JP6586705B2 - 超音波振動子および超音波診断装置 - Google Patents

超音波振動子および超音波診断装置 Download PDF

Info

Publication number
JP6586705B2
JP6586705B2 JP2015121165A JP2015121165A JP6586705B2 JP 6586705 B2 JP6586705 B2 JP 6586705B2 JP 2015121165 A JP2015121165 A JP 2015121165A JP 2015121165 A JP2015121165 A JP 2015121165A JP 6586705 B2 JP6586705 B2 JP 6586705B2
Authority
JP
Japan
Prior art keywords
lower electrode
ultrasonic transducer
stacked
bodies
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015121165A
Other languages
English (en)
Other versions
JP2017005661A (ja
Inventor
謙次 鈴木
謙次 鈴木
吉村 武
武 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Osaka Prefecture University
Original Assignee
Konica Minolta Inc
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc, Osaka Prefecture University filed Critical Konica Minolta Inc
Priority to JP2015121165A priority Critical patent/JP6586705B2/ja
Publication of JP2017005661A publication Critical patent/JP2017005661A/ja
Application granted granted Critical
Publication of JP6586705B2 publication Critical patent/JP6586705B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

本発明は、超音波振動子および超音波診断装置に関する。
超音波診断装置は超音波プローブから超音波パルスを被検体内に送信し、被検体内からのエコー信号を超音波プローブで受信し、電気信号に変換する。超音波プローブは電気信号を機械振動に、また、その逆に機械振動を電気信号に変換する超音波振動子を有する。超音波振動子には、例えば、圧電材料と電極材料とを積層したバルク状の圧電体を分割した振動素子(バルク型の振動素子)が用いられる。超音波プローブの長軸方向には多数の振動素子が配列される。
電子走査法では、配列された振動素子を超音波プローブの長軸方向に1つずつ順次駆動することにより超音波ビームを走査する。超音波ビームの走査により得られたエコー信号に基づいて被検体の超音波断層像が得られる。
超音波断層像の分解能は超音波ビームの走査方向のピッチに依存する。このピッチは振動素子の幅により決定される。そのため、超音波断層像の分解能を上げるには、振動素子の小型化や高密度化が要求される。
また、一般に、振動素子に圧縮応力や引張応力などを与えて機械的歪を発生させると、振動素子に分極が起きて、この歪みに比例した電圧が発生する。よって、超音波パルスを受信したときの電圧が大きく変化するよう振動素子の歪み易さを確保して、振動素子の高感度化を図ることも要求される。
近年、振動素子の小型化や高密度化の要求に応えて、半導体微細加工技術(MEMS技術)を用いた超音波プローブが提案されている。例えば特許文献1に記載されている、MEMS技術で作製された振動素子は、下部電極を兼ねた振動板上に、圧電体膜および上部電極を順次成膜して構成されている。
また、例えば特許文献2には、振動素子を高感度にするために、振動板を除去し圧電体膜を歪み易い非平坦形状(例えば、ドーム形状)にして曲げモードに追加して伸縮モードにより高い電気機会結合を得ることが、記載されている。
特開2013−93760号公報 米国特許第8767512号明細書
しかしながら、特許文献1に記載された振動素子においては、圧電体膜は、平板状の振動板上に成膜された形状を有する。これは歪み難い形状であるため、このような圧電体膜を備えた振動素子は、バルク型の振動素子より感度が低い点で問題がある。
また、特許文献2に記載された振動素子の振動板ドーム形状は構造が複雑であり、MEMS技術では作製困難である。このため、歩留まりが低下し、また、ドーム形状を作製するのに高度の製造プロセスが必要となるという問題点があった。
本発明は、前記従来の課題を解決するもので、ドーム形状などの複雑な構造とすることなく、高感度の振動素子を有する超音波振動子および超音波診断装置を提供することを目的とする。
上記目的を達成するために、本発明の超音波振動子は、振動板、下部電極、圧電体膜および上部電極がこの順で積層された複数の積層体を有し、
複数の積層体は所定数毎に分けられて複数の振動素子を構成し、
前記複数の振動素子のうち少なくとも一つの振動素子それぞれにおいて、いずれかの積層体は、他のいずれかの積層体の下部電極とは異なる材料もしくは材料組成比の下部電極を有する。
本発明によれば、振動素子を構成する積層体の構造を複雑化することなく、個々の振動素子を構成する所定数の積層体において、材料もしくは材料組成比の異なる下部電極を混在させ、その混在比率を調整することで、圧電体膜の物性、特に、圧電体膜の誘電率を適切に制御することが可能となるため、複雑な構造とすることなく積層体の小型化や高密度化つまり振動素子の小型化や高密度化が容易となり、高感度の振動素子を有する超音波振動子および超音波診断装置を提供することができる。
本発明の実施の形態における超音波診断装置の全体構成を示すブロック図である。 MOSFETによる信号検出の回路図である。 振動素子の配列を示す図である。 積層体群の一例を概略的に示す断面図である。 同一チャンネルにおける複数の積層体の混在比率を示す図である。 振動子配列を示す図であり、図6Aは、2個の積層体の組み合わせを積層体群として配列するときの図、図6Bは、3個の積層体の組み合わせを積層体群として配列するときの図、図6Cは、4個の積層体の組み合わせを積層体群として配列するときの図である。 振動素子において、分散して配置された積層体集合部を示す図である。 同一積層体に含まれる下部電極と上部電極との面積を異ならせたときの図であり、図8Aは上部電極を小円形状にしたときの図、図8Bは、上部電極をリング形状にしたときの図である。
以下、本発明の実施の形態について、図面を参照しながら説明する。
図1は、本実施の形態における超音波診断装置Sの全体構成を示すブロック図である。
超音波診断装置Sは、超音波診断装置本体1と超音波プローブ2とにより構成される。超音波診断装置本体1は、制御部3と、信号処理部14と、画像生成部15と、表示制御部16と、ユーザーインターフェースUIとを備える。ユーザーインターフェースUIは、表示部17と操作部18とを有する。
超音波プローブ2は、プローブ制御部2Aと、送受信部11と、超音波振動子10とを有する。超音波振動子10は複数の振動素子20(後述する)が配列された振動子配列20A(後述する)を有する。超音波プローブ2には、送受信部11の送信部12と受信部13とに接続される送受信切替部(スイッチ)4が設けられている。
送受信切替部4は、プローブ制御部2Aからの送受信切替信号に従って、各振動素子20と送信部12又は受信部13との接続の切り替えを行う。送受信切替部4の切り替えによって、各振動素子20は送信部12又は受信部13に接続されることになる。送信部12に接続された振動素子20は、送信用の振動素子20として機能し、送信部12から供給される電圧パルスによって超音波パルスを発生する。また、受信部13に接続された振動素子20は、受信用の振動素子20として機能し、被検体からの反射(エコー)信号を受信し、受信部13に出力する。なお、送受信部11は、超音波プローブ2内に設けられた構成としてが、超音波診断装置本体1内に設けられた構成としてもよい。
受信部13は、反射(エコー)信号の受信に伴って振動素子20により誘起された電荷をその電荷量に応じた電圧信号に変換する。受信部13は、各振動素子20と一対一に対応付けて設けられた検出系130を有し、検出系130は、一つ以上の検出素子から構成される。検出素子としては、例えばMOSFET(金属酸化膜半導体電界効果トランジスタ)が用いられる。図2は振動素子20と検出系130とが接続されたMOSFET検出の回路図である。図2に示すように、振動素子20において受信した反射信号の圧電変換により生成された電圧信号(V)が、検出系130において検出信号(Vin)として検出される。振動素子20を最大限に高感度化するため、振動素子20側の第1静電容量Cと検出系130側の第2静電容量Cin(ゲート静電容量)との整合をとることは後述する。
プローブ制御部2Aは、予め設定された送信用の振動素子20と受信用の振動素子20の位置を示す配置パターンに従って所定の切替タイミングで送受信切替部4における接続を切り替えることで、各振動素子20を送信部12又は受信部13に接続し、振動素子20を送信用又は受信用に切り替える。
信号処理部14は、受信部13からの電圧信号に対してBPF(Band Pass Filter)を施す処理、非線形圧縮、深度補正、検波処理などの各種処理を行う。画像生成部15、信号処理後のデータに基づいて、被検体の組織形状を表す画像データを生成する。表示制御部16は、操作部18(キーボード、マウス、タッチパネルなど)による入力操作を受けて、画像データに基づいて表示部17(液晶画面など)に断層像を表示させる。
図3は、超音波振動子10の一例を概略的に示す図である。
図3に示すように、振動子配列20Aは、超音波プローブ2の長軸方向(図3にXで示す走査方向)に128個の振動素子20が配列されたものである。振動素子20は、電子走査時において遅延時間を与える対象としての1単位(1つのチャンネル)を構成するものである。すなわち、複数の振動素子20は複数(ここでは128)チャンネルのアレイを構成する。
各振動素子20は、同一の構造を備えた所定数(ここでは26)の積層体が長軸方向および長軸方向に直交する短軸方向(図3にYで示すエレベーション方向)に2×13のマトリックス状に配列されて構成される。言い換えれば、複数の積層体が、所定数毎に分けられて複数の振動素子20を構成する。なお、個々の積層体は、圧電体を含むものであって、MEMS技術により作製されるとき、これを「pMUTセル」(pMUT:piezoelectric Micromachined Ultrasound Transducer)と呼ぶことがあり、このような積層体の集合を「pMUTセル群」と呼ぶことがある。
本実施の形態では、各振動素子20においては、高感度化を図るために2種類の積層体が混在している。以下、第1の種類の積層体を積層体30Aと称し、第2の種類の積層体を積層体30Bと称する。なお、以下の説明では、2つ以上の積層体(積層体30A、30B)の集合を積層体群300と称する。また、積層体30A、30Bの総称を積層体30と称する。
図4は、積層体群300の一例を概略的に示す断面図である。この例では、積層体群300は、一つの積層体30Aと積層体30Bとを含んでいる。
積層体30A、30Bはいずれも、振動板(ダイヤフラム)32、下部電極33および圧電体膜34、上部電極35を有する。振動板32、下部電極33、圧電体膜34および上部電極35は、この順で積層される。なお、図示しないが、上部電極35上には保護および絶縁のための膜が成膜される。この膜には、例えばSiO(酸化シリコン)などの酸化膜、エポキシ樹脂やパリレン等の有機膜が用いられる。
振動板32は、基板31によりその両端部が支持される。振動板32は、基板31と一体に形成される。例えば、振動板32は、基板31の材料としてのシリコン基板をエッチングにより部分的に薄くして薄膜の平板状に形成される。
下部電極33は平板状の振動板32上に成膜される。さらに、圧電体膜34は下部電極33に成膜される。さらに、上部電極35は圧電体膜34に成膜される。本実施の形態では、これらの積層は、平坦であり複雑ではないため、通常の成膜技術とMEMS技術により容易にかつ微細に作製することができるため、積層体30の小型化や高密度化ひいては振動素子20の小型化や高密度化を図ることができる。
上部電極35の材料には、作製のし易さから、後述する下部電極33の材料と同じ材料を用いるとよいが、下部電極33とは異なる材料であってもよい。
また、圧電体膜34の材料は、例えばチタン酸ジルコン酸鉛のような従来周知の材料を用いてよい。
図4に示すように、積層体30A、30Bは同一の構造を有する。同一の構造とは、基板31、振動板32、下部電極33、圧電体膜34、上部電極35など、それぞれを構成する厚みや断面形状が同一であることをいう。なお、基板31は積層体30A及び積層体30Bとの間で共有されている箇所を含むが、半分で区切ったときの構造で同一としている。また、同一の範囲には製造誤差を含む。例えば、圧電体膜34は同一の材料からなり、かつ、同一の厚みを有する。また、上記したように振動板32が平板状である。さらに、圧電体膜34および上部電極35もそれぞれ同一の製造プロセスの中で容易に作製することができる。このため、積層体30A、30Bが作製し易くなり、ひいては、振動素子20の作製を容易にする。
ここで、積層体30の構造を非平面状とすることで、あるいは、圧電体膜34の材料を、誘電率が異なるものとなるように積層体30Aと積層体30Bとで互いに異ならせることで、高感度の振動素子20を得ることも考えられるが、これでは振動素子20の作製コストが嵩んでしまうおそれがある。
本実施の形態では、積層体30の構造を非平面状に複雑化しなくても、そして積層体30A、30B内の圧電体膜34の材料を互いに異ならせなくても、個々の振動素子20を構成する所定数の積層体30において、材料もしくは材料組成比の異なる下部電極33を混在させ、その混在比率を調整することで、圧電体膜34の物性、特に、圧電体膜34の誘電率(比誘電率εγ)を適切に制御することができる。これにより、作製コストを嵩ませることなく、高感度の振動素子20を得ることができる。
下部電極33の材料には、上層に成膜する圧電材の圧電効果が出せるもので、かつ、圧電材料中の成分元素と反応化合物を生成しないもの、表面平滑性が良いもの、圧電材料の成膜プロセス温度変化により合金相を析出しないものが望ましい。それにより圧電体膜34と下部電極33の密着し剥がれ難くなり、圧電特性の継時的な劣化が抑制されるという効果が得られる。
例えば、圧電体膜34の材料として、結晶の単位格子大きさを表す格子定数が3.9〜4.1[Å]のものが用いられる場合は、上述の効果が得られる下部電極33の材料としては、格子定数が3.9〜4.1[Å]の範囲ものが用いられる。
このような格子定数を有する下部電極33の材料として、例えば、白金(Pt)、LNO(LaNiO)などのペロブスカイト型化合物、銀(Ag)を主成分としてパラジウム(Pd)を含む銀合金(Ag−Pd)が挙げられる。
なお、下部電極33において使用可能な材料に関する他の例としては、銅(Cu)、珪素(Si)、クロム(Cr)、チタン(Ti)、ニッケル(Ni)、金(Au)、白金(Pt)、アルミニウム(Al)、タンタル(Ta)、コバルト(Co)のうち少なくとも1種類を含有する銀合金がある。
また、下部電極33の材料は、格子定数が4.0〜4.1[Å]である(Ba,La)TiO、(Ba,La)SnOであってもよい。さらに、SrRuOであってもよい。これらの材料は、白金(Pt)、LNO、銀合金(Ag−Pd)と同様に、圧電材の圧電効果が出るものである。
振動板32上に下部電極33を成膜する方法としては、スパッタリング法、イオンプレーティング法、分子線エピタキシー法、レーザアブレーション法、イオン化クラスタビーム蒸着法、並びにイオンビーム蒸着法などのPVD法が用いられる。なお、成膜方法として、上記する材料をターゲット材料としたスパッタリング法を用いることが好ましい。
振動板32上に下部電極33を例えば多源スパッタリング法で成膜すれば、また、ターゲット材料として銀(Ag)およびパラジウム(Pd)を用いたとき、試料とターゲット材料の位置関係により、試料中に銀(Ag)とパラジウム(Pd)の含有量を少しずつ異ならせた領域を一度に作製でき、格子定数の微調整が容易にでき、圧電体膜34の格子定数と下部電極33の格子定数を適切に調整でき、誘電率を制御できる。
下部電極33の材料が銀合金(Ag−Pd)である場合において、いずれかの積層体30A、30Bの下部電極33は、他のいずれかの積層体30A、30Bの下部電極33とは異なる、銀(Ag)とパラジウム(PD)の組成比を有する。これにより、積層体30Aの静電容量は、積層体30Bの静電容量とは異なるものとなる。
圧電体膜34の比誘電率εγは、公知の測定方法で確認できる。
比誘電率εγの測定方法の一例を説明する。圧電体膜34の比誘電率εγの測定には、例えば、比誘電率εγの測定対象として、下部電極33に膜厚が1[μm]/100[nm]となるようにPZT(Pb(Zr,Ti)O)/PLT(Pb,La)TiO)を成膜したものが用いられる。この測定対象を例えばソーヤタワー回路にセットし、圧電体膜34の両極に交流電源1[MHz]を印加する。圧電体膜34の両極に印加された電圧と、圧電体膜34の両極に誘起された電荷とに基づいて、圧電体膜34の比誘電率εγが測定される。
下部電極33の材料等と圧電体膜34の比誘電率εγとの関係は例えば次の通りである。材料が白金(Pt)の場合、比誘電率εγは480である。また、材料がLNO(LaNiO)の場合、比誘電率εγは550である。さらに、材料組成比が銀(Ag)を主成分として45%のパラジウム(Pd)を含む銀合金Ag−Pd(45%)の場合、比誘電率εγは260である。さらに、材料組成比が銀(Ag)を主成分として25%のパラジウム(Pd)を含む銀合金Ag−Pd(25%)の場合、比誘電率εγは230である。
このことから、積層体30A、30Bが同一の構造であっても、それらの下部電極33の材料等が異なることにより、積層体30A、30Bの静電容量が異なる。そのため、MOSFET(検出素子)に接続される積層体群300における積層体30A、30Bの組み合わせを調整することで、積層体群300(積層体30A、30B)側の静電容量を、検出系130においてその積層体群300に電気的に接続されるMOSFET(検出素子)の入力側の静電容量と整合させることが可能となり、高感度の振動素子20が得られる。また、このように検出系130側の第2静電容量Cinに対して振動素子20側の第1静電容量Cを整合させる手法を採ることにより、MOSFETの製造公差(個体差)などに起因して検出系130側の第2静電容量Cinが常に同一とならなくても必ずその第2静電容量Cinに対して振動素子20側の第1静電容量Cを一致させることができる。
図5に積層体30A、30Bの混在比率の調整例を示す。積層体30Aを白抜きの円で示し、積層体30Bをハッチングが施された円で示す。この例では、同一チャンネルにおける積層体30A、30Bの総数が一定の26個であって、積層体30A、30Bの混在比率が「13:13」〜「24:2」で調整されている。このように積層体30A、30Bの混在比率を変えることで、振動素子20全体の第1静電容量Cを調整することも可能である。
次に、MOSFET(検出素子)に接続される積層体群側の第1静電容量CをMOSFET(検出素子)の入力側の第2静電容量Cinと整合させることについて表1を参照して説明する。なお、説明をわかり易くするため、MOSFET(検出素子)に接続された積層体群300における積層体の数が2〜4個であるものを例に挙げて説明する。
表1に、下部電極33の材料もしくは材料組成比が異なることにより作製された積層体群300側の第1静電容量Cを表す。なお、振動素子20の作製を容易にするため、同一チャンネル(振動素子20)における積層体が同一構造であることから、圧電体膜34の厚みdが同一であり、寸法(例えば辺の長さ)Lが同一であることが前提条件となる。
Figure 0006586705
表1において、dは圧電体膜34の厚みであり、εγは圧電体膜34の比誘電率であり、Cは圧電体膜34の静電容量(積層体群300における各積層体の第1静電容量)であり、Lは正方形状の圧電体膜34の辺の長さである。なお、5[MHz]用の積層体を作製するとき長さLが53[μm]の圧電体膜34が用いられる。また、1[MHz]用の積層体を作製するとき長さLが106[μm]の圧電体膜34が用いられる。これらを式(1)に代入することで、各積層体の第1静電容量Cが算出される。なお、真空の誘電率εを8.85[pF/m]とする。
=εεγ/d (1)
表1から、例えば、d=1[μm]、εγ=200、L=53[μm]の圧電体膜34のとき、積層体の第1静電容量Cは5[pF]となる。また、例えば、d=1[μm]、εγ=400、L=53[μm]の圧電体膜34のとき、積層体の第1静電容量Cfは10[pF]となる。なお、上記の前提条件により圧電体膜34の厚みdが同一であり、辺の長さLが同一である。
これに対し、MOSFET(検出素子)の入力側の第2静電容量Cinが15[pF]のとき、上記2種類の第1静電容量Cを有する圧電体膜34を用いて2種類の積層体30A、30Bを作製すると、それらの第1静電容量Cの合計は15(=5+10)[pF]となる。積層体30A、30Bの組み合わせにより積層体群300が構成され、その積層体群300に1つのMOSFET(検出素子)が接続されることにより、組み合わされた積層体30A、30B側の第1静電容量Cの合計をMOSFET(検出素子)の入力側の第2静電容量Cinと整合させることができる。なお、上記の整合を行うとき、第1静電容量Cの合計を第2静電容量Cinに一致させたが、必ずしも一致させる必要がない。第1静電容量Cの合計が不連続な数値を示すため、一致させることが難しい場合は、振動素子20が高感度になるように、第1静電容量Cの合計が第2静電容量Cinに近づくように、積層体を組み合わせることで、第1静電容量Cの合計を第2静電容量Cinとほぼ一致させるようにして整合させてもよい。なお、第1静電容量Cの合計と第2静電容量Cinの差は-20%〜+20%程度が望ましい。
上記のように、積層体30A、30Bの組み合わせにより積層体群300が構成されたとき、図6Aに示すように、積層体30A、30B(図6にA、Bで示す)同士が互い違いになるように各積層体群300がエレベーション方向(Y方向)に配列される。その理由は、異なる第1静電容量を有する積層体30A、30B同士がなるべく混じるようにして、音響的特性の均一化を図るためである。なお、図6Aに積層体群300を破線で示す。積層体群300における積層体30A、30Bでは、下部電極33同士が接続される。
また、表1から、例えば、d=1[μm]、εγ=100、L=53[μm]の圧電体膜34のとき、積層体の第1静電容量Cは2.5[pF]となる。また、例えば、d=1[μm]、εγ=400、L=53[μm]の圧電体膜34のとき、積層体の第1静電容量Cは10[pF]となる。なお、上記の前提条件により圧電体膜34の厚みdが同一であり、辺の長さLが同一である。
これに対し、MOSFET(検出素子)の入力側の第2静電容量Cinが22.5[pF]のとき、上記2種類の第1静電容量Cを有する圧電体膜34を用いて2種類の積層体を作製すれば、それらの第1静電容量Cの合計は22.5(=2.5+10+10)[pF]となる。2個の積層体30Aと1個の積層体30Bとの組み合わせにより積層体群300が構成され、その積層体群300に1つのMOSFET(検出素子)が接続されることにより、組み合わされた積層体30A、30B側の第1静電容量Cの合計をMOSFET(検出素子)の入力側の第2静電容量Cinと一致させることができる。
上記のように、2個の積層体30Aと1個の積層体30Bとを組み合わせて積層体群300を構成したとき、音響的特性の均一化を図るために、図6Bに示すように、2個の積層体30Aと1個の積層体30Bとを組み合わせた積層体群300の全体形状は、例えばL字形状であって、その角に1個の積層体30Bが配置した形状となる。このL字形状が互いに組み合わさるように各積層体群300がエレベーション方向(Y方向)に配列される。なお、図6Bに積層体群300を破線で示す。積層体群300における積層体30A、30Bでは下部電極33同士が接続される。
なお、表1には示さないが、4種類の積層体30A、30B、30C、30Dの組み合わせにより積層体群300が構成され、その積層体群300に1つのMOSFET(検出素子)が接続されることにより、積層体群300(積層体30A、30B)側の第1静電容量CをMOSFET(検出素子)の入力側の第2静電容量Cinと整合させることができる。4種類の積層体30A、30B、30C、30Dを組み合わせて積層体群300を構成したとき、音響的特性の均一化を図るため、積層体群300の全体形状は、図6Cに示すように、積層体30A、30B、30C、30Dを四隅に配置した四角形状となる。この四角形状の積層体群300がエレベーション方向(Y方向)に配列される。図6Cに積層体群300を破線で示す。積層体群300における積層体30A、30Bでは下部電極33同士が接続される。
以上のようにして、面積に応じて第2静電容量Cinが変化するMOSFET(検出素子)に合わせて、そのMOSFETに電気的に接続される積層体群300の第1静電容量Cを調整することができる。なお、言うまでもないが、個々のMOSFETに一つずつ積層体30を電気的に接続するだけで互いの静電容量が一致する場合は、これらを一対一で電気的に接続すればよい。
図6A〜6Cに示したように、振動素子20において異なる種類の積層体30A、30Bを分散して配置することができるが、静電容量調整上、同じ種類の積層体30Aまたは積層体30Bを隣接して配置することもあり得る。その一例を図7に示す。この例では、8個の隣接配置された積層体30Aからなる積層体集合体301と、8個の隣接配置された積層体30Bからなる積層体集合体301とが、振動素子20において交互に配置されている。
積層体集合部301がこのように配置された振動素子20では、個々の積層体集合部301の寸法は、受信対象の超音波の半波長以下である。図7に示すように、例えば、Lを積層体集合部301(積層体30Aの集合又は積層体30Bの集合)のエレベーション方向(Y方向)の寸法、λは受信対象の超音波の波長とすれば、音響的特性の均一化を図るために許容される積層体集合部301の配置条件は、L≦λ/2となる。
なお、上記実施の形態では、同一の積層体30A、30Bに含まれる下部電極33と上部電極35との面積が同一であるものを示した。これに対し、同一の積層体30A、30Bに含まれる下部電極33と上部電極35との面積が異なることで感度が上がる場合がある。感度を上げるために、一方の電極の面積より他方の電極の面積を小さくすればよいが、ここでは、下部電極33の面積より上部電極35の面積を小さくする。それは、下部電極33はその上に圧電体膜34が成膜されることから、一定の面積を確保する必要があるためである。
例えば、図8Aに示すように、下部電極33の円の直径Rより上部電極35の円の直径R1を小さくすることで、下部電極33の面積より上部電極35の面積を小さくする。
また、例えば、図8Bに示すように、下部電極33が円形状を有し、上部電極35がリング形状を有し、下部電極33が円の直径R2と上部電極35のリング形状の外径R3とは等しいとき、上部電極35をリング形状にすることで(リング形状の内径R4で示す)、下部電極33の面積より上部電極35の面積を小さくする。
上記する超音波振動子10において、積層体が積層体30A(本発明の「第1の積層体」に対応)および積層体30B(本発明の「第2の積層体」に対応)を含み、複数の振動素子が複数のチャンネルのアレイを構成するとき、一つのチャンネルにおいて、積層体30A同士が隣り合わないように配置されるとよい。これにより、積層体30Aがそれとは異なる種類の積層体(例えば積層体30B)等と混じり合うことになるため、音響的特性の均一化を図ることができる。
上記する超音波振動子10は、振動素子20が1つのチャンネルを構成するものであったが、同一チャンネルの振動素子20を構成する所定数の積層体30A、30Bは、複数のサブチャンネルに分割されてもよい。このとき、複数のサブチャンネルのうち同一サブチャンネルに含まれる下部電極33は、互いに電気的に接続される。電子走査に用いられるサブチャンネルにおける積層体の数は、1つのチャンネルにおける積層体の数より少ないが、被検体内の浅い部位を走査することが可能である。
その他、上記実施の形態は、何れも本発明の実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
本発明は、超音波振動子を備えた超音波診断装置に適用できる。小型、高密度に作製された振動素子を用いることで、超音波プローブが小型、軽量となり、超音波プローブの操作性を向上させることができる。
S 超音波診断装置
1 超音波診断装置本体
2 超音波プローブ
10 超音波振動子
20A 振動子配列
20 振動素子
30 積層体
30A 積層体
30B 積層体
31 基板
32 振動板
33 下部電極
34 圧電体膜
35 上部電極
130 検出系
300 積層体群

Claims (13)

  1. 振動板、下部電極、圧電体膜および上部電極がこの順で積層された複数の積層体を有する超音波振動子であって、
    前記複数の積層体は所定数毎に分けられて複数の振動素子を構成し、
    前記複数の振動素子のうち少なくとも一つの振動素子それぞれにおいて、いずれかの積層体は、他のいずれかの積層体の下部電極とは異なる材料もしくは材料組成比の下部電極を有する、超音波振動子。
  2. 前記複数の積層体の間で、前記圧電体膜は、同一の材料からなり、かつ、同一の厚みを有する、請求項1に記載の超音波振動子。
  3. 前記複数の積層体は、同一の構造を有する、請求項1または2に記載の超音波振動子。
  4. 同一の積層体に含まれる前記下部電極と前記上部電極とが、異なる面積を有する、請求項1から3のいずれか一つに記載の超音波振動子。
  5. 前記少なくとも一つの振動素子それぞれを構成する前記所定数の積層体は、一つずつ、あるいは2個以上の積層体を組み合わせた積層体群毎に、一つの検出素子に電気的に接続し、積層体一つずつの静電容量あるいは積層体群毎の静電容量は、電気的に接続された前記一つの検出素子の静電容量と整合する、請求項1から4のいずれか一つに記載の超音波振動子。
  6. 積層体一つずつの静電容量あるいは積層体群毎の静電容量は、電気的に接続された前記一つの検出素子の静電容量と一致する、請求項5に記載の超音波振動子。
  7. 前記積層体は第1の積層体と、前記第1の積層体の下部電極とは材料もしくは材料組成比の異なる下部電極を有する第2の積層体を含み、
    前記複数の振動素子は、複数チャンネルのアレイを構成し、
    一つのチャンネルにおいて前記第1の積層体同士が隣り合わないように配置される請求項1〜6のいずれか一つに記載の超音波振動子。
  8. 前記少なくとも一つの振動素子それぞれにおいて、同じ材料もしくは材料組成比の前記下部電極を有する二つ以上の積層体が隣接配置されている積層体集合部が分散して配置されており、
    個々の積層体集合部の寸法は、受信対象の超音波の半波長以下である、請求項1から7のいずれか一つに記載の超音波振動子。
  9. 前記下部電極の材料に、格子定数3.9〜4.1[Å]を有する材料が用いられる、請求項1から5のいずれか一つに記載の超音波振動子。
  10. 前記下部電極の材料として、AgにPdが含有された銀合金が用いられる、請求項9に記載の超音波振動子。
  11. 前記複数の振動素子は、複数チャンネルのアレイを構成する、請求項1から10のいずれか一つに記載の超音波振動子。
  12. 前記複数の振動素子のうち同一チャンネルの振動素子を構成する前記所定数の積層体は、複数のサブチャンネルに分割され、
    前記複数のサブチャンネルのうち同一サブチャンネルに含まれる前記下部電極は、互いに電気的に接続されている、請求項11に記載の超音波振動子。
  13. 請求項1から12のいずれか一つに記載の超音波振動子を有する超音波診断装置。
JP2015121165A 2015-06-16 2015-06-16 超音波振動子および超音波診断装置 Active JP6586705B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015121165A JP6586705B2 (ja) 2015-06-16 2015-06-16 超音波振動子および超音波診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015121165A JP6586705B2 (ja) 2015-06-16 2015-06-16 超音波振動子および超音波診断装置

Publications (2)

Publication Number Publication Date
JP2017005661A JP2017005661A (ja) 2017-01-05
JP6586705B2 true JP6586705B2 (ja) 2019-10-09

Family

ID=57752700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015121165A Active JP6586705B2 (ja) 2015-06-16 2015-06-16 超音波振動子および超音波診断装置

Country Status (1)

Country Link
JP (1) JP6586705B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6569149B2 (ja) * 2015-06-18 2019-09-04 アドバンストマテリアルテクノロジーズ株式会社 強誘電体セラミックス、強誘電体メモリ及びその製造方法
JP7082464B2 (ja) * 2017-09-07 2022-06-08 ローム株式会社 超音波センサ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082385A (ja) * 2007-09-28 2009-04-23 Fujifilm Corp 超音波探触子

Also Published As

Publication number Publication date
JP2017005661A (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
US9968332B2 (en) Ultrasonic transducer, ultrasonic probe, diagnostic device, and electronic instrument
US10864553B2 (en) Piezoelectric transducers and methods of making and using the same
JP4524719B2 (ja) アレイ型超音波振動子
US20050179345A1 (en) Piezoelectric element and method of manufacturing the same
US9782150B2 (en) Ultrasonic transducer device, probe, electronic instrument, and ultrasonic diagnostic device
US20100232257A1 (en) Ultrasonic probe and ultrasonic imaging device
JP5708167B2 (ja) 超音波探触子及び超音波診断装置
JP6665667B2 (ja) 超音波デバイス、超音波モジュール、及び超音波測定装置
WO2012127737A1 (ja) 超音波振動子および超音波診断装置
JP2017143353A (ja) 超音波センサー及び超音波センサー用圧電素子の駆動方法
CN109848022A (zh) 超声波器件以及超声波测量装置
JP6586705B2 (ja) 超音波振動子および超音波診断装置
US20180182949A1 (en) Ultrasonic device and ultrasonic apparatus
WO2016002971A1 (ja) 超音波センサー
JP6805630B2 (ja) 超音波デバイス、超音波モジュール、及び超音波測定装置
US10478155B2 (en) Ultrasonic device, probe, electronic instrument, diagnostic device, and processing device
JP2008048276A (ja) 超音波トランスデューサ及び超音波トランスデューサアレイ
JP6465161B2 (ja) 超音波トランスデューサーデバイス及び超音波測定装置
JP2001276067A (ja) 超音波探触子、その製造方法および超音波診断装置
JP2017143394A (ja) 超音波センサー及び圧電素子の駆動方法
WO2021132074A1 (ja) 超音波デバイス及び超音波診断装置
US20220019753A1 (en) Fingerprint sensing apparatus
US11322676B2 (en) Multilayer ultrasonic transducer and ultrasonic inspection device
JP2019165307A (ja) 超音波センサ
JP7312274B2 (ja) 超音波デバイス及び超音波診断装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190823

R150 Certificate of patent or registration of utility model

Ref document number: 6586705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250