JP6587537B2 - Biological treatment method for pulp and paper wastewater - Google Patents

Biological treatment method for pulp and paper wastewater Download PDF

Info

Publication number
JP6587537B2
JP6587537B2 JP2015251794A JP2015251794A JP6587537B2 JP 6587537 B2 JP6587537 B2 JP 6587537B2 JP 2015251794 A JP2015251794 A JP 2015251794A JP 2015251794 A JP2015251794 A JP 2015251794A JP 6587537 B2 JP6587537 B2 JP 6587537B2
Authority
JP
Japan
Prior art keywords
humus
lignin
paper pulp
biological treatment
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015251794A
Other languages
Japanese (ja)
Other versions
JP2017113698A (en
Inventor
鈴木 邦威
邦威 鈴木
鈴木 一哉
一哉 鈴木
Original Assignee
エンザイム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エンザイム株式会社 filed Critical エンザイム株式会社
Priority to JP2015251794A priority Critical patent/JP6587537B2/en
Publication of JP2017113698A publication Critical patent/JP2017113698A/en
Application granted granted Critical
Publication of JP6587537B2 publication Critical patent/JP6587537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、紙パルプ排水の生物処理方法に関し、より詳細には、白色腐朽菌及び腐植を用いた紙パルプ排水の生物処理方法に関する。   The present invention relates to a biological treatment method for paper pulp wastewater, and more particularly to a biological treatment method for paper pulp wastewater using white rot fungi and humus.

我が国の紙パルプ排水の生物処理に関するアンケート調査(調査対象工場49工場)によれば、KP排水等の排水のBOD(生物化学的酸素要求量)は、200〜400mg/Lの工場が多く、1000mg/L以上の高濃度排水を対象としている工場もある。   According to the questionnaire survey on biological treatment of pulp and paper wastewater in Japan (49 factories to be surveyed), the BOD (biochemical oxygen demand) of wastewater such as KP wastewater is mostly from 200 to 400 mg / L, 1000 mg Some factories target high-concentration wastewater of / L or more.

製紙工場等で排出される紙パルプ排水には、パルプの構成物質であるリグニン、セルロース、ヘミセルロース、グルコース等の炭水化物が含まれている。これらの成分のうち、リグニンは、主としてフェニルプロパノイドからなるリグニンモノマーが三次元かつ高度に重合して三次元網目構造を形成した生体高分子結合体であり、生物的に非常に安定である。   Paper pulp wastewater discharged from paper mills and the like contains carbohydrates such as lignin, cellulose, hemicellulose, and glucose, which are constituents of pulp. Among these components, lignin is a biopolymer conjugate in which a lignin monomer mainly composed of phenylpropanoid is three-dimensionally and highly polymerized to form a three-dimensional network structure, and is biologically very stable.

このリグニンに対して生物的分解能を有する代表的な微生物は、キノコ(担子菌)の一種である白色腐朽菌である。白色腐朽菌は、リグニンオキシターゼ(以後、LiPと略す)、マンガンペルオキシターゼ(以後、MnPと略す)、ラッカーゼ(以後、LaCと略す)等のリグニン分解酵素の少なくとも一種を菌体外に分泌して、リグニンやリグニンフラグメントを生物分解する。 A typical microorganism having a biological resolution for this lignin is a white-rot fungus, which is a kind of mushroom (basidiomycetes). The white rot fungus secretes at least one lignin degrading enzyme such as lignin oxidase (hereinafter abbreviated as LiP), manganese peroxidase (hereinafter abbreviated as MnP), laccase (hereinafter abbreviated as LaC), etc. Biodegrades lignin and lignin fragments.

従来、白色腐朽菌は、紙やパルプの製造(バイオパルピング、バイオブリーチング等)、木材の糖化、アルコール発酵の前処理、セルロース繊維製造、農業・畜産業等に使用されてきた。   Conventionally, white rot fungi have been used in the manufacture of paper and pulp (biopulping, biobleaching, etc.), saccharification of wood, pretreatment for alcoholic fermentation, cellulose fiber production, agriculture and animal husbandry.

しかし、白色腐朽菌で紙パルプ排水を効率よく生分解することは容易でない。白色腐朽菌を含む木材腐朽菌の繁殖は、適度の水分(例えば木材含水率20%以上)、湿度(例えば85%以上)、温度(例えば20〜30℃)、酵素及び栄養分(セルロース及びヘミセルロースのような多糖類、リグニン等)が必要なためである。例えば、ヒラタケのオガコ栽培では、過剰な水分がキノコの菌糸生長に障害を起こすことが知られている。さらに、100%水分の下では白色腐朽菌の生息はなおさら困難である。このように、高い水分がリグニン分解に障害をきたすので、紙パルプ排水の生物的処理によるリグニン分解は容易に成立し得ない。   However, it is not easy to biodegrade paper pulp wastewater efficiently with white rot fungi. Propagation of wood-rotting fungi, including white-rotting fungi, is moderate moisture (eg wood moisture content 20% or more), humidity (eg 85% or more), temperature (eg 20-30 ° C.), enzymes and nutrients (cellulose and hemicellulose Such as polysaccharides and lignin). For example, in oyster mushroom cultivation, excessive water is known to cause damage to mushroom mycelium growth. In addition, white rot fungi are even more difficult under 100% moisture. Thus, since high water | moisture content will impede lignin decomposition | disassembly, lignin decomposition | disassembly by the biological treatment of paper pulp waste water cannot be materialized easily.

従来、有機質を含む下水やし尿の処理方法として、標準活性汚泥法が公知である。この標準活性汚泥法は、汚水やし尿を含む曝気槽中に、有機物分解機能を有する好気性微生物を含む活性汚泥を投入し、曝気を行うことで微生物を活性化させ、汚水やし尿中の有機物を二酸化酸素と水に分解させる方法である。   Conventionally, a standard activated sludge method is known as a method for treating organic sewage and human waste. In this standard activated sludge method, activated sludge containing aerobic microorganisms capable of decomposing organic matter is put into an aeration tank containing sewage and human waste, and the microorganisms are activated by aeration, and organic matter in the sewage and human waste is collected. Is decomposed into oxygen dioxide and water.

実際、紙パルプ排水の処理方法の大半に、活性汚泥法が用いられている。活性汚泥法は、糖類等のBODの除去に有効である。紙パルプ排水の活性汚泥法処理の調査統計では、BOD除去率は84〜97%(平均90%)である。活性汚泥法はリグニンの分解ができないので、COD(化学的酸素要求量)除去率は、34〜89%(平均59%)と低い。その結果、活性汚泥法による排水処理後の水の色度は、リグニン由来の褐色を呈している。   In fact, the activated sludge method is used in most of the methods for treating paper pulp wastewater. The activated sludge method is effective for removing BOD such as sugars. According to the survey statistics of the activated sludge process for pulp and paper wastewater, the BOD removal rate is 84 to 97% (average 90%). Since the activated sludge method cannot decompose lignin, the COD (chemical oxygen demand) removal rate is as low as 34 to 89% (average 59%). As a result, the chromaticity of the water after the wastewater treatment by the activated sludge method exhibits a brown color derived from lignin.

上記活性汚泥法にリグニンを生物分解する白色腐朽菌を組み込んでも、CODの除去率は改善されない。それは、上記したとおり、紙パルプ排水は、白色腐朽菌が生息しやすい環境にないためである。   Even if white rot fungi that biodegrade lignin are incorporated into the activated sludge method, the removal rate of COD is not improved. This is because, as described above, the pulp and paper drainage is not in an environment where white rot fungi tend to live.

このように、活性汚泥法で紙パルプ排水を処理すると、紙パルプ排水中のリグニンが生物分解できず、COD除去率が低いのが現状である。多種多様な細菌を用いて多種多様な栄養成分を持つ紙パルプ排水生物処理する方法において、栄養成分のすべてを生物分解し、さらにリグニンを分解することはこれまで達成できていない。生物処理法でBOD除去率に加えてCOD除去率も上昇させるには、生物分解を伴う何らかの改善策が必須である。   As described above, when the paper pulp wastewater is treated by the activated sludge method, the lignin in the paper pulp wastewater cannot be biodegraded and the COD removal rate is low at present. In a method for treating pulp and paper wastewater with a wide variety of nutrients using a wide variety of bacteria, it has not been possible to biodegrade all the nutrient components and further degrade lignin. In order to increase the COD removal rate in addition to the BOD removal rate in the biological treatment method, some improvement measures involving biodegradation are essential.

活性汚泥法では、また、余剰汚泥が発生する。余剰汚泥の過剰な発生は、その処理負担の労力、時間、及びコストの点で問題となる。   In the activated sludge method, surplus sludge is also generated. Excessive generation of excess sludge becomes a problem in terms of labor, time, and cost of the treatment burden.

そこで、本発明の目的は、紙パルプ排水中のリグニンの生物処理を可能とする方法を提供する。特に、浄化水のBOD及びCODの除去率を向上させ、さらに、余剰汚泥の削減効果も向上させる生物処理法を提供する。   Accordingly, an object of the present invention is to provide a method that enables biological treatment of lignin in paper pulp wastewater. In particular, the present invention provides a biological treatment method that improves the removal rate of BOD and COD of purified water and further improves the effect of reducing excess sludge.

本発明者等は、上記課題を鋭意検討した結果、リグニン分解機能を有する白色腐朽菌の生息環境を改善することで、紙パルプ排水中でリグニン分解菌を増殖させることが可能であることを発見し、本発明を完成させた。すなわち、本発明は、活性汚泥を保持する曝気槽中で紙パルプ排水を曝気する工程を含む紙パルプ排水の生物処理方法であって、前記曝気槽に腐植、白色腐朽菌及び酢酸マンガン(II)を添加することを特徴とする、前記紙パルプ排水の生物処理方法を提供する。   As a result of intensive studies on the above problems, the present inventors have discovered that it is possible to grow lignin-degrading bacteria in paper pulp wastewater by improving the habitat of white-rot fungi having a lignin-degrading function. The present invention has been completed. That is, the present invention is a biological treatment method for paper pulp wastewater including a process of aeration of paper pulp wastewater in an aeration tank holding activated sludge, the humus, white rot fungus and manganese acetate (II) in the aeration tank The method for biological treatment of paper pulp wastewater is provided.

リグニン分解酵素であるLiP、MnP、及びLacは、すべて過酸化水素を基質として反応する酵素である。酵素によるリグニン分解の反応機構の概略は、酵素が過酸化水素によって酸化されて、活性化状態となり、この活性化物質がさらにリグニンを酸化分解する。MnPは、リグニンを直接分解するだけでなく、過酸化水素によるMn2+からMn3+への酸化を触媒する。ここで生成したMn3+は、キレート化されて安定してから、リグニンを酸化分解する。 LiP, MnP, and Lac, which are lignin degrading enzymes, are all enzymes that react with hydrogen peroxide as a substrate. The outline of the reaction mechanism of lignin degradation by an enzyme is that the enzyme is oxidized by hydrogen peroxide to become an activated state, and this activated substance further oxidizes and degrades lignin. MnP not only decomposes lignin directly, but also catalyzes the oxidation of Mn 2+ to Mn 3+ by hydrogen peroxide. Mn 3+ produced here is chelated and stabilized, and then oxidatively decomposes lignin.

しかし、酸化水素の供給源である銅ラジカル酸化酵素によって過酸化水素濃度が必要以上に高くなると、リグニン分解酵素は不活性となり、リグニン分解反応が停止してしまう。   However, when the hydrogen peroxide concentration becomes higher than necessary by the copper radical oxidase, which is a hydrogen oxide supply source, the lignin decomposing enzyme becomes inactive and the lignin decomposing reaction stops.

本発明の方法は、MnP酵素を過酸化水素によって活性化するのではなく、腐植物質による活性化とキレート反応によって、Mnを荷電状態(Mn3+)にし、かつその活性化状態をキレート反応により安定に維持する。例えばエリンギのような白色腐朽菌が、曝気槽内でMnPを活性化してリグニンを分解する際に、キレート反応により腐植とリグニンとMnPとが接近して共同結合体を形成し、その結果、リグニン分解酵素MnPによるリグニン分解が進行しやすくなる。 In the method of the present invention, the MnP enzyme is not activated by hydrogen peroxide, but is activated by a humic substance and a chelate reaction so that Mn is charged (Mn 3+ ) and the activation state is stabilized by a chelate reaction. To maintain. For example, when white rot fungi such as eringi activate MnP and decompose lignin in an aeration tank, humus, lignin and MnP come close to each other by a chelate reaction to form a co-bond, and as a result, lignin Lignin degradation by the degrading enzyme MnP tends to proceed.

リグニン分解反応は、リグニンのみを分解することもあるが、リグニンとセルロース、グルコース等の炭水化物と酸素が共存している状態がリグニンを最も分解しやすい環境である。本発明者等は、酸素供給を適切に管理することで、白色腐朽菌の生長障害を減らすことが可能であることをつきとめた。これらの工夫を積み重ねて、上記した本発明は、紙パルプ排水という水系であっても、白色腐朽菌の生息とそれが分泌する酵素によるリグニンの生物分解が可能となったのである。   The lignin decomposition reaction may decompose only lignin, but the state where lignin, carbohydrates such as cellulose and glucose, and oxygen coexist is the environment where lignin is most easily decomposed. The present inventors have found that it is possible to reduce the growth failure of white rot fungi by appropriately managing the oxygen supply. By accumulating these contrivances, the present invention described above has enabled the biodegradation of lignin by the inhabitants of white-rot fungi and the enzymes secreted by them even in the aqueous system of paper pulp drainage.

活性汚泥を保持する曝気槽中に腐植、白色腐朽菌及び酢酸マンガン(II)を添加することを特徴とする本発明の紙パルプ排水の生物処理方法によれば、曝気槽内全体で白色腐朽菌を増殖させ、その結果、白色腐朽菌がリグニン分解酵素を多量に生成し、リグニンによる工業レベルでの生物分解が可能となる。   According to the biological treatment method for paper pulp wastewater of the present invention, which is characterized in that humus, white rot fungus and manganese (II) acetate are added to an aeration tank holding activated sludge. As a result, white rot fungi produce a large amount of lignin-degrading enzyme, which enables biodegradation at the industrial level by lignin.

白色腐朽菌は、菌増殖に有機物を必要とする従属栄養微生物である。本発明の方法は、白色腐朽菌が旺盛に増殖する環境を提供するので、リグニン分解によるCOD除去率の向上だけでなく、紙パルプ排水中の有機物の生物分解によるBOD除去率の一層の向上も可能となる。このBOD及びCODの同時除去は、BOD及びCOD処理施設の簡素化につながる。   White rot fungi are heterotrophic microorganisms that require organic matter for bacterial growth. Since the method of the present invention provides an environment in which white rot fungi grow vigorously, not only the COD removal rate is improved by lignin decomposition, but also the BOD removal rate is further improved by biodegradation of organic matter in paper pulp wastewater. It becomes possible. This simultaneous removal of BOD and COD leads to simplification of the BOD and COD processing facilities.

さらに、本発明の生物処理方法は、活性汚泥法で生成する余剰汚泥を削減する効果も奏する。   Furthermore, the biological treatment method of the present invention also has an effect of reducing excess sludge generated by the activated sludge method.

本発明の紙パルプ排水の生物処理方法を実施する装置の一例のフローである。このフローは、調整槽1、曝気槽2及び沈殿槽3を含む。It is a flow of an example of the apparatus which enforces the biological treatment method of the paper pulp waste_water | drain of this invention. This flow includes an adjustment tank 1, an aeration tank 2 and a precipitation tank 3. 本発明の紙パルプ排水の生物処理方法を実施する装置の別の例のフローである。このフローは、調整槽1、曝気槽2、沈殿槽3及び汚泥槽4を含む。It is a flow of another example of the apparatus which enforces the biological treatment method of the paper pulp waste_water | drain of this invention. This flow includes an adjustment tank 1, an aeration tank 2, a sedimentation tank 3 and a sludge tank 4.

本発明の紙パルプ排水の生物処理方法は、紙パルプ排水を活性汚泥法で処理する曝気槽に、さらに腐植、白色腐朽菌及び酢酸マンガン(II)を添加することを必須とする。以下、本発明の紙パルプ排水の生物処理方法を、「菌添加腐植活性汚泥法」ということにする。   In the biological treatment method for paper pulp wastewater of the present invention, it is essential to further add humus, white rot fungus, and manganese (II) acetate to an aeration tank that treats paper pulp wastewater by the activated sludge method. Hereinafter, the biological treatment method for paper pulp wastewater of the present invention is referred to as “fungus-added humus activated sludge method”.

本発明の方法が浄化の対象とする紙パルプ排水は、パルプ工場廃液や故紙再生工場排水を含み、具体的にはKP排水、漂白排水、CGP排水、SP排水、RGP排水、故紙排水、抄紙排水等である。   The pulp and paper waste water to be purified by the method of the present invention includes pulp mill waste liquid and waste paper recycling factory waste water. Specifically, KP waste water, bleaching waste water, CGP waste water, SP waste water, RGP waste water, waste paper waste water, paper making waste water. Etc.

本発明の方法は、活性汚泥法をベースとするため、有機物分解機能を有する好気性微生物を含む活性汚泥を曝気槽に保持する。活性汚泥法は周知であるので、その説明は省略する。また、活性汚泥に含まれる微生物は、従来公知のものを特に制限なく使用できる。   Since the method of the present invention is based on the activated sludge method, activated sludge containing aerobic microorganisms having an organic matter decomposing function is held in the aeration tank. Since the activated sludge method is well known, its description is omitted. Moreover, the microorganisms contained in activated sludge can use a conventionally well-known thing without a restriction | limiting in particular.

白色腐朽菌は、木材の成分を分解する酵素を菌体外に分泌して、木材を腐らせる木材腐朽菌の一種である。木材腐朽菌には、木材を白色に腐らせる白色腐朽菌と褐色に腐らせる褐色腐朽菌とがある。木材の主成分であるセルロースやヘミセルロースは白色を呈し、リグニンは黒褐色を呈する。木材中にセルロース、ヘミセルロース及びリグニンが共存している状態で、白色腐朽菌(例えばエリンギ)が褐色のリグニンを分解していくと、木材は白色に腐っていく。一方、褐色腐朽菌(例えばオオウズラタケ、キチリメンタケ)が、白色のセルロースやヘミセルロースを中心に分解してゆくと、木材は黒褐色を残したまま腐っていく。本発明では、リグニン分解性の高い白色腐朽菌を用いることが重要である。   White rot fungi are a type of wood rot fungi that rots wood by secreting enzymes that break down wood components out of the cells. Wood decay fungi include white decay fungi that rot wood in white and brown decay fungi that cause brown decay. Cellulose and hemicellulose, which are the main components of wood, have a white color, and lignin has a blackish brown color. In the state where cellulose, hemicellulose, and lignin coexist in the wood, when the white rot fungi (for example, eringi) decompose brown lignin, the wood decays white. On the other hand, when brown rot fungi (for example, Prunus edulis, Chichiritaketake) break down, centering on white cellulose and hemicellulose, the wood will rot while leaving a blackish brown color. In the present invention, it is important to use white rot fungi having high lignin degradability.

白色腐朽菌の具体例として、カワラタケ、ヤケイロタケ、シイタケ、エリンギ、エノキタケ、ヒラタケ、マイタケ、ナメコ、スギヒラタケ、タモギタケ、スエヒロタケ、シュタケ、ホシゲタケ、ヒイロタケ等が挙げられる。本発明の方法は、白色腐朽菌にMnPの分泌を促進するように仕向けることが重要である。そこで、本発明の方法では、Mnを含む酢酸マンガン(II)と共に、MnPを多く分泌可能なエリンギ菌を使用することが好ましい。   Specific examples of white rot fungi include Kawaratake, Yakeirotake, Shiitake, Eringi, Enokitake, Oystertake, Maitake, Nameko, Sugihiratake, Tamogitake, Suhirotake, Statake, Hoshigetake, Hiirotake and the like. It is important that the method of the present invention directs white rot fungi to promote MnP secretion. Therefore, in the method of the present invention, it is preferable to use E. cerevisiae capable of secreting a large amount of MnP together with manganese (II) acetate containing Mn.

白色腐朽菌は、MnPを分泌可能であれば、種菌、菌糸体及び子実体のいずれでもよい。種菌は、市販品を特に制限なく使用可能であり、例えばエリンギ種菌((株)キノックス製)が挙げられる。菌糸体は、常法により、種菌の液体培養及び固体培養により得られる。子実体は、定法により、自然栽培したキノコにより得られる。   The white rot fungus may be an inoculum, mycelium, or fruit body as long as it can secrete MnP. As the inoculum, a commercially available product can be used without particular limitation. The mycelium is obtained by liquid culture and solid culture of the inoculum by a conventional method. The fruiting body is obtained by mushrooms that are naturally cultivated by a conventional method.

白色腐朽菌の使用量は、紙パルプ排水中の紙パルプ濃度にもよるが、通常、曝気槽の容量に対して、100〜2,200ppmでよく、好ましくは200〜800ppmであり、特に好ましくは200〜500ppmである。   The amount of white rot fungi used depends on the paper pulp concentration in the paper pulp wastewater, but it may usually be 100-2,200 ppm, preferably 200-800 ppm, particularly preferably relative to the capacity of the aeration tank. 200-500 ppm.

本発明の方法で使用する腐植は、落葉樹の落ち葉、樹木等の有機物由来の分解・生合成物が、通常、例えば約8000年間以上の間、地下に埋蔵されて、腐植化されたものである。腐植土の年代は、例えば共存する花粉で年数測定すれば求まる。   The humus used in the method of the present invention is a deciduous tree fallen leaf, a decomposed / biosynthetic product derived from organic matter such as a tree, usually buried in the basement for about 8000 years or more, and humated. . The age of the humus can be obtained, for example, by measuring the years with coexisting pollen.

本発明の方法は、腐植がタンニンやリグニンと類似した高分子有機物であり、その給源がリグニンや微生物遺骸であること、また、腐植には官能基が豊富にあり、金属イオンとキレート反応をする特徴を持つことを利用して、腐植を、腐植活性汚泥法とともに、リグニン分解酵素を分泌する白色腐朽菌増殖の進行のために使用する。   In the method of the present invention, the humus is a high molecular organic substance similar to tannin and lignin, the source thereof is lignin and microbial remains, and the humus has abundant functional groups and chelates with metal ions. Taking advantage of its characteristics, humus is used together with the humus activated sludge process for the progression of white rot fungi that secrete lignin degrading enzymes.

前記腐植の形状は、腐植粉剤、腐植ペレットのいずれでもよい。腐植粉剤は、リグニンとMnPと腐植との共同結合体が形成し易いという特徴を有する。腐植ペレットは、徐々に共同結合体を形成するという特徴を有する。また、活性汚泥法では、余剰汚泥の引き抜き(系外排出)をするので、供給された腐植粉剤は余剰汚泥と共に系外排出されて、曝気槽に残留する腐植粉剤の量が減少し易い。腐植ペレットは系外排出されないので、腐植粉剤の減少分を補って、正常な反応系を維持する。両方の特徴を活かすために、腐植粉剤及び腐植ペレットを併用することが好ましい。腐植粉剤や腐植ペレットは、市販のものでもよく、例えば、腐植粉剤としてSP−70(エンザイム株式会社製)、そして腐植ペレットとしてSP−201(エンザイム株式会社製)が挙げられる。   The shape of the humus may be either a humus powder or a humus pellet. The humus powder has a feature that a co-bonded body of lignin, MnP and humus is easily formed. Humus pellets have the characteristic of gradually forming co-bonds. In the activated sludge method, surplus sludge is extracted (exhaust from the system), so the supplied humus powder is discharged out of the system together with the excess sludge, and the amount of the humus powder remaining in the aeration tank tends to decrease. Since humus pellets are not discharged out of the system, the decrease in the amount of humus powder is compensated to maintain a normal reaction system. In order to make use of both characteristics, it is preferable to use a humus powder and a humus pellet together. The humus powder and the humus pellet may be commercially available, and examples thereof include SP-70 (manufactured by Enzyme Co., Ltd.) as the humus powder and SP-201 (manufactured by Enzyme Co., Ltd.) as the humus pellet.

腐植の使容量は、紙パルプ排水中の紙パルプ濃度にもよるが、通常、曝気槽の容量に対して、500〜2,000ppmでよく、好ましくは1,000〜1,800ppm、特に好ましくは1,500ppmである。   The amount of humus used depends on the concentration of paper pulp in the pulp and paper wastewater, but is usually 500 to 2,000 ppm, preferably 1,000 to 1,800 ppm, particularly preferably relative to the capacity of the aeration tank. 1,500 ppm.

本発明の方法は、曝気槽に酢酸マンガン(II)(Mn(OCOCH)を必須に添加する。酢酸マンガン(II)は、MnPへのMnの給源であるとともに、カルボン酸によるキレート化を補助する。すなわち、曝気槽内に酢酸マンガン(II)を添加すると、リグニンと腐植(特に腐植粉剤)とMnとがキレート化される。旺盛に増殖した白色腐朽菌が分泌するキレート状態のMnPが曝気槽内全体に安定的に拡散され、その結果、MnPによるリグニン分解が槽内全体で行われるようになる。 In the method of the present invention, manganese (II) acetate (Mn (OCOCH 3 ) 2 ) is essentially added to the aeration tank. Manganese (II) acetate is a source of Mn to MnP and assists chelation with carboxylic acids. That is, when manganese (II) acetate is added to the aeration tank, lignin, humus (particularly humus powder) and Mn are chelated. Chelated MnP secreted by vigorously growing white rot fungi is stably diffused throughout the aeration tank, and as a result, lignin decomposition by MnP is carried out throughout the tank.

酢酸マンガン(II)の使用量は、紙パルプ排水中の紙パルプ濃度にもよるが、通常、曝気槽の容量に対して、100〜1,200ppmでよく、好ましくは200〜800ppm、特に好ましくは200〜400ppmである。   Although the amount of manganese (II) acetate used depends on the paper pulp concentration in the paper pulp wastewater, it may usually be 100 to 1,200 ppm, preferably 200 to 800 ppm, particularly preferably relative to the capacity of the aeration tank. 200 to 400 ppm.

ブロワーによる曝気槽2への単位容量当たりの吹込空気量は、通常、0.3〜0.7L−空気/L・時でよく、好ましくは0.4〜0.6L−空気/L・時、特に好ましくは0.5〜0.6L−空気/L・時である。曝気槽内の溶存酸素(DO)をあまり変化させず、2〜4ppmの一定濃度を維持することが好ましい。吹込空気量が、通常、上記範囲の量であると、DOを2〜4ppmに保持することができる。しかし、DOは、BOO負荷、液温度、曝気槽の構造と寸法、活性汚泥濃度等によって変化するので、例えば曝気槽内に溶存酸素計を設置する等の施策により、DOを2〜4ppmに維持するようにブロワーの管理をすることが重要である。   The amount of air blown into the aeration tank 2 by the blower per unit volume is usually 0.3 to 0.7 L-air / L · hour, preferably 0.4 to 0.6 L-air / L · hour, Particularly preferred is 0.5 to 0.6 L-air / L · hour. It is preferable to maintain a constant concentration of 2 to 4 ppm without changing so much the dissolved oxygen (DO) in the aeration tank. When the amount of blown air is usually in the above range, DO can be maintained at 2 to 4 ppm. However, since DO changes depending on the BOO load, liquid temperature, aeration tank structure and dimensions, activated sludge concentration, etc., DO is maintained at 2 to 4 ppm by measures such as installing a dissolved oxygen meter in the aeration tank. It is important to manage the blower.

曝気槽の温度は、通常、20〜40℃でよく、好ましくは20〜30℃、特に好ましくは25〜28℃である。   The temperature of the aeration tank may be usually 20 to 40 ° C., preferably 20 to 30 ° C., particularly preferably 25 to 28 ° C.

曝気槽内での処理時間は、通常、5〜20時間でよく、好ましくは7〜20時間、特に好ましくは8〜20時間である。   The treatment time in the aeration tank may be usually 5 to 20 hours, preferably 7 to 20 hours, particularly preferably 8 to 20 hours.

本発明の方法を実施するための装置のフローの例を、図1及び図2に示す。   An example of the apparatus flow for carrying out the method of the present invention is shown in FIGS.

図1は、調整槽1、曝気槽2及び沈殿槽3を含む装置のフローである。この例は、紙パルプ排水が曝気槽2内を通過する時間が比較的長い場合(例えば8時間以上)に適している。   FIG. 1 is a flow of an apparatus including an adjustment tank 1, an aeration tank 2, and a precipitation tank 3. This example is suitable when the time for which the paper pulp wastewater passes through the aeration tank 2 is relatively long (for example, 8 hours or more).

調整槽1に、紙パルプ排水が流入され、ここで排水中の紙パルプ濃度、pH、流入量等が調整される。   Paper pulp wastewater flows into the adjustment tank 1, and the paper pulp concentration, pH, inflow amount, etc. in the wastewater are adjusted here.

調整槽1を出た排水は、活性汚泥を保持し、さらに腐植、白色腐朽菌及び酢酸マンガン(II)が添加された曝気槽2に受け入れられる。   The waste water exiting the adjustment tank 1 retains activated sludge and is received in the aeration tank 2 to which humus, white rot fungi, and manganese (II) acetate are added.

曝気槽2内で紙パルプ排水が曝気処理を受ける間に、排水中のリグニン及び有機物が、活性汚泥、腐植、及び白色腐朽菌による生物分解作用と凝集作用によって、汚泥と水との懸濁液に変わる。   While the pulp and paper wastewater is subjected to aeration treatment in the aeration tank 2, the lignin and organic matter in the wastewater are suspended in sludge and water by biodegradation and agglomeration by activated sludge, humus, and white rot fungi. Changes to.

上記懸濁液を沈殿槽3に導く。沈殿槽3で、懸濁液は、汚泥と処理水とに沈降分離される。上澄み液である処理水は、適宜、滅菌され、系外へ放流される。沈降した汚泥は、その一部を返送汚泥として曝気槽2へ戻される。残りの余剰汚泥は、系外にて脱水処理の後、適宜、処分される。   The suspension is introduced into the settling tank 3. In the settling tank 3, the suspension is separated by sedimentation into sludge and treated water. The treated water, which is a supernatant, is appropriately sterilized and discharged out of the system. A part of the settled sludge is returned to the aeration tank 2 as a return sludge. The remaining surplus sludge is appropriately disposed after dehydration outside the system.

図2は、調整槽1、曝気槽2、沈殿槽3及び汚泥槽4を含む装置のフローである。この例は、紙パルプ排水が曝気槽2内を通過する時間が比較例短い場合(例えば8時間以内)に適している。曝気槽2に腐植(腐植粉剤及び腐植ペレット)のみを添加し、リグニン−腐植物質複合体を形成しておく。その後、リグニン含有率の多くなっている沈殿汚泥を汚泥槽4に入れて、白色腐朽菌及び酢酸マンガン(II)の添加で、リグニン分解を進める。   FIG. 2 is a flow of the apparatus including the adjustment tank 1, the aeration tank 2, the sedimentation tank 3, and the sludge tank 4. This example is suitable when the time for the paper pulp drainage to pass through the aeration tank 2 is short in the comparative example (for example, within 8 hours). Only humus (humus powder and humus pellet) is added to the aeration tank 2 to form a lignin-humic substance complex. Thereafter, the precipitated sludge having a high lignin content is put into the sludge tank 4, and the decomposition of lignin is promoted by adding white rot fungi and manganese (II) acetate.

調整槽1に、紙パルプ排水が流入され、ここで排水中の紙パルプ濃度、pH、流入量等が調整される。   Paper pulp wastewater flows into the adjustment tank 1, and the paper pulp concentration, pH, inflow amount, etc. in the wastewater are adjusted here.

調整槽1を出た排水は、活性汚泥を保持し、さらに腐植、白色腐朽菌及び酢酸マンガン(II)が添加された曝気槽2に受け入れられる。   The waste water exiting the adjustment tank 1 retains activated sludge and is received in the aeration tank 2 to which humus, white rot fungi, and manganese (II) acetate are added.

図2では、曝気槽2に腐植のみが添加されている。後述するように、汚泥槽4に、腐植、白色腐朽菌及び酢酸マンガン(II)が添加され、そして、汚泥槽4の一部の汚泥が曝気槽2に戻される。この返送汚泥の戻りによって、曝気槽2にも白色腐朽菌及び酢酸マンガン(II)が添加されることになる。   In FIG. 2, only humus is added to the aeration tank 2. As will be described later, humus, white rot fungi, and manganese (II) acetate are added to the sludge tank 4, and a part of the sludge in the sludge tank 4 is returned to the aeration tank 2. By returning the returned sludge, white rot fungi and manganese (II) acetate are also added to the aeration tank 2.

曝気槽2内で紙パルプ排水が曝気処理を受ける間に、排水中のリグニン及び有機物が、活性汚泥、腐植、及び白色腐朽菌による生物分解作用と凝集作用によって、汚泥と水との懸濁液に変わる。   While the pulp and paper wastewater is subjected to aeration treatment in the aeration tank 2, the lignin and organic matter in the wastewater are suspended in sludge and water by biodegradation and agglomeration by activated sludge, humus, and white rot fungi. Changes to.

上記懸濁液を沈殿槽3に導く。そこで、懸濁液は、汚泥と処理水とに沈降分離される。上澄み液である処理水は、適宜、滅菌され、系外へ放流される。沈降した汚泥は、その一部を返送汚泥として曝気槽2へ戻される。一部の汚泥は、汚泥槽4に送られてリグニン分解をしてから、曝気槽2へ戻される。汚泥槽4からの汚泥返送により、曝気槽2内にMnPが流入するので、曝気槽2でもリグニン分解が行われる。   The suspension is introduced into the settling tank 3. Therefore, the suspension is settled and separated into sludge and treated water. The treated water, which is a supernatant, is appropriately sterilized and discharged out of the system. A part of the settled sludge is returned to the aeration tank 2 as a return sludge. A part of the sludge is sent to the sludge tank 4 to decompose the lignin and then returned to the aeration tank 2. Since MnP flows into the aeration tank 2 by returning the sludge from the sludge tank 4, lignin decomposition is also performed in the aeration tank 2.

曝気槽2で生成した腐植汚泥の少なくとも一部を、汚泥槽4に導く。沈殿槽3で発生する余剰汚泥の一部を、直に汚泥槽4に導いてもよい。汚泥槽4内では、腐植汚泥が減量化される。汚泥槽4には、腐植汚泥を捕食する習性を有する原生動物や後生動物のような微小動物(ミミズ、ヤスデ、ワラジムシ、ゾウリムシ、センチュウ、ミジンコ等)を生息させると、微小動物が腐植汚泥を栄養源として捕食することで、腐植汚泥の減量化が一層促進される。   At least a part of the humus sludge generated in the aeration tank 2 is guided to the sludge tank 4. A part of the excess sludge generated in the sedimentation tank 3 may be introduced directly to the sludge tank 4. In the sludge tank 4, humus sludge is reduced. In the sludge tank 4, when tiny animals such as protozoa and metazoans that have the habit of preying on humus sludge (earthworms, millipedes, rotifers, Paramecium, nematodes, Daphnia, etc.) live, the microanimals feed on the humus sludge. Predation as a source further promotes the reduction of humus sludge.

汚泥槽4で生成した腐植汚泥は、曝気槽2に返送するようにする。こうすると、汚泥槽4内で増殖した土壌微生物が系全体に配分される結果、系全体の活性化と汚泥の改質がなされる。   The humus sludge generated in the sludge tank 4 is returned to the aeration tank 2. As a result, the soil microorganisms grown in the sludge tank 4 are distributed to the entire system, so that the entire system is activated and the sludge is reformed.

汚泥槽4に貯留される汚泥の一部は曝気槽に返送されるが、一部は脱水後、適宜、処分されてもよい。   A part of the sludge stored in the sludge tank 4 is returned to the aeration tank, but a part may be appropriately disposed after dehydration.

上記の実施態様は、本発明の方法を実施する装置の例示であり、その他の変更や応用は本発明の技術的範囲に属する。例えば、本発明の方法を回分式やバッチ式で行うものも本発明に属する。   The above embodiment is an example of an apparatus for carrying out the method of the present invention, and other modifications and applications belong to the technical scope of the present invention. For example, a method in which the method of the present invention is carried out batchwise or batchwise also belongs to the present invention.

以下に、実施例を用いて、本発明をより詳細に説明する。しかし、本発明は実施例に限定されるものではない。
〔実施例1〕
活性汚泥法処理機(形式:容量20Lの回分式曝気槽)からなる実験槽を3槽準備した。No.1実験槽は、標準活性汚泥法(比較例1)に用い、No.2実験槽は、標準活性汚泥法に腐植土資材を供給した腐植活性汚泥法(比較例2)に用い、そして、No.3実験槽は、腐植活性汚泥法にエリンギの白色腐朽菌及び酢酸マンガン(II)を添加した本発明の菌添加腐植活性汚泥法(実施例1)に用いた。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.
[Example 1]
Three experimental tanks comprising an activated sludge processing machine (type: batch type aeration tank with a capacity of 20 L) were prepared. No. 1 experimental tank is used for the standard activated sludge method (Comparative Example 1). The experimental tank 2 was used for the humus activated sludge method (Comparative Example 2) in which humus soil material was supplied to the standard activated sludge method. Three experimental tanks were used in the fungus-added humus activated sludge method of the present invention (Example 1) in which white rot fungus of eringi and manganese (II) acetate were added to the humus activated sludge method.

腐植として、腐植粉剤(製品名:SP−70、エンザイム株式会社製)、及び腐植ペレット(製品名SP−201、エンザイム株式会社製))を用意した。腐植粉剤及び腐植ペレットの物性、それぞれ、表1及び表2に示す。   As humus, humus powder (product name: SP-70, manufactured by Enzyme Co., Ltd.) and humus pellets (product name SP-201, manufactured by Enzyme Co., Ltd.) were prepared. The physical properties of the humus powder and the humus pellets are shown in Table 1 and Table 2, respectively.

エリンギ白色腐朽菌には、(株)キノックスのエリンギ種菌850cc瓶(約500g)入り製品を入手した。酢酸マンガン(II)は、酢酸マンガン(II)四水和物(Mn(CH3COO)2・4HO)を昭和化学(株)より入手した。 For eringi white rot fungus, a product containing 850 cc bottle (about 500 g) of kinox inoculum of quinox Co., Ltd. was obtained. For manganese (II) acetate, manganese acetate (II) tetrahydrate (Mn (CH 3 COO) 2 .4H 2 O) was obtained from Showa Chemical Co., Ltd.

上記活性汚泥法処理機に、腐植汚泥、白色腐朽菌及び酢酸マンガンを表3に示す量で添加し、大手紙パルプ工場の紙パルプ排水を連続供給し、表3に示す条件で、曝気処理を行った。   Add the humus sludge, white rot fungi and manganese acetate to the above activated sludge process equipment in the amounts shown in Table 3, continuously supply paper pulp wastewater from the Daito Pulp Mill, and perform aeration treatment under the conditions shown in Table 3. went.

上記実験槽は、槽容量が小さいので、空気吹込量に対して液に吸収されるO2吸収効率が低い。そのため、吹込空気量が最大量となっている。実規模では、吸収効率が高くなるので、吹込空気量は上記数値よりも低くなる。 Since the experimental tank has a small tank capacity, the O 2 absorption efficiency absorbed by the liquid is low with respect to the air blowing amount. Therefore, the amount of blown air is the maximum amount. In the actual scale, the absorption efficiency becomes high, so the amount of blown air becomes lower than the above numerical value.

実施例1の腐植粉剤使用量は、1,500ppm(=15g/曝気槽10L)、
腐植ペレット使用量は、500ppm(=5g/曝気槽10L)、
エリンギ菌使用量は、200ppm(=2g/曝気槽10L)、及び
酢酸Mn(II)使用量は、200ppm(=2g/曝気槽10L)となる。
The amount of humus powder used in Example 1 is 1,500 ppm (= 15 g / aeration tank 10 L),
The amount of humus pellets used is 500 ppm (= 5 g / aeration tank 10 L),
The amount of Eringibacterium used is 200 ppm (= 2 g / aeration tank 10 L), and the amount of Mn (II) acetate used is 200 ppm (= 2 g / aeration tank 10 L).

各処理法の水質分析値を表3に示す。
Table 3 shows the water quality analysis values for each treatment method.

表4の結果から、実施例1の菌添加腐植活性汚泥法の処理水は、色度がその他の活性汚泥法よりも低下していることがわかる。この低下は、黒褐色のリグニンの減少を意味する。実施例1の菌添加腐植活性汚泥法は、CODMnが、比較例1の標準活性汚泥法より顕著に低く、また比較例2の腐植活性汚泥法より相対的に低い。以上のことから、本発明の方法は、紙パルプ排水中のリグニンを分解したといえる。   From the results of Table 4, it can be seen that the chromaticity of the treated water of the fungus-added humus activated sludge method of Example 1 is lower than that of other activated sludge methods. This reduction means a reduction in dark brown lignin. In the fungus-added humus activated sludge method of Example 1, CODMn is significantly lower than the standard activated sludge method of Comparative Example 1, and relatively lower than the humus activated sludge method of Comparative Example 2. From the above, it can be said that the method of the present invention decomposed lignin in paper pulp wastewater.

実施例1の菌添加腐植活性汚泥法は、BODが、原水(紙パルプ排水)よりも格段に低下し、比較例よりも減少した。アンモニヤ性窒素(NH)の硝化もまた、顕著に進行した。したがって、本発明の方法は、COD及びBODの同時除去が可能となった。 In the fungus-added humus activated sludge method of Example 1, BOD was significantly lower than raw water (paper pulp drainage), and decreased compared to the comparative example. The nitrification of ammoniacal nitrogen (NH 4 ) also proceeded significantly. Therefore, the method of the present invention enables simultaneous removal of COD and BOD.

実施例1のBOD除去の傾向から、本発明の菌添加腐植活性汚泥法は、リグニンを分解するに際し、リグニン以外の炭水化物もまた消費しているといえる。このことは、エリンギ菌の白色腐朽菌が、増殖に有機物を必要とする従属栄養微生物 (Heterotrophs)として機能したことを証明している。本発明の方法は、菌の増殖に有機物が必要不可欠であり、BODを消費しながらリグニンを分解することを基本としていることになる。   From the tendency of removing BOD in Example 1, it can be said that the fungus-added humus activated sludge method of the present invention consumes carbohydrates other than lignin when decomposing lignin. This proves that the white rot fungus of Eringgi functions as a heterotrophic microorganism that requires organic matter for growth. In the method of the present invention, organic matter is indispensable for the growth of bacteria, and it is based on decomposing lignin while consuming BOD.

《実施例2》
実施例1の実験後、曝気槽No.3(菌添加腐植活性汚泥法)に、さらにエリンギ菌20gと酢酸マンガン(II)10gを追加して、曝気を継続した。
Example 2
After the experiment of Example 1, aeration tank No. 3 (bacterium-added humus activated sludge method) was further added with 20 g of Eringi and 10 g of manganese (II) acetate, and aeration was continued.

実施例2のエリンギ菌使用量は、2,200ppm(=22g/曝気槽10L)、そして、酢酸Mn(II)使用量は、1,200ppm(=12g/曝気槽10L)となる。COD除去率はさらに増大し、曝気混合液及び上澄処理水の色相は、褐色がさらに薄くなった。上記添加剤の増量により、リグニン分解がさらに旺盛となったといえる。   In Example 2, the amount of Eringibacterium used is 2,200 ppm (= 22 g / aeration tank 10 L), and the amount of acetic acid Mn (II) used is 1,200 ppm (= 12 g / aeration tank 10 L). The COD removal rate further increased, and the hue of the aerated mixture and the supernatant treated water became lighter in brown. It can be said that the lignin decomposition was further enhanced by the increase in the amount of the additive.

Claims (4)

活性汚泥を保持する曝気槽中で紙パルプ排水を曝気する工程を含む紙パルプ排水の生物処理方法であって、
前記曝気槽に腐植、白色腐朽菌及び酢酸マンガン(II)を添加することを特徴とする、前記紙パルプ排水の生物処理方法。
A method for biological treatment of paper pulp wastewater, comprising the step of aeration of paper pulp wastewater in an aeration tank holding activated sludge,
The biological treatment method for paper pulp wastewater, wherein humus, white rot fungi, and manganese (II) acetate are added to the aeration tank.
前記生物処理は、BOD及びCODの除去率を向上させる、請求項1に記載の紙パルプ排水の生物処理方法。   The biological treatment method for paper pulp wastewater according to claim 1, wherein the biological treatment improves the removal rate of BOD and COD. 前記白色腐朽菌は、カワラタケ、ヤケイロタケ、シイタケ、エリンギ、エノキタケ、ヒラタケ、マイタケ、ナメコ、スギヒラタケ、タモギタケ、スエヒロタケ、シュタケ、ホシゲタケ、及びヒイロタケからなる群から選ばれる少なくとも一種である、請求項1又は2に記載の紙パルプ排水の生物処理方法。 The white rot fungus is at least one selected Coriolus versicolor, Yakeirotake, shiitake, eryngii, Flammulina, Pleurotus, maitake, nameko, pleurocybella porrigens, Pleurotus cornucopiae, Schizophyllum commune, Pycnoporus cinnabarinus, Hoshigetake, and from the group consisting of Hiirotake claim 1 or 2 A biological treatment method for paper pulp wastewater according to claim 1. 前記腐植は、腐植粉剤及び腐植ペレットの形態である、請求項1〜のいずれか一項に記載の紙パルプ排水の生物処理方法。 The said humus is the biological treatment method of the paper pulp waste_water | drain as described in any one of Claims 1-3 which is a form of a humus powder agent and a humus pellet.
JP2015251794A 2015-12-24 2015-12-24 Biological treatment method for pulp and paper wastewater Active JP6587537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015251794A JP6587537B2 (en) 2015-12-24 2015-12-24 Biological treatment method for pulp and paper wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015251794A JP6587537B2 (en) 2015-12-24 2015-12-24 Biological treatment method for pulp and paper wastewater

Publications (2)

Publication Number Publication Date
JP2017113698A JP2017113698A (en) 2017-06-29
JP6587537B2 true JP6587537B2 (en) 2019-10-09

Family

ID=59232925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015251794A Active JP6587537B2 (en) 2015-12-24 2015-12-24 Biological treatment method for pulp and paper wastewater

Country Status (1)

Country Link
JP (1) JP6587537B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108823107A (en) * 2018-07-13 2018-11-16 迁西县林中宝生物科技有限公司 A kind of white chestnut mushroom kind and selection using ARTP induced-mutation technique breeding
JP6699792B2 (en) * 2018-11-08 2020-05-27 王子ホールディングス株式会社 Water treatment apparatus, dehydrated sludge production apparatus, water treatment method and dehydrated sludge production method
CN111925945B (en) * 2020-08-04 2022-11-22 贵州大学 Smoke tube bacterium G14 and application thereof

Also Published As

Publication number Publication date
JP2017113698A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
Melanouri et al. Cultivating Pleurotus ostreatus and Pleurotus eryngii mushroom strains on agro-industrial residues in solid-state fermentation. Part I: Screening for growth, endoglucanase, laccase and biomass production in the colonization phase
KR100903666B1 (en) Soil improver with white-rot fungi and methods of using thereof for plant restoration and recover of heavy metals contaminated soil around abandoned mine area
KR20130000366A (en) Artificial soil by vermicomposting method of treat sewage sludge using compound microorganism
CN103205382A (en) Microbial agent for purifying river wastewater and preparation method of microbial agent
Kachlishvili et al. Modulation of Cerrena unicolor laccase and manganese peroxidase production
CN1354786A (en) Method of high-concentration culture of nitrifying bacteria or denitrifying bacteria contained in activated sludge, culture promoter to be used in high-concentration culture method of nitrifying
JP6587537B2 (en) Biological treatment method for pulp and paper wastewater
JP2015167912A (en) Livestock excreta treating system
Phang Algal production from agro-industrial and agricultural wastes in Malaysia
CN109110912A (en) A kind of dirt collecting pit pool black and odorous water administering method
CN103864494A (en) Method for producing high-performance organic compound fertilizer from straws and sludge
JP2008230919A (en) Method of manufacturing fertilizer, soil improvement agent or sewage treatment regulator
JP3732089B2 (en) Method for preparing microbial cultures for wastewater treatment
KR101996065B1 (en) Apparatus for Nitrogen Removing Using Co-culture of Microalgae and Denitrifying Bacteria and Method for Nitrogen Removing Using the Same
Singh et al. Enhanced vermicomposting of leaf litter by white-rot fungi pretreatment and subsequent feeding by Eisenia fetida under a two-stage process
CN106467352A (en) A kind of for the foul smell resource reutilization of sludge organism drying technique with the method for deodorization
Wan et al. Screening of lignin-degrading fungi and bioaugmentation on the directional humification of garden waste composting
KR20080013839A (en) Vermicomposting method treat sewage sludge by compound microorganism using without pretreatment process
JPH0283286A (en) Production of compost from wood resource
WO2021193893A1 (en) Culture medium and method for producing laccase
Obodai et al. Physical, chemical and fungal phenology associated with the composting of ‘wawa’sawdust (Triplochiton scleroxylon) used in the cultivation of oyster mushrooms in Ghana
US6923912B1 (en) Method of wastewater treatment utilizing white rot and brown rot fungi
JP2021153575A (en) Culture media and methods of laccase production
CN112239273A (en) Artificial activated sludge of pharmaceutical wastewater biochemical system, preparation method and application
CN104129847A (en) Method for one-step denitrification by utilizing wood and decayed wood for enrichment of denitrification environment microbial communities

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190910

R150 Certificate of patent or registration of utility model

Ref document number: 6587537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250