JP6587170B2 - Evaporation or distillation fluid, distillation method and distillation apparatus - Google Patents

Evaporation or distillation fluid, distillation method and distillation apparatus Download PDF

Info

Publication number
JP6587170B2
JP6587170B2 JP2014264545A JP2014264545A JP6587170B2 JP 6587170 B2 JP6587170 B2 JP 6587170B2 JP 2014264545 A JP2014264545 A JP 2014264545A JP 2014264545 A JP2014264545 A JP 2014264545A JP 6587170 B2 JP6587170 B2 JP 6587170B2
Authority
JP
Japan
Prior art keywords
nanoparticles
sunlight
distillation
fluid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014264545A
Other languages
Japanese (ja)
Other versions
JP2016125679A (en
Inventor
智 石井
智 石井
忠昭 長尾
忠昭 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2014264545A priority Critical patent/JP6587170B2/en
Publication of JP2016125679A publication Critical patent/JP2016125679A/en
Application granted granted Critical
Publication of JP6587170B2 publication Critical patent/JP6587170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

本発明は流体に光吸収率の高いナノ粒子を分散させることにより蒸発速度を向上させた蒸発または蒸留用流体、並びにこの蒸発または蒸留用流体を使用した蒸留方法及び蒸留装置に関する The present invention relates to an evaporation or distillation fluid in which the evaporation rate is improved by dispersing nanoparticles having a high light absorption rate in the fluid, and a distillation method and distillation apparatus using the evaporation or distillation fluid .

近年、自然エネルギーを有効に利用することによって二酸化炭素発生量を低減し、また化石燃料や原子力の利用を削減するため、周知のとおり、各種の材料や装置の研究・開発が盛んに進められている。例えば太陽光エネルギーを利用するために各種の太陽電池が開発され、一部実用化が進んでいる。しかしながら、太陽電池の生産には高度の技術が必要とされることから製造コストが高くなるために、特殊な環境以外では各種の優遇処置を講じない限り既存の発電方式と競合することは困難である。   In recent years, research and development of various materials and equipment has been actively promoted, as is well known, in order to reduce carbon dioxide generation by effectively using natural energy and to reduce the use of fossil fuels and nuclear power. Yes. For example, various solar cells have been developed in order to use solar energy, and some of them have been put into practical use. However, because advanced technology is required for solar cell production, manufacturing costs are high, so it is difficult to compete with existing power generation methods unless special precautions are taken except in special environments. is there.

太陽光から直接発電する代わりに、太陽光により流体を昇温させてそこに熱を一旦蓄積し、蒸気を発生させる、その熱を他の場所へ輸送する、あるいはそのまま蓄積させておいて後で利用するという形態についても、発電から一般家庭用の給湯設備まで、多様な装置が開発されている(例えば、特許文献1〜特許文献5等を参照)。しかし、この種の装置は太陽光エネルギーの利用効率が比較的低い、太陽光を効率よく取り込むために装置構成が複雑化する等の問題があった。   Instead of generating electricity directly from sunlight, the fluid is heated up by sunlight and heat is temporarily stored there, generating steam, transporting the heat to another place, or storing it as it is and later As for the form of use, various devices have been developed from power generation to hot water supply facilities for general households (see, for example, Patent Document 1 to Patent Document 5). However, this type of apparatus has problems such as relatively low utilization efficiency of solar energy and complicated apparatus configuration for efficiently capturing sunlight.

太陽光エネルギーを高い効率で流体に直接吸収させるため、金属または金属酸化物のナノ粒子を溶媒中に分散させた流体に直接太陽光を照射することが提案されている(特許文献6)。しかしながら、特許文献6は「銅、酸化銅、ニッケル、その他、任意の金属種の単体又は酸化物のナノ粒子」を使用できると記載しているものの、実際には金属または金属酸化物のナノ粒子の太陽光吸収率は物質毎に異なることに基づいて、具体的にどのような材料のナノ粒子を選択すべきか、またその材料を選択する際の一般的な基準は何かについては何の考慮も払っていない。   In order to directly absorb sunlight energy into a fluid with high efficiency, it has been proposed to directly irradiate sunlight with a fluid in which metal or metal oxide nanoparticles are dispersed in a solvent (Patent Document 6). However, although Patent Document 6 describes that “single or oxide nanoparticles of copper, copper oxide, nickel, or any other metal species” can be used, in reality, nanoparticles of metal or metal oxide are used. Based on the fact that the solar absorptivity of each material varies from substance to substance, what kind of material should be selected, and what are the general criteria for selecting that material? I have not paid.

また、特許文献7には、カーボンナノ粒子等の熱吸収性粒子を気体中に分散させたエアゾルに太陽光を照射することで熱吸収性粒子を発熱させて周囲の気体を昇温させ、以て当該気体中での化学反応を促進することが開示されている。しかしながら、気体は液体に比べて熱容量が極めて小さいために太陽光エネルギーの蓄積やその移送用の媒体としては不適切であり、従って本特許文献でも、気体をその場で昇温させてその中の化学反応を促進するという、熱の蓄積や移送とは別の用途・目的に上記現象を利用している。   Further, Patent Document 7 discloses that an aerosol in which heat absorbing particles such as carbon nanoparticles are dispersed in a gas is irradiated with sunlight to heat the heat absorbing particles to raise the temperature of the surrounding gas. It is disclosed that the chemical reaction in the gas is promoted. However, since gas has an extremely small heat capacity compared to liquid, it is unsuitable as a medium for storing and transferring solar energy. Therefore, even in this patent document, the temperature of the gas is increased in-situ. The above phenomenon is used for purposes and purposes other than heat accumulation and transfer, which promote chemical reactions.

蒸留は液体を蒸発させることが必要であるため、大きなエネルギーを必要とする。このエネルギーの全部または一部を太陽光で供給することができればエネルギーの節約に有効である。例えば海水等のそのままでは飲用に適さない水から淡水を製造する際の蒸留処理に太陽熱を利用することは、特許文献3等に記載されている。しかし、太陽光はエネルギー密度がそれほど大きくないため、実用規模の蒸留に太陽光エネルギーを利用しようとすると、受光設備が大規模になる等の問題があった(特許文献5、特許文献8及び特許文献9等を参照)。   Distillation requires large energy because it is necessary to evaporate the liquid. If all or part of this energy can be supplied by sunlight, it is effective in saving energy. For example, Patent Document 3 discloses that solar heat is used for a distillation process in producing fresh water from water that is not suitable for drinking as it is, such as seawater. However, since the energy density of sunlight is not so high, there is a problem that, when trying to use solar energy for practical scale distillation, there is a problem that the light receiving equipment becomes large (Patent Document 5, Patent Document 8 and Patent). Reference 9 etc.).

本発明の課題は、従来技術の問題点を解消し、太陽光のエネルギーを高い効率で吸収して蓄積できるとともに、製造が容易かつ低価格の太陽光吸収流体を提供することにある。また、太陽光のエネルギーを使用して蒸留を行う際の太陽光エネルギーの利用効率を向上させることもその課題とする。   An object of the present invention is to solve the problems of the prior art, and to provide a solar-absorbing fluid that can absorb and accumulate sunlight energy with high efficiency and that is easy to manufacture and inexpensive. Another object is to improve the use efficiency of solar energy when distillation is performed using solar energy.

本発明の一側面によれば、液体に窒化チタンナノ粒子を分散させた流体であって、照射された光エネルギーを吸収して蓄積する太陽光吸収流体が与えられる。
ここで、前記窒化チタンの半径が10nm以上200nm以下であってよい。
また、前記液体が水であってよい。
また、前記窒化チタンナノ粒子を0.1重量%以上分散させてよい。
本発明の他の局面によれば、複素誘電率の実部が−20以上0以下であり、虚部が0以上20以下である金属の窒化物、ホウ化物または炭化物のナノ粒子を液体中に分散させた流体であって、照射された太陽光エネルギーを吸収して蓄積する太陽光吸収流体が与えられる。
ここで、前記ナノ粒子が窒化ジルコニウム、窒化ハフニウム、窒化タンタル、炭化チタン、炭化タングズテン、ホウ化ランタン、ホウ化チタンからなる群から選ばれた少なくとも一のナノ粒子であってよい。
また、前記ナノ粒子の半径が10nm以上200nm以下であってよい。
また、前記液体が水であってよい。
また、前記ナノ粒子を0.1重量%以上分散させてよい。
本発明の更に他の局面によれば、複素誘電率の実部が−20以上0以下であり、虚部が0以上20以下であるナノ粒子を蒸留対象の液体に分散させ、前記ナノ粒子を分散させた液体への太陽光照射による加熱を行う蒸留方法が与えられる。
ここで、前記ナノ粒子の半径は10nm以上200nm以下であってよい。
According to one aspect of the present invention, there is provided a fluid in which titanium nitride nanoparticles are dispersed in a liquid, which absorbs and accumulates irradiated light energy.
Here, the radius of the titanium nitride may be 10 nm or more and 200 nm or less.
The liquid may be water.
Further, the titanium nitride nanoparticles may be dispersed in an amount of 0.1% by weight or more.
According to another aspect of the present invention, a metal nitride, boride, or carbide nanoparticle having a real part of a complex dielectric constant of −20 to 0 and an imaginary part of 0 to 20 in a liquid. A dispersed fluid is provided that absorbs and stores the irradiated solar energy.
Here, the nanoparticles may be at least one nanoparticle selected from the group consisting of zirconium nitride, hafnium nitride, tantalum nitride, titanium carbide, tungsten carbide, lanthanum boride, and titanium boride.
Further, the radius of the nanoparticles may be 10 nm or more and 200 nm or less.
The liquid may be water.
Further, the nanoparticles may be dispersed by 0.1% by weight or more.
According to still another aspect of the present invention, nanoparticles having a complex dielectric constant having a real part of -20 or more and 0 or less and an imaginary part of 0 or more and 20 or less are dispersed in a liquid to be distilled. A distillation method is provided in which the dispersed liquid is heated by sunlight irradiation.
Here, the radius of the nanoparticles may be 10 nm or more and 200 nm or less.

本発明の太陽光吸収流体は組成や製法が単純・容易であるにもかかわらず、高い太陽光エネルギー吸収効率を示す。更には、ナノ粒子を分散させる液体が水などのように蒸発しやすいものである場合には、当該液体を単独で加熱した場合に比べて低温から蒸気を盛んに発生させることができるため、蒸留などに応用した場合に、従来よりも低温で蒸留が可能となり、この点でも太陽光エネルギーの利用効率が向上する。   The solar light absorbing fluid of the present invention exhibits high solar energy absorption efficiency despite its simple composition and manufacturing method. Furthermore, when the liquid in which the nanoparticles are dispersed is easy to evaporate, such as water, steam can be actively generated from a lower temperature than when the liquid is heated alone. When it is applied to the above, it becomes possible to distill at a lower temperature than in the past, and also in this respect, the utilization efficiency of solar energy is improved.

本発明の一実施形態の太陽光吸収流体の原理を概念的に示す図。The figure which shows notionally the principle of the sunlight absorption fluid of one Embodiment of this invention. 本発明の一実施例の太陽光吸収流体に使用したTiNナノ粒子の300nm〜2000nmの波長域内における複素誘電率の実部及び虚部の値の変化を示すグラフ。The graph which shows the change of the value of the real part and imaginary part of a complex-dielectric constant in the wavelength range of 300 nm-2000 nm of the TiN nanoparticle used for the sunlight absorption fluid of one Example of this invention. 本発明の一実施例の太陽光吸収流体に使用したTiNナノ粒子の(a)低解像度及び(b)高解像度の透過型電子顕微鏡像。The transmission electron microscope image of (a) low resolution and (b) high resolution of the TiN nanoparticle used for the sunlight absorption fluid of one Example of this invention. 上記TiNナノ粒子の太陽光吸収率を正規化したグラフを、太陽光スペクトルと重ねて示すグラフ。The graph which shows the graph which normalized the solar absorptivity of the said TiN nanoparticle, and overlaps with a sunlight spectrum. 上記TiNナノ粒子を水中に分散させた状態で表面積測定装置を使用して測定したTiNナノ粒子の直径の分布を示すヒストグラム。The histogram which shows distribution of the diameter of the TiN nanoparticle measured using the surface area measuring apparatus in the state which disperse | distributed the said TiN nanoparticle in water. 上記TiNナノ粒子を水中に分散させた本発明の一実施例の太陽光吸収流体及び純水をそれぞれ透明容器に入れてソーラーシミュレータで照射した実験結果を示す一連の写真。A series of photographs showing a result of an experiment in which a solar absorbing fluid and pure water of one embodiment of the present invention in which the TiN nanoparticles are dispersed in water are respectively placed in a transparent container and irradiated with a solar simulator. 上記TiNナノ粒子を水中に分散させた本発明の一実施例の太陽光吸収流体をソーラーシミュレータで照射したときの、太陽光吸収流体の重量減少(水の蒸発量)の時間変化を示すグラフ。The graph which shows the time change of the weight reduction (evaporation amount of water) of the sunlight absorption fluid when the solar absorption fluid of one Example of this invention which disperse | distributed the said TiN nanoparticle in water is irradiated with a solar simulator. 上記TiNナノ粒子を水中に分散させた本発明の一実施例の太陽光吸収流体と純水とを、両者の温度が同じになる照射条件でソーラーシミュレータで照射したときの、太陽光吸収流体及び純水の重量減少(水の蒸発量)の時間変化を比較して示すグラフ。The solar absorbing fluid when the solar absorbing fluid and pure water of one embodiment of the present invention in which the TiN nanoparticles are dispersed in water are irradiated with a solar simulator under the irradiation conditions in which both temperatures are the same, and The graph which compares and shows the time change of the weight reduction (water evaporation) of a pure water. TiNナノ粒子、Auナノ粒子及びカーボンナノ粒子を水に分散させた際の吸収効率の波長による変化を示す図。The figure which shows the change by the wavelength of the absorption efficiency at the time of disperse | distributing a TiN nanoparticle, Au nanoparticle, and a carbon nanoparticle in water.

本発明の一実施形態によれば、図1に模式的に示すように、窒化チタンなどの太陽光スペクトルに対する吸収率が高く、また化学的・物理的に安定性の高い金属の窒化物、ホウ化物または炭化物のナノ粒子を液体中に分散させた太陽光吸収流体が提供される。この液体としては比熱が大きくまた入手が極めて容易であることから、通常は水を利用するのが便利であるが、太陽光吸収流体の用途等に応じてそれ以外の各種の液体から適宜選択することができる。この太陽光吸収流体に太陽光が照射されると、分散されているナノ粒子が照射された太陽光を吸収して発熱することで、太陽光のエネルギーにより流体を昇温させ、またナノ粒子を分散させている液体にその熱を蓄積することができる。   According to one embodiment of the present invention, as schematically shown in FIG. 1, a metal nitride or boron having a high absorption rate with respect to the sunlight spectrum, such as titanium nitride, and high chemical and physical stability. A solar-absorbing fluid is provided in which nanoparticles of carbides or carbides are dispersed in a liquid. Since this liquid has a large specific heat and is very easy to obtain, it is usually convenient to use water, but it is appropriately selected from various other liquids depending on the application of the solar absorbing fluid. be able to. When this sunlight absorbing fluid is irradiated with sunlight, the dispersed nanoparticles absorb the sunlight irradiated and generate heat, so that the temperature of the fluid is raised by the energy of sunlight and the nanoparticles are The heat can be stored in the dispersed liquid.

分散させるナノ粒子に求められる好適な条件としては、粒子の半径の範囲及び複素誘電率の実部及び虚部の範囲等がある。ナノ粒子の半径は10nm以上200nm以下が太陽光の吸収率の点から好ましい。ただし、この範囲の端点を境として特性が急激に変化するわけではないので、この範囲からある程度外れても、もう一つの条件である複素誘電率の好適な範囲への適合性が高ければ全体として光の吸収率は比較的高くなる。ナノ粒子の複素誘電率については、その実部が−20以上0以下であり、かつ虚部が0以上20以下であれば、光の吸収率が高くなるので好ましい。しかし、本発明における吸収対象である太陽光では、大きなエネルギーを持っている波長範囲はほぼ300〜2500nmと広いが、ナノ粒子材料の複素誘電率は波長依存性(波長分散)があるため、この条件を波長範囲全体に渡って満たすという意味で完全な材料はまだ発見できていない。従って、液体中に分散するナノ粒子としては、できるだけ広い波長範囲でこの条件を満たすものを選択することになるが、その一つとして窒化チタン(TiN)ナノ粒子が挙げられる。図2に波長300nm〜2000nmの範囲内でのTiNの複素誘電率の実部(淡灰色)及び虚部(黒色)の変化を示す。このグラフからわかるように、TiNでは上記条件(実部が−20以上0以下、かつ虚部が0以上20以下)を満たす波長範囲は太陽光スペクトルの範囲の一部である500nm〜1600nm(波長範囲幅1100nm)、短波長端付近での実部のわずかなうねりにより実部が僅かに正になっている個所も光の吸収域が良好な波長範囲に含めれば300nm〜1600nm(波長範囲幅1300nm)である。このように、本発明で使用するナノ粒子は、太陽光スペクトル波長域中の少なくとも一部において、複素誘電率の実部及び虚部が上記条件を満たすことが好ましい。また、太陽光スペクトル中でエネルギーが特に大きな500nm〜1000nmの範囲全域で複素誘電率の実部及び虚部が上記条件を満たせば更に好ましい。   Suitable conditions required for the nanoparticles to be dispersed include the radius range of the particles and the real and imaginary ranges of the complex dielectric constant. The radius of the nanoparticles is preferably 10 nm or more and 200 nm or less from the viewpoint of the absorption rate of sunlight. However, since the characteristics do not change abruptly at the end of this range, even if the characteristics deviate from this range to some extent, if the suitability to the suitable range of the complex permittivity, which is another condition, is high, as a whole Light absorption is relatively high. Regarding the complex dielectric constant of the nanoparticles, it is preferable that the real part is −20 to 0 and the imaginary part is 0 to 20 because the light absorption rate is increased. However, in the sunlight which is the absorption target in the present invention, the wavelength range having a large energy is as wide as about 300 to 2500 nm, but the complex dielectric constant of the nanoparticle material has wavelength dependency (wavelength dispersion). A perfect material has not yet been found in the sense that the conditions are met over the entire wavelength range. Therefore, as the nanoparticles dispersed in the liquid, those satisfying this condition in the widest possible wavelength range are selected, and one of them is titanium nitride (TiN) nanoparticles. FIG. 2 shows changes in the real part (light gray) and the imaginary part (black) of the complex dielectric constant of TiN within a wavelength range of 300 nm to 2000 nm. As can be seen from this graph, in TiN, the wavelength range satisfying the above conditions (the real part is −20 to 0 and the imaginary part is 0 to 20) is a part of the solar spectrum range of 500 nm to 1600 nm (wavelength The range where the real part is slightly positive due to slight undulation of the real part near the short wavelength end is 300 nm to 1600 nm (wavelength range width of 1300 nm). ). Thus, it is preferable that the nanoparticle used by this invention satisfy | fills the said conditions in the real part and imaginary part of a complex dielectric constant in at least one part in a sunlight spectrum wavelength range. Further, it is more preferable that the real part and the imaginary part of the complex dielectric constant satisfy the above conditions in the entire range of 500 nm to 1000 nm where the energy is particularly large in the sunlight spectrum.

もちろん、TiN以外のナノ粒子も、入手や製造の容易さ、価格、光吸収効率、本発明の太陽光吸収流体として所定の用途に使用した場合の各種の適合性等に応じて適宜選択することができる。具体的には窒化ジルコニウム(ZrN)、窒化ハフニウム(HfN)、窒化タンタル(TaN)などの金属窒化物、炭化チタン(TiC)、炭化タングズテン(WC)などの金属カーバイド、ホウ化ランタン(LaB)、ホウ化チタン(TiB)などの金属ホウ化物などが挙げられる。これらのナノ粒子は上記材料から選択された単一の材料のナノ粒子であってもよいし、あるいは複数の材料のナノ粒子を混合したものであってもよい。例えば光吸収率の高い波長範囲の異なる複数の材料を選択して、これらの複数の材料からそれぞれナノ粒子を作製し、これらの材料が互いに異なるナノ粒子を液体中に分散することができる。これにより、単一の材料からなるナノ粒子を分散させた場合よりも太陽光スペクトル中のより広い範囲で高い光吸収を実現することができる。 Of course, nanoparticles other than TiN should be selected as appropriate according to the ease of availability and production, price, light absorption efficiency, various suitability when used as a solar absorbing fluid of the present invention for a predetermined application, etc. Can do. Specifically, metal nitrides such as zirconium nitride (ZrN), hafnium nitride (HfN) and tantalum nitride (TaN), metal carbides such as titanium carbide (TiC) and tungsten carbide (WC), lanthanum boride (LaB 6 ) And metal borides such as titanium boride (TiB 2 ). These nanoparticles may be nanoparticles of a single material selected from the above materials, or may be a mixture of nanoparticles of a plurality of materials. For example, it is possible to select a plurality of materials having different wavelength ranges having a high light absorption rate, to produce nanoparticles from the plurality of materials, and to disperse nanoparticles having different materials from each other in the liquid. Thereby, it is possible to realize high light absorption in a wider range in the sunlight spectrum than in the case where nanoparticles made of a single material are dispersed.

このようなナノ粒子を水等の液体中に分散させることによって太陽光吸収流体が得られる。ナノ粒子を液体中に投入して攪拌や超音波照射するだけで容易に分散する場合もあるが、もしそれだけでは簡単に分散しない場合には、分散を補助するための他の物質を投入したり、あるいは光吸収性に大きな悪影響を与えないのであればナノ粒子の表面処理を行ったりこのナノ粒子に分散性の良い他の材料を付加する等の各種の対策が可能である。あるいは、所望のナノ粒子を分散させている他の液体を対象とする液体と混合したり、所望の液体中でナノ粒子を作製することで最初から分散状態にあるナノ粒子を得ることもできる。本発明は上述した、またこれ以外の任意の方法で得られた太陽光吸収流体を包含するものであることに注意されたい。   A sunlight absorbing fluid can be obtained by dispersing such nanoparticles in a liquid such as water. In some cases, the nanoparticles can be easily dispersed simply by adding them into the liquid and stirring or irradiating with ultrasonic waves, but if that alone does not disperse easily, other substances may be added to assist the dispersion. Alternatively, various measures such as surface treatment of the nanoparticles or addition of another material having good dispersibility to the nanoparticles can be performed if they do not have a great adverse effect on the light absorption. Alternatively, it is also possible to obtain nanoparticles in a dispersed state from the beginning by mixing other liquids in which the desired nanoparticles are dispersed with a target liquid or by producing nanoparticles in the desired liquid. It should be noted that the present invention encompasses solar absorbing fluids as described above and obtained by any other method.

また、液体中に分散するナノ粒子の量については、もちろん量を少なくしていっても分散量に応じて照射される光を吸収するが、あまり少量ではナノ粒子を分散させていない液体に比べて顕著な違いが出ない。従って、太陽光吸収流体中に占めるナノ粒子の割合は0.1重量%以上とするのが好ましい。もちろん、この0.1重量%よりも低濃度の場合に本発明の効果がなくなるわけではなく、それなりの太陽光吸収が行なわれる。従って、目的、用途、使用環境等の諸条件により、例えば0.02重量%以上や0.05重量%以上といった別の濃度範囲が好ましいこともある。   In addition, the amount of nanoparticles dispersed in the liquid, of course, absorbs the light irradiated according to the amount of dispersion even if the amount is small, but in a small amount compared to the liquid in which the nanoparticles are not dispersed. There is no significant difference. Therefore, it is preferable that the proportion of nanoparticles in the sunlight absorbing fluid is 0.1% by weight or more. Of course, when the concentration is lower than 0.1% by weight, the effect of the present invention is not lost, and a certain amount of sunlight is absorbed. Accordingly, another concentration range such as 0.02% by weight or more or 0.05% by weight or more may be preferable depending on various conditions such as purpose, application, and use environment.

本発明で使用するナノ粒子は既知の多様な方法で作成することができる。一例を挙げれば以下で説明する本発明の実施例で使用するTiNナノ粒子は、熱プラズマ法(原料を熱プラズマで蒸発させてからクエンチ(急冷)する)によって作製することができる。この方法は当業者に周知のものであるため、本願ではこれ以上具体的に説明しないが、必要に応じて非特許文献1、非特許文献2等を参照されたい。   The nanoparticles used in the present invention can be prepared by various known methods. For example, TiN nanoparticles used in the examples of the present invention described below can be produced by a thermal plasma method (a raw material is evaporated by thermal plasma and then quenched (rapidly cooled)). Since this method is well known to those skilled in the art, it will not be described in detail in the present application, but refer to Non-Patent Document 1, Non-Patent Document 2, etc. as necessary.

このようにして得られた本発明の太陽光吸収流体は、それ自体が高い太陽光吸収率を有するため、光を吸収して発熱する部材を流体を循環させるパイプ等の外部やあるいは流体容器の透明窓の反対側の内面に太陽光を受けて発熱する材料を塗布や貼付等によって設置する等の構造が不要となる。これにより、本発明の太陽光吸収流体を使用した太陽光吸収装置の構造が簡単となるだけではなく、液体自体が発熱するため熱が外部に失われにくく、太陽光の利用効率が良くなる。使用するナノ粒子及びそれを分散させる液体を適宜選択することにより、入射した太陽光エネルギーを熱に変換する効率が80%以上とすることもできる。当該80%以上の効率は、TiNナノ粒子を水に分散させた太陽光吸収流体にソーラーシミュレータで光を照射し、照射した光エネルギーに対する水温上昇及び水蒸気発生に使用されたエネルギーの比を求めることで算出したものである。   The solar absorbing fluid of the present invention thus obtained itself has a high solar absorptivity, so that it absorbs light to the outside of a pipe that circulates the fluid through a member that generates heat and / or a fluid container. A structure in which a material that generates heat by receiving sunlight is applied to the inner surface on the opposite side of the transparent window by coating, sticking, or the like becomes unnecessary. This not only simplifies the structure of the solar light absorber using the solar light absorbing fluid of the present invention, but the liquid itself generates heat, so that heat is not easily lost to the outside, and the utilization efficiency of sunlight is improved. By appropriately selecting the nanoparticles to be used and the liquid in which they are dispersed, the efficiency of converting incident solar energy into heat can be made 80% or more. The efficiency of 80% or more is to irradiate sunlight absorbing fluid in which TiN nanoparticles are dispersed in water with a solar simulator, and determine the ratio of energy used for water temperature rise and water vapor generation to the irradiated light energy. It was calculated by.

更に、本発明の太陽光吸収流体では、太陽光照射を受けて流体全体が一様に発熱するのではなく、上述したように、流体に占める体積としてはごく僅かな個々のナノ粒子が極めて局所的に発熱して高温となる傾向がある。そのため、流体全体の温度がナノ粒子を分散している液体の沸点よりもかなり低くても、流体内部の上述の極めて局所的な領域が周囲に比べて高温となるために当該領域から液体の蒸気が発生する(図1参照)。もちろん、ナノ粒子近傍で発生したこのような蒸気が全て液体表面から出ていくわけではないが、凝縮する前に太陽光吸収流体表面に到達した蒸気はこの流体外部に放出される。従って、ナノ粒子を混合しない分散用の液体を同じ温度まで加熱した場合に比較すると、本発明の太陽光吸収流体の方が大量の蒸気を発生することができる。この特徴を利用することにより、海水や汚水の蒸留等、蒸気を発生させることによって溶液中の特定成分を濃縮あるいは除去する処理(本願ではこれらの処理を何れも蒸留と呼ぶ)を従来に比較して低温で行うことができるようになるから、このような蒸留装置のエネルギー利用効率を改善することができるようになる。なお、蒸留のための熱エネルギーを太陽光だけから供給して良いし、あるいは一部の熱エネルギーを他の熱源から供給してもよい。例えば、蒸留対象の液体を主に他の熱源からの熱で蒸留温度まで加熱し、太陽光は蒸留を維持するための主なエネルギー源として利用して良い。   Furthermore, in the solar absorbing fluid of the present invention, the whole fluid does not generate heat uniformly when irradiated with sunlight. As described above, a very small number of individual nanoparticles occupy a very small volume in the fluid. Tends to generate heat and become hot. For this reason, even if the temperature of the whole fluid is considerably lower than the boiling point of the liquid in which the nanoparticles are dispersed, the above-mentioned extremely local region inside the fluid has a higher temperature than the surroundings, so that the liquid vapor is discharged from the region. (See FIG. 1). Of course, not all of the vapor generated in the vicinity of the nanoparticles exits from the liquid surface, but the vapor that reaches the surface of the sunlight absorbing fluid before condensing is released to the outside of the fluid. Therefore, as compared with the case where the dispersion liquid not mixed with nanoparticles is heated to the same temperature, the sunlight absorbing fluid of the present invention can generate a larger amount of vapor. By using this feature, the process of concentrating or removing specific components in the solution by generating steam, such as distillation of seawater and sewage (all these processes are referred to as distillation in this application) is compared with conventional methods. Therefore, the energy utilization efficiency of such a distillation apparatus can be improved. In addition, you may supply the thermal energy for distillation only from sunlight, or you may supply one part thermal energy from another heat source. For example, the liquid to be distilled may be heated to the distillation temperature mainly with heat from another heat source, and sunlight may be used as the main energy source for maintaining distillation.

その他、温排水等の排熱を利用した熱起電力発電システムにおいて、上記サイズや複素誘電率の条件を満たすナノ粒子を温水等の昇温された液体中に分散させて太陽光を照射する装置を追加することで、当該液体の温度を上昇させて発電素子に加わる温度差を大きくし発電効率を向上させることもできる。また、本発明の太陽光吸収流体を用いた熱収集回路を用い、昇温された流体を外気に触れさせる代わりに、ヒートポンプの熱交換器に接触させることで、より高効率かつ大きなエネルギーを利用することもできる。   In addition, in a thermoelectric power generation system that uses exhaust heat such as warm wastewater, a device that irradiates sunlight by dispersing nanoparticles that satisfy the above-mentioned size and complex dielectric constant in a heated liquid such as warm water By increasing the temperature of the liquid, the temperature difference applied to the power generation element can be increased and the power generation efficiency can be improved. In addition, using the heat collecting circuit using the sunlight absorbing fluid of the present invention, instead of bringing the heated fluid into contact with the outside air, it is brought into contact with the heat exchanger of the heat pump, thereby utilizing higher efficiency and greater energy. You can also

また、本発明ではソーラーシミュレータ等の、発光スペクトルを太陽光に合わせた光源からの光も太陽光であるとすることに注意されたい。   It should be noted that in the present invention, light from a light source whose emission spectrum is adjusted to sunlight, such as a solar simulator, is also sunlight.

[TiNナノ粒子と水を使用した太陽光吸収流体]
以下のようにしてTiNナノ粒子を水に分散させた太陽光吸収流体を作製して評価した。
[Solar absorbing fluid using TiN nanoparticles and water]
A sunlight absorbing fluid in which TiN nanoparticles were dispersed in water was prepared and evaluated as follows.

実施例で使用したTiNナノ粒子は熱プラズマ法によって作製したものであり、その直径は約28nmであった。その透過型電子顕微鏡(TEM)で観察した結果である倍率の異なる2枚のTEM像を図3に示す。なお、上に述べたTiNナノ粒子の直径は一次粒子(単一の一次粒子を図3(b)の高倍率TEM像に示す)の直径である。また、そのようなTiNナノ粒子の一次粒子がある程度まとまった二次粒子が図3(a)の低倍率TEM像中に示されている。   The TiN nanoparticles used in the examples were prepared by a thermal plasma method, and the diameter thereof was about 28 nm. FIG. 3 shows two TEM images with different magnifications as a result of observation with the transmission electron microscope (TEM). The diameter of the TiN nanoparticles described above is the diameter of primary particles (single primary particles are shown in the high-magnification TEM image in FIG. 3B). Further, secondary particles in which the primary particles of such TiN nanoparticles are gathered to some extent are shown in the low-magnification TEM image of FIG.

このTiNナノ粒子の正規化した吸収スペクトル(黒線)を太陽光スペクトルの短波長側(淡灰色)とともに図4に示す。更に、このTiNナノ粒子を水中に分散させた状態で表面積測定装置で測定されたTiNナノ粒子の直径の分布を示すヒストグラムを図5に示す。ここで、使用したTiNナノ粒子の一次粒子の直径が約28nmであったにもかかわらず、図5中には平均直径が約120nmであるとの記載がある。このような違いが出るのは、水中ではTiNナノ粒子は一次粒子が互いに孤立した状態で分散しているのではなく、いくつかの一次粒子がある程度凝集した二次粒子を形成しており、また図5に使用した測定結果を得るための測定方法では、このように凝集した二次粒子の直径が得られるためである。また、本発明の作用である光吸収を考える場合には個々の粒子としては二次粒子を考えるのが適切であるため、本発明においてナノ粒子の好適な大きさを論ずる場合には、太陽光吸収流体中に分散している状態で二次粒子を形成しているのであれば、当該二次粒子の大きさを使用する。   FIG. 4 shows the normalized absorption spectrum (black line) of the TiN nanoparticles together with the short wavelength side (light gray) of the sunlight spectrum. Further, FIG. 5 shows a histogram showing the distribution of the diameter of TiN nanoparticles measured with a surface area measuring device in a state where the TiN nanoparticles are dispersed in water. Here, although the diameter of the primary particles of the TiN nanoparticles used was about 28 nm, there is a description in FIG. 5 that the average diameter is about 120 nm. This difference is due to the fact that TiN nanoparticles in water are not dispersed in a state where primary particles are isolated from each other, but form secondary particles in which some primary particles are aggregated to some extent, This is because the diameter of the agglomerated secondary particles is obtained in the measurement method for obtaining the measurement result used in FIG. In addition, when considering light absorption, which is the function of the present invention, it is appropriate to consider secondary particles as individual particles. Therefore, when discussing the preferred size of nanoparticles in the present invention, sunlight is considered. If secondary particles are formed in a state of being dispersed in the absorbing fluid, the size of the secondary particles is used.

このTiNナノ粒子を水に約0.1重量%分散させて作製した太陽光吸収流体を透明容器に収容して、太陽光の代用としてAM1.5の光を発生するソーラーシミュレータで光照射を行った。光の放射強度は1500W/m、室温は23℃とした。また、比較対象として同じ量の純水を形状及びサイズが同じである別の透明容器に収容して、同じ照射条件となるようにして光照射を行った。その照射前(0分)、照射開始から5分経過時点(5分)、10分経過時点(10分)及び15分経過時点(15分)における両容器の外観を示す写真を図6に示す。 A solar absorbing fluid prepared by dispersing about 0.1% by weight of TiN nanoparticles in water is placed in a transparent container, and light irradiation is performed with a solar simulator that generates AM1.5 light as a substitute for sunlight. It was. The light emission intensity was 1500 W / m 2 , and the room temperature was 23 ° C. Moreover, the same amount of pure water was housed in another transparent container having the same shape and size as a comparison target, and light irradiation was performed under the same irradiation conditions. FIG. 6 shows photographs showing the appearance of both containers before the irradiation (0 minutes), 5 minutes after the start of irradiation (5 minutes), 10 minutes (10 minutes), and 15 minutes (15 minutes). .

これらの写真中の2つの容器内の流体を比較すると、写真中で奥側に置かれた容器中の純水が透明であることはもちろんであるが、手前側の容器中のTiNナノ粒子を0.1重量%という僅かな量分散させた光吸収流体は濃黒色を呈している。これは、水中のTiNナノ粒子が少なくとも可視領域の光についてはどの波長でも高い吸光度を示すことを意味している。   Comparing the fluid in the two containers in these photographs, the pure water in the container placed on the back side in the photograph is of course transparent, but the TiN nanoparticles in the container on the near side are transparent. The light absorbing fluid dispersed in a slight amount of 0.1% by weight exhibits a deep black color. This means that the TiN nanoparticles in water show high absorbance at any wavelength for light in the visible region at least.

次に、時間の経過を追って太陽光吸収流体の入っている手前側の容器の見え方を観察すると、5分経過時点では容器壁の曇りがやや増えたように見えるだけであるが、10分経過時点では容器壁内面に細かな水滴が一面に付着していることがはっきりわかった。15分経過時点ではこのような水滴がさらに大きく成長していた。この状態で太陽光吸収流体と純水との比較を容易にするために、これら2つの容器を左右に並置した状態の写真を15分経過時点の写真の上側に示す。この写真により比較を行ったところ、純水側容器は太陽光吸収流体と同じ光を同じ時間照射したにもかかわらず、その内壁には水滴の付着が認められなかった。この結果から、実施例で作製したTiNナノ粒子を分散した太陽光吸収流体は、0.1重量%という低濃度であるにもかかわらず、別に光吸収材を容器の外壁近傍に取り付けたり、あるいは容器内に収容しなくても、太陽光吸収流体単独で高い効率で太陽光を吸収して昇温したこと、及び太陽光照射により短時間のうちにかなりの量の水蒸気が発生したことが確認できた。   Next, when the appearance of the container on the near side containing sunlight absorbing fluid is observed over time, the cloudiness of the container wall seems to have slightly increased after 5 minutes, but 10 minutes. At the time, it was clearly understood that fine water droplets adhered to the inner surface of the container wall. At the time when 15 minutes had passed, such water droplets grew larger. In order to facilitate the comparison between the sunlight-absorbing fluid and the pure water in this state, a photograph with these two containers juxtaposed side by side is shown on the upper side of the photograph when 15 minutes have passed. As a result of comparison, the pure water side container was irradiated with the same light as the sunlight absorbing fluid for the same time, but no water droplets were observed on its inner wall. From this result, the solar absorbing fluid in which the TiN nanoparticles prepared in the example are dispersed has a light absorbing material attached to the vicinity of the outer wall of the container in spite of the low concentration of 0.1% by weight, or Even if it is not housed in a container, it is confirmed that the solar absorbing fluid alone has absorbed sunlight with high efficiency and heated up, and that a considerable amount of water vapor was generated in a short time due to sunlight irradiation. did it.

このように、本発明の太陽光吸収流体は光吸収・発熱用の部材を別途必要とせず、液体自体が太陽光を高い効率で吸収して熱の形で蓄積することができるため、例えばこのような流体を太陽光照射下で透明なパイプ等の透明流路に流すという極めて簡単な装置構成を利用して、高い効率で太陽光エネルギーを集めることができる。   Thus, the solar absorbing fluid of the present invention does not require a separate member for light absorption and heat generation, and the liquid itself can absorb sunlight with high efficiency and accumulate in the form of heat. Solar energy can be collected with high efficiency using an extremely simple device configuration in which such a fluid is passed through a transparent flow path such as a transparent pipe under sunlight irradiation.

次に、本発明の太陽光吸収流体に光を照射することによる蒸発量を測定した結果を図7に示す。これは、20mgのTiNナノ粒子を10mlの純水に分散させた太陽光吸収流体(図7中のキャプションでは「TiN0.2wt%」)を上部が解放された容器(開口部面積7cm、光の照射面積25cm)に収容し、AM1.5のソーラーシミュレータを用い、室温23℃において1000W/mの照度で光を照射しながら、照射開始時点からの蒸発量を測定したものである。更に、比較のため、同量の純水のみを同じ容器に入れて同じ照射条件で蒸発量を測定した結果も示した。両者を比較することにより、同じ条件で光照射を行った場合に、純水と比較して本発明の太陽光吸収流体の方が遙かに大きな蒸発量を示すことが確認できた。 Next, the result of having measured the evaporation amount by irradiating light to the sunlight absorption fluid of this invention is shown in FIG. This is because a solar absorbing fluid ("TiN 0.2 wt%" in the caption in FIG. 7) in which 20 mg of TiN nanoparticles are dispersed in 10 ml of pure water is opened in a container (opening area 7 cm 2 , light and accommodating the illumination area 25 cm 2), using a solar simulator of AM 1.5, while irradiating with light at an intensity of 1000W / m 2 at room temperature 23 ° C., it is obtained by measuring the amount of evaporation from the irradiation start time. Furthermore, for comparison, the results of measuring the evaporation amount under the same irradiation conditions with only the same amount of pure water in the same container are also shown. By comparing the two, it was confirmed that when the light irradiation was performed under the same conditions, the solar-absorbing fluid of the present invention showed a much larger evaporation amount than that of pure water.

上述のような同一の照射条件でTiNナノ粒子分散水と純水を比較すると、前者のほうがよく光を吸収するため水温が高くなる。そのため、前者のほうが大きな蒸発量を示す理由は水温が高いことに起因するとも考えられる。そのため、TiNナノ粒子分散水と純水への照射光強度をそれぞれ896W/m、1273W/mとして約1時間放置してどちらの水温も32度で一定になった状態を得た。なお、この実験ではどちらも20mlの液体を開口部面積15.9cmの容器にいれた。図8に水の蒸発量の時間変化を示す。水温がどちらも一定であるにも関わらず、TiNナノ粒子分散水のほうが多くの水蒸気を発生していることがわかる。このことから、TiNナノ粒子分散水の温度があまり上昇しないうちから、ナノ粒子を分散していない同種の液体に比べて同一の温度で大きな蒸発速度を持つことが確認できた。 When the TiN nanoparticle-dispersed water and pure water are compared under the same irradiation conditions as described above, the former absorbs light better and the water temperature becomes higher. Therefore, the reason why the former shows a larger evaporation amount may be attributed to the high water temperature. Therefore, to obtain a condition that the irradiation light intensity of the TiN nanoparticle dispersion water and pure water constant at each 896W / m 2, 1273W / as m 2 to about 1 hour allowed to both water temperature 32 degrees. In both experiments, 20 ml of liquid was placed in a container having an opening area of 15.9 cm 2 . FIG. 8 shows the change over time in the evaporation amount of water. It can be seen that even though the water temperature is constant, the TiN nanoparticle-dispersed water generates more water vapor. From this, it was confirmed that the TiN nanoparticle-dispersed water had a large evaporation rate at the same temperature as compared with the same kind of liquid in which the nanoparticles were not dispersed since the temperature of the TiN nanoparticle-dispersed water did not rise so much.

このように、本発明によれば、ナノ粒子を分散させている液体の沸点よりも低い温度において、ナノ粒子を分散させていない場合に比べて速い速度で当該液体を蒸発させることができるため、蒸留等をより低温で行うことができ、従って蒸留等の際のエネルギーの損失を低減させることが可能となる。   Thus, according to the present invention, at a temperature lower than the boiling point of the liquid in which the nanoparticles are dispersed, the liquid can be evaporated at a higher speed than when the nanoparticles are not dispersed. Distillation and the like can be performed at a lower temperature, and thus energy loss during distillation and the like can be reduced.

図9に、半径が50nmのTiN、Au及びカーボンのナノ粒子をそれぞれ1個水に分散させた状態での光吸収効率Qabsの波長による変化を計算した結果のグラフを示す。また、各部グラフには光吸収効率を波長について積分した値もそれぞれ示す。なお、この計算に当たって使用したこれらのナノ粒子の複素誘電率のデータについてはそれぞれ非特許文献3、非特許文献4及び非特許文献5に記載のものを使用した。   FIG. 9 is a graph showing the result of calculating the change of the light absorption efficiency Qabs depending on the wavelength in the state where one nano particle of TiN, Au and carbon each having a radius of 50 nm is dispersed in water. Each graph also shows the value obtained by integrating the light absorption efficiency with respect to the wavelength. In addition, about the data of the complex dielectric constant of these nanoparticles used in this calculation, those described in Non-Patent Document 3, Non-Patent Document 4 and Non-Patent Document 5 were used, respectively.

図9中のグラフを比較すれば、これら三種類の物質により、また同じ材料であっても波長が異なることで、光吸収効率Qabsは大きく変化することがわかる。光吸収効率Qabsは(また、光散乱や透過も)物質の複素誘電係数によって支配される。例えば、半径50nmのAuナノ粒子の場合、700nm以上の近赤外光に対して光(電磁場)との相互作用が弱くなり、光吸収効率Qabsは小さくなる(光散乱効率Qscatも同じく小さくなる)。   Comparing the graphs in FIG. 9, it can be seen that the light absorption efficiency Qabs varies greatly depending on these three types of substances and even if the same material has different wavelengths. The light absorption efficiency Qabs (and light scattering and transmission) is governed by the complex dielectric coefficient of the material. For example, in the case of Au nanoparticles having a radius of 50 nm, the interaction with light (electromagnetic field) is weak for near-infrared light of 700 nm or more, and the light absorption efficiency Qabs is small (the light scattering efficiency Qscat is also small). .

基本的には波長に対してプロットした光吸収効率Qabsの面積が大きい方が(つまり、Qabsを波長について積分した値が大きい方が)広い波長範囲にわたって太陽光を多く吸収する。従って、当該積分値が本発明の太陽光吸収流体の効率に最も大きく影響する。これに加えて光散乱効率Qscatが大きいと、光がナノ粒子分散溶液内に入ればより効率よくナノ粒子に吸収されるが、同時に光が溶液に入射するときの反射や散乱が大きくなる。今の段階では光散乱効率Qscatの影響を定量的に評価できていないが、定性的に言えば、光散乱効率Qscatが大きいと太陽光吸収流体内での光吸収効率が上がり、太陽光吸収流体の層を浅くできる。しかしながら、光散乱効率Qscatの増大は、一方では太陽光が太陽光吸収流体に入射する際の反射や散乱成分を増やしてしまうことにつながるため、特にQscatの値(積分値ではない)が1以上の場合は材料選択の際に注意が必要である。   Basically, the larger the area of the light absorption efficiency Qabs plotted against the wavelength (that is, the larger the integrated value of Qabs with respect to the wavelength), the more sunlight is absorbed over a wide wavelength range. Therefore, the integral value has the greatest influence on the efficiency of the solar light absorbing fluid of the present invention. In addition, if the light scattering efficiency Qscat is large, the light is more efficiently absorbed by the nanoparticles if it enters the nanoparticle dispersion solution, but at the same time, reflection and scattering are increased when the light enters the solution. At this stage, the influence of the light scattering efficiency Qscat has not been quantitatively evaluated, but qualitatively speaking, if the light scattering efficiency Qscat is large, the light absorption efficiency in the sunlight absorbing fluid increases, and the sunlight absorbing fluid The layer can be shallow. However, since the increase in light scattering efficiency Qscat leads to an increase in reflection and scattering components when sunlight enters the sunlight absorbing fluid, the value of Qscat (not an integral value) is particularly 1 or more. In this case, care must be taken when selecting materials.

図9に示した計算結果を上の観点で評価すれば、これら三種類の物質中では、本発明の太陽光のスペクトル中で広い範囲にわたって高い光吸収効率を示す(従って、光吸収効率の積分値が大きい)TiNナノ粒子が太陽光吸収流体用のナノ粒子として最適であり、その次がカーボンナノ粒子、Auナノ粒子が一番性能が落ちるという結論となる。また、Auナノ粒子は高価であり、本発明の応用分野には不向きである。なお、他の金属を使用した場合、そのような金属は通常はAuよりも安定性が低いため、やはり本発明に使用するナノ粒子としては不適切である。カーボンナノ粒子については、図9に示した通り、ある程度高い太陽光吸収能力を有することがわかったが、それでもまだ不十分である。その理由の一つは、炭素は複素誘電率の実部が可視光と近赤外光の範囲では負にならず、−20以上0以下という条件を満足しないからである。   If the calculation results shown in FIG. 9 are evaluated from the above viewpoint, in these three kinds of materials, high light absorption efficiency is exhibited over a wide range in the spectrum of sunlight of the present invention (thus, integration of light absorption efficiency). The conclusion is that TiN nanoparticles (which have large values) are optimal as nanoparticles for solar absorbing fluids, followed by carbon nanoparticles and Au nanoparticles the most. Further, Au nanoparticles are expensive and are not suitable for the application field of the present invention. In addition, when other metals are used, such metals are usually less stable than Au, so that they are also inappropriate as nanoparticles used in the present invention. As shown in FIG. 9, it was found that the carbon nanoparticles have a somewhat high solar absorption ability, but it is still insufficient. One reason for this is that the real part of the complex dielectric constant is not negative in the range of visible light and near-infrared light, and does not satisfy the condition of -20 or more and 0 or less.

以上詳細に説明したように、本発明によれば、簡単な組成・構成で太陽光のエネルギーを熱の形で流体に移転し蓄積することができ、また各種の蒸留の効率を向上させることができるため、広い技術分野での利用が期待できる。   As described above in detail, according to the present invention, the energy of sunlight can be transferred and stored in a fluid in the form of heat with a simple composition and configuration, and the efficiency of various distillations can be improved. It can be used in a wide range of technical fields.

特開2013−83235号公報JP2013-83235A 特開2009−156537号公報JP 2009-156537 A 特開2013−215653号公報JP 2013-215653 A 特表2014−531351号公報Special table 2014-535151 gazette 特開2013−155993号公報JP 2013-155993 A 特開2010−144957号公報JP 2010-144957 A 特表2005−511467号公報JP 2005-511467 A 登録実用新案第3140396号公報Registered Utility Model No. 3140396 登録実用新案第3090763号公報Registered Utility Model No. 3090763

http://www.nisshineng.co.jp/powder_proccesing/nano/index.htmlhttp://www.nisshineng.co.jp/powder_proccesing/nano/index.html 日本エアロゾル学会 エアロゾル研究 第29巻 pp. 98-103 (2014)Aerosol Society of Japan Vol. 29 pp. 98-103 (2014) Naik, Gururaj V., et al. "Titanium nitride as a plasmonic material for visible and near-infrared wavelengths." Optical Materials Express 2.4 (2012): 478-489.Naik, Gururaj V., et al. "Titanium nitride as a plasmonic material for visible and near-infrared wavelengths." Optical Materials Express 2.4 (2012): 478-489. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370-4379 (1972).P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370-4379 (1972). PALIK, Edward D. (ed.). Handbook of optical constants of solids. Academic press, 1998.PALIK, Edward D. (ed.). Handbook of optical constants of solids. Academic press, 1998.

Claims (6)

液体に窒化チタンナノ粒子を分散させた流体であって、照射された光エネルギーを吸収して蓄積する蒸発または蒸留用流体。 A fluid in which titanium nitride nanoparticles are dispersed in a liquid, the fluid for evaporation or distillation that absorbs and accumulates irradiated light energy. 前記窒化チタンの半径が10nm以上200nm以下である、請求項1に記載の蒸発または蒸留用流体。 The evaporation or distillation fluid according to claim 1, wherein the titanium nitride has a radius of 10 nm to 200 nm. 前記液体が水である、請求項1または2に記載の蒸発または蒸留用流体。 The evaporation or distillation fluid according to claim 1 or 2, wherein the liquid is water. 前記窒化チタンナノ粒子を0.1重量%以上分散させた、請求項1から3の何れかに記載の蒸発または蒸留用流体。 The evaporation or distillation fluid according to any one of claims 1 to 3, wherein the titanium nitride nanoparticles are dispersed in an amount of 0.1 wt% or more. 開口部を有する蒸発容器に請求項1から4の何れかの蒸発または蒸留用流体を収容し、The evaporation or distillation fluid according to any one of claims 1 to 4 is accommodated in an evaporation container having an opening,
前記蒸発容器に太陽光を照射することにより前記液体を蒸発させて前記開口部から取り出すことにより前記液体の蒸留を行うThe liquid is distilled by irradiating the evaporation container with sunlight and taking out the liquid from the opening.
蒸留方法。Distillation method.
開口部を有するとともに、請求項1から4の何れかの蒸発または蒸留用流体を収容する蒸発容器を設け、An evaporation container that has an opening and accommodates the evaporation or distillation fluid according to any one of claims 1 to 4,
前記蒸発容器に太陽光を照射することにより前記液体を蒸発させて前記開口部から取り出すことにより前記液体の蒸留を行うThe liquid is distilled by irradiating the evaporation container with sunlight and taking out the liquid from the opening.
蒸留装置。Distillation equipment.
JP2014264545A 2014-12-26 2014-12-26 Evaporation or distillation fluid, distillation method and distillation apparatus Active JP6587170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014264545A JP6587170B2 (en) 2014-12-26 2014-12-26 Evaporation or distillation fluid, distillation method and distillation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014264545A JP6587170B2 (en) 2014-12-26 2014-12-26 Evaporation or distillation fluid, distillation method and distillation apparatus

Publications (2)

Publication Number Publication Date
JP2016125679A JP2016125679A (en) 2016-07-11
JP6587170B2 true JP6587170B2 (en) 2019-10-09

Family

ID=56357834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014264545A Active JP6587170B2 (en) 2014-12-26 2014-12-26 Evaporation or distillation fluid, distillation method and distillation apparatus

Country Status (1)

Country Link
JP (1) JP6587170B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6839564B2 (en) * 2017-02-22 2021-03-10 日本碍子株式会社 Fluid heating members, equipment for producing heated fluids and equipment for producing gases
WO2021059325A1 (en) * 2019-09-24 2021-04-01 Dic株式会社 Molybdenum sulfide powder and method for producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH566268A5 (en) * 1973-11-07 1975-09-15 Battelle Memorial Institute
DE4344258C1 (en) * 1993-12-23 1995-08-31 Miladin P Lazarov Material from chemical compounds with a metal of group IV A of the periodic table, nitrogen and oxygen, its use and production method
CA2557348A1 (en) * 2003-02-25 2004-09-10 Xmx Corporation Encapsulated nanoparticles for the absorption of electromagnetic energy
JP2010144957A (en) * 2008-12-16 2010-07-01 Ihi Corp Solar heat collection method and device
CN101759163B (en) * 2009-12-29 2011-07-20 山东大学 Process for preparing porous titanium nitride at low temperature

Also Published As

Publication number Publication date
JP2016125679A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
Wu et al. Photothermal materials: A key platform enabling highly efficient water evaporation driven by solar energy
Gao et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production
Kaur et al. All-ceramic microfibrous solar steam generator: TiN plasmonic nanoparticle-loaded transparent microfibers
Sheng et al. Bamboo decorated with plasmonic nanoparticles for efficient solar steam generation
Parsa et al. Effect of Ag, Au, TiO2 metallic/metal oxide nanoparticles in double-slope solar stills via thermodynamic and environmental analysis
Wang et al. Enhanced direct steam generation via a bio-inspired solar heating method using carbon nanotube films
Wang et al. Direct vapor generation through localized solar heating via carbon-nanotube nanofluid
Zhang et al. Enhancement of energy utilization using nanofluid in solar powered membrane distillation
Raza et al. Novel receiver-enhanced solar vapor generation: review and perspectives
Wang et al. Morphology control of Ag polyhedron nanoparticles for cost‐effective and fast solar steam generation
Mu et al. Energy matching for boosting water evaporation in direct solar steam generation
Chang et al. Three-dimensional porous solar-driven interfacial evaporator for high-efficiency steam generation under low solar flux
Shin et al. Thermoplasmonic and photothermal metamaterials for solar energy applications
Farid et al. High-efficiency solar-driven water desalination using a thermally isolated plasmonic membrane
Farooq et al. Thermo-optical performance of iron-doped gold nanoshells-based nanofluid on direct absorption solar collectors
Ren et al. Synthesis and Photo‐Thermal Conversion Properties of Hierarchical Titanium Nitride Nanotube Mesh for Solar Water Evaporation
Gao et al. Artificial Mushroom Sponge Structure for Highly Efficient and Inexpensive Cold‐Water Steam Generation
Qu et al. Enhanced optical absorption and solar steam generation of CB-ATO hybrid nanofluids
Su et al. A hybrid hydrogel with protonated g-C3N4 and graphene oxide as an efficient absorber for solar steam evaporation
Behera et al. Solar steam generation and desalination using ultra-broadband absorption in plasmonic alumina nanowire haze structure–graphene oxide–gold nanoparticle composite
Karthick Kumar et al. Nanostructured CuO thin films prepared through sputtering for solar selective absorbers
Xia et al. Synergy of copper Selenide/MXenes composite with enhanced solar-driven water evaporation and seawater desalination
Cheng et al. Easily repairable and high-performance carbon nanostructure absorber for solar photothermoelectric conversion and photothermal water evaporation
Meng et al. Novel nanofluid based efficient solar vaporization systems with applications in desalination and wastewater treatment
Du et al. Janus film evaporator with improved light-trapping and gradient interfacial hydrophilicity toward sustainable solar-driven desalination and purification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190830

R150 Certificate of patent or registration of utility model

Ref document number: 6587170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250