JP2015031017A - Repair reinforcement structure of steel beam and construction method thereof - Google Patents

Repair reinforcement structure of steel beam and construction method thereof Download PDF

Info

Publication number
JP2015031017A
JP2015031017A JP2013159801A JP2013159801A JP2015031017A JP 2015031017 A JP2015031017 A JP 2015031017A JP 2013159801 A JP2013159801 A JP 2013159801A JP 2013159801 A JP2013159801 A JP 2013159801A JP 2015031017 A JP2015031017 A JP 2015031017A
Authority
JP
Japan
Prior art keywords
repair
steel girder
reinforcement
web
reinforcement structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013159801A
Other languages
Japanese (ja)
Inventor
哲生 川口
Tetsuo Kawaguchi
哲生 川口
玲 江里口
Rei Eriguchi
玲 江里口
児玉 明彦
Akihiko Kodama
明彦 児玉
真規 勝山
Maki Katsuyama
真規 勝山
哲弘 下里
Tetsuhiro Shimozato
哲弘 下里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TTES Inc
Taiheiyo Cement Corp
University of the Ryukyus NUC
Original Assignee
TTES Inc
Taiheiyo Cement Corp
University of the Ryukyus NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TTES Inc, Taiheiyo Cement Corp, University of the Ryukyus NUC filed Critical TTES Inc
Priority to JP2013159801A priority Critical patent/JP2015031017A/en
Publication of JP2015031017A publication Critical patent/JP2015031017A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a repair reinforcement structure of a steel beam in which shear load bearing capacity is superior, a material for repair reinforcement is lightweight, workability is superior, and furthermore, a labor of maintenance is reduced and even the cost is advantageous.SOLUTION: A repair reinforcement structure of a steel beam is formed by fixing a repair reinforcement member 7 to a steel beam 1 including a plate-like web 4 formed extending in a vertical direction, and a plate-like lower flange 3 joined to a lower end of the web 4 so that a cross section in the vertical direction combined with the web 4 becomes an inverted T-shape and formed extending in a horizontal direction. In the repair reinforcement structure of a steel beam, the repair reinforcement member 7 is arranged so as to cover at least a portion of a line where a perpendicular plane of the web 4 intersects with an upper surface of the lower flange 3, and to have a fixed surface in an area including at least a portion of the upper surface of the lower flange 3. The repair reinforcement member 7 comprises a hardened body of a specific composition.

Description

本発明は、鋼桁の補修・補強構造及びその構築方法に関する。   The present invention relates to a steel girder repair / reinforcement structure and a construction method thereof.

現在、高度経済成長期に建設された鋼構造物の老朽化が問題となっており、適切な補修・補強が求められている。
中でも、老朽化した鋼橋において、鋼桁の端支点近傍の下フランジとウェブの首溶接部は水が溜まることで腐食しやすく、該部分に対して早期の対策が必要である。
一般に、鋼構造物の補修・補強方法として、当て板補強工法が多用されている。この工法は、鋼桁に補強用の鋼板をボルトや溶接によって添接する方法である。しかし、この工法は、補強用の鋼板の重量が大きく、施工性に劣ること、補強用の鋼板自体が腐食したときに該鋼板の付け替えや塗装等が必要であり、維持管理の労力やコストが大きいこと、補強用の鋼板の添接時の溶接や削孔によって母材を痛める可能性があること等の問題がある。
このような事情下において、従来より、鋼桁の補修・補強構造に関して、種々の技術が開発されている。一例として、既設鋼桁の補強必要部位にスタッドを溶着し、該スタッドを利用して鉄筋を取り付け、ついでコンクリートを充填した既設鋼桁の補修・補強構造が提案されている(特許文献1)。また、鋼桁の腹板の表面の一部に、(A)セメント、(B)BET比表面積が5〜25m/gの微粒子、(C)ブレーン比表面積が3,500〜10,000cm/gの無機粉末、(D)最大粒径が2mm以下の細骨材、(E)減水剤、(F)繊維、及び(G)水を含む配合物の硬化体からなる板状部材が固着されている鋼桁の補強構造が提案されている(特許文献2)。
At present, the aging of steel structures constructed during the period of high economic growth has become a problem, and appropriate repairs and reinforcements are required.
In particular, in an aging steel bridge, the lower flange near the end fulcrum of the steel girder and the neck weld of the web are prone to corrode due to water accumulation, and early countermeasures are required for this part.
In general, a patch plate reinforcement method is frequently used as a method for repairing and reinforcing steel structures. This method is a method of attaching a reinforcing steel plate to a steel girder by bolts or welding. However, this construction method requires a heavy steel sheet for reinforcement, is inferior in workability, and requires replacement or painting of the steel sheet when the steel sheet for reinforcement itself is corroded. There are problems such as being large and possibly causing damage to the base metal due to welding or drilling when the reinforcing steel plate is attached.
Under such circumstances, various techniques have conventionally been developed for repairing and reinforcing structures for steel girders. As an example, there has been proposed a repair / reinforcement structure for an existing steel girder in which a stud is welded to a reinforcement-required portion of an existing steel girder, a reinforcing bar is attached using the stud, and then concrete is filled (Patent Document 1). In addition, (A) cement, (B) fine particles having a BET specific surface area of 5 to 25 m 2 / g, and (C) a brane specific surface area of 3,500 to 10,000 cm 2 on a part of the surface of a steel girder belly plate. / G inorganic powder, (D) fine aggregate with a maximum particle size of 2 mm or less, (E) water reducing agent, (F) fiber, and (G) a plate-like member made of a cured product of water A steel girder reinforcing structure has been proposed (Patent Document 2).

特開2002−266319号公報JP 2002-266319 A 特開2011−162985号公報JP 2011-162985 A

上述の特許文献1に記載の鋼桁の補修・補強構造は、補修部が腐食せず、鋼板の付け替えや塗装といった維持管理の必要がないという利点があるものの、コンクリートの充填作業等を要し、施工性に劣るものである。特許文献2に記載の鋼桁の補強構造は、鋼桁の腹板の補強を対象としたものであり、鋼桁の端支点近傍の下フランジとウェブの首溶接部の補修・補強に関しては記載されていない。
一方、鋼桁の補修・補強に際しては、せん断耐荷力を向上させることも重要である。
本発明は、せん断耐荷力に優れ、補修・補強用の資材が軽量であり、コンクリートの充填作業等を要しないので施工性に優れ、さらに、維持管理の労力が少なく、コスト面でも有利である鋼桁の補修・補強構造及びその構築方法を提供することを目的とする。
The steel girder repair / reinforcement structure described in Patent Document 1 described above has the advantage that the repaired part does not corrode and there is no need for maintenance management such as replacement and painting of steel sheets, but requires concrete filling work, etc. It is inferior in workability. The steel girder reinforcement structure described in Patent Document 2 is intended to reinforce the belly plate of the steel girder, and describes the repair and reinforcement of the lower flange near the end fulcrum of the steel girder and the neck weld of the web. It has not been.
On the other hand, when repairing and reinforcing steel girders, it is also important to improve the shear load resistance.
The present invention is excellent in shear load resistance, lightweight for repair and reinforcement, and does not require concrete filling work, etc., so that it is excellent in workability, and further requires less labor for maintenance and is advantageous in terms of cost. An object is to provide a steel girder repair / reinforcement structure and a construction method thereof.

本発明者は、上記課題を解決するために鋭意検討した結果、特定の材料を含む配合物の硬化体からなる補修・補強用部材を、鋼桁の特定の領域に固着させることによって、上記目的を達成することができることを見出し、本発明を完成した。
すなわち、本発明は、以下の[1]〜[7]を提供するものである。
[1] 鉛直方向に延びて形成されている板状のウェブと、該ウェブと組み合わせた鉛直方向の断面が逆T字状になるように該ウェブの下端に接合されて水平方向に延びて形成されている板状の下フランジとを含む鋼桁に、補修・補強用部材を固着させてなる鋼桁の補修・補強構造であって、上記補修・補強用部材が、上記ウェブの鉛直面と上記下フランジの上面とが交わる線の少なくとも一部を覆うように、かつ、上記下フランジの上面の少なくとも一部を含む領域に固着面を有するように配設されており、上記補修・補強用部材が、(A)セメント、(B)BET比表面積が5〜25m/gの微粒子、(C)ブレーン比表面積が3,500〜10,000cm/gの無機粉末、(D)最大粒径が2mm以下の細骨材、(E)減水剤、(F)補強用繊維、及び(G)水を含む配合物の硬化体からなることを特徴とする鋼桁の補修・補強構造。
[2] 上記補修・補強用部材が、上記下フランジの上面の少なくとも一部および上記ウェブの鉛直面の少なくとも一部を含む領域に固着面を有するように、鉛直方向の断面がL字状の部分を含む形状を有する、前記[1]に記載の鋼桁の補修・補強構造。
[3] 上記補修・補強用部材が、上記鋼桁との間に接着剤層を介在させて固着されている、前記[1]または[2]に記載の鋼桁の補修・補強構造。
[4] 上記補修・補強用部材が、5〜30mmの厚さの板状体からなる、前記[1]〜[3]のいずれかに記載の鋼桁の補修・補強構造。
[5] 上記補修・補強用部材が、上記ウェブを両側から挟み込みように、一対の部材として配設されている、前記[1]〜[4]のいずれかに記載の鋼桁の補修・補強構造。
[6] 前記[1]〜[5]のいずれかに記載の鋼桁の補修・補強構造を構築するための方法であって、上記補修・補強用部材を、接着剤を用いて上記鋼桁に貼付することを特徴とする鋼桁の補修・補強構造の構築方法。
[7] 上記補修・補強用部材の貼付の前に、上記補修・補強用部材の固着面に対応する上記鋼桁の表面部分をブラスト処理する前記[6]に記載の鋼桁の補修・補強構造の構築方法。
As a result of intensive studies to solve the above-mentioned problems, the present inventor fixed the repair / reinforcing member made of a hardened body of a composition containing a specific material to a specific region of a steel girder. The present invention has been completed.
That is, the present invention provides the following [1] to [7].
[1] A plate-like web formed to extend in the vertical direction, and formed so as to extend in the horizontal direction by being joined to the lower end of the web so that the vertical cross-section combined with the web has an inverted T-shape. A steel girder repair / reinforcement structure in which a repair / reinforcement member is fixed to a steel girder including a plate-like lower flange, wherein the repair / reinforcement member is connected to the vertical surface of the web. Covering at least a part of the line intersecting the upper surface of the lower flange and having a fixing surface in a region including at least a part of the upper surface of the lower flange, for repair and reinforcement Members are (A) cement, (B) fine particles having a BET specific surface area of 5 to 25 m 2 / g, (C) inorganic powder having a brane specific surface area of 3,500 to 10,000 cm 2 / g, (D) largest particles Fine aggregate with a diameter of 2 mm or less, (E) water reducing agent (F) reinforcing fibers, and (G) steel girder repair and reinforcement structure, characterized by comprising a cured product of the formulation comprising water.
[2] The vertical section is L-shaped so that the repair / reinforcement member has a fixing surface in a region including at least a part of the upper surface of the lower flange and at least a part of the vertical surface of the web. The steel girder repair / reinforcement structure according to [1], which has a shape including a portion.
[3] The steel girder repair / reinforcement structure according to [1] or [2], wherein the repair / reinforcement member is fixed to the steel girder with an adhesive layer interposed therebetween.
[4] The steel girder repair / reinforcement structure according to any one of [1] to [3], wherein the repair / reinforcement member is formed of a plate-like body having a thickness of 5 to 30 mm.
[5] The repair / reinforcement of the steel girder according to any one of [1] to [4], wherein the repair / reinforcement member is disposed as a pair of members so as to sandwich the web from both sides. Construction.
[6] A method for constructing the steel girder repair / reinforcement structure according to any one of [1] to [5], wherein the repair / reinforcement member is bonded to the steel girder using an adhesive. A construction method of steel girder repair / reinforcement structure, characterized by being affixed to the steel.
[7] The steel girder repair / reinforcement according to [6], wherein the surface portion of the steel girder corresponding to the fixing surface of the repair / reinforcement member is blasted before the repair / reinforcement member is attached. How to build the structure.

本発明の鋼桁の補修・補強構造によれば、鋼桁のせん断耐荷力を向上させることができる。
また、本発明の鋼桁の補修・補強構造は、特定の材料を含む配合物(超高強度繊維補強モルタル)の硬化体からなる部材を用いているため、通常のモルタルを用いる場合と比べて、部材の厚みを小さくしても、十分な補修・補強効果を有し、補修・補強用の資材の軽量化を図ることができる。
また、本発明の鋼桁の補修・補強構造は、部材を鋼桁の表面に固着させるという簡易な作業により、鋼桁の補修・補強構造を構築することができ、コンクリートの打設作業を要しない等の点で施工性に優れている。
また、本発明の鋼桁の補修・補強構造は、鋼桁の端支点近傍の下フランジとウェブの首溶接部の腐食を防止することができる。
さらに、本発明の鋼桁の補修・補強構造に用いられる部材は耐久性に優れているため、補修・補強用の部材として鋼板を用いる場合に比べて、補修・補強用の部材の定期的な付け替えや防錆のための塗装の必要がない。
これらの事から、本発明の鋼桁の補修・補強構造によれば、維持管理の労力の軽減、及びコストの削減を図ることができる。
According to the steel girder repair / reinforcement structure of the present invention, the shear load resistance of the steel girder can be improved.
In addition, the steel girder repair / reinforcement structure of the present invention uses a member made of a hardened body of a compound (ultra high strength fiber reinforced mortar) containing a specific material, so compared to the case of using ordinary mortar Even if the thickness of the member is reduced, it has a sufficient repair / reinforcement effect, and the weight of the repair / reinforcement material can be reduced.
In addition, the steel girder repair / reinforcement structure of the present invention can construct a steel girder repair / reinforcement structure by a simple operation of fixing a member to the surface of the steel girder, which requires concrete placing work. It is excellent in workability in that it does not.
Moreover, the steel girder repair / reinforcement structure of the present invention can prevent corrosion of the lower flange near the end fulcrum of the steel girder and the neck weld of the web.
Furthermore, since the member used for the steel girder repair / reinforcement structure of the present invention is excellent in durability, the repair / reinforcement member is regularly used as compared with the case where a steel plate is used as the member for repair / reinforcement. There is no need to replace or rust prevent painting.
For these reasons, according to the steel girder repair / reinforcement structure of the present invention, it is possible to reduce the maintenance labor and the cost.

本発明の鋼桁の補修・補強構造を示す斜視図である。It is a perspective view which shows the repair and reinforcement structure of the steel girder of this invention. 本発明の鋼桁の補修・補強構造を示す断面図である。It is sectional drawing which shows the repair and reinforcement structure of the steel girder of this invention. 下部欠損タイプの鋼桁供試体の構造及び寸法を示す図である。It is a figure which shows the structure and dimension of a lower girder type steel girder specimen. 鋼桁に対する部材の接着位置を示す図である。It is a figure which shows the adhesion position of the member with respect to a steel girder. 荷重と鉛直変位の関係を示す図である。It is a figure which shows the relationship between a load and a vertical displacement.

まず、本発明で用いる補修・補強用部材の材料について説明する。
本発明で用いる補修・補強用部材は、(A)セメント、(B)BET比表面積が5〜25m/gの微粒子、(C)ブレーン比表面積が3,500〜10,000cm/gの無機粉末、(D)最大粒径が2mm以下の細骨材、(E)減水剤、(F)補強用繊維、及び(G)水、を含む配合物の硬化体からなる。以下、各成分について詳しく説明する。
First, the material of the repair / reinforcing member used in the present invention will be described.
The repair / reinforcing member used in the present invention includes (A) cement, (B) fine particles having a BET specific surface area of 5 to 25 m 2 / g, and (C) a brane specific surface area of 3,500 to 10,000 cm 2 / g. It consists of the hardened | cured body of the compound containing inorganic powder, (D) fine aggregate whose maximum particle size is 2 mm or less, (E) water reducing agent, (F) reinforcing fiber, and (G) water. Hereinafter, each component will be described in detail.

[(A)成分]
(A)成分として用いられるセメントの種類としては、特に限定されないが、例えば、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメントが挙げられる。
本発明において、硬化体の早期強度を向上させようとする場合には、早強ポルトランドセメントを使用することが好ましく、配合物の流動性(施工性)を向上させようとする場合には、中庸熱ポルトランドセメントや低熱ポルトランドセメントを使用することが好ましい。
[(A) component]
Although it does not specifically limit as a kind of cement used as (A) component, For example, various Portland cements, such as normal Portland cement, early strong Portland cement, moderately-heated Portland cement, low heat Portland cement, are mentioned, for example.
In the present invention, when trying to improve the early strength of the cured body, it is preferable to use early-strength Portland cement, and when trying to improve the fluidity (workability) of the blend, It is preferable to use heat Portland cement or low heat Portland cement.

[(B)成分]
(B)成分として用いられる微粒子のBET比表面積は、5〜25m/g、好ましくは7〜20m/gである。該BET比表面積が5m/g未満であると、硬化体の強度、緻密性、及び耐衝撃性が低下する。該BET比表面積が25m/gを超えると、所定の流動性を得るための水量が多くなり、硬化体の強度、緻密性、及び耐衝撃性が低下する。
上記微粒子としては、例えば、シリカフューム、シリカダスト、フライアッシュ、スラグ、火山灰、シリカゾル、沈降シリカ、石灰石粉末等が挙げられる。中でも、シリカフュームやシリカダストは、そのBET比表面積が5〜25m/gであり、(B)成分として用いる際に粉砕等をする必要がないことから、好適である。また、被粉砕性や流動性等の観点から、石灰石粉末も好適である。
(B)成分の配合量は、(A)成分100質量部に対して、好ましくは5〜50質量部、より好ましくは10〜40質量部である。該配合量が5質量部未満であると、硬化体の強度、緻密性、及び耐衝撃性が低下する場合がある。該配合量が50質量部を超えると、所定の流動性を得るための水量が多くなり、硬化体の強度、緻密性、及び耐衝撃性が低下する場合がある。また、該配合量が前記の数値範囲外では、鋼桁のせん断耐荷力が低下する場合がある。
[Component (B)]
The BET specific surface area of the fine particles used as the component (B) is 5 to 25 m 2 / g, preferably 7 to 20 m 2 / g. When the BET specific surface area is less than 5 m 2 / g, the strength, denseness, and impact resistance of the cured product are lowered. When the BET specific surface area exceeds 25 m 2 / g, the amount of water for obtaining a predetermined fluidity increases, and the strength, denseness, and impact resistance of the cured product are lowered.
Examples of the fine particles include silica fume, silica dust, fly ash, slag, volcanic ash, silica sol, precipitated silica, and limestone powder. Among them, silica fume and silica dust are preferable because their BET specific surface area is 5 to 25 m 2 / g and they do not need to be pulverized when used as the component (B). Moreover, limestone powder is also suitable from the viewpoint of grindability and fluidity.
(B) The compounding quantity of a component becomes like this. Preferably it is 5-50 mass parts with respect to 100 mass parts of (A) component, More preferably, it is 10-40 mass parts. When the blending amount is less than 5 parts by mass, the strength, denseness, and impact resistance of the cured product may be lowered. If the blending amount exceeds 50 parts by mass, the amount of water for obtaining a predetermined fluidity increases, and the strength, denseness, and impact resistance of the cured product may be reduced. Further, when the blending amount is outside the above numerical range, the shear load resistance of the steel girder may decrease.

[(C)成分]
(C)成分として用いられる無機粉末のブレーン比表面積は、3,500〜10,000cm/g、好ましくは4,000〜9,000cm/g、より好ましくは5,000〜9,000cm/gである。該ブレーン比表面積が3,500cm/g未満であると、硬化体の強度、緻密性、及び耐衝撃性が低下する。該ブレーン比表面積が10,000cm/gを超えると、配合物の流動性や、硬化体の強度、緻密性、及び耐衝撃性や、鋼桁のせん断耐荷力が低下する。
上記無機粉末としては、セメント以外の無機粒子、例えば、スラグ、石灰石粉末、長石類、ムライト類、アルミナ粉末、石英粉末、フライアッシュ、火山灰、シリカゾル、炭化物粉末、窒化物粉末等が挙げられる。中でも、コストの低減や硬化体の品質安定性の観点から、好ましくはスラグ、フライアッシュ、石灰石粉末、石英粉末である。
(C)成分の配合量は、(A)成分100質量部に対して、好ましくは5〜55質量部、より好ましくは10〜50質量部である。該配合量が上記数値範囲外であると、配合物の流動性や、硬化体の強度、緻密性、耐衝撃性や、鋼桁のせん断耐荷力が低下する場合がある。
[Component (C)]
The brane specific surface area of the inorganic powder used as the component (C) is 3,500 to 10,000 cm 2 / g, preferably 4,000 to 9,000 cm 2 / g, more preferably 5,000 to 9,000 cm 2. / G. When the Blaine specific surface area is less than 3,500 cm 2 / g, the strength, denseness, and impact resistance of the cured product are lowered. When the Blaine specific surface area exceeds 10,000 cm 2 / g, the fluidity of the blend, the strength, the compactness, and the impact resistance of the cured product, and the shear load resistance of the steel girder are reduced.
Examples of the inorganic powder include inorganic particles other than cement, such as slag, limestone powder, feldspar, mullite, alumina powder, quartz powder, fly ash, volcanic ash, silica sol, carbide powder, and nitride powder. Of these, slag, fly ash, limestone powder, and quartz powder are preferred from the viewpoint of cost reduction and quality stability of the cured product.
(C) The compounding quantity of a component becomes like this. Preferably it is 5-55 mass parts with respect to 100 mass parts of (A) component, More preferably, it is 10-50 mass parts. If the blending amount is out of the above numerical range, the fluidity of the blend, the strength of the cured product, the denseness, the impact resistance, and the shear load resistance of the steel girder may decrease.

[(D)成分]
(D)成分として用いられる細骨材としては、例えば、川砂、陸砂、海砂、砕砂、珪砂、及びこれらの混合物等が挙げられる。
上記細骨材の最大粒径は、2mm以下、好ましくは1.5mm以下、より好ましくは1mm以下である。細骨材の最大粒径が2mmを超えると、硬化体の強度が低下する場合がある。また、硬化体を薄肉化(例えば厚さ5〜30mm)することが困難となる場合がある。
(D)成分の配合量は、(A)成分100質量部に対して、好ましくは50〜250質量部、より好ましくは80〜180質量部である。該配合量が上記数値範囲外であると、硬化体の強度の低下、収縮の増大、鋼桁のせん断耐荷力の低下する場合がある。
[(D) component]
Examples of the fine aggregate used as the component (D) include river sand, land sand, sea sand, crushed sand, silica sand, and mixtures thereof.
The maximum particle size of the fine aggregate is 2 mm or less, preferably 1.5 mm or less, more preferably 1 mm or less. When the maximum particle size of the fine aggregate exceeds 2 mm, the strength of the cured body may be reduced. Moreover, it may be difficult to reduce the thickness of the cured body (for example, a thickness of 5 to 30 mm).
(D) The compounding quantity of a component becomes like this. Preferably it is 50-250 mass parts with respect to 100 mass parts of (A) component, More preferably, it is 80-180 mass parts. If the blending amount is out of the above numerical range, the strength of the cured body may decrease, the shrinkage may increase, and the shear load resistance of the steel girder may decrease.

[(E)成分]
(E)成分として用いられる減水剤としては、リグニン系、ナフタレンスルホン酸系、メラミン系又はポリカルボン酸系の減水剤、AE減水剤、高性能減水剤又は高性能AE減水剤が挙げられる。中でも、好ましくはポリカルボン酸系の高性能減水剤又は高性能AE減水剤である。減水剤を配合することにより、配合物の流動性や、硬化体の強度及び緻密性を向上させることができる。
上記減水剤の配合量は、(A)成分100質量部に対して固形分換算で、好ましくは0.1〜4.0質量部、より好ましくは0.1〜1.0質量部である。該配合量が0.1質量部未満では、配合物の混練が困難となるうえ、流動性が極端に低くなるため成形が困難となる場合がある。該配合量が4.0質量部を超えると、配合物の材料分離が発生する場合がある。また、硬化体の強度、緻密性や、鋼桁のせん断耐荷力が低下する場合がある。
[(E) component]
Examples of the water reducing agent used as the component (E) include lignin-based, naphthalenesulfonic acid-based, melamine-based or polycarboxylic acid-based water reducing agents, AE water reducing agents, high performance water reducing agents, and high performance AE water reducing agents. Among these, a polycarboxylic acid-based high-performance water reducing agent or a high-performance AE water reducing agent is preferable. By mix | blending a water reducing agent, the fluidity | liquidity of a compound and the intensity | strength and denseness of a hardening body can be improved.
The blending amount of the water reducing agent is preferably 0.1 to 4.0 parts by mass, more preferably 0.1 to 1.0 part by mass in terms of solid content with respect to 100 parts by mass of the component (A). If the blending amount is less than 0.1 parts by mass, it is difficult to knead the blend, and the fluidity becomes extremely low, so that molding may be difficult. When the blending amount exceeds 4.0 parts by mass, material separation of the blend may occur. In addition, the strength and denseness of the cured body and the shear load resistance of the steel girders may be reduced.

[(F)成分]
(F)成分として用いられる補強用繊維としては、金属繊維、有機質繊維、炭素繊維等が挙げられる。
金属繊維としては、例えば、鋼繊維、アモルファス繊維等が挙げられる。中でも鋼繊維は、高強度であり、低コストでしかも入手し易いなどの観点から好ましい。
金属繊維は、直径が0.01〜1.0mmであり、かつ、長さが2〜30mmであることが好ましい。該直径が0.01mm未満であると、繊維自体の強度が不足し、張力を受けた際に破断しやすくなる。該直径が1.0mmを超えると、同一配合量での本数が少なくなり、鋼桁のせん断耐荷力を向上させる効果が低下する場合がある。また、該長さが2mm未満では、鋼桁のせん断耐荷力を向上させる効果が低下する場合がある。該長さが30mmを超えると、混練の際にファイバーボールを生じやすくなる。
金属繊維の配合量は、配合物の全体積中、好ましくは0.1〜4.0%、より好ましくは0.5〜3.0%、特に好ましくは0.7〜3.0%である。該配合量が0.1%未満では、硬化体の曲げ強度や破壊エネルギーが小さくなり、鋼桁のせん断耐荷力を向上させる効果が低下する場合がある。該配合量が4.0%を超えると、混練時の作業性等を確保するために多量の水が必要となるため、硬化体の強度、破壊エネルギー等が小さくなる場合がある。また、鋼桁のせん断耐荷力を向上させる効果も低下する場合がある。
[(F) component]
Examples of reinforcing fibers used as the component (F) include metal fibers, organic fibers, and carbon fibers.
Examples of metal fibers include steel fibers and amorphous fibers. Among these, steel fibers are preferable from the viewpoints of high strength, low cost and easy availability.
The metal fiber preferably has a diameter of 0.01 to 1.0 mm and a length of 2 to 30 mm. When the diameter is less than 0.01 mm, the strength of the fiber itself is insufficient, and the fiber tends to break when subjected to tension. When the diameter exceeds 1.0 mm, the number of the same compounding amount decreases, and the effect of improving the shear load resistance of the steel girder may be reduced. Moreover, if this length is less than 2 mm, the effect which improves the shear load-bearing capacity of a steel girder may fall. If the length exceeds 30 mm, fiber balls are likely to be produced during kneading.
The blending amount of the metal fibers is preferably 0.1 to 4.0%, more preferably 0.5 to 3.0%, particularly preferably 0.7 to 3.0% in the total volume of the blend. . If the blending amount is less than 0.1%, the bending strength and fracture energy of the cured body become small, and the effect of improving the shear load resistance of the steel girder may be reduced. If the blending amount exceeds 4.0%, a large amount of water is required to ensure workability during kneading, and thus the strength, fracture energy, and the like of the cured body may be reduced. In addition, the effect of improving the shear load resistance of the steel girder may be reduced.

有機質繊維としては、例えば、ビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、アラミド繊維等が挙げられる。中でも、強度、コストや入手のし易さ等の観点から、ビニロン繊維が好ましい。
炭素繊維としては、例えば、PAN系炭素繊維、ピッチ系炭素繊維等が挙げられる。
有機質繊維、炭素繊維は、直径が0.005〜1.0mm、長さが2〜30mmであることが好ましい。該直径が0.005mm未満では、繊維自身の耐力が不足し、張力を受けた際に破断し易くなる場合がある。該直径が1.0mmを超えると、同一配合量での本数が少なくなり、破壊エネルギー等を向上させる効果が低下する場合がある。該長さが2mm未満では、マトリックスに対する付着力が低下して、破壊エネルギー等を向上させる効果が低下する場合がある。該直径が30mmを超えると、混練の際にファイバーボールが生じ易くなる場合がある。
有機質繊維又は炭素繊維の配合量は、配合物の全体積中、好ましくは0.5〜10%、より好ましくは1.0〜7.0%、特に好ましくは1.5〜5.0%である。該配合量が0.5%未満では、硬化体の破壊エネルギーが小さくなり、鋼桁のせん断耐荷力を向上させる効果が低下する場合がある。該配合量が10%を超えると、混練時の作業性等を確保するために多量の水が必要となるため、硬化体の強度、破壊エネルギー等が小さくなり、鋼桁のせん断耐荷力を向上させる効果が低下する場合がある。
Examples of organic fibers include vinylon fibers, polypropylene fibers, polyethylene fibers, and aramid fibers. Among these, vinylon fibers are preferable from the viewpoints of strength, cost, availability, and the like.
Examples of the carbon fiber include PAN-based carbon fiber and pitch-based carbon fiber.
The organic fibers and carbon fibers preferably have a diameter of 0.005 to 1.0 mm and a length of 2 to 30 mm. When the diameter is less than 0.005 mm, the proof stress of the fiber itself is insufficient, and it may be easily broken when subjected to tension. When the diameter exceeds 1.0 mm, the number of the same compounding amount decreases, and the effect of improving the fracture energy or the like may be reduced. If the length is less than 2 mm, the adhesion to the matrix may be reduced, and the effect of improving the fracture energy may be reduced. If the diameter exceeds 30 mm, fiber balls may be easily generated during kneading.
The compounding amount of the organic fiber or carbon fiber is preferably 0.5 to 10%, more preferably 1.0 to 7.0%, particularly preferably 1.5 to 5.0% in the total volume of the compound. is there. If the blending amount is less than 0.5%, the fracture energy of the cured body becomes small, and the effect of improving the shear load resistance of the steel girder may be reduced. If the blending amount exceeds 10%, a large amount of water is required to ensure workability during kneading, so the strength of the hardened body, the fracture energy, etc. are reduced and the shear load resistance of the steel girder is improved. May reduce the effect.

[(G)成分]
(G)成分(水)としては、水道水等を用いることができる。
配合物における水/セメント比は、配合物の流動性や、硬化体の強度、耐久性、緻密性、耐衝撃性等を適切にする観点から、好ましくは10〜30質量%、より好ましくは15〜25質量%である。該比が10質量%未満では、配合物の混練が困難であるうえ、流動性が極端に小さくなるので、成形が困難となる。該比が30質量%を超えると、硬化体の強度や緻密性等が低下することがあり、鋼桁のせん断耐荷力を向上させる効果も低下する。
[(G) component]
(G) As a component (water), tap water etc. can be used.
The water / cement ratio in the blend is preferably 10 to 30% by weight, more preferably 15 from the viewpoint of making the fluidity of the blend and the strength, durability, denseness, impact resistance, etc. of the cured product appropriate. -25% by mass. If the ratio is less than 10% by mass, the blending is difficult to knead and the fluidity becomes extremely small, so that molding becomes difficult. When the ratio exceeds 30% by mass, the strength and denseness of the cured body may be lowered, and the effect of improving the shear load resistance of the steel girder is also lowered.

[その他]
上記配合物は、さらに繊維状粒子及び/又は薄片状粒子を含むことができる。繊維状粒子及び/又は薄片状粒子を用いることにより、硬化体の靭性を高めることができる。
繊維状粒子としては、例えば、ウォラストナイト、ボーキサイト、ムライト等が挙げられる。薄片状粒子としては、例えば、マイカフレーク、タルクフレーク、バーミキュライトフレーク、アルミナフレーク等が挙げられる。
繊維状粒子及び/又は薄片状粒子は、平均粒度が1mm以下であることが好ましい。このような粒度を有する粒子を用いることによって、硬化体の靭性を向上させることができる。平均粒度が1mmを超えると、配合物の流動性や硬化体の強度等が低下する場合があり好ましくない。なお、粒子の粒度とは、その最大寸法の大きさ(特に、繊維状粒子ではその長さ)である。
繊維状粒子及び/又は薄片状粒子の配合量(これら2種の粒子を併用する場合は、その合計量)は、セメント((A)成分)100質量部に対して、好ましくは35質量部以下、より好ましくは0.1〜20質量部である。繊維状粒子及び/又は薄片状粒子の配合量を上記範囲内とすることにより、配合物の流動性や、硬化体の靭性等を高めることができる。
なお、繊維状粒子としては、硬化体の靭性を高める観点から、長さ/直径の比で表される針状度が3以上のものを用いることが好ましい。
[Others]
The blend may further include fibrous particles and / or flaky particles. By using fibrous particles and / or flaky particles, the toughness of the cured product can be increased.
Examples of the fibrous particles include wollastonite, bauxite, mullite, and the like. Examples of the flaky particles include mica flakes, talc flakes, vermiculite flakes, and alumina flakes.
The fibrous particles and / or flaky particles preferably have an average particle size of 1 mm or less. By using particles having such a particle size, the toughness of the cured product can be improved. When the average particle size exceeds 1 mm, the fluidity of the blend, the strength of the cured product, and the like may decrease, which is not preferable. The particle size of the particle is the size of the maximum dimension (particularly, the length of the fibrous particle).
The blending amount of the fibrous particles and / or flaky particles (the total amount when these two types of particles are used in combination) is preferably 35 parts by mass or less with respect to 100 parts by mass of the cement (component (A)). More preferably, it is 0.1-20 mass parts. By setting the blending amount of the fibrous particles and / or the flaky particles within the above range, the fluidity of the blend, the toughness of the cured body, and the like can be improved.
In addition, as a fibrous particle, it is preferable to use a thing with a needle-like degree represented by ratio of length / diameter 3 or more from a viewpoint of improving the toughness of a hardening body.

本発明において、上記配合物の混練方法は、特に限定されるものではなく、通常の方法を用いることができる。また、混練に用いる装置も、特に限定されるものではなく、通常のコンクリートの混練に用いられるどのタイプのものでもよいが、例えば、オムニミキサ、パン型ミキサ、二軸練りミキサ、傾胴ミキサ等が用いられる。
配合物の成形、養生方法も、特に限定されるものではないが、硬化体(補修・補強用部材)の生産性、強度発現性等を考慮すると、一次養生及び二次養生を行う方法が好ましい。このような方法としては、例えば、以下のような方法が挙げられる。
まず、混練した配合物を所定の型枠を用いて成形し、一次養生を行う。ここで、成形方法としては、特に限定されるものではなく、流し込み成形等の慣用の成形方法を採用することができる。一次養生の方法としては、型枠に混練した配合物を収容した状態で、5〜40℃で所定時間、例えば3〜48時間静置する方法が挙げられる。一次養生終了後、脱型し、その後、二次養生を行い、硬化体(補修・補強用部材)を製造する。一次養生後の脱型時の硬化体の圧縮強度は、10N/mm以上であることが好ましい。圧縮強度が10N/mm未満であると、脱型が困難となる。二次養生の方法としては、例えば、75〜95℃で10〜48時間蒸気養生する方法が挙げられる。
In the present invention, the kneading method of the blend is not particularly limited, and a usual method can be used. Also, the apparatus used for kneading is not particularly limited, and any type used for ordinary concrete kneading may be used. For example, an omni mixer, a pan-type mixer, a twin-screw kneading mixer, a tilt cylinder mixer, etc. Used.
The method of molding and curing the composition is not particularly limited, but considering the productivity and strength development of the cured body (repair / reinforcing member), a method of performing primary curing and secondary curing is preferable. . Examples of such methods include the following methods.
First, the kneaded compound is molded using a predetermined mold and subjected to primary curing. Here, the molding method is not particularly limited, and a conventional molding method such as casting can be employed. Examples of the primary curing method include a method in which the mixture kneaded in a mold is stored at 5 to 40 ° C. for a predetermined time, for example, 3 to 48 hours. After completion of the primary curing, the mold is removed, and then the secondary curing is performed to produce a cured body (a member for repair / reinforcement). The compressive strength of the cured body at the time of demolding after primary curing is preferably 10 N / mm 2 or more. If the compressive strength is less than 10 N / mm 2, demolding becomes difficult. Examples of the secondary curing method include a steam curing method at 75 to 95 ° C. for 10 to 48 hours.

得られる硬化体の圧縮強度は、好ましくは120N/mm以上、より好ましくは130N/mm以上、特に好ましくは140N/mm以上である。また、該硬化体の曲げ強度は、好ましくは20N/mm以上、より好ましくは23N/mm以上、特に好ましくは25N/mm以上である。
なお、上記圧縮強度、曲げ強度は、各々、「JIS A 1108(コンクリートの圧縮強度試験方法)」、「JIS R 5201(セメントの物理試験方法)」に準じて測定される値である。
上記圧縮強度と曲げ強度を有することより、上記硬化体からなる補修・補強用部材は、鋼桁に対して十分な補修・補強効果を発揮することができる。また、十分な補修・補強効果を維持しながら、上記補修・補強用部材の厚みを小さくすることができ、補修・補強用の資材の軽量化を図ることができる。
The compression strength of the obtained cured product is preferably 120 N / mm 2 or more, more preferably 130 N / mm 2 or more, and particularly preferably 140 N / mm 2 or more. Further, the flexural strength of the cured resin, preferably 20 N / mm 2 or more, more preferably 23N / mm 2 or more, and particularly preferably 25 N / mm 2 or more.
The compressive strength and bending strength are values measured according to “JIS A 1108 (Concrete compressive strength test method)” and “JIS R 5201 (Cement physical test method)”, respectively.
By having the compressive strength and the bending strength, the repair / reinforcement member made of the hardened body can exert a sufficient repair / reinforcement effect on the steel girder. Further, the thickness of the repair / reinforcement member can be reduced while maintaining a sufficient repair / reinforcement effect, and the weight of the repair / reinforcement material can be reduced.

次に、本発明の鋼桁の補修・補強構造について、図1、2を参照しながら説明する。
本発明において、補修・補強用部材7を固着させる鋼桁1は、鉛直方向に延びて形成されている板状のウェブ4と、ウェブ4と組み合わせた鉛直方向の断面が逆T字状になるようにウェブ4の下端に接合されて水平方向に延びて形成されている板状の下フランジ3とを含むものである。また、鋼桁1は、通常、ウェブ4の上部に上フランジ2を有する鋼I桁(断面がI字形状である鋼桁)である。さらに、鋼桁1は、水平補剛材5、鉛直補鋼材6を有してもよい。なお、車両や人が通行する床板は、上フランジ2の上面に配設される。
本発明の補修・補強構造は、補修・補強用部材7が、鋼桁1のウェブ4の鉛直面と下フランジ3の上面とが交わる線(接合線8)の少なくとも一部を覆うように、かつ、下フランジ3の上面の少なくとも一部を含む領域に固着面を有するように配設されているものである。
上記領域に、補修・補強用部材7を配設することによって、鉛直方向の荷重(例えば、橋梁上の通行車両による鉛直下方への荷重)に対して、優れたせん断耐荷力を発揮することができる。
また、補修・補強用部材7を、ウェブ4の鉛直面と下フランジ3の上面とが交わる線上の腐食の発生が予想される領域や、すでに腐食が発生している領域を覆うように配設することで、母材(鋼桁)における腐食の発生や、すでに発生した腐食の進行を防ぐことができる。
Next, the steel girder repair / reinforcement structure of the present invention will be described with reference to FIGS.
In the present invention, the steel girder 1 to which the repairing / reinforcing member 7 is fixed has a plate-like web 4 formed extending in the vertical direction, and a vertical cross section combined with the web 4 has an inverted T-shape. Thus, it includes a plate-like lower flange 3 that is joined to the lower end of the web 4 and extends in the horizontal direction. The steel girder 1 is usually a steel I girder (a steel girder whose cross section is I-shaped) having an upper flange 2 on the top of the web 4. Furthermore, the steel beam 1 may have a horizontal stiffener 5 and a vertical stiffener 6. A floor board through which vehicles and people pass is arranged on the upper surface of the upper flange 2.
In the repair / reinforcement structure of the present invention, the repair / reinforcement member 7 covers at least a part of the line (joining line 8) where the vertical surface of the web 4 of the steel girder 1 and the upper surface of the lower flange 3 intersect. And it is arrange | positioned so that it may have a fixed surface in the area | region including at least one part of the upper surface of the lower flange 3. As shown in FIG.
By arranging the repair / reinforcing member 7 in the above region, it is possible to exert an excellent shear load resistance against a load in the vertical direction (for example, a vertically downward load by a passing vehicle on a bridge). it can.
Further, the repair / reinforcing member 7 is disposed so as to cover a region where corrosion is expected on a line where the vertical surface of the web 4 and the upper surface of the lower flange 3 intersect or a region where corrosion has already occurred. By doing so, it is possible to prevent the occurrence of corrosion in the base material (steel girders) and the progress of corrosion that has already occurred.

本発明で用いられる補修・補強用部材7の形状は、鋼桁1のウェブ4の鉛直面と下フランジ3の上面とが交わる線(接合線8)の少なくとも一部を覆うように、かつ、下フランジ3の上面の少なくとも一部を含む領域に固着面を有するように配設することができればよく、特に限定されるものではない。
例えば、図2の(a)〜(e)に示すように、鉛直方向の断面がL字状の部分を含む形状であり、L字状の断面の鉛直方向の長さと水平方向の長さが等しい山形の補修・補強用部材9(以下、「等辺山形部材」ともいう。)や、鉛直方向の断面がL字状の部分を含む形状であり、L字状の断面の鉛直方向の長さと水平方向の長さが異なる山形の補修・補強用部材11(以下、「不等辺山形部材」ともいう。)や、ウェブ4の下部の領域、下フランジ3の上面、側面及び下面を覆うことができるように、鋼桁1の形状に合わせて成型された補修・補強用部材12(以下、「ギプス型部材」ともいう。)や、板状の補修・補強用部材13(以下、「板状部材」ともいう。)等が挙げられる。
The shape of the repairing / reinforcing member 7 used in the present invention covers at least a part of the line (joining line 8) where the vertical surface of the web 4 of the steel girder 1 and the upper surface of the lower flange 3 intersect, and There is no particular limitation as long as it can be disposed so as to have a fixing surface in a region including at least a part of the upper surface of the lower flange 3.
For example, as shown in FIGS. 2A to 2E, the vertical cross section includes an L-shaped portion, and the vertical length and the horizontal length of the L-shaped cross section are as follows. An equal mountain-shaped repairing / reinforcing member 9 (hereinafter also referred to as an “equilateral mountain-shaped member”), or a shape in which the vertical cross section includes an L-shaped portion, and the vertical length of the L-shaped cross section Covering the mountain-shaped repairing / reinforcing member 11 (hereinafter also referred to as “irregular mountain-shaped member”) having different horizontal lengths, the lower region of the web 4, the upper surface, the side surface, and the lower surface of the lower flange 3. A repair / reinforcement member 12 (hereinafter, also referred to as “gypsum-type member”) molded according to the shape of the steel girder 1 or a plate-like repair / reinforcement member 13 (hereinafter “plate-like”). Also referred to as “member”).

上記補修・補強用部材は、下フランジ3の上面の、ウェブ4を挟んでいずれか一方の面のみに配設してもよいが、せん断耐荷力の向上の観点から、ウェブ4を両側から挟み込みように、一対の部材として配設されていることが好ましい(図2の(a)〜(e)参照)。   The repair / reinforcing member may be disposed on only one surface of the upper surface of the lower flange 3 with the web 4 interposed therebetween, but the web 4 is sandwiched from both sides from the viewpoint of improving the shear load resistance. Thus, it is preferable to arrange | position as a pair of member (refer (a)-(e) of FIG. 2).

本発明で用いる補修・補強用部材の、下フランジの上面と向かい合う固着面の形状は、通常、該固着面の長手方向がウェブと長手方向と平行である長方形である。
上記補修・補強用部材の長さ(上記長方形の長手方向の長さ)は、鋼桁の大きさによっても異なるが、取付け時の作業性の観点から、好ましくは300cm以内、より好ましくは250cm以内、特に好ましくは200cm以内である。
上記補修・補強用部材の長さの下限値は、小さ過ぎると、補修・補強用部材を多数用いる必要が生じ、取付け作業が煩雑になることから、好ましくは30cm以上、より好ましくは50cm以上である。
また、補修・補強用部材の、下フランジの上面と向かい合う固着面の幅(上記長方形の短手方向の長さ)は、十分な補修・補強効果を得る観点から、ウェブの鉛直面と下フランジの上面が交わる線と、下フランジの上面の縁辺までの長さの、好ましくは100%以上、より好ましくは100〜120%の長さである。
具体的には、下フランジの大きさによっても異なるが、上記幅は、好ましくは3〜20cm、より好ましくは4〜15cmである。特に好ましくは5〜10cmである。
The shape of the fixing surface facing the upper surface of the lower flange of the repair / reinforcing member used in the present invention is usually a rectangle whose longitudinal direction is parallel to the web and the longitudinal direction.
The length of the repair / reinforcement member (the length in the longitudinal direction of the rectangle) varies depending on the size of the steel girder, but is preferably within 300 cm, more preferably within 250 cm from the viewpoint of workability during mounting. Particularly preferably, it is within 200 cm.
If the lower limit of the length of the repair / reinforcement member is too small, it is necessary to use a large number of repair / reinforcement members, and the installation work becomes complicated. Therefore, the length is preferably 30 cm or more, more preferably 50 cm or more. is there.
In addition, the width of the fixing surface of the repair / reinforcement member facing the upper surface of the lower flange (the length in the short direction of the rectangle) is determined from the viewpoint of obtaining a sufficient repair / reinforcement effect from the vertical surface of the web and the lower flange. The length of the line between the upper surfaces of the lower flange and the length to the edge of the upper surface of the lower flange is preferably 100% or more, more preferably 100 to 120%.
Specifically, although the width varies depending on the size of the lower flange, the width is preferably 3 to 20 cm, more preferably 4 to 15 cm. Especially preferably, it is 5-10 cm.

さらに、上記補修・補強用部材は、鋼桁のウェブの鉛直面の少なくとも一部を含む領域に固着されていてもよい。該領域に補修・補強用部材を固着させることで、母材(鋼桁)における腐食の発生や、すでに発生した腐食の進行を防ぐことができる。また、鋼桁のせん断耐荷力が向上する。
具体的には、図2の(a)、(b)が示すように、等辺山形部材9又は不等辺山形部材11が、下フランジ3の上面の少なくとも一部およびウェブ4の鉛直面の少なくとも一部を含む領域に固着面を有するように配設される。
また、図2の(c)が示すように、ギプス型部材12を、下フランジ3の上面、側面、下面の少なくとも一部およびウェブ4の鉛直面の少なくとも一部を含む領域に固着面を有するように配設される。ギプス型部材12を用いることで、下フランジ3全体を補修・補強用部材で覆うことができ、下フランジ3全体の腐食を防ぐことができる。また、荷重増加に伴う補修・補強用部材(ギプス型部材12)の剥離および落下を防ぐことができ、経年劣化に伴う接着剤の劣化に対しても耐久性を高くすることができる。
さらに、図2の(e)が示すように、複数の板状部材13、14を用意して、下フランジ3の上面の少なくとも一部を含む領域に固着面を有する板状部材13を、下フランジ3の上面に配設し、ウェブ4の鉛直面の少なくとも一部を含む領域に固着面を有する板状部材14を、ウェブ4の鉛直面に、板状部材13の上面と接触するように固着してもよい。ここで、ウェブ4の鉛直面に固着した板状部材14と、下フランジ3の上面に固着した板状部材13との間に隙間が生じないようにすることが、母材(鋼桁)の浸食を防ぐ観点から好ましい。
Further, the repair / reinforcement member may be fixed to a region including at least a part of a vertical surface of the steel girder web. By fixing the repair / reinforcing member to the region, it is possible to prevent the occurrence of corrosion in the base material (steel girders) and the progress of the corrosion that has already occurred. Moreover, the shear load resistance of the steel girder is improved.
Specifically, as shown in FIGS. 2A and 2B, the equilateral mountain-shaped member 9 or the unequal mountain-shaped member 11 has at least a part of the upper surface of the lower flange 3 and at least one of the vertical surfaces of the web 4. It arrange | positions so that it may have a fixed surface in the area | region containing a part.
Further, as shown in FIG. 2C, the cast member 12 has a fixing surface in a region including at least a part of the upper surface, side surface, and lower surface of the lower flange 3 and at least a part of the vertical surface of the web 4. It is arranged as follows. By using the cast member 12, the entire lower flange 3 can be covered with a repair / reinforcing member, and corrosion of the entire lower flange 3 can be prevented. Moreover, peeling and dropping of the repair / reinforcing member (the cast-type member 12) accompanying an increase in load can be prevented, and durability can be increased against deterioration of the adhesive accompanying aging deterioration.
Further, as shown in FIG. 2E, a plurality of plate-like members 13 and 14 are prepared, and the plate-like member 13 having a fixing surface in a region including at least a part of the upper surface of the lower flange 3 is A plate-like member 14 disposed on the upper surface of the flange 3 and having a fixing surface in an area including at least a part of the vertical surface of the web 4 is brought into contact with the upper surface of the plate-like member 13 on the vertical surface of the web 4. It may be fixed. Here, in order to prevent a gap from being generated between the plate-like member 14 fixed to the vertical surface of the web 4 and the plate-like member 13 fixed to the upper surface of the lower flange 3, It is preferable from the viewpoint of preventing erosion.

中でも、せん断耐荷力向上の観点から、補修・補強用部材が一体化している山形部材(例えば、等辺山形部材、不等辺山形部材)が好ましい。また、上記山形部材の、L字状の断面の鉛直方向の長さと水平方向の長さの比(鉛直方向の長さ/水平方向の長さ)は、好ましくは1.0〜3.0、より好ましくは1.5〜2.0である。
なお、上記補修・補強用部材の、ウェブと向き合う固着面の鉛直方向の長さは、鋼桁の大きさによっても異なるが、取付け時の作業性の観点から、好ましくは3〜30cm、より好ましくは4〜20cm、特に好ましくは5〜15cmである。
Among these, from the viewpoint of improving the shear load resistance, a chevron member (for example, an equilateral chevron member or an unequal chevron member) in which repair / reinforcing members are integrated is preferable. Moreover, the ratio of the length in the vertical direction and the length in the horizontal direction (vertical length / horizontal length) of the L-shaped cross section of the angle member is preferably 1.0 to 3.0, More preferably, it is 1.5-2.0.
In addition, although the length in the vertical direction of the fixing surface facing the web of the repair / reinforcement member varies depending on the size of the steel girder, it is preferably 3 to 30 cm, more preferably from the viewpoint of workability at the time of mounting. Is 4 to 20 cm, particularly preferably 5 to 15 cm.

また、本発明で用いる補修・補強用部材は、好ましくは5〜30mm、より好ましくは5〜20mm、特に好ましくは5〜15mmの厚さの板状体からなる。該厚さが5mm未満では、製造が困難になるとともに、補修・補強用部材に反り等の変形が生じることがある。また、この場合、せん断耐荷力を向上させる効果も低下する場合がある。該厚さが30mmを超えると、補修・補強用部材の重量が大きくなるために、鋼桁への貼り付け作業が困難となり、また、材料費が高くなるため好ましくない。
なお、上記補修・補強用部材が、鉛直方向の断面がL字状の山形部材(例えば、等辺山形部材、不等辺山形部材)の場合、該山形部材の鉛直方向に伸びる部分の補修・補強用部材の厚みと、水平方向に伸びる部分の補修・補強用部材の厚みは同じであっても、異なっていてもよい。
The repair / reinforcing member used in the present invention is preferably a plate-like body having a thickness of 5 to 30 mm, more preferably 5 to 20 mm, and particularly preferably 5 to 15 mm. If the thickness is less than 5 mm, the manufacture becomes difficult and deformation such as warpage may occur in the repair / reinforcing member. In this case, the effect of improving the shear load resistance may also be reduced. If the thickness exceeds 30 mm, the weight of the repair / reinforcing member increases, which makes it difficult to attach the steel girder to the steel girder and increases the material cost.
When the repair / reinforcement member is a mountain-shaped member having an L-shaped cross section in the vertical direction (for example, an equilateral mountain-shaped member or an unequal mountain-shaped member), for repairing / reinforcing a portion extending in the vertical direction of the mountain-shaped member The thickness of the member and the thickness of the repair / reinforcing member extending in the horizontal direction may be the same or different.

本発明で用いる補修・補強用部材は、鋼桁1との間に、接着剤層10を介在させて固着されることが好ましい。補修・補強用部材の固着作業において接着剤を用いることで、補強対象物である鋼桁を傷付けることなく、容易かつ迅速に作業を行なうことができる。
接着剤層10を形成するための接着剤としては、例えば、アクリル樹脂系接着剤、エポキシ樹脂系接着剤等の合成樹脂系接着剤が挙げられる。アクリル樹脂系接着剤の市販品としては、三菱レイヨン社製の「アクリシラップ」等が挙げられる。エポキシ樹脂系接着剤の市販品としては、コニシ社製の「E256」、「E258」等が挙げられる。
なお、ギプス型部材12を用いる場合、上記接着剤は、鋼桁1とギプス型部材12との隙間へ、圧力をかけることによって注入、充填される。
本発明においては、接着剤とともに、アンカーを使用することもできる。また、ボルトやナット等を併用して上記補修・補強用部材を鋼桁に固着させてもよい、
補修・補強用部材を固着させる際に、上記補修・補強用部材の固着面に対応する上記鋼桁の表面部分をブラスト処理することが望ましい。ブラスト処理によって、腹板の表面が粗化され、固着強度を向上させることができる。
The repair / reinforcing member used in the present invention is preferably fixed between the steel beam 1 and the adhesive layer 10. By using an adhesive in the fixing work of the repair / reinforcing member, the work can be easily and quickly performed without damaging the steel girder that is the object to be reinforced.
Examples of the adhesive for forming the adhesive layer 10 include synthetic resin adhesives such as acrylic resin adhesives and epoxy resin adhesives. Commercially available acrylic resin adhesives include “Acrysilup” manufactured by Mitsubishi Rayon Co., Ltd. Examples of commercially available epoxy resin adhesives include “E256” and “E258” manufactured by Konishi.
When the cast member 12 is used, the adhesive is injected and filled by applying pressure to the gap between the steel beam 1 and the cast member 12.
In the present invention, an anchor can be used together with an adhesive. Further, the repair / reinforcement member may be fixed to the steel beam using bolts and nuts in combination,
When fixing the repair / reinforcing member, it is desirable to blast the surface portion of the steel beam corresponding to the fixing surface of the repair / reinforcing member. By blasting, the surface of the abdominal plate is roughened, and the fixing strength can be improved.

以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
[1.材料の準備]
配合物の材料として、以下に示すものを使用した。
(A)セメント:低熱ポルトランドセメント(太平洋セメント社製)
(B)微粉末:シリカフューム(BET比表面積10m/g)
(C)無機粉末:石英粉末(ブレーン比表面積7,000cm/g)
(D)細骨材:珪砂5号(最大粒径0.6mm以下)
(E)減水剤:ポリカルボン酸系高性能減水剤
(F)金属繊維:鋼繊維(直径:0.2mm、長さ:15mm)
(G)水:水道水
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[1. Preparation of materials]
The following materials were used as materials for the blend.
(A) Cement: Low heat Portland cement (manufactured by Taiheiyo Cement)
(B) Fine powder: Silica fume (BET specific surface area 10 m 2 / g)
(C) Inorganic powder: Quartz powder (Brain specific surface area 7,000 cm 2 / g)
(D) Fine aggregate: silica sand No. 5 (maximum particle size 0.6mm or less)
(E) Water reducing agent: Polycarboxylic acid-based high-performance water reducing agent (F) Metal fiber: Steel fiber (diameter: 0.2 mm, length: 15 mm)
(G) Water: Tap water

[2.配合物の調製、及び、硬化体の物性の測定]
低熱ポルトランドセメント100質量部、シリカフューム32質量部、石英粉末35質量部、細骨材105質量部、減水剤0.8質量部(固形分換算)、水22質量部、及び鋼繊維(鋼繊維の量は、セメント組成物の全体積の2%となるように定めた。)を、二軸練りミキサに投入し、混練して配合物を得た。得られた配合物のフロー値(0打ち)は270mmであった。
なお、配合物のフロー値(0打ち)は、「JIS R 5201(セメントの物理試験方法)11.フロー試験」に記載の方法において、15回の落下運動を行わずに測定した値である。
次いで、上記配合物を用いて硬化体を製造し、圧縮強度及び曲げ強度測定用の試供体とした。
具体的には、上記配合物を、所定の型枠(圧縮強度測定用の型枠;φ50×100mm、曲げ強度測定用の型枠;4×4×16cm)を用いて成形し、20℃で24時間静置(一次養生)した後脱型し、さらに90℃で48時間蒸気養生(二次養生)して、硬化体を得た。そして、得られた硬化体の圧縮強度及び曲げ強度を、各々、「JIS A 1108(コンクリートの圧縮強度試験方法)」、「JIS R 5201(セメントの物理試験方法)」に準じて測定した。
その結果は、圧縮強度210N/mm、曲げ強度47N/mmであった。
なお、結果は、硬化体3本に対する平均値である。
[2. Preparation of compound and measurement of physical properties of cured product]
Low heat Portland cement 100 parts by mass, silica fume 32 parts by mass, quartz powder 35 parts by mass, fine aggregate 105 parts by mass, water reducing agent 0.8 parts by mass (solid content conversion), water 22 parts by mass, and steel fibers (of steel fibers) The amount was determined to be 2% of the total volume of the cement composition.) Was charged into a biaxial kneader and kneaded to obtain a blend. The flow value (0 strike) of the obtained blend was 270 mm.
In addition, the flow value (0 strike) of a compound is a value measured in the method described in “JIS R 5201 (Cement physical test method) 11. Flow test” without performing 15 drop motions.
Next, a cured product was produced using the above blend, and used as a sample for measuring compressive strength and bending strength.
Specifically, the above-mentioned compound was molded using a predetermined mold (mold for measuring compressive strength; φ50 × 100 mm, mold for measuring bending strength; 4 × 4 × 16 cm) at 20 ° C. After leaving still for 24 hours (primary curing), the mold was removed, and further steam curing (secondary curing) was performed at 90 ° C. for 48 hours to obtain a cured body. Then, the compression strength and bending strength of the obtained cured product were measured according to “JIS A 1108 (Concrete compressive strength test method)” and “JIS R 5201 (Cement physical test method)”, respectively.
As a result, compression strength 210N / mm 2, was flexural strength 47N / mm 2.
In addition, a result is an average value with respect to three hardening bodies.

[3.鋼桁の準備]
鋼I桁供試体(断面がI字形状である鋼桁)として、健全タイプの供試体と、未溶接区間を設けることによって、下フランジが腐食によって欠損していることを模擬した下部欠損タイプの供試体(図3参照)の二種類を準備した。なお、上記健全タイプの供試体は、図3の鋼桁において、未溶接区間が溶接されたものである。
[3. Preparation of steel girders]
As a steel I-girder specimen (steel girder with an I-shaped cross section), by providing a healthy-type specimen and an unwelded section, the lower flaw type simulating that the lower flange is missing due to corrosion. Two types of specimens (see FIG. 3) were prepared. In addition, the said healthy type test body is what the unwelded area was welded in the steel girder of FIG.

[実施例1]
上記「2.配合物の調製、及び、硬化体の物性の測定」で調製した配合物と同様の配合物を用いて、断面の寸法がL−80×80×10mmであり、長さが500mmである型枠を用いて成型し、20℃で24時間静置(一次養生)した後脱型し、さらに90℃で48時間蒸気養生(二次養生)して、補修・補強用部材9(断面の寸法がL−80×80×10mmであり、長さが500mmである等辺山形部材。)を得た。
図4(図2(a)の断面図の右側を示す。)に示すように、得られた補修・補強用部材9を、接着剤を用いて、下部欠損タイプの鋼桁の未溶接区間を含む領域に接着した。補修・補強用部材9の数は、下フランジ3のウェブ4を挟んで一方の面に1つ、他方の面に1つの合計2つである(図2(a)、図4参照)。なお、接着前に、鋼桁1の接着面はブラスト処理し、補修・補強用部材9の接着面はグラインダによって表面処理した。接着剤としては、アクリル樹脂系接着剤(三菱レイヨン社製、商品名「アクリシラップ」)を用いた。接着作業は、鋼桁1と補修・補強用部材9の両方に接着剤を塗布した後に、鋼桁1と補修・補強用部材9を圧着して固定し、その状態で24時間静置することにより行なった。
得られた補修・補強供試体に対して、1,000kN万能試験機を用いて、鋼桁のせん断耐荷力試験を行なった。なお、載荷点16、及び、支点15は、図3に示すとおりである。
得られた荷重と鉛直変位の関係を図5に示す。
[Example 1]
Using the same formulation as the formulation prepared in “2. Preparation of formulation and measurement of physical properties of cured product”, the cross-sectional dimensions are L-80 × 80 × 10 mm and the length is 500 mm. After being molded using the above-mentioned formwork, left to stand at 20 ° C. for 24 hours (primary curing), demolded, and further steam-cured (secondary curing) at 90 ° C. for 48 hours to repair / reinforce member 9 ( An equilateral mountain-shaped member having a cross-sectional dimension of L-80 × 80 × 10 mm and a length of 500 mm was obtained.
As shown in FIG. 4 (shown on the right side of the cross-sectional view of FIG. 2 (a)), the repair / reinforcement member 9 obtained was bonded to the unwelded section of the lower chipped steel girder using an adhesive. Glued to the containing area. The number of repair / reinforcing members 9 is two in total, one on one side and one on the other side across the web 4 of the lower flange 3 (see FIGS. 2A and 4). Prior to bonding, the bonding surface of the steel beam 1 was blasted, and the bonding surface of the repair / reinforcing member 9 was surface-treated with a grinder. As the adhesive, an acrylic resin-based adhesive (manufactured by Mitsubishi Rayon Co., Ltd., trade name “Acrysilup”) was used. The bonding work is to apply the adhesive to both the steel beam 1 and the repair / reinforcement member 9, and then press and fix the steel beam 1 and the repair / reinforcement member 9, and leave it in that state for 24 hours. Performed.
A shear load resistance test of a steel girder was performed on the obtained repair / reinforcement specimen using a 1,000 kN universal testing machine. The loading point 16 and the fulcrum 15 are as shown in FIG.
The relationship between the obtained load and the vertical displacement is shown in FIG.

[実施例2]
補修・補強用部材として、ギプス型部材12を用いた(図2(c)参照)以外は、実施例1と同様にして、鋼桁のせん断耐荷力試験を行なった。
なお、ギプス型部材12は、ウェブ4と向かい合う固着面の鉛直方向の長さが80mmである。また、ギプス型部材12の長手方向の長さは500mmであり、厚みは10mmである。さらに、ギプス型部材12の形状は、一対のギプス型部材12を鋼桁1に配設することにより、下フランジ3全体を覆うことができるように成型されたものである。接着作業は、鋼桁1にギプス型部材12を配設した後、鋼桁1とギプス型部材12の隙間から接着剤を注入することによって行った。
得られた荷重と鉛直変位の関係を図5に示す。
[Example 2]
A shear load resistance test of a steel girder was performed in the same manner as in Example 1 except that the cast member 12 was used as a repair / reinforcement member (see FIG. 2C).
In the cast-type member 12, the vertical length of the fixing surface facing the web 4 is 80 mm. The length of the cast member 12 in the longitudinal direction is 500 mm, and the thickness is 10 mm. Further, the shape of the cast member 12 is formed so that the entire lower flange 3 can be covered by disposing the pair of cast members 12 on the steel beam 1. The bonding work was performed by injecting an adhesive from the gap between the steel beam 1 and the cast member 12 after the cast member 12 was disposed on the steel beam 1.
The relationship between the obtained load and the vertical displacement is shown in FIG.

[比較例1]
健全タイプの鋼I桁供試体を使用し、かつ、補修・補強用部材を貼り付けない以外は実施例1と同様にして、鋼桁のせん断耐荷力試験を行なった。
得られた荷重と鉛直変位の関係を図5に示す。
[比較例2]
下部欠損タイプの鋼I桁供試体を使用し、かつ、補修・補強用部材を張り付けない以外は実施例1と同様にして、鋼桁のせん断耐荷力試験を行なった。
得られた荷重と鉛直変位の関係を図5に示す。
[Comparative Example 1]
A shear load resistance test of a steel girder was performed in the same manner as in Example 1 except that a sound type steel I girder specimen was used and a repair / reinforcing member was not attached.
The relationship between the obtained load and the vertical displacement is shown in FIG.
[Comparative Example 2]
The steel girder was subjected to a shear load resistance test in the same manner as in Example 1 except that a lower chip type steel I girder specimen was used and no repair / reinforcement member was attached.
The relationship between the obtained load and the vertical displacement is shown in FIG.

比較例1のピーク荷重を1.0とした場合、下部欠損タイプの鋼I桁供試体(比較例2)のピーク荷重は0.83と低いものである。
これに対して、下部欠損タイプの鋼I桁供試体に対して、等辺山形部材を用いて補強を行った実施例1では、ピーク荷重が1.04まで上昇した。
また、下部欠損タイプの鋼I桁供試体に対して、ギプス型部材を用いて補強を行った実施例2では、ピーク荷重が1.07まで上昇した。
When the peak load of Comparative Example 1 is 1.0, the peak load of the lower chip type steel I-girder specimen (Comparative Example 2) is as low as 0.83.
On the other hand, the peak load increased to 1.04 in Example 1 in which the lower fracture type steel I girder specimen was reinforced using the equilateral mountain-shaped member.
Moreover, in Example 2 which reinforced the lower chip | tip type | mold steel I girder specimen using the cast type | mold member, the peak load rose to 1.07.

1 鋼桁
2 上フランジ
3 下フランジ
4 ウェブ
5 水平補剛材
6 鉛直補剛材
7 補修・補強用部材
8 接合線
9 補修・補強用部材(等辺山形部材)
10 接着剤層
11 補修・補強用部材(不等辺山形部材)
12 補修・補強用部材(ギプス型部材)
13 補修・補強用部材(板状部材)
14 補修・補強用部材(板状部材)
15 支点
16 載荷点
1 Steel Girder 2 Upper Flange 3 Lower Flange 4 Web 5 Horizontal Stiffener 6 Vertical Stiffener 7 Repair / Reinforcement Member 8 Joining Line 9 Repair / Reinforcement Member (Equilateral Mountain Shape Member)
10 Adhesive Layer 11 Repair / Reinforcement Member (Unequal Side Angle Member)
12 Repair / Reinforcement member (Gypsum type member)
13 Repair / Reinforcement Member (Plate Member)
14 Repair / Reinforcement Member (Plate Member)
15 fulcrum 16 loading point

Claims (7)

鉛直方向に延びて形成されている板状のウェブと、該ウェブと組み合わせた鉛直方向の断面が逆T字状になるように該ウェブの下端に接合されて水平方向に延びて形成されている板状の下フランジとを含む鋼桁に、補修・補強用部材を固着させてなる鋼桁の補修・補強構造であって、
上記補修・補強用部材が、上記ウェブの鉛直面と上記下フランジの上面とが交わる線の少なくとも一部を覆うように、かつ、上記下フランジの上面の少なくとも一部を含む領域に固着面を有するように配設されており、
上記補修・補強用部材が、(A)セメント、(B)BET比表面積が5〜25m/gの微粒子、(C)ブレーン比表面積が3,500〜10,000cm/gの無機粉末、(D)最大粒径が2mm以下の細骨材、(E)減水剤、(F)補強用繊維、及び(G)水を含む配合物の硬化体からなることを特徴とする鋼桁の補修・補強構造。
A plate-like web formed to extend in the vertical direction, and is formed to extend in the horizontal direction by being joined to the lower end of the web so that the vertical cross-section combined with the web has an inverted T-shape. A steel girder repair / reinforcement structure in which a repair / reinforcement member is fixed to a steel girder including a plate-like lower flange,
The repair / reinforcement member has a fixing surface in an area including at least a part of the upper surface of the lower flange so as to cover at least a part of a line where the vertical surface of the web and the upper surface of the lower flange intersect. Arranged to have,
The repair / reinforcing member is (A) cement, (B) fine particles having a BET specific surface area of 5 to 25 m 2 / g, (C) inorganic powder having a Blaine specific surface area of 3,500 to 10,000 cm 2 / g, (D) Repair of a steel girder characterized by comprising a hard aggregate of a fine aggregate having a maximum particle size of 2 mm or less, (E) a water reducing agent, (F) a reinforcing fiber, and (G) water.・ Reinforcement structure.
上記補修・補強用部材が、上記下フランジの上面の少なくとも一部および上記ウェブの鉛直面の少なくとも一部を含む領域に固着面を有するように、鉛直方向の断面がL字状の部分を含む形状を有する、請求項1に記載の鋼桁の補修・補強構造。   The repair / reinforcement member includes a portion having an L-shaped cross section in the vertical direction so that the repairing / reinforcing member has a fixing surface in a region including at least part of the upper surface of the lower flange and at least part of the vertical surface of the web. The steel girder repair / reinforcement structure according to claim 1, having a shape. 上記補修・補強用部材が、上記鋼桁との間に接着剤層を介在させて固着されている、請求項1または2に記載の鋼桁の補修・補強構造。   The steel girder repair / reinforcement structure according to claim 1 or 2, wherein the repair / reinforcement member is fixed to the steel girder with an adhesive layer interposed therebetween. 上記補修・補強用部材が、5〜30mmの厚さの板状体からなる、請求項1〜3のいずれか1項に記載の鋼桁の補修・補強構造。   The steel girder repair / reinforcement structure according to any one of claims 1 to 3, wherein the repair / reinforcement member is formed of a plate-like body having a thickness of 5 to 30 mm. 上記補修・補強用部材が、上記ウェブを両側から挟み込みように、一対の部材として配設されている、請求項1〜4のいずれか1項に記載の鋼桁の補修・補強構造。   The repair / reinforcement structure for a steel girder according to any one of claims 1 to 4, wherein the repair / reinforcement member is disposed as a pair of members so as to sandwich the web from both sides. 請求項1〜5のいずれか1項に記載の鋼桁の補修・補強構造を構築するための方法であって、上記補修・補強用部材を、接着剤を用いて上記鋼桁に貼付することを特徴とする鋼桁の補修・補強構造の構築方法。   It is a method for constructing the steel girder repair / reinforcement structure according to any one of claims 1 to 5, wherein the repair / reinforcement member is affixed to the steel girder using an adhesive. A construction method for steel girder repair and reinforcement structures. 上記補修・補強用部材の貼付の前に、上記補修・補強用部材の固着面に対応する上記鋼桁の表面部分をブラスト処理する請求項6に記載の鋼桁の補修・補強構造の構築方法。   The method for constructing a repair / reinforcement structure for a steel girder according to claim 6, wherein the surface portion of the steel girder corresponding to the fixed surface of the repair / reinforcement member is blasted before the repair / reinforcement member is attached. .
JP2013159801A 2013-07-31 2013-07-31 Repair reinforcement structure of steel beam and construction method thereof Pending JP2015031017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013159801A JP2015031017A (en) 2013-07-31 2013-07-31 Repair reinforcement structure of steel beam and construction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013159801A JP2015031017A (en) 2013-07-31 2013-07-31 Repair reinforcement structure of steel beam and construction method thereof

Publications (1)

Publication Number Publication Date
JP2015031017A true JP2015031017A (en) 2015-02-16

Family

ID=52516584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013159801A Pending JP2015031017A (en) 2013-07-31 2013-07-31 Repair reinforcement structure of steel beam and construction method thereof

Country Status (1)

Country Link
JP (1) JP2015031017A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101897535B1 (en) * 2017-05-16 2018-09-13 (주)지승컨설턴트 PSC Girder With Variable Cross Section
JP2018178555A (en) * 2017-04-14 2018-11-15 川田工業株式会社 Method for repairing and reinforcing vertical joining part in structural steelwork, and reinforcing material for vertical joining part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178555A (en) * 2017-04-14 2018-11-15 川田工業株式会社 Method for repairing and reinforcing vertical joining part in structural steelwork, and reinforcing material for vertical joining part
KR101897535B1 (en) * 2017-05-16 2018-09-13 (주)지승컨설턴트 PSC Girder With Variable Cross Section

Similar Documents

Publication Publication Date Title
SIDDIQUI Experimental investigation of RC beams strengthened with externally bonded FRP composites
Al-Mahmoud et al. Anchorage and tension-stiffening effect between near-surface-mounted CFRP rods and concrete
JP4989068B2 (en) Concrete composite for repairing steel slabs
JP2006219901A (en) Composite floor slab
KR100708058B1 (en) FRP panel for concrete structure reinforcement
KR100945141B1 (en) Lightweight cement composite and manufacturing method thereof
JP4541915B2 (en) Synthetic floor slab
CN107237259B (en) Steel fiber concrete combined steel bridge deck based on bonding stud group
Sridhar et al. Study on mechanical properties of hybrid fiber reinforced engineered cementitious composites
Tran et al. Precast segmental beams made of fibre-reinforced geopolymer concrete and FRP tendons against impact loads
JP2013159492A (en) Cemental molded body and bonded structure
Han et al. Static push-out test on steel and recycled tire rubber-filled concrete composite beams
Hu et al. Experimental and numerical study on static behavior of grouped large-headed studs embedded in UHPC
JP2015031017A (en) Repair reinforcement structure of steel beam and construction method thereof
JP5127668B2 (en) Steel slab structure and steel slab reinforcement method
Ambily et al. Experimental and analytical investigations on shear behaviour of reinforced geopolymer concrete beams
Mohammed Mechanical properties of ultra high strength fiber reinforced concrete
Ajeel et al. Replacing of internal tension bars by external bonded plate
Issa et al. Composite behavior of precast concrete full-depth panels and prestressed girders
Dhanoa et al. Retrofitting of reinforced concrete beam by ferrocement technique
JP2011162985A (en) Structure for reinforcing steel girder, and method for constructing the same
Qasim Behavior of reinforced reactive powder concrete two-way slabs with openings
Mikata et al. Flexural and shear capacity of prc beams damaged by combined deterioration due to asr and corrosion
Tudu Study of torsional behaviour of rectangular reinforced concrete beams wrapped with GFRP
JP2009197390A (en) Structure and method for reinforcing concrete structure