the support portion side when viewed along the axial direction. Three-dimensional truss structure characterized by having.
請求項3に記載の立体トラス構造であって、
前記断面形状変化部は、
前記テーパ付き下弦部材が前記支持部から前記自由端側に向かって隣接配置されるとともに、前記支持部側に配置される第1テーパ付き下弦部材の前記自由端側の前記断面積が、前記自由端側に配置される第2テーパ付き下弦部材の前記支持部側の前記断面積以上に形成されているテーパ付き下弦部材列と、
前記テーパ付き上弦部材が前記支持部から前記自由端側に向かって隣接配置されるとともに、前記支持部側に配置される第1テーパ付き上弦部材の前記自由端側の前記断面積が、前記自由端側に配置される第2テーパ付き上弦部材の前記支持部側の前記断面積以上に大きく形成されているテーパ付き上弦部材列と、
前記テーパ付き斜材部材が前記支持部から前記自由端側に向かって隣接配置されるとともに、前記支持部側に配置される第1テーパ付き斜材部材の前記自由端側の前記断面積が、前記自由端側に配置される第2テーパ付き斜材部材の前記支持部側の前記断面積以上に形成されているテーパ付き斜材部材列と、
のうち、少なくともいずれかを備えている
ことを特徴とする立体トラス構造。
The three-dimensional truss structure according to claim 3,
The cross-sectional shape changing part is
The tapered lower chord member is adjacently disposed from the support portion toward the free end side, and the cross-sectional area on the free end side of the first tapered lower chord member disposed on the support portion side is the free portion. A tapered lower chord member row formed to be equal to or larger than the cross-sectional area of the support portion side of the second tapered lower chord member disposed on the end side;
The tapered upper chord member is adjacently disposed from the support portion toward the free end side, and the cross-sectional area of the first tapered upper chord member disposed on the support portion side on the free end side is the free portion. A tapered upper chord member array formed larger than the cross-sectional area of the support portion side of the second tapered upper chord member disposed on the end side;
The tapered diagonal member is disposed adjacent to the free end side from the support portion, and the cross-sectional area on the free end side of the first tapered diagonal member disposed on the support portion side is: A tapered diagonal member array formed to be equal to or larger than the cross-sectional area of the support portion side of the second tapered diagonal member disposed on the free end side;
A three-dimensional truss structure comprising at least one of the above.
JP2019040864A 2019-03-06 2019-03-06 Three-dimensional truss structure Active JP6591107B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019040864A JP6591107B1 (en) 2019-03-06 2019-03-06 Three-dimensional truss structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019040864A JP6591107B1 (en) 2019-03-06 2019-03-06 Three-dimensional truss structure

Publications (2)

Publication Number Publication Date
JP6591107B1 true JP6591107B1 (en) 2019-10-16
JP2020143497A JP2020143497A (en) 2020-09-10

Family

ID=68234868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019040864A Active JP6591107B1 (en) 2019-03-06 2019-03-06 Three-dimensional truss structure

Country Status (1)

Country Link
JP (1) JP6591107B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102584393B1 (en) 2021-11-25 2023-10-05 한국철도기술연구원 Foldable structure for connecting multiaxial and multiangle member and connecting method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07189424A (en) * 1993-12-27 1995-07-28 Toshiro Suzuki Truss structural body
JP3540161B2 (en) * 1998-06-19 2004-07-07 株式会社大林組 Variable shape truss frame
JP3923834B2 (en) * 2002-03-29 2007-06-06 株式会社住軽日軽エンジニアリング Building reinforcement structure
US7743577B2 (en) * 2003-08-18 2010-06-29 Ollman Melvin L Structural truss with crimp/clamp method of making same
JP2007084067A (en) * 2006-10-19 2007-04-05 Nippon Sharyo Seizo Kaisha Ltd Hollow extrusion and structure for railroad car
JP6934290B2 (en) * 2016-10-13 2021-09-15 株式会社竹中工務店 Truss frame

Also Published As

Publication number Publication date
JP2020143497A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
KR100925576B1 (en) Building structure
JP6883098B2 (en) Steel reinforced concrete columns
JP4146511B1 (en) Honeycomb building structure
JP4108101B2 (en) 3D tube building structure
JP6591107B1 (en) Three-dimensional truss structure
CN202000345U (en) Prestressed concrete hollow square pile
KR100624075B1 (en) Reinforcement of foundation
JP6496875B1 (en) Three-dimensional truss structure
JP6983857B2 (en) Truss restraint buckling restraint brace
KR102060811B1 (en) Slab bracket and panel structure
JP5430485B2 (en) Bonded hardware
KR102000261B1 (en) A quadrilateral lattice girder having high strength Spider
KR100938978B1 (en) Buckling-restrained brace and buckling-restrained brace unit thereby
NO346236B1 (en) A system comprising at least four triangular pyramid-shaped support structures, and a method of making the same
JP2016191212A (en) Unit member
JP6764645B2 (en) Joint structure of structural members
JP4074861B2 (en) Building materials
JPH10204994A (en) Steel pipe concrete member
JP6671444B1 (en) Structural materials for buildings and buildings
KR20200071243A (en) Steel frame structure using cft column
JP7280603B2 (en) Collapse prevention structure
CN210684441U (en) Simply supported beam steel bar connection structure
JP2004332486A (en) Column structure
JP5586926B2 (en) Building construction method and pillar member used therefor
CN210599049U (en) Lock foot anchor rod structure and tunnel strutting arrangement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190312

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190312

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190917

R150 Certificate of patent or registration of utility model

Ref document number: 6591107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250