JP6585463B2 - Hydrogen concentration measuring device for nuclear facilities - Google Patents

Hydrogen concentration measuring device for nuclear facilities Download PDF

Info

Publication number
JP6585463B2
JP6585463B2 JP2015208691A JP2015208691A JP6585463B2 JP 6585463 B2 JP6585463 B2 JP 6585463B2 JP 2015208691 A JP2015208691 A JP 2015208691A JP 2015208691 A JP2015208691 A JP 2015208691A JP 6585463 B2 JP6585463 B2 JP 6585463B2
Authority
JP
Japan
Prior art keywords
hydrogen concentration
concentration measuring
metal wire
hydrogen
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015208691A
Other languages
Japanese (ja)
Other versions
JP2017083190A (en
Inventor
基茂 柳生
基茂 柳生
中村 秀樹
秀樹 中村
大仁 羽生
大仁 羽生
幸基 岡崎
幸基 岡崎
加藤 康裕
康裕 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2015208691A priority Critical patent/JP6585463B2/en
Publication of JP2017083190A publication Critical patent/JP2017083190A/en
Application granted granted Critical
Publication of JP6585463B2 publication Critical patent/JP6585463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/04Means for suppressing fires ; Earthquake protection
    • G21C9/06Means for preventing accumulation of explosives gases, e.g. recombiners
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明の実施形態は、原子力施設用の水素濃度測定素子及び水素濃度測定装置に関する。   Embodiments described herein relate generally to a hydrogen concentration measuring element and a hydrogen concentration measuring apparatus for a nuclear facility.

一般に、水素濃度測定装置には、接触燃焼式及び半導体式などの測定方式を採用した装置がある。   Generally, hydrogen concentration measuring devices include devices that employ measuring methods such as a catalytic combustion type and a semiconductor type.

接触燃焼式としては、水素と酸素の燃焼を促進するような触媒上での燃焼熱を利用してその温度変化より生じる抵抗計(サーミスタ)の抵抗値の変化により水素濃度を検知する技術がある。半導体式としては、還元性ガスの吸着による酸化スズなどの半導体表面のキャリア密度変化を利用して電気抵抗値の変化を用いる技術がある。   As the catalytic combustion type, there is a technology that detects the hydrogen concentration by using the resistance value of a resistance meter (thermistor) that arises from the temperature change using combustion heat on the catalyst that promotes the combustion of hydrogen and oxygen. . As a semiconductor type, there is a technique that uses a change in electric resistance value by utilizing a change in carrier density on a semiconductor surface such as tin oxide due to adsorption of a reducing gas.

また、原子力発電所向けの水素濃度測定技術としては、パラジウムの水素吸蔵による体積膨張に注目し、光ファイバーにより特定波長の光を入射した際の散乱光変化に注目した技術や、水素吸蔵材の電気抵抗値に注目した技術がある。   In addition, hydrogen concentration measurement technology for nuclear power plants focuses on volume expansion due to hydrogen absorption of palladium, focuses on changes in scattered light when light of a specific wavelength is incident through an optical fiber, and electricity on hydrogen storage materials. There is a technology that focuses on resistance.

特開2013−76605号公報JP 2013-76605 A

原子力発電所の過酷事故時においては、炉型や事故モードなどにより原子炉格納容器内の温度及びガス組成などが異なってくるので、水素濃度測定装置においては様々な環境で動作できる必要がある。   At the time of a severe accident at a nuclear power plant, the temperature and gas composition in the reactor containment vessel vary depending on the reactor type and accident mode, and therefore the hydrogen concentration measuring device needs to be able to operate in various environments.

水素吸蔵材の電気抵抗値を用いる技術によると、触媒活性が高いパラジウムなどが水素吸蔵材として使用される。そのため、原子炉格納容器内の酸素及びヨウ素などが存在した場合、水素吸蔵材がその影響を受けやすく水素濃度を安定して測定することが困難である。   According to the technique using the electric resistance value of the hydrogen storage material, palladium having high catalytic activity is used as the hydrogen storage material. Therefore, when oxygen, iodine, or the like in the reactor containment vessel is present, the hydrogen storage material is easily affected and it is difficult to stably measure the hydrogen concentration.

本発明が解決しようとする課題は、水素吸蔵材の電気抵抗値を用いて水素濃度を測定する技術において、水素濃度を表す精度のよい電気抵抗値を出力できる原子力施設用の水素濃度測定素子及び水素濃度測定装置を提供することである。   A problem to be solved by the present invention is a technique for measuring a hydrogen concentration using an electric resistance value of a hydrogen storage material, a hydrogen concentration measuring element for a nuclear facility capable of outputting an accurate electric resistance value representing the hydrogen concentration, and It is to provide a hydrogen concentration measuring device.

本実施形態に係る原子力施設用の水素濃度測定素子は、検知部及び固定部を備えた。検知部は、水素吸蔵により電気抵抗値が変化する水素吸蔵能を有する金属線が、水素透過性を有する保護コーティング層によって被覆された。固定部は、検知部を固定する。   The hydrogen concentration measuring element for a nuclear facility according to this embodiment includes a detection unit and a fixing unit. The detection part was covered with a protective coating layer having hydrogen permeability on a metal wire having a hydrogen storage capacity whose electrical resistance value changes due to hydrogen storage. The fixing unit fixes the detection unit.

本発明の実施形態に係る原子力施設用の水素濃度測定素子及び水素濃度測定装置によれば、水素吸蔵材の電気抵抗値を用いて水素濃度を測定する技術において、水素濃度を表す精度のよい電気抵抗値を出力できる。   According to the hydrogen concentration measuring element and the hydrogen concentration measuring device for a nuclear facility according to the embodiment of the present invention, in the technique of measuring the hydrogen concentration using the electric resistance value of the hydrogen storage material, the electric power with high accuracy representing the hydrogen concentration is obtained. The resistance value can be output.

第1実施形態に係る原子力施設用の水素濃度測定装置が設置される環境を示す概略図。Schematic which shows the environment where the hydrogen concentration measuring apparatus for nuclear facilities which concerns on 1st Embodiment is installed. 水素濃度測定素子の構造を示す外観図。The external view which shows the structure of a hydrogen concentration measuring element. (A),(B)は、検知部の構造を示す図。(A), (B) is a figure which shows the structure of a detection part. 水素濃度測定素子を加熱するヒータを示す図。The figure which shows the heater which heats a hydrogen concentration measuring element. 第2実施形態に係る原子力施設用の水素濃度測定装置が設置される環境を示す概略図。Schematic which shows the environment where the hydrogen concentration measuring apparatus for nuclear facilities which concerns on 2nd Embodiment is installed. 水素濃度測定素子の構造を示す外観図。The external view which shows the structure of a hydrogen concentration measuring element. (A),(B)は、リファレンス検知部の構造を示す図。(A), (B) is a figure which shows the structure of a reference detection part. 保護コーティング層が被覆されていない金属線において、水素及び酸素供給時の電気抵抗値の挙動例を示すグラフ。The graph which shows the example of a behavior of the electrical resistance value at the time of hydrogen and oxygen supply in the metal wire which is not coat | covered with the protective coating layer. 保護コーティング層が被覆された金属線において、水素及び酸素供給時の電気抵抗値の挙動例を示すグラフ。The graph which shows the example of a behavior of the electrical resistance value at the time of hydrogen and oxygen supply in the metal wire with which the protective coating layer was coat | covered. (A),(B)は、水素濃度測定素子を収容可能な保護容器を示す図。(A), (B) is a figure which shows the protective container which can accommodate a hydrogen concentration measuring element. 水素濃度測定素子が収容された保護容器を示す図。The figure which shows the protective container in which the hydrogen concentration measuring element was accommodated.

本実施形態に係る原子力施設用の水素濃度測定素子及び水素濃度測定装置について、添付図面を参照して説明する。   A hydrogen concentration measuring element and a hydrogen concentration measuring apparatus for a nuclear facility according to this embodiment will be described with reference to the accompanying drawings.

(第1実施形態)
1.構成
図1は、第1実施形態に係る原子力施設用の水素濃度測定装置が設置される環境を示す概略図である。
(First embodiment)
1. Configuration FIG. 1 is a schematic view showing an environment in which a hydrogen concentration measuring apparatus for a nuclear facility according to a first embodiment is installed.

図1は、原子力発電所内であって水素濃度の測定(モニタ)が行われる場所、例えば原子炉格納容器1と、原子炉格納容器1内の水素濃度を測定する水素濃度測定装置10とを示す。   FIG. 1 shows a location in a nuclear power plant where hydrogen concentration is measured (monitored), for example, a reactor containment vessel 1 and a hydrogen concentration measuring device 10 that measures the hydrogen concentration in the reactor containment vessel 1. .

原子炉格納容器1は、原子炉(図示しない)及び1次冷却系(図示しない)の設備をすべて格納するものである。   The reactor containment vessel 1 stores all the facilities of a nuclear reactor (not shown) and a primary cooling system (not shown).

水素濃度測定装置10は、水素濃度測定素子11、抵抗器(テスタ)12、制御部13、及びヒータ14(図4に図示)を備える。   The hydrogen concentration measuring device 10 includes a hydrogen concentration measuring element 11, a resistor (tester) 12, a control unit 13, and a heater 14 (shown in FIG. 4).

水素濃度測定素子11は、水素吸蔵により電気抵抗値が変化する水素吸蔵能を有する金属線と、金属線を被覆し、水素透過性を有する保護コーティング層とを備える。水素濃度測定素子11の具体的な構造については、図2及び図3(A),(B)を用いて後述する。   The hydrogen concentration measuring element 11 includes a metal wire having a hydrogen storage capability in which an electrical resistance value changes due to hydrogen storage, and a protective coating layer that covers the metal wire and has hydrogen permeability. A specific structure of the hydrogen concentration measuring element 11 will be described later with reference to FIGS. 2 and 3A and 3B.

抵抗器12は、水素濃度測定素子11の金属線51(図3(A),(B)に図示)に電流を流すことで金属線の電気抵抗値を測定する。抵抗器12としては公知のものが適用されるが、抵抗器12として4端子法以外の電気抵抗値の測定方式(例えば、2端子法、ホイートストンブリッジ)が採用される場合は、それぞれの測定方式に適したものが適用される。   The resistor 12 measures the electric resistance value of the metal wire by causing a current to flow through the metal wire 51 (shown in FIGS. 3A and 3B) of the hydrogen concentration measuring element 11. As the resistor 12, a known one is applied. However, when a resistance measuring method other than the four-terminal method (for example, the two-terminal method, Wheatstone bridge) is adopted as the resistor 12, each measuring method is used. The one suitable for is applied.

制御部13は、CPU(central processing unit)及びメモリなどによって構成される。制御部13は、抵抗器12によって測定された電気抵抗値に基づいて、水素濃度を算出する。例えば、制御部13は、予め取得された水素濃度と電気抵抗値との相関式に基づいて、抵抗器12によって測定された電気抵抗値に対応する水素濃度を算出する。   The control unit 13 includes a CPU (central processing unit) and a memory. The control unit 13 calculates the hydrogen concentration based on the electrical resistance value measured by the resistor 12. For example, the control unit 13 calculates the hydrogen concentration corresponding to the electrical resistance value measured by the resistor 12 based on the correlation equation between the hydrogen concentration and the electrical resistance value acquired in advance.

また、制御部13は、水素濃度測定素子11を加熱するためのヒータ14(図4に図示)の動作を制御して、水素濃度測定素子11の温度を制御する。水素吸蔵能を有する金属である水素吸蔵材が一般的に室温付近で用いられた場合、水素を取り込む速度及び水素を放出する速度が十分でないことが知られている。水素濃度測定素子11で用いられる検知部31は、200[℃]以上の温度で用いられることが望ましいため、制御部13は、ヒータ14の動作を制御して、水素濃度測定素子11が200[℃]以上の温度となるように制御する。   Further, the control unit 13 controls the temperature of the hydrogen concentration measuring element 11 by controlling the operation of a heater 14 (shown in FIG. 4) for heating the hydrogen concentration measuring element 11. It is known that when a hydrogen storage material, which is a metal having a hydrogen storage capability, is generally used near room temperature, the rate of taking up hydrogen and the rate of releasing hydrogen are not sufficient. Since the detection unit 31 used in the hydrogen concentration measuring element 11 is desirably used at a temperature of 200 [° C.] or higher, the control unit 13 controls the operation of the heater 14 so that the hydrogen concentration measuring element 11 is 200 [ [° C.]

図2は、水素濃度測定素子11の構造を示す外観図である。   FIG. 2 is an external view showing the structure of the hydrogen concentration measuring element 11.

図2に示すように、水素濃度測定素子11は、検知部31、固定部32、及び接続部33を備える。   As shown in FIG. 2, the hydrogen concentration measuring element 11 includes a detection unit 31, a fixing unit 32, and a connection unit 33.

検知部31は、固定部32の外表面上にらせん状に巻き付けるように配置される。   The detection unit 31 is arranged so as to be spirally wound on the outer surface of the fixed unit 32.

図3(A),(B)は、検知部31の構造を示す図である。図3(A)は、検知部31の縦断面図である。図3(B)は、検知部31の横断面図である。   3A and 3B are diagrams showing the structure of the detection unit 31. FIG. FIG. 3A is a longitudinal sectional view of the detection unit 31. FIG. 3B is a transverse sectional view of the detection unit 31.

図3(A),(B)に示すように、検知部31は、金属線51及び保護コーティング層52を備える。   As shown in FIGS. 3A and 3B, the detection unit 31 includes a metal wire 51 and a protective coating layer 52.

金属線51は、パラジウム及びニオブのうち少なくとも1個を含み、水素吸蔵能を有する。水素吸蔵能を有する金属線51の直径は、特に限定されるものではなく、1[μm]以上、かつ、1000[μm]以下程度であればよい。   The metal wire 51 contains at least one of palladium and niobium and has a hydrogen storage capacity. The diameter of the metal wire 51 having hydrogen storage capacity is not particularly limited, and may be about 1 [μm] or more and 1000 [μm] or less.

保護コーティング層52は、珪素若しくはアルミニウムの酸化物、窒化物、及び炭化物のうち少なくとも1個を含み、水素の選択透過が可能である無機物からなる。保護コーティング層52の厚みは、5[nm]以上、かつ、200[nm]以下であることが好適である。保護コーティング層52の厚みが5[nm]以上の場合、酸素及びヨウ素などの外部気層由来の化学種に起因する副反応の進行を防止するという効果が顕著に表れる。また、保護コーティング層52の厚みが200[nm]以下の場合、水素の透過性に優れる。   The protective coating layer 52 includes at least one of oxides, nitrides, and carbides of silicon or aluminum, and is made of an inorganic material that can selectively permeate hydrogen. The thickness of the protective coating layer 52 is preferably 5 [nm] or more and 200 [nm] or less. When the thickness of the protective coating layer 52 is 5 [nm] or more, the effect of preventing the progress of side reactions caused by chemical species derived from the external air layer such as oxygen and iodine is remarkably exhibited. Moreover, when the thickness of the protective coating layer 52 is 200 nm or less, the hydrogen permeability is excellent.

ここで、検知部31は、水素吸蔵能を有する金属線51に保護コーティング層52を塗布又は蒸着することで生成される。塗布又は蒸着する方法としては、CVD(Chemical Vapor Deposition)、PVD(Physical Vapor Deposition)、ゾルゲル法、及び含浸法などの一般的な手法が用いられる。また、上記方法で生成された検知部31は、350[℃]以上、かつ、500[℃]以下で熱処理が実施された後に使用されることが一般的に知られている。   Here, the detection part 31 is produced | generated by apply | coating or vapor-depositing the protective coating layer 52 to the metal wire 51 which has hydrogen storage capability. As a method of applying or vapor-depositing, general methods such as CVD (Chemical Vapor Deposition), PVD (Physical Vapor Deposition), sol-gel method, and impregnation method are used. In addition, it is generally known that the detection unit 31 generated by the above method is used after heat treatment is performed at 350 [° C.] or more and 500 [° C.] or less.

図2の説明に戻って、固定部32は、セラミックス及びガラスなどの絶縁材料からなり、検知部31の固定(支持)及び絶縁のために用いられる。図2では、固定部32が円筒形状を有する場合を図示するが、固定部32は必ずしも円筒形状である必要はない。つまり、固定部32の全体が同一材料で構成されている必要はない。固定部32が円筒形状を有する場合、固定部32は、ヒータ14(図4に図示)の代替として、又は、ヒータ14と共に、その内部空間にヒータを内包するような構造を採り得る。また、固定部32が円筒形状を有する場合、固定部32は、その内部空間に電気配線を内包するような構造を採り得る。   Returning to the description of FIG. 2, the fixing portion 32 is made of an insulating material such as ceramics and glass, and is used for fixing (supporting) and insulating the detection portion 31. Although FIG. 2 illustrates the case where the fixing portion 32 has a cylindrical shape, the fixing portion 32 does not necessarily have a cylindrical shape. That is, it is not necessary for the entire fixing portion 32 to be made of the same material. When the fixing | fixed part 32 has a cylindrical shape, the fixing | fixed part 32 can take the structure of including a heater in the interior space as an alternative of the heater 14 (illustrated in FIG. 4) or with the heater 14. FIG. Moreover, when the fixing | fixed part 32 has a cylindrical shape, the fixing | fixed part 32 can take the structure which encloses an electrical wiring in the interior space.

接続部33は、検知部31を固定部32に固定することともに、検知部31の金属線51(図3(A),(B)に図示)の電気抵抗値の測定のための端子として機能する。また、図2では、接続部33が固定部32の側面の外表面に設置されている例を示すが、接続部33は、固定部32の側面の内表面に設置されていてもよい。   The connection part 33 functions as a terminal for measuring the electrical resistance value of the metal wire 51 (shown in FIGS. 3A and 3B) of the detection part 31 while fixing the detection part 31 to the fixing part 32. To do. 2 shows an example in which the connection portion 33 is installed on the outer surface of the side surface of the fixed portion 32, but the connection portion 33 may be installed on the inner surface of the side surface of the fixed portion 32.

図4は、水素濃度測定素子11を加熱するヒータを示す図である。   FIG. 4 is a diagram showing a heater for heating the hydrogen concentration measuring element 11.

図4に示すように、水素濃度測定素子11を加熱するヒータ14は、水素濃度測定素子11の側面の外表面を被覆するように配置される。   As shown in FIG. 4, the heater 14 for heating the hydrogen concentration measuring element 11 is arranged so as to cover the outer surface of the side surface of the hydrogen concentration measuring element 11.

2.作用
水素濃度測定装置10において、ヒータ14により水素濃度測定素子11の温度が200[℃]以上に制御されている。その状態で、水素濃度測定素子11の接続部33に接続された抵抗器12により、保護コーティング層52で被覆された金属線51の電気抵抗値が逐次測定される。ここでは、金属線51が水素を吸収すると、その電気抵抗値が増加する現象を利用している。予め取得された水素濃度と電気抵抗値の相関式と金属線51の電気抵抗値とに基づいて、制御部13によって水素濃度が逐次算出される。
2. Action In the hydrogen concentration measuring apparatus 10, the temperature of the hydrogen concentration measuring element 11 is controlled to 200 ° C. or more by the heater 14. In this state, the electrical resistance value of the metal wire 51 covered with the protective coating layer 52 is sequentially measured by the resistor 12 connected to the connection portion 33 of the hydrogen concentration measuring element 11. Here, when the metal wire 51 absorbs hydrogen, the phenomenon that the electric resistance value increases is used. Based on the correlation equation between the hydrogen concentration and the electrical resistance value acquired in advance and the electrical resistance value of the metal wire 51, the control unit 13 sequentially calculates the hydrogen concentration.

金属線51が保護コーティング層52によって被覆されているので、水素濃度の測定中、金属線51と外部気相との直接接触を避けることが可能となる。よって、金属線51と、酸素及びヨウ素などの外部気相由来の化学種とに起因する副反応の進行を防ぐことが可能である。   Since the metal wire 51 is covered with the protective coating layer 52, it is possible to avoid direct contact between the metal wire 51 and the external gas phase during the measurement of the hydrogen concentration. Therefore, it is possible to prevent the side reaction from proceeding due to the metal wire 51 and the chemical species derived from the external gas phase such as oxygen and iodine.

3.効果
第1実施形態に係る原子力施設用の水素濃度測定素子11によれば、水素吸蔵材の電気抵抗値を用いて水素濃度を測定する技術において、原子力過酷事故時に相当する様な幅広い気相組成で、水素濃度を表す精度のよい電気抵抗値を出力できる。また、第1実施形態に係る原子力施設用の水素濃度測定装置10によれば、原子力過酷事故時に相当する様な幅広い気相組成で、水素濃度を精度よく測定することができる。
3. Effect According to the hydrogen concentration measuring element 11 for a nuclear facility according to the first embodiment, in the technique for measuring the hydrogen concentration using the electrical resistance value of the hydrogen storage material, a wide range of gas phase composition corresponding to the case of a severe nuclear accident. Thus, it is possible to output an accurate electric resistance value representing the hydrogen concentration. Moreover, according to the hydrogen concentration measuring apparatus 10 for a nuclear facility according to the first embodiment, the hydrogen concentration can be accurately measured with a wide gas phase composition corresponding to a nuclear accident.

(第2実施形態)
1.構成
図5は、第2実施形態に係る原子力施設用の水素濃度測定装置が設置される環境を示す概略図である。
(Second Embodiment)
1. Configuration FIG. 5 is a schematic view showing an environment in which a hydrogen concentration measuring apparatus for a nuclear facility according to the second embodiment is installed.

図5は、原子炉格納容器1の水素濃度を測定する水素濃度測定装置10Aを示す。水素濃度測定装置10Aは、水素濃度測定素子11A、抵抗器12,12A、制御部13A、及びヒータ14(図4に図示)を備える。なお、図5において、図1に示す部材と同一部材には同一符号を付して説明を省略する。   FIG. 5 shows a hydrogen concentration measuring apparatus 10 </ b> A that measures the hydrogen concentration in the reactor containment vessel 1. The hydrogen concentration measuring device 10A includes a hydrogen concentration measuring element 11A, resistors 12, 12A, a control unit 13A, and a heater 14 (shown in FIG. 4). In FIG. 5, the same members as those shown in FIG.

抵抗器12Aは、水素濃度測定素子11Aの金属線51A(図7(A),(B)に図示)に電流を流すことで、金属線51Aの電気抵抗値を測定する。   The resistor 12A measures the electric resistance value of the metal wire 51A by passing a current through the metal wire 51A (illustrated in FIGS. 7A and 7B) of the hydrogen concentration measuring element 11A.

制御部13Aは、図1に示す制御部13と同様に、CPU及びメモリなどによって構成される。制御部13Aは、抵抗器12,12Aによってそれぞれ測定された電気抵抗値に基づいて水素濃度を算出する。   The control unit 13A includes a CPU, a memory, and the like, like the control unit 13 illustrated in FIG. The controller 13A calculates the hydrogen concentration based on the electric resistance values measured by the resistors 12 and 12A, respectively.

また、制御部13Aは、図1に示す制御部13と同様に、水素濃度測定素子11Aを加熱するためのヒータ14(図4に図示)の動作を制御して、水素濃度測定素子11Aの温度を制御する。   Further, similarly to the control unit 13 shown in FIG. 1, the control unit 13A controls the operation of the heater 14 (shown in FIG. 4) for heating the hydrogen concentration measuring element 11A to control the temperature of the hydrogen concentration measuring element 11A. To control.

図6は、水素濃度測定素子11Aの構造を示す外観図である。   FIG. 6 is an external view showing the structure of the hydrogen concentration measuring element 11A.

図6に示すように、水素濃度測定素子11Aは、検知部31、固定部32、及び接続部33を備える。また、水素濃度測定素子11Aは、リファレンス検知部31A及び接続部33Aを備える。なお、図6において、図2に示す部材と同一部材には同一符号を付して説明を省略する。   As shown in FIG. 6, the hydrogen concentration measuring element 11 </ b> A includes a detection unit 31, a fixing unit 32, and a connection unit 33. The hydrogen concentration measuring element 11A includes a reference detection unit 31A and a connection unit 33A. In FIG. 6, the same members as those shown in FIG.

リファレンス検知部31Aは、検知部31と同様に、固定部32の外表面上にらせん状に巻き付けるように配置される。リファレンス検知部31Aは、検知部31に接触しないように配置される。なお、図6において、便宜的に、リファレンス検知部31Aが検知部31より細い線で表される。しかしながら、リファレンス検知部31Aの径が検知部31の径より必ずしも小さいことを意味するものではない。   Similar to the detection unit 31, the reference detection unit 31 </ b> A is arranged so as to be spirally wound on the outer surface of the fixed unit 32. 31 A of reference detection parts are arrange | positioned so that the detection part 31 may not be contacted. In FIG. 6, for convenience, the reference detection unit 31 </ b> A is represented by a thinner line than the detection unit 31. However, this does not necessarily mean that the diameter of the reference detection unit 31A is smaller than the diameter of the detection unit 31.

接続部33Aは、リファレンス検知部31Aを固定部32に固定することともに、リファレンス検知部31Aの金属線51A(図7(A),(B)に図示)の電気抵抗値の測定のための端子として機能する。また、図6では、接続部33Aが固定部32の側面の外表面に設置されている例を示すが、接続部33Aは、固定部32の側面の内表面に設置されていてもよい。   The connection unit 33A fixes the reference detection unit 31A to the fixed unit 32 and is a terminal for measuring the electrical resistance value of the metal wire 51A (shown in FIGS. 7A and 7B) of the reference detection unit 31A. Function as. 6 shows an example in which the connection portion 33A is installed on the outer surface of the side surface of the fixed portion 32, but the connection portion 33A may be installed on the inner surface of the side surface of the fixed portion 32.

図7(A),(B)は、リファレンス検知部31Aの構造を示す図である。図7(A)は、リファレンス検知部31Aの縦断面図である。図7(B)は、リファレンス検知部31Aの横断面図である。   7A and 7B are diagrams illustrating the structure of the reference detection unit 31A. FIG. 7A is a longitudinal sectional view of the reference detector 31A. FIG. 7B is a cross-sectional view of the reference detection unit 31A.

図7(A),(B)に示すように、リファレンス検知部31Aは、金属線51A及び保護コーティング層52Aを備える。   As shown in FIGS. 7A and 7B, the reference detection unit 31A includes a metal wire 51A and a protective coating layer 52A.

金属線51Aは、測温抵抗体に用いられるような白金などの材料であり、水素吸蔵能をもたない。水素吸蔵能をもたない金属線51Aの直径は、図3(A),(B)に示す金属線51の直径と同様に、1[μm]以上、かつ、1000[μm]以下程度であればよい。   The metal wire 51A is a material such as platinum used for a resistance temperature detector and does not have a hydrogen storage capacity. The diameter of the metal wire 51A having no hydrogen storage capacity is about 1 [μm] or more and 1000 [μm] or less, similar to the diameter of the metal wire 51 shown in FIGS. 3 (A) and 3 (B). That's fine.

保護コーティング層52Aは、図3(A),(B)に示す保護コーティング層52と同様に、珪素若しくはアルミニウムの酸化物、窒化物、及び炭化物のうち少なくとも1個を含み、水素の選択透過が可能である無機物からなる。保護コーティング層52Aの厚みも図3(A),(B)に示す保護コーティング層52と同様に、5[nm]以上、かつ、200[nm]以下であることが好適である。なお、保護コーティング層52Aの厚みと金属線51Aの径とからなるリファレンス検知部31Aの径は、図3(A),(B)に示す保護コーティング層52の厚みと金属線51の径とからなる検知部31の径と同一であることがさらに好ましい。   Similarly to the protective coating layer 52 shown in FIGS. 3A and 3B, the protective coating layer 52A includes at least one of an oxide, nitride, and carbide of silicon or aluminum, and selectively permeates hydrogen. Made of inorganic material that is possible. Similarly to the protective coating layer 52 shown in FIGS. 3A and 3B, the thickness of the protective coating layer 52A is preferably 5 nm or more and 200 nm or less. In addition, the diameter of the reference detection part 31A which consists of the thickness of the protective coating layer 52A and the diameter of the metal wire 51A is based on the thickness of the protective coating layer 52 and the diameter of the metal wire 51 shown in FIGS. More preferably, it is the same as the diameter of the detection unit 31.

2.作用
水素濃度測定装置10Aにおいて、ヒータ14により水素濃度測定素子11Aの温度が200[℃]以上に制御されている。その状態で、水素濃度測定素子11Aの接続部33に接続された抵抗器12により、保護コーティング層52で被覆された金属線51の電気抵抗値が逐次測定される。また、水素濃度測定素子11Aの接続部33Aに接続された抵抗器12Aにより、保護コーティング層52Aで被覆された金属線51Aの電気抵抗値が逐次測定される。金属線51の電気抵抗値と金属線51Aの電気抵抗値とに基づいて、制御部13Aによって水素濃度が逐次算出される。
2. Action In the hydrogen concentration measuring apparatus 10A, the temperature of the hydrogen concentration measuring element 11A is controlled to 200 [° C.] or more by the heater 14. In this state, the electrical resistance value of the metal wire 51 covered with the protective coating layer 52 is sequentially measured by the resistor 12 connected to the connection portion 33 of the hydrogen concentration measuring element 11A. Further, the electrical resistance value of the metal wire 51A covered with the protective coating layer 52A is sequentially measured by the resistor 12A connected to the connection portion 33A of the hydrogen concentration measuring element 11A. Based on the electrical resistance value of the metal wire 51 and the electrical resistance value of the metal wire 51A, the hydrogen concentration is sequentially calculated by the control unit 13A.

ここで、検知部31の金属線51の電気抵抗値は、水素吸蔵に起因する成分と、温度に起因する成分とを含む。一方で、リファレンス検知部31Aの金属線51Aの電気抵抗値は、水素吸蔵に起因する成分を含まず、温度に起因する電気抵抗値である。そこで、第2実施形態では、リファレンス検知部31Aを採用することで、金属線51の電気抵抗値から温度に起因する成分を分離して除外することで、金属線51の電気抵抗値から水素吸蔵に起因する成分のみを抽出して測定を行うことを目的とする。   Here, the electrical resistance value of the metal wire 51 of the detection unit 31 includes a component due to hydrogen storage and a component due to temperature. On the other hand, the electrical resistance value of the metal wire 51A of the reference detection unit 31A does not include a component due to hydrogen storage, and is an electrical resistance value due to temperature. Therefore, in the second embodiment, by adopting the reference detection unit 31A, a component caused by temperature is separated and excluded from the electrical resistance value of the metal wire 51, so that hydrogen storage is performed from the electrical resistance value of the metal wire 51. The purpose is to extract and measure only the components caused by

ここで、リファレンス検知部31Aを採用した場合の作用について具体的に説明する。   Here, the operation when the reference detection unit 31A is employed will be specifically described.

金属のもつ電気抵抗値は近似的には温度に対して比例して変化することが知られており、温度Tでの電気抵抗値R(T)は、例えば、次の式(1)で表される。   It is known that the electric resistance value of a metal changes approximately in proportion to the temperature, and the electric resistance value R (T) at the temperature T is expressed by the following equation (1), for example. Is done.

R(T)=R0[1+α(T−T0)] …(1)
T0:基準温度
T:測定温度
R0:基準温度T0での電気抵抗値
α:単位温度あたりの電気抵抗率の変化率
R (T) = R0 [1 + α (T−T0)] (1)
T0: Reference temperature T: Measurement temperature R0: Electrical resistance value at reference temperature T0 α: Rate of change in electrical resistivity per unit temperature

上記式(1)中のαは金属固有の数値である。また、水素吸蔵能をもたない金属線51Aにおいて予め設定された電気抵抗値R0及び基準温度T0と、金属線51Aにおいて測定された電気抵抗値とを上記式(1)のR(T)に代入すると、測定温度Tが算出される。算出された測定温度Tは、金属線51Aの測定温度T、すなわち、水素吸蔵能を有する金属線51の付近の測定温度Tとみなせる。   Α in the above formula (1) is a numerical value unique to the metal. In addition, the electric resistance value R0 and the reference temperature T0 set in advance in the metal wire 51A having no hydrogen storage ability and the electric resistance value measured in the metal wire 51A are expressed as R (T) in the above equation (1). When substituted, the measured temperature T is calculated. The calculated measurement temperature T can be regarded as the measurement temperature T of the metal wire 51A, that is, the measurement temperature T in the vicinity of the metal wire 51 having hydrogen storage capability.

続いて、水素吸蔵能を有する金属線51において予め設定された電気抵抗値R0及び基準温度T0と、水素吸蔵能をもたない金属線51Aから算出された測定温度Tとを上記式(1)に代入すると、金属線51の電気抵抗値R(T)が算出される。算出された電気抵抗値R(T)は、温度に起因する金属線51の電気抵抗値である。   Subsequently, the electric resistance value R0 and the reference temperature T0 set in advance in the metal wire 51 having the hydrogen storage ability, and the measurement temperature T calculated from the metal wire 51A having no hydrogen storage ability are expressed by the above formula (1). Is substituted, the electric resistance value R (T) of the metal wire 51 is calculated. The calculated electric resistance value R (T) is an electric resistance value of the metal wire 51 due to temperature.

以上のように、金属線51Aの電気抵抗値より金属線51の付近の温度を算出することで、金属線51において測定された電気抵抗値から、温度に起因する成分(算出された電気抵抗値R(T))を除外して、水素吸蔵に起因する成分を分離できる。このような構成とすることで、金属線51において測定された電気抵抗値のうち水素吸蔵に起因する成分と予めの相関式とに基づいて、より高精度の水素濃度を得ることが可能となる。   As described above, by calculating the temperature in the vicinity of the metal wire 51 from the electrical resistance value of the metal wire 51A, from the electrical resistance value measured in the metal wire 51, the component (calculated electrical resistance value calculated from the temperature). R (T)) can be excluded, and components due to hydrogen storage can be separated. By adopting such a configuration, it becomes possible to obtain a more accurate hydrogen concentration based on a component resulting from hydrogen occlusion in the electrical resistance value measured on the metal wire 51 and a pre-correlation equation. .

続いて、保護コーティング層52,52Aを採用した場合の作用について具体的に説明する。   Next, the operation when the protective coating layers 52 and 52A are employed will be specifically described.

図8は、保護コーティング層が被覆されていない金属線において、水素及び酸素供給時の電気抵抗値の挙動例を示すグラフである。図9は、保護コーティング層が被覆された金属線において、水素及び酸素供給時の電気抵抗値の挙動例を示すグラフである。   FIG. 8 is a graph showing an example of the behavior of the electrical resistance value when hydrogen and oxygen are supplied in a metal wire not covered with a protective coating layer. FIG. 9 is a graph showing an example of the behavior of the electrical resistance value when hydrogen and oxygen are supplied in a metal wire coated with a protective coating layer.

図8及び図9の横軸は、時間変化を示し、左縦軸は、使用温度まで加熱した際の電気抵抗値を1としたときの電気抵抗値の割合を示し、右縦軸は、水素濃度測定素子に供給したガス中の水素濃度及び酸素濃度を示す。   The horizontal axis of FIGS. 8 and 9 shows the change over time, the left vertical axis shows the ratio of the electrical resistance value when the electrical resistance value when heated to the operating temperature is 1, and the right vertical axis shows the hydrogen The hydrogen concentration and oxygen concentration in the gas supplied to the concentration measuring element are shown.

図8は、200[℃]以上の温度の状態で、水素吸蔵能を有する金属線としてのパラジウムと、水素吸蔵能をもたない金属線としての白金との電気抵抗値の変化を示した結果を示す。   FIG. 8 shows the change in electrical resistance value between palladium as a metal wire having a hydrogen storage capability and platinum as a metal wire having no hydrogen storage capability at a temperature of 200 [° C.] or higher. Indicates.

図8に示すように、水素及び酸素の共存下では、水素単独で供給した際に生じる電気抵抗値の変化を大きく超える電気抵抗値の変化が生じる。なお、グラフには表されていないが、水素濃度測定素子11の温度を測定したところ、水素と酸素の共存による電気抵抗値の変化が生じた際に温度変化が併せて起きる事象が確認できた。この事象は、水素と酸素が両金属線と接触することで反応し、反応熱により金属線の温度が変化していることを考えることができる。   As shown in FIG. 8, in the coexistence of hydrogen and oxygen, a change in electrical resistance value greatly exceeds the change in electrical resistance value that occurs when hydrogen alone is supplied. Although not shown in the graph, when the temperature of the hydrogen concentration measuring element 11 was measured, it was confirmed that an event in which a change in temperature occurred when a change in electrical resistance value due to the coexistence of hydrogen and oxygen occurred. . This event can be considered that hydrogen and oxygen react by contacting both metal wires, and the temperature of the metal wire changes due to the heat of reaction.

図9は、図8と同等の温度状態で、CVDによりケイ素酸化物の保護コーティング層52が蒸着された、水素吸蔵能を有する金属線51としてのパラジウムと、CVDによりケイ素酸化物の保護コーティング層52Aが蒸着された、水素吸蔵能をもたない金属線51Aとしての白金との電気抵抗値の変化を示した結果を示す。保護コーティング層52,52Aの厚さは、7[nm]であった。図9に示すように、保護コーティング層52,52Aの存在により酸素濃度が増加した際も金属線51Aの電気抵抗値は変化せず、金属線51は水素濃度に応じた電気抵抗値となる。 FIG. 9 shows palladium as a metal wire 51 having a hydrogen storage capacity in which a silicon oxide protective coating layer 52 is deposited by CVD in the same temperature state as FIG. 8, and a silicon oxide protective coating layer by CVD. The result which showed the change of the electrical resistance value with platinum as the metal wire 51A without the hydrogen storage ability in which 52A was vapor-deposited is shown. The thickness of the protective coating layers 52 and 52A was 7 [nm]. As shown in FIG. 9, the electrical resistance of the metal wire 51 A also when the oxygen concentration is increased by the presence of the protective coating layer 52,52A is not changed, the metal wire 51 is the electrical resistance value corresponding to the hydrogen concentration .

図8及び図9に示す結果により、水素吸蔵能を有する金属線51と水素吸蔵能をもたない金属線51Aにそれぞれケイ素酸化物からなる保護コーティング層52,52Aを蒸着させることで、それぞれの金属線5151A上で起こる副反応を防止できる。 The results shown in FIGS. 8 and 9, by depositing a protective coating layer 52,52A each made of silicon oxide on the metal line 51 A without a metal wire 51 and the hydrogen storage capacity having a hydrogen storage capacity, respectively Side reactions occurring on the metal wires 51 and 51A .

なお、図9は、保護コーティング層52,52Aの厚さが7[nm]である場合の電気抵抗値の挙動例を示すが、保護コーティング層52,52Aの厚さが、5[nm]以上、かつ、200[nm]以下の他の条件においても、図9と同等な結果が得られた。   FIG. 9 shows an example of the behavior of the electrical resistance value when the thickness of the protective coating layers 52 and 52A is 7 [nm]. The thickness of the protective coating layers 52 and 52A is 5 [nm] or more. Also under the other conditions of 200 [nm] or less, the same results as in FIG. 9 were obtained.

3.効果
第2実施形態に係る原子力施設用の水素濃度測定素子11A及び水素濃度測定装置10Aによれば、第1実施形態の効果に加え、温度変化に伴う検知部31の電気抵抗値の変化をリファレンス検知部31Aの電気抵抗値に基づいて補正することができるので、さらに高精度の水素濃度を得ることができる。
3. Effect According to the hydrogen concentration measurement element 11A and the hydrogen concentration measurement device 10A for the nuclear facility according to the second embodiment, in addition to the effect of the first embodiment, the change in the electrical resistance value of the detection unit 31 accompanying the temperature change is referred to Since it can correct | amend based on the electrical resistance value of 31 A of detection parts, more highly accurate hydrogen concentration can be obtained.

(変形例)
第1及び第2実施形態の水素濃度測定装置10,10Aは、水素濃度測定素子11,11Aを収容可能な保護容器60をさらに備える。
(Modification)
The hydrogen concentration measuring devices 10 and 10A of the first and second embodiments further include a protective container 60 that can accommodate the hydrogen concentration measuring elements 11 and 11A.

図10(A),(B)は、水素濃度測定素子11,11Aを収容可能な保護容器60を示す図である。図10(A)は、保護容器60の全体の外観図である。図10(B)は、図10(A)に示す保護容器60の全体のうち側壁部分の縦断面図である。   FIGS. 10A and 10B are diagrams showing a protective container 60 that can accommodate the hydrogen concentration measuring elements 11 and 11A. FIG. 10A is an external view of the entire protective container 60. FIG. 10B is a longitudinal sectional view of the side wall portion of the entire protective container 60 shown in FIG.

図10(A),(B)に示す保護容器60は、内部空間Vを備え、2底面のうち一方が封止された筒状形状を有する。なお、図10(A),(B)では、水素濃度測定素子11,11Aの形状に合わせ、保護容器60が円筒形状の場合を示すがその場合に限定されるものではない。また、保護容器60の側壁は、無機多孔体61と、その内側の保護コーティング層62とを備える。   A protective container 60 shown in FIGS. 10A and 10B has an inner space V and has a cylindrical shape in which one of the two bottom surfaces is sealed. 10A and 10B show a case where the protective container 60 has a cylindrical shape according to the shape of the hydrogen concentration measuring elements 11 and 11A, but the present invention is not limited to this case. Further, the side wall of the protective container 60 includes an inorganic porous body 61 and a protective coating layer 62 inside thereof.

保護コーティング層62は、保護コーティング層52,52Aと同様に、珪素若しくはアルミニウムの酸化物、窒化物、及び炭化物のうち少なくとも1個を含み、水素の選択透過が可能である無機物からなる。保護コーティング層62の厚みも保護コーティング層52,52Aと同様に、5[nm]以上、かつ、200[nm]以下であることが好適である。その際、保護コーティング層62の厚みpと、収納される保護コーティング層52,52Aの厚みqとの和p+qが、5[nm]以上、かつ、200[nm]以下となるようにされてもよい。   Similar to the protective coating layers 52 and 52A, the protective coating layer 62 includes at least one of oxides, nitrides, and carbides of silicon or aluminum, and is made of an inorganic material that can selectively permeate hydrogen. Similarly to the protective coating layers 52 and 52A, the thickness of the protective coating layer 62 is preferably 5 [nm] or more and 200 [nm] or less. At that time, even if the sum p + q of the thickness p of the protective coating layer 62 and the thickness q of the protective coating layers 52 and 52A to be accommodated is 5 [nm] or more and 200 [nm] or less. Good.

なお、保護コーティング層62は、無機多孔体61の内側に備えられるものとして図示するが、その場合に限定されるものではない。例えば、保護コーティング層62は、無機多孔体61の外側のみや、無機多孔体61の内側及び外側の両側に備えられてもよい。   The protective coating layer 62 is illustrated as being provided inside the inorganic porous body 61, but is not limited to that case. For example, the protective coating layer 62 may be provided only on the outside of the inorganic porous body 61 or on both the inside and the outside of the inorganic porous body 61.

保護容器60は、内部空間Vを介して、水素濃度測定素子11,11Aを収容可能である。   The protective container 60 can accommodate the hydrogen concentration measuring elements 11 and 11A via the internal space V.

図11は、水素濃度測定素子11,11Aが収容された保護容器60を示す図である。   FIG. 11 is a view showing the protective container 60 in which the hydrogen concentration measuring elements 11 and 11A are accommodated.

保護容器60の内部空間V(図10(A),(B)に図示)に水素濃度測定素子11,11Aが挿入され、ボルトなどの固定治具(図示しない)で保護容器60に水素濃度測定素子11,11Aが固定されることで、図11に示す状態となる。そして、保護容器60に水素濃度測定素子11,11Aが固定された後、保護容器60の2底面のうち封止されていない方の底面は内部空間Vが気密となるよう、蓋などで塞がれる。   Hydrogen concentration measuring elements 11 and 11A are inserted into the internal space V of the protective container 60 (shown in FIGS. 10A and 10B), and the hydrogen concentration is measured in the protective container 60 with a fixing jig (not shown) such as a bolt. When the elements 11 and 11A are fixed, the state shown in FIG. 11 is obtained. After the hydrogen concentration measuring elements 11 and 11A are fixed to the protective container 60, the unsealed bottom surface of the two bottom surfaces of the protective container 60 is closed with a lid or the like so that the internal space V is airtight. It is.

このような構成によれば、保護コーティング層52,52Aを有する水素濃度測定素子11,11Aを、保護容器60によってさらに被覆することができ、水素濃度測定素子11,11Aの外部気相との接触を避けることが可能である。   According to such a configuration, the hydrogen concentration measuring elements 11 and 11A having the protective coating layers 52 and 52A can be further covered with the protective container 60, and the hydrogen concentration measuring elements 11 and 11A are in contact with the external gas phase. It is possible to avoid.

また、固定治具が外され、保護容器60の内部空間Vから水素濃度測定素子11,11Aが取り出される。すなわち、水素濃度測定素子11,11Aは、保護容器60から簡便に取り外すことが可能である。   Further, the fixing jig is removed, and the hydrogen concentration measuring elements 11, 11 </ b> A are taken out from the internal space V of the protective container 60. That is, the hydrogen concentration measuring elements 11 and 11A can be easily removed from the protective container 60.

さらに、保護コーティング層のメンテナンス時においては、保護コーティング層62を有する保護容器60のガス選択透過性を評価し、保護容器60が特定ガスのみを透過する性能を有することを確認できれば、水素濃度測定素子11,11Aの保護コーティング層の性能点検を省略することもできる。加えて、保護コーティング層のメンテナンス時において、保護容器60のガス選択透過性に問題があった場合は、保護容器60の交換のみで対応可能となる。   Further, during the maintenance of the protective coating layer, if the gas selective permeability of the protective container 60 having the protective coating layer 62 is evaluated and it can be confirmed that the protective container 60 has the ability to transmit only a specific gas, the hydrogen concentration measurement is performed. The performance check of the protective coating layer of the elements 11 and 11A can be omitted. In addition, when there is a problem in the gas selective permeability of the protective container 60 during maintenance of the protective coating layer, it can be handled only by replacing the protective container 60.

保護容器60によれば、第1及び第2実施形態の効果に加え、より確実な外部気相との接触を防止でき、かつ、保護コーティング層のメンテナンス性の向上が可能となる。   According to the protective container 60, in addition to the effects of the first and second embodiments, more reliable contact with the external gas phase can be prevented, and maintenance of the protective coating layer can be improved.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10,10A…水素濃度測定装置、11,11A…水素濃度測定素子、12,12A…抵抗器、13,13A…制御部、31…検知部、31A…リファレンス検知部、51,51A…金属線、52,52A,62…保護コーティング層、60…保護容器。   DESCRIPTION OF SYMBOLS 10,10A ... Hydrogen concentration measuring device, 11, 11A ... Hydrogen concentration measuring element, 12, 12A ... Resistor, 13, 13A ... Control part, 31 ... Detection part, 31A ... Reference detection part, 51, 51A ... Metal wire, 52, 52A, 62 ... protective coating layer, 60 ... protective container.

Claims (9)

水素吸蔵により電気抵抗値が変化する水素吸蔵能を有する金属線が、水素透過性を有する保護コーティング層によって被覆された検知部と前記検知部を固定する固定部とを備えた水素濃度測定素子と、
前記水素濃度測定素子を収容可能で、かつ、前記水素濃度測定素子から取り外し可能な構造を有する保護容器であって、前記保護コーティング層と同一材料からなる保護コーティング層を有する保護容器と、
を備えた原子力施設用の水素濃度測定装置
Metal wire having a hydrogen storage capacity of the electrical resistance value is changed by hydrogen occlusion is a detection portion that is covered by a protective coating layer has hydrogen permeability, hydrogen concentration measuring device comprising a fixing portion for fixing the detecting portion When,
A protective container that can accommodate the hydrogen concentration measuring element and has a structure removable from the hydrogen concentration measuring element, the protective container having a protective coating layer made of the same material as the protective coating layer;
Hydrogen concentration measuring device for nuclear facilities equipped with
前記保護コーティング層は、無機物からなる請求項1に記載の原子力施設用の水素濃度測定装置The hydrogen concentration measuring apparatus for a nuclear facility according to claim 1, wherein the protective coating layer is made of an inorganic substance. 前記保護コーティング層は、珪素及びアルミニウムのうち少なくとも1個を含む請求項2に記載の原子力施設用の水素濃度測定装置The hydrogen concentration measuring device for a nuclear facility according to claim 2, wherein the protective coating layer contains at least one of silicon and aluminum. 前記保護コーティング層は、CVD(Chemical Vapor Deposition)によって前記金属線に蒸着されてなる請求項1乃至3のうちいずれか一項に記載の原子力施設用の水素濃度測定装置The hydrogen concentration measuring apparatus for a nuclear facility according to any one of claims 1 to 3, wherein the protective coating layer is deposited on the metal wire by CVD (Chemical Vapor Deposition). 記水素濃度測定素子の前記金属線の電気抵抗値から水素濃度を算出する算出手段
さらに備えた請求項1乃至4のうちいずれか一項に記載の原子力施設用の水素濃度測定装置。
Calculating means for calculating the hydrogen concentration from the electrical resistance of the metal wire before Symbol hydrogen concentration measuring device,
The hydrogen concentration measuring device for a nuclear facility according to any one of claims 1 to 4 , further comprising:
前記水素濃度測定素子は、前記金属線としての第1の金属線が前記保護コーティング層によって被覆された前記検知部を備えると共に、前記水素吸蔵能を有さない第2の金属線が前記保護コーティング層によって被覆されたリファレンス検知部をさらに備え
前記第1の金属線の電気抵抗値と、前記第2の金属線の電気抵抗値とに基づいて水素濃度を算出する算出手段と、
を備えた請求項1乃至4のうちいずれか一項に記載の原子力施設用の水素濃度測定装置。
The hydrogen concentration measuring device, the co-when provided with the detecting portion in which the first metal wire is coated by said protective coating layer as the metal wire, a second metal wire without the hydrogen storage capacity is the It further comprises a reference detector covered with a protective coating layer ,
Calculating means for calculating a hydrogen concentration based on an electric resistance value of the first metal wire and an electric resistance value of the second metal wire;
The hydrogen concentration measuring apparatus for nuclear facilities as described in any one of Claims 1 thru | or 4 provided with these .
前記第2の金属線の電気抵抗値により温度を算出し、前記温度に基づいて、前記第1の金属線の電気抵抗値から、前記第1の金属線の水素吸蔵に起因する成分を分離する請求項に記載の原子力施設用の水素濃度測定装置。 The temperature is calculated from the electrical resistance value of the second metal wire, and the component caused by the hydrogen occlusion of the first metal wire is separated from the electrical resistance value of the first metal wire based on the temperature. The hydrogen concentration measuring apparatus for nuclear facilities according to claim 6 . 前記水素濃度測定素子を加熱可能なヒータと、
前記ヒータを制御して前記水素濃度測定素子の温度を200[℃]以上に制御する制御手段と、
をさらに備えた請求項乃至のうちいずれか一項に記載の原子力施設用の水素濃度測定装置。
A heater capable of heating the hydrogen concentration measuring element;
Control means for controlling the temperature of the hydrogen concentration measuring element to 200 [° C.] or more by controlling the heater;
The hydrogen concentration measuring device for a nuclear facility according to any one of claims 1 to 7 , further comprising:
前記保護コーティング層は、少なくとも酸素及びヨウ素に起因する副反応の進行防止と、水素の透過性との関係から決まる厚みを備えた請求項1乃至8のうちいずれか一項に記載の原子力施設用の水素濃度測定装置。The nuclear power facility according to any one of claims 1 to 8, wherein the protective coating layer has a thickness determined from a relationship between at least prevention of a side reaction caused by oxygen and iodine and hydrogen permeability. Hydrogen concentration measuring device.
JP2015208691A 2015-10-23 2015-10-23 Hydrogen concentration measuring device for nuclear facilities Active JP6585463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015208691A JP6585463B2 (en) 2015-10-23 2015-10-23 Hydrogen concentration measuring device for nuclear facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015208691A JP6585463B2 (en) 2015-10-23 2015-10-23 Hydrogen concentration measuring device for nuclear facilities

Publications (2)

Publication Number Publication Date
JP2017083190A JP2017083190A (en) 2017-05-18
JP6585463B2 true JP6585463B2 (en) 2019-10-02

Family

ID=58710717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015208691A Active JP6585463B2 (en) 2015-10-23 2015-10-23 Hydrogen concentration measuring device for nuclear facilities

Country Status (1)

Country Link
JP (1) JP6585463B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4373375A (en) * 1980-12-19 1983-02-15 General Electric Company Hydrogen sensor
JPS6042647A (en) * 1983-08-19 1985-03-06 Japan Atom Energy Res Inst Method and device for measuring concentration of hydrogen in high temperature and high pressure steam
US5670115A (en) * 1995-10-16 1997-09-23 General Motors Corporation Hydrogen sensor
JP2006284327A (en) * 2005-03-31 2006-10-19 Nagasaki Univ Hydrogen gas sensor
CN202612744U (en) * 2012-06-06 2012-12-19 南通汉瑞实业有限公司 Pipeline safety valve of hydrogen reducing furnace

Also Published As

Publication number Publication date
JP2017083190A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
JP2008538051A5 (en)
US10107661B2 (en) Thermal flowmeter with energy storage element
JP5182321B2 (en) Gas sensor element and gas sensor incorporating the same
Ivanov et al. Investigation of catalytic hydrogen sensors with platinum group catalysts
JP2010078609A (en) Method of manufacturing catalytic combustion type gas sensor
JP2008538051A (en) Method and apparatus for monitoring the plasma state of an etching plasma processing facility
JP2012038868A (en) Vaporizer, substrate processing apparatus, coating development apparatus and substrate processing method
JP2017106857A (en) Semiconductor gas sensor, manufacturing method therefor, and sensor network system
JP4553201B2 (en) Interface level sensor and container equipped with interface level sensor
JP6585463B2 (en) Hydrogen concentration measuring device for nuclear facilities
US20120204623A1 (en) Gas detector
JP2016017741A (en) Gas detecting device, and gas detecting method
US10697912B2 (en) Gas detection method and gas detector
RU2334979C1 (en) Device for measurement of hydrogen content in liquids and gases
KR20180090191A (en) Heating mechanism of ozone gas, substrate processing apparatus and substrate processing method
JP2010096727A (en) Gas detector
JP2024519824A (en) An integrated gas thermal conduction type hydrogen sensor
KR101301474B1 (en) Oxygen analyzer
JP5959101B2 (en) Hydrogen selective gas sensor
JPH10115597A (en) Gas sensor
JP6480228B2 (en) Gas sensor
CA2971160A1 (en) Hydrogen detector for gas media
JP2024030466A (en) Hydrogen concentration measuring element, hydrogen concentration measuring device, and hydrogen concentration measuring method
JP3913990B2 (en) Hydrogen gas leak detection sensor
JP2023033870A (en) Hydrogen concentration measurement element and hydrogen concentration measurement device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190905

R150 Certificate of patent or registration of utility model

Ref document number: 6585463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150