JP6589091B2 - Equipment foundation repair method - Google Patents

Equipment foundation repair method Download PDF

Info

Publication number
JP6589091B2
JP6589091B2 JP2014249522A JP2014249522A JP6589091B2 JP 6589091 B2 JP6589091 B2 JP 6589091B2 JP 2014249522 A JP2014249522 A JP 2014249522A JP 2014249522 A JP2014249522 A JP 2014249522A JP 6589091 B2 JP6589091 B2 JP 6589091B2
Authority
JP
Japan
Prior art keywords
mortar
fibers
fiber
foundation
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014249522A
Other languages
Japanese (ja)
Other versions
JP2016107577A (en
Inventor
哲也 大出
哲也 大出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014249522A priority Critical patent/JP6589091B2/en
Publication of JP2016107577A publication Critical patent/JP2016107577A/en
Application granted granted Critical
Publication of JP6589091B2 publication Critical patent/JP6589091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Description

本発明は、機械設備用の設備基礎の補修方法に関するものである。   The present invention relates to a repair method for equipment foundations for machine equipment.

機械設備を支持する設備基礎10は、例えば図1に示すように、鉄筋コンクリートからなる基礎コンクリート11の上にグラウト層12を設けて形成される。そして、設備20の下端のシュープレート21がグラウト層12の上に配置されてアンカーボルト13で固定され、設備20が設備基礎10に支持される。設備基礎10は、経時劣化や設備の振動等により、次第に既設のグラウト層12や基礎コンクリート11が破壊され、アンカーボルト13に取り付けられたナット14が緩むことがあり、このような場合には補修が必要になる。   As shown in FIG. 1, for example, an equipment foundation 10 that supports mechanical equipment is formed by providing a grout layer 12 on a foundation concrete 11 made of reinforced concrete. Then, the shoe plate 21 at the lower end of the equipment 20 is arranged on the grout layer 12 and fixed by the anchor bolts 13, and the equipment 20 is supported by the equipment foundation 10. The equipment foundation 10 is gradually destroyed due to deterioration with time, vibration of the equipment, etc., and the existing grout layer 12 and foundation concrete 11 may be destroyed, and the nut 14 attached to the anchor bolt 13 may be loosened. Is required.

補修に際しては、設備基礎10の上に載っている設備20を一旦取り外してから補修作業を行う場合もあるが、設備20の移動という大がかりな作業や設備20の長時間停止を避けるため、設備20を設備基礎10の上に載せたまま補修作業が行われる場合もある。補修方法としては、補修部分のグラウト層やコンクリートを人力で斫ったりコア抜きしたりして取り除き、取り除いた部分にモルタル等からなる新しいグラウト材を打設する。   In repairing, the equipment 20 mounted on the equipment foundation 10 may be temporarily removed and then repair work may be performed. However, in order to avoid major work such as moving the equipment 20 and long-term stoppage of the equipment 20, the equipment 20 In some cases, the repair work may be performed while the item is placed on the equipment foundation 10. As a repair method, the grout layer and concrete in the repaired portion are removed by manually rolling or coring, and a new grout material made of mortar or the like is placed in the removed portion.

ところが、通常のモルタルをグラウト材として用いた場合、設備の振動等によって、補修したモルタル部分が割れる場合があり、モルタルの曲げ強度向上が課題となっている。   However, when normal mortar is used as the grout material, the repaired mortar portion may be cracked due to vibration of the equipment and the like, and improvement of the bending strength of the mortar is an issue.

モルタルの補強に関しては、例えば特許文献1に、各種繊維からなる補強材料を含ませてドライ型プレミックスモルタル組成物を構成することによって、衝撃強さ、耐ひび割れ性、耐久性等の各種特性をもたらすことができることが記載されている。   Regarding reinforcement of mortar, for example, Patent Document 1 includes various reinforcing fibers composed of various fibers to form a dry-type premixed mortar composition, thereby providing various properties such as impact strength, crack resistance, and durability. It is described that can be brought about.

特開2006−335597号公報JP 2006-335597 A

しかしながら、補強用繊維を予め混入させたドライ型プレミックスモルタル組成物は、繊維の長さが長い場合には、プレミックスモルタル組成物内で繊維が絡まったり、さらにセメント等の原料との比重差により繊維が偏り、均等に分散していないことがある。このような組成物を水と混ぜてポンプを用いて打設しようとすると、繊維が絡まっている部分や繊維が偏って多く集まっている部分が詰まりやすく、ポンプによる打設に支障をきたす。そのため、手作業でモルタルの打設を行わざるを得ず、殊に広範囲な補修の場合、極めて長い時間がかかる。また、繊維が均等に分散していなければ、モルタル内で強度のばらつきが生じてしまう。   However, the dry premix mortar composition in which reinforcing fibers are mixed in advance, when the fiber length is long, the fibers are entangled in the premix mortar composition, and the specific gravity difference from the raw materials such as cement May cause the fibers to be biased and not evenly dispersed. When such a composition is mixed with water and placed using a pump, the portion where the fibers are entangled or the portion where the fibers are biased and gathered is likely to be clogged, which hinders the placement by the pump. Therefore, the mortar must be manually placed, and it takes a very long time especially for extensive repairs. Further, if the fibers are not evenly dispersed, the strength varies within the mortar.

本発明の目的は、強度を補強したモルタルを迅速且つ大量に打設することができ、設備基礎の広範囲な補修部分を迅速に補修できる補修方法を提供することにある。   An object of the present invention is to provide a repair method capable of quickly and massively placing mortar with enhanced strength and capable of promptly repairing a wide range of repaired parts of a facility foundation.

上記問題を解決するため、本発明は、設備を支持する設備基礎のグラウト層または基礎コンクリートの補修部分に、繊維入りモルタルからなるグラウト材を打設する設備基礎の補修方法であって、モルタル原料と水とを混ぜてペースト状のモルタルを作り、前記ペースト状のモルタルに補強用繊維を投入し攪拌して繊維入りモルタルとし、前記繊維入りモルタルを、ポンプを介して前記補修部分に打設し、前記補強用繊維は、長さや径の異なる少なくとも2種類以上を使用し、前記補強用繊維のうち長い繊維は長さ20mm〜40mm、短い繊維は長さ5mm〜10mmであり、前記短い繊維は、予め工場でセメントや細骨材と一緒に袋詰めすることを特徴とする、設備基礎の補修方法を提供する。
In order to solve the above-mentioned problem, the present invention is a repair method for a facility foundation in which a grout material made of fiber-containing mortar is placed on a grout layer of a facility foundation or a repair portion of a foundation concrete that supports the facility. A paste-like mortar is made by mixing water and water, and reinforcing fibers are added to the paste-like mortar and stirred to form a fiber-containing mortar. The fiber-containing mortar is placed on the repaired part via a pump. the reinforcing fibers, using a different at least two types of length and diameter, Ri long fiber length 20 mm to 40 mm, a short fiber length 5mm~10mm der of the reinforcing fibers, said short fibers Provides a method for repairing the foundation of the equipment, characterized in that it is packed with cement and fine aggregate in advance at the factory .

前記補強用繊維は、篩を介して前記ペースト状のモルタル中に投入してもよい。また、前記ペースト状のモルタルの温度が21℃〜27℃の範囲になるように、水の温度を調整することが好ましい。
The reinforcing fiber may be put into the pasty mortar through a sieve. Moreover, it is preferable to adjust the temperature of water so that the temperature of the paste-like mortar may be in the range of 21 ° C to 27 ° C.

本発明によれば、ペースト状のモルタル内に補強用繊維を投入して攪拌するので、繊維をモルタル内に均一に混ぜ込むことができ、ポンプによって、詰まらせることなく打設することができる。そして、補強用繊維入りモルタルをポンプで吹き付けることにより、迅速且つ大量に高強度なモルタルを打設することができ、設備基礎の広範囲な補修部分を迅速に補修することができる。   According to the present invention, since the reinforcing fibers are put into the paste-like mortar and stirred, the fibers can be uniformly mixed in the mortar and can be placed without being clogged by the pump. By blowing the reinforcing fiber-containing mortar with a pump, a high-strength mortar can be placed quickly and in large quantities, and a wide range of repaired parts of the equipment foundation can be repaired quickly.

設備が載置された設備基礎の構成の概略を示す断面図である。It is sectional drawing which shows the outline of a structure of the equipment foundation in which the equipment was mounted. ポンプを用いてモルタルの打設を行う装置構成の例を示す概略構成図である。It is a schematic block diagram which shows the example of an apparatus structure which places mortar using a pump. 本発明の実施形態にかかる繊維入りモルタルの製造手順を示す説明図である。It is explanatory drawing which shows the manufacture procedure of the mortar containing a fiber concerning embodiment of this invention. 本発明の実施形態にかかるミキサーの内部を上から見た平面図である。It is the top view which looked at the inside of the mixer concerning the embodiment of the present invention from the top.

以下、本発明の実施の形態を、図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、設備基礎10の上に設備20が載置された構成の概要を示す断面図である。設備基礎10は、前述の通り、鉄筋コンクリートからなる基礎コンクリート11の上にグラウト層12を設けて形成される。そして、グラウト層12の上に、設備20の下端の鉄板等からなるシュープレート21が載置され、シュープレート21は、基礎コンクリート11の内部まで達するアンカーボルト13で固定される。シュープレート21と基礎コンクリート11とは、グラウト層12を介することにより隙間無く固定される。このようにして、設備20が設備基礎10に支持される。   FIG. 1 is a sectional view showing an outline of a configuration in which equipment 20 is placed on equipment foundation 10. As described above, the facility foundation 10 is formed by providing the grout layer 12 on the foundation concrete 11 made of reinforced concrete. Then, a shoe plate 21 made of an iron plate or the like at the lower end of the equipment 20 is placed on the grout layer 12, and the shoe plate 21 is fixed with anchor bolts 13 reaching the inside of the foundation concrete 11. The shoe plate 21 and the foundation concrete 11 are fixed without a gap through the grout layer 12. In this way, the facility 20 is supported by the facility foundation 10.

設備基礎10の上に、設備20として例えば圧延機が設置されている場合、1000kgを超える重量を有する圧延機の稼働時の振動等により、シュープレート21とグラウト層12との間に次第に隙間が生じる。そして、この隙間が生じた状態で、圧延機の稼働によりグラウト層12に衝撃力が加わることで、グラウト層12が劣化する。隙間の有無は、例えばシュープレート21とグラウト層12との間に薄板を差し込むことで確認でき、この薄板が入り込む範囲が、補修を必要とする部分であると判断される。   When, for example, a rolling mill is installed as the facility 20 on the facility foundation 10, a gap is gradually formed between the shoe plate 21 and the grout layer 12 due to vibration during operation of the rolling mill having a weight exceeding 1000 kg. Arise. And in the state which this clearance gap produced, the grout layer 12 deteriorates because an impact force is added to the grout layer 12 by operation | movement of a rolling mill. The presence or absence of a gap can be confirmed, for example, by inserting a thin plate between the shoe plate 21 and the grout layer 12, and the range into which the thin plate enters is determined to be a portion requiring repair.

補修を行うにあたっては、先ず、設備周辺の配管やケーブル等の干渉物の撤去を行った後、設備基礎の補修部分のグラウト層やコンクリートを取り除く。グラウト層やコンクリートを取り除く方法は、従来行われてきたコア抜きや、その他任意の方法で構わない。その後、補修部分に新しいグラウト材を打設する。   In repairing, first, after removing interferences such as piping and cables around the equipment, grout layers and concrete in the repaired part of the equipment foundation are removed. As a method for removing the grout layer and the concrete, the core removal which has been conventionally performed or any other method may be used. After that, a new grout material is placed in the repair area.

図2は、本発明の実施形態にかかるグラウト材の打設を行う装置構成の一例を示し、上流側から順にミキサー31、ホッパ32、ポンプ33が配置されている。ミキサー31には、グラウト材としての繊維入りモルタルの各原料が投入され、これらを混錬して、繊維入りモルタル41が作られる。ミキサー31内で作られた繊維入りモルタル41は、ミキサー31からホッパ32に移され、ホッパ32からポンプ33で圧送されて、ポンプ33に接続されたホース34から、図示しない補修部分へ向けて吹き付けられる。   FIG. 2 shows an example of a device configuration for placing a grout material according to an embodiment of the present invention, in which a mixer 31, a hopper 32, and a pump 33 are arranged in this order from the upstream side. The mixer 31 is fed with raw materials of fiber-containing mortar as a grout material, and kneads these to make a fiber-containing mortar 41. The fiber-containing mortar 41 made in the mixer 31 is transferred from the mixer 31 to the hopper 32, pumped by the pump 33 from the hopper 32, and sprayed from the hose 34 connected to the pump 33 toward a repair portion (not shown). It is done.

本実施形態において、グラウト材としての繊維入りモルタル41は、セメントを主成分とする市販のモルタル原料と、水と、補強用繊維とを、ミキサー31内で混錬して作られる。図3は、繊維入りモルタル41の製造手順の概略を示す。先ず、図3(A)に示すように、水42を入れたミキサー31内にモルタル原料43を投入し、混錬する。このとき、混錬後のペースト状のモルタルの温度が21℃〜27℃、好ましくは24℃程度になるように、水42の温度を調整する。混錬後のモルタルの温度が高すぎると、硬化時間が短くなり、ポンプ33内で硬化して詰まってしまうおそれがある。一方、混錬後のモルタルの温度が低すぎると、硬化時間が長くかかって工期が短縮できなくなる。   In the present embodiment, the fiber-containing mortar 41 as a grout material is made by kneading a commercially available mortar material mainly composed of cement, water, and reinforcing fibers in a mixer 31. FIG. 3 shows an outline of the manufacturing procedure of the fiber-containing mortar 41. First, as shown in FIG. 3A, a mortar raw material 43 is put into a mixer 31 containing water 42 and kneaded. At this time, the temperature of the water 42 is adjusted so that the temperature of the paste-like mortar after kneading becomes 21 ° C. to 27 ° C., preferably about 24 ° C. When the temperature of the mortar after kneading is too high, the curing time is shortened, and there is a possibility that the mortar is cured and clogged in the pump 33. On the other hand, if the temperature of the mortar after kneading is too low, it takes a long time to cure and the work period cannot be shortened.

ミキサー31内でペースト状のモルタル44が作られると(図3(B))、図3(C)に示すように、ペースト状のモルタル44内に、補強用繊維45を投入する。図4は、ミキサー31の内部を上から見た平面図である。ミキサー31の内側には、篩35が設けられる。篩35は、例えば繊維で成形された網であり、図3(C)および図4に示すように、中央に重りとして例えば円形の板36が取り付けられ、外周部がミキサー31の内壁に沿って設けられ、上方からロープ37(図3(c))で吊り下げられる。繊維45は、篩35の上から投入され、ロープ37を引くことにより篩35を揺動させて、繊維45が徐々に篩35を通ってペースト状のモルタル44内に混錬されていくようにする。篩35の網目の大きさは特に限定されないが、投入する繊維45の長さよりも短い方がよい。篩35を通して繊維45を投入することで、繊維45が絡まることなく分散してペースト状のモルタル44内に混ざる。そして、本発明では、ペースト状のモルタル44に繊維45を投入することにより、セメント等の原料との比重差で繊維45の分布が偏ることがなく、繊維45をモルタル44中に均等に混ぜ合わせることができる。   When the paste-like mortar 44 is made in the mixer 31 (FIG. 3B), the reinforcing fibers 45 are put into the paste-like mortar 44 as shown in FIG. 3C. FIG. 4 is a plan view of the inside of the mixer 31 as seen from above. A sieve 35 is provided inside the mixer 31. The sieve 35 is, for example, a net formed of fibers. As shown in FIGS. 3C and 4, for example, a circular plate 36 is attached as a weight at the center, and the outer peripheral portion extends along the inner wall of the mixer 31. It is provided and is suspended from above by a rope 37 (FIG. 3C). The fiber 45 is introduced from above the sieve 35, and the rope 35 is pulled to swing the sieve 35 so that the fiber 45 gradually passes through the sieve 35 and is kneaded into the paste-like mortar 44. To do. The size of the mesh of the sieve 35 is not particularly limited, but is preferably shorter than the length of the fibers 45 to be input. By introducing the fibers 45 through the sieve 35, the fibers 45 are dispersed without being entangled and mixed in the paste-like mortar 44. In the present invention, by introducing the fibers 45 into the paste-like mortar 44, the distribution of the fibers 45 is not biased due to the difference in specific gravity with the raw material such as cement, and the fibers 45 are mixed evenly in the mortar 44. be able to.

補強用繊維としては、例えばビニロン等の樹脂繊維が用いられ、ビニロンの場合、直径40μm〜60μm、長さ5mm〜40mm程度の繊維が有用である。さらに、長さや径の異なる2種類以上の繊維を用いることが好ましい。例えばビニロンの場合、長さ20mm〜40mmの繊維は、曲げ強度の向上には有効であるが、あまり多く使用すると、流動性が低下してポンプが詰まりやすくなる。また、例えば長さ5mm〜10mmの短い繊維は、単体では曲げ強度の補強効果が小さいものの、長い繊維と混ぜて使用することで曲げ強度のさらなる向上を図ることができ、流動性の低下は抑制される。なお、補強用繊維としては、樹脂繊維の他、ガラス繊維や炭素繊維等を用いても構わない。   As the reinforcing fiber, for example, a resin fiber such as vinylon is used. In the case of vinylon, a fiber having a diameter of about 40 μm to 60 μm and a length of about 5 mm to 40 mm is useful. Furthermore, it is preferable to use two or more types of fibers having different lengths and diameters. For example, in the case of vinylon, a fiber having a length of 20 mm to 40 mm is effective in improving the bending strength, but if it is used too much, the fluidity is lowered and the pump is easily clogged. In addition, for example, a short fiber having a length of 5 mm to 10 mm has a small effect of reinforcing the bending strength, but the bending strength can be further improved by mixing with a long fiber to suppress a decrease in fluidity. Is done. In addition, as the reinforcing fiber, glass fiber, carbon fiber, or the like may be used in addition to the resin fiber.

なお、例えば長さ5mm〜10mm程度の短い繊維は、予め工場でセメントや細骨材等の材料と一緒にモルタル原料として袋詰めしても構わない。短い繊維であれば、繊維同士が絡まることがなく、水と混ぜて混錬することで、モルタル中に均等に混ぜ込むことができる。   For example, short fibers having a length of about 5 mm to 10 mm may be packed in advance as a mortar raw material together with materials such as cement and fine aggregate in a factory. If the fibers are short, the fibers do not get entangled and can be mixed evenly into the mortar by mixing with water and kneading.

このようにして補強用繊維45が入った繊維入りモルタル41が作られ、ホッパ32、ポンプ33を介して、ホース34から補修部分に吹き付けられる。   In this way, the fiber-containing mortar 41 containing the reinforcing fibers 45 is made and sprayed from the hose 34 to the repaired portion via the hopper 32 and the pump 33.

以上のように、本発明によれば、繊維を含めたグラウト材(繊維入りモルタル41)の原料をミキサー31で混錬し、繊維入りモルタル41をポンプ33で圧送して打設することにより、バケツを用いて手作業でモルタルを打設する場合に比べて、打設時間を5分の1程度に短縮することができ、例えばグラウト材の量が200〜300トン、2立米程度の広範囲な補修でも、短時間で行うことができる。また、曲げ強度が補強された繊維入りモルタルで補修することにより、機械設備が振動することによる補修部分の割れを防ぐことができる。   As described above, according to the present invention, the raw material of the grout material (fiber mortar 41) including fibers is kneaded by the mixer 31, and the fiber mortar 41 is pumped by the pump 33 and placed. Compared to the case where mortar is manually placed using a bucket, the placing time can be reduced to about one fifth. For example, the amount of grout material is 200 to 300 tons, a wide range of about 2 m2 Even repairs can be done in a short time. In addition, by repairing the fiber-reinforced mortar with enhanced bending strength, it is possible to prevent the repaired portion from being cracked due to vibration of the mechanical equipment.

しかも、本発明によれば、設備基礎の周囲に十分なスペースがなくても、ホースを延ばすことで、グラウト材の吹き付けを容易に行うことができる。   Moreover, according to the present invention, the grout material can be easily sprayed by extending the hose even if there is no sufficient space around the equipment foundation.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

繊維で補強しないモルタルと、ビニロン繊維を入れた繊維入りモルタルについて、硬化後のモルタルの曲げ強度および圧縮強度を試験した。モルタル原料は、株式会社グラウンドデザイン研究所の無収縮プレミックスモルタル製品「ラウンドベースLP」25kgとし、水4.0リットルを加えて、ハンドミキサーで150秒間練り混ぜた。試験体は、10×10×40cmとし、翌日脱型後、2日間または7日間水中養生した。ビニロン繊維は、直径60μm、長さ30mmの繊維A、直径40μm、長さ8mmの繊維Dの2種類を用いた。繊維の量および強度試験結果を表1に示す。   The mortar not reinforced with fibers and the fiber-containing mortar containing vinylon fibers were tested for the bending strength and compressive strength of the cured mortar. The mortar raw material was 25 kg of non-shrinkable premixed mortar product “Round Base LP” from Ground Design Laboratory Co., Ltd., 4.0 liters of water was added, and the mixture was kneaded with a hand mixer for 150 seconds. The test body was 10 × 10 × 40 cm, and was cured in water for 2 days or 7 days after demolding the next day. Two types of vinylon fibers were used: a fiber A having a diameter of 60 μm and a length of 30 mm, and a fiber D having a diameter of 40 μm and a length of 8 mm. The amount of fiber and strength test results are shown in Table 1.

Figure 0006589091
Figure 0006589091

材齢2日のNo.1,2,3を比較すると、ビニロン繊維を添加したものは、繊維を添加しないモルタルに比べて、曲げ強度が大幅に向上し、圧縮強度も2割以上向上した。また、材齢7日のNo.4,5,6を比較すると、繊維Aを400g入れたNo.6は、繊維Aを350g入れたNo.4に比べて強度が向上していないうえ、流動性に問題がありポンプで圧送することは困難であると判断された。繊維Aを350g、繊維Dを25g入れた場合(No.3,5)は、繊維Aのみを350g入れた場合(No.2,4)よりも大幅に強度が向上し、さらに流動性に関しても問題がなかった。   No. 2 days old. When comparing 1, 2, and 3, the addition of vinylon fiber significantly improved the bending strength and the compressive strength by more than 20% compared to the mortar without the addition of fiber. In addition, No. 7 days old. When comparing 4, 5, and 6, no. No. 6 was No. 6 containing 350 g of fiber A. It was judged that the strength was not improved compared to 4, and there was a problem in fluidity, making it difficult to pump. When 350 g of fiber A and 25 g of fiber D are added (Nos. 3 and 5), the strength is significantly improved compared to the case where 350 g of fiber A alone is added (Nos. 2 and 4). There was no problem.

本発明は、繊維で補強したモルタルの打設方法に適用できる。   The present invention can be applied to a method for placing mortar reinforced with fibers.

10 設備基礎
11 基礎コンクリート
12 グラウト層
20 設備
31 ミキサー
32 ホッパ
33 ポンプ
34 ホース
35 篩
41 繊維入りモルタル
42 水
43 モルタル原料
44 ペースト状のモルタル
45 繊維
10 equipment foundation 11 foundation concrete 12 grout layer 20 equipment 31 mixer 32 hopper 33 pump 34 hose 35 sieve 41 mortar containing fibers 42 water 43 mortar raw material 44 pasty mortar 45 fibers

Claims (3)

設備を支持する設備基礎のグラウト層または基礎コンクリートの補修部分に、繊維入りモルタルからなるグラウト材を打設する設備基礎の補修方法であって、
モルタル原料と水とを混ぜてペースト状のモルタルを作り、前記ペースト状のモルタルに補強用繊維を投入し攪拌して繊維入りモルタルとし、前記繊維入りモルタルを、ポンプを介して前記補修部分に打設し、
前記補強用繊維は、長さや径の異なる少なくとも2種類以上を使用し、前記補強用繊維のうち長い繊維は長さ20mm〜40mm、短い繊維は長さ5mm〜10mmであり、前記短い繊維は、予め工場でセメントや細骨材と一緒に袋詰めすることを特徴とする、設備基礎の補修方法。
A repair method for a facility foundation in which a grout layer made of mortar containing fibers is placed in a grout layer of a facility foundation that supports the facility or a repair portion of a foundation concrete,
A mortar raw material and water are mixed to make a paste-like mortar, and reinforcing fibers are added to the paste-like mortar and stirred to obtain a fiber-containing mortar. The fiber-containing mortar is applied to the repaired part via a pump. Set up
The reinforcing fibers, using a different at least two types of length and diameter, the longer fibers of the reinforcing fiber length 20 mm to 40 mm, short fibers Ri length 5mm~10mm der, said short fibers A method for repairing the foundation of equipment, characterized in that it is packed in advance with cement and fine aggregate at the factory .
前記補強用繊維は、篩を介して前記ペースト状のモルタル中に投入することを特徴とする、請求項1に記載の設備基礎の補修方法。 The method for repairing an equipment foundation according to claim 1, wherein the reinforcing fibers are put into the pasty mortar through a sieve . 前記ペースト状のモルタルの温度が21℃〜27℃の範囲になるように、水の温度を調整することを特徴とする、請求項1又は2のいずれか一項に記載の設備基礎の補修方法。
The repair method of the equipment foundation according to any one of claims 1 and 2, wherein the temperature of the water is adjusted so that the temperature of the paste-like mortar is in a range of 21 ° C to 27 ° C. .
JP2014249522A 2014-12-10 2014-12-10 Equipment foundation repair method Active JP6589091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014249522A JP6589091B2 (en) 2014-12-10 2014-12-10 Equipment foundation repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014249522A JP6589091B2 (en) 2014-12-10 2014-12-10 Equipment foundation repair method

Publications (2)

Publication Number Publication Date
JP2016107577A JP2016107577A (en) 2016-06-20
JP6589091B2 true JP6589091B2 (en) 2019-10-16

Family

ID=56122884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014249522A Active JP6589091B2 (en) 2014-12-10 2014-12-10 Equipment foundation repair method

Country Status (1)

Country Link
JP (1) JP6589091B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115157445B (en) * 2022-06-01 2024-05-31 中交二航武汉港湾新材料有限公司 Isotropic UHPC mixing device for improving steel fiber distribution and preparation method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598664A (en) * 1982-07-07 1984-01-17 株式会社クラレ Fiber reinforced cement mortar and concrete composition
JP2730234B2 (en) * 1989-12-22 1998-03-25 三菱マテリアル株式会社 High flow and high durability fiber reinforced filling mortar with excellent salt barrier properties
JP2882677B2 (en) * 1990-10-30 1999-04-12 積水化学工業株式会社 Fiber-reinforced inorganic curable composition and method for producing the same
JP3198388B2 (en) * 1991-03-13 2001-08-13 大成建設株式会社 Concrete production method
JPH08336825A (en) * 1995-06-15 1996-12-24 Kuraray Co Ltd Method for feeding reinforcing fibers
JP2003327462A (en) * 2002-05-10 2003-11-19 Kuraray Co Ltd Hydraulic kneaded molding
JP4451083B2 (en) * 2003-06-19 2010-04-14 住友大阪セメント株式会社 Mortar manufacturing method
JP4976256B2 (en) * 2007-10-19 2012-07-18 宇部日東化成株式会社 Method and apparatus for supplying short fibers for reinforcing concrete
JP4980392B2 (en) * 2009-04-03 2012-07-18 株式会社ビルドランド Fiber reinforced cement mortar
JP5573658B2 (en) * 2010-12-24 2014-08-20 住友大阪セメント株式会社 Fiber-reinforced cement composite material for casting and method for producing the same

Also Published As

Publication number Publication date
JP2016107577A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
Mohamed et al. Mechanical performance of full-scale precast steel fibre-reinforced concrete pipes
Fu et al. Concrete reinforced with macro fibres recycled from waste GFRP
CN107285693B (en) A kind of preparation method of the cast-in-place concrete non-dismantling formwork with self-reparing capability
CN109209438B (en) Construction method of tunnel lining structure by using steel fiber concrete
Tayeh et al. Pull-out behavior of post installed rebar connections using chemical adhesives and cement based binders
JP5850698B2 (en) Floor slab reinforcement method
JP5641760B2 (en) CONCRETE STRUCTURE AND FIRE RESISTANT COVERING METHOD FOR CONCRETE STRUCTURE
JP2006016900A (en) Tunnel constructing segment
Xiao et al. Experimental study of bond behavior between rebar and PVA-engineered cementitious composite (ECC) using pull-out tests
Manfredi et al. Test methods for the characterization of polypropylene fiber reinforced concrete: A comparative analysis
JP6589091B2 (en) Equipment foundation repair method
JP5758468B2 (en) Concrete filling failure prevention method
CN111087208A (en) Self-compacting micro-expansion concrete and preparation method and application thereof
JP5723147B2 (en) Polymer cement mortar
CN105466745A (en) Cement-based material I-type test piece restraining shrinkage test mold and method
JPS6225625B2 (en)
Zhang et al. Transition from multiple macro-cracking to multiple micro-cracking in cementitious composites
JP5814575B2 (en) Poured grout material for fixing columns
JP2010105831A (en) Polymer cement composition
JP2015031017A (en) Repair reinforcement structure of steel beam and construction method thereof
KR102273190B1 (en) Super hyper optical communication manhole and Manufacturing method using steel fiber
Varghese et al. Structural Performance of Fiber Reinforced Self Compacting Concrete (SCC) Beams With Openings
JP6414416B2 (en) Rock mass fixing method
de Rivaz Fibre reinforced spray concrete for compliance with site safety requirement
CN112012767B (en) Tunnel crack two-lining reinforcing method and device based on jet type cement-based composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190610

R151 Written notification of patent or utility model registration

Ref document number: 6589091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151