JP6584631B2 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP6584631B2
JP6584631B2 JP2018501461A JP2018501461A JP6584631B2 JP 6584631 B2 JP6584631 B2 JP 6584631B2 JP 2018501461 A JP2018501461 A JP 2018501461A JP 2018501461 A JP2018501461 A JP 2018501461A JP 6584631 B2 JP6584631 B2 JP 6584631B2
Authority
JP
Japan
Prior art keywords
sealed container
rotary compressor
vertical plane
discharge pipe
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018501461A
Other languages
Japanese (ja)
Other versions
JPWO2017145277A1 (en
Inventor
興平 大槻
興平 大槻
聡経 新井
聡経 新井
尚久 五前
尚久 五前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017145277A1 publication Critical patent/JPWO2017145277A1/en
Application granted granted Critical
Publication of JP6584631B2 publication Critical patent/JP6584631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings

Description

本発明は、回転圧縮機に関し、特に、密閉型回転圧縮機の密閉容器の構造に関するものである。   The present invention relates to a rotary compressor, and more particularly to the structure of a hermetic container of a hermetic rotary compressor.

回転圧縮機の一例である、密閉型回転圧縮機においては、溶接された一体型の容器に電動機、圧縮機などの内部部品が密閉され、密閉容器の上部に冷媒が吐出される吐出管と、内部の部品に接続される気密端子とが設けられている。密閉型回転圧縮機の稼働中に密閉容器の内部が高圧になると、吐出管と、気密端子との間の応力集中により密閉容器が変形し、冷媒の漏出などを引き起こすことがある。   In a hermetic rotary compressor that is an example of a rotary compressor, internal parts such as an electric motor and a compressor are hermetically sealed in a welded integral container, and a discharge pipe that discharges refrigerant to the upper part of the hermetic container; Airtight terminals connected to internal components are provided. If the inside of the sealed container becomes high pressure during the operation of the hermetic rotary compressor, the sealed container may be deformed due to stress concentration between the discharge pipe and the airtight terminal, which may cause leakage of the refrigerant.

特許文献1では、従来平坦であった密閉容器上部を半球形状に形成し、その中心に冷媒が流通する吐出管を配置して、上部密閉容器の耐圧強度を向上させることが提案されている。   In Patent Document 1, it has been proposed to improve the pressure-resistant strength of the upper closed container by forming the upper part of the closed container, which has been flat in the past, in a hemispherical shape, and disposing a discharge pipe through which the refrigerant flows in the center.

特許文献2では、上部密閉容器を複数の球面により、全体として円蓋状に形成し、気密端子や付属品などを球面に沿って設けた平面部に配置することで、上部密閉容器の耐圧強度を向上させながら、吐出管や気密端子の設置を容易にすることが提案されている。   In Patent Document 2, the upper sealed container is formed into a circular lid shape as a whole by a plurality of spherical surfaces, and the pressure-tight strength of the upper sealed container is arranged by arranging airtight terminals, accessories, etc. along the spherical surface. It has been proposed to facilitate the installation of discharge pipes and airtight terminals while improving the efficiency.

特開平11−159456号公報JP-A-11-159456 特開2015−124700号公報JP2015-124700A

回転圧縮機の小型化、高能力化のためには、冷媒循環量を増加させることが考えられるが、その場合には、密閉容器外径を維持したまま吐出管径を適切な大きさに拡大して、吐出管における損失を抑制することが必要となる。ところが、吐出管径を拡大すると、密閉容器上部に設けられた気密端子と吐出管とが近接することになり、密閉容器高圧時に気密端子と吐出管との間の領域に応力が集中し、変形が生じやすくなる。この領域で生じる変形は、例え、特許文献1、2の構成を採用した場合であっても防止することは困難であり、冷媒ガスの漏出や気密端子破損などが生じている。   To reduce the size and increase the capacity of the rotary compressor, it is conceivable to increase the amount of refrigerant circulation. In this case, the discharge pipe diameter is increased to an appropriate size while maintaining the outer diameter of the sealed container. Therefore, it is necessary to suppress the loss in the discharge pipe. However, when the discharge pipe diameter is enlarged, the airtight terminal and the discharge pipe provided on the upper part of the sealed container are close to each other, and stress is concentrated in the region between the airtight terminal and the discharge pipe when the closed container is at high pressure. Is likely to occur. The deformation that occurs in this region is difficult to prevent even if the configurations of Patent Documents 1 and 2 are adopted, and leakage of refrigerant gas, breakage of the airtight terminal, and the like occur.

本発明は、上述のような課題を解決するためになされたものであり、密閉容器外径を維持しながら吐出管径を拡大しても、上部密閉容器の強度を確保でき、且つ、気密端子の配置を容易に行える回転圧縮機を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. Even if the discharge pipe diameter is enlarged while maintaining the outer diameter of the sealed container, the strength of the upper sealed container can be secured, and the airtight terminal is provided. An object of the present invention is to provide a rotary compressor capable of easily arranging the above.

本発明に係る回転圧縮機は、圧縮機構部、及び、電動機部を収容する密閉容器を備え、前記密閉容器は、円筒形の胴部と、前記胴部の一端の開口を塞ぎ、冷媒を吐出させる吐出管が中央部に接続された第1密閉容器と、前記胴部の他端の開口を塞ぐ第2密閉容器と、を有し、前記第1密閉容器は、前記電動機部に接続される気密端子が配置された平面部と、前記平面部以外を形成する、少なくとも1つの曲面部と、を有し、前記平面部は、長軸方向に第1端部と第2端部とを有する楕円形状を有し、前記一端の開口により形成され、前記胴部の軸方向に直交する仮想垂直面に位置し、前記仮想垂直面において前記楕円形状の長軸を前記仮想垂直面に投影した軸と直交する第1軸に対して、前記吐出管に近づくにつれて前記仮想垂直面から離れる方向に第1傾斜角度を成して傾斜し、前記仮想垂直面において前記第1軸と直交する第2軸に対して、前記第1端部が前記第2端部よりも前記仮想垂直面から離れる方向に第2傾斜角度を成して傾斜する。 A rotary compressor according to the present invention includes a compression mechanism section and a sealed container that houses an electric motor section. The sealed container closes a cylindrical body and an opening at one end of the body, and discharges a refrigerant. A first sealed container having a discharge pipe connected to a central part thereof, and a second sealed container for closing an opening at the other end of the body part, wherein the first sealed container is connected to the electric motor part. A flat portion on which an airtight terminal is disposed, and at least one curved surface portion other than the flat portion, and the flat portion has a first end and a second end in a major axis direction. An axis that has an elliptical shape, is formed by an opening at the one end, is located on a virtual vertical plane that is orthogonal to the axial direction of the body portion, and is an axis obtained by projecting the major axis of the elliptical shape on the virtual vertical plane on the virtual vertical plane to the first axis perpendicular to, apart from the virtual vertical plane closer to the discharge pipe Inclined at a first inclination angle in the direction, a second axis perpendicular to the first axis in the virtual vertical plane, from said virtual vertical plane than the first end and the second end It inclines at a 2nd inclination angle in the away direction.

本発明に係る回転圧縮機によれば、気密端子が配置される平面部が胴部の軸方向に直交する仮想垂直面に対して第1傾斜角度、第2傾斜角度で傾斜している。これにより、吐出管と気密端子との距離及び気密端子と密閉容器との距離が延長され、密閉容器外径を維持したまま吐出管径を拡大させても、吐出管と気密端子と間で応力が集中することが抑制され、密閉容器に変形が生じにくくなる。また、密閉容器の強度を十分確保することが可能となり、気密端子の配置も容易となる。   According to the rotary compressor according to the present invention, the flat surface portion on which the airtight terminal is disposed is inclined at the first inclination angle and the second inclination angle with respect to the virtual vertical plane orthogonal to the axial direction of the trunk portion. As a result, the distance between the discharge pipe and the airtight terminal and the distance between the airtight terminal and the sealed container are extended, and even if the discharge pipe diameter is increased while the outer diameter of the sealed container is maintained, the stress between the discharge pipe and the airtight terminal is increased. Is prevented from being concentrated, and the sealed container is less likely to be deformed. In addition, the strength of the sealed container can be sufficiently secured, and the arrangement of the airtight terminals is facilitated.

実施の形態に係る回転圧縮機の内部を示す内部構成図である。It is an internal block diagram which shows the inside of the rotary compressor which concerns on embodiment. 上部密閉容器の上面図である。It is a top view of an upper airtight container. 図2のX軸に沿った断面をY方向に見たときの図である。It is a figure when the cross section along the X-axis of FIG. 2 is seen in the Y direction. 図2のY軸に沿った断面をX方向に見たときの図である。It is a figure when the cross section along the Y-axis of FIG. 2 is seen in a X direction. 本実施の形態の上部密閉容器、及び、従来例の上部密閉容器の内圧に対する変形量の比較結果を示すグラフである。It is a graph which shows the comparison result of the deformation | transformation amount with respect to the internal pressure of the upper airtight container of this Embodiment, and the upper airtight container of a prior art example.

実施の形態.
図1は、本実施の形態に係る回転圧縮機100の内部を示す内部構成図である。以下の説明においては、回転圧縮機100として、圧縮機構部2に2つの円筒シリンダ25を有するツインロータリー形の回転圧縮機100を例に説明する。図1に示すように、回転圧縮機100は、密閉容器1の内部に、圧縮機構部2、電動機部3を収容した、密閉型の電動圧縮機である。密閉容器1には、吸入マフラー14が接続され、吸入マフラー14から冷媒が吸入され、高圧に圧縮されて吐出される。
Embodiment.
FIG. 1 is an internal configuration diagram showing the inside of a rotary compressor 100 according to the present embodiment. In the following description, as the rotary compressor 100, a twin rotary type rotary compressor 100 having two cylindrical cylinders 25 in the compression mechanism unit 2 will be described as an example. As shown in FIG. 1, the rotary compressor 100 is a hermetic electric compressor in which a compression mechanism unit 2 and an electric motor unit 3 are accommodated in a hermetic container 1. A suction muffler 14 is connected to the sealed container 1, and refrigerant is sucked from the suction muffler 14, compressed to a high pressure, and discharged.

密閉容器1は、円筒形状の胴部11、胴部11上側の開口を塞ぐ上部密閉容器12、胴部11下側の開口を塞ぐ下部密閉容器13により構成されている。上部密閉容器12は、本発明の第1密閉容器の一例であり、下部密閉容器13は、本発明の第2密閉容器の一例である。それぞれが接続する部分は溶接により固定され、密閉状態が保たれている。胴部11には吸入マフラー14に接続される吸入管15設けられ、上部密閉容器12には吐出管4が設けられている。吐出管4は、回転軸21の延長線上であり、上部密閉容器12の中央部に設置されている。上部密閉容器12には、密閉容器1内の電動機部3に電気的に接続される気密端子16と、ロッド7とが設けられている。ロッド7には、気密端子16を保護するためのカバーが取付けられる。下部密閉容器13は、半球形に近似された形状を有する。下部密閉容器13には、圧縮機構部2に供給される潤滑油が貯留される給油機構が設けられていてもよい。   The sealed container 1 includes a cylindrical body 11, an upper sealed container 12 that closes an opening on the upper side of the body 11, and a lower sealed container 13 that closes an opening on the lower side of the body 11. The upper sealed container 12 is an example of a first sealed container of the present invention, and the lower sealed container 13 is an example of a second sealed container of the present invention. The parts to which they are connected are fixed by welding and kept sealed. The body 11 is provided with a suction pipe 15 connected to the suction muffler 14, and the upper sealed container 12 is provided with a discharge pipe 4. The discharge pipe 4 is on the extension line of the rotating shaft 21 and is installed at the center of the upper sealed container 12. The upper sealed container 12 is provided with an airtight terminal 16 and a rod 7 which are electrically connected to the electric motor unit 3 in the sealed container 1. A cover for protecting the airtight terminal 16 is attached to the rod 7. The lower sealed container 13 has a shape approximated to a hemispherical shape. The lower sealed container 13 may be provided with an oil supply mechanism that stores lubricating oil supplied to the compression mechanism unit 2.

電動機部3は、回転子31と固定子32とにより構成されている。固定子32は密閉容器1の胴部11に焼き嵌め、溶接など各種固定法により固定され、リード線により上部密閉容器12に設けられた気密端子16に電気的に接続されている。   The electric motor unit 3 includes a rotor 31 and a stator 32. The stator 32 is shrink-fitted to the body 11 of the sealed container 1 and fixed by various fixing methods such as welding, and is electrically connected to the airtight terminal 16 provided on the upper sealed container 12 by lead wires.

圧縮機構部2は、回転軸21と、主軸受22と、副軸受23と、ローリングピストン24と、円筒シリンダ25と、ベーン26と、により構成されている。回転軸21は、電動機部3の回転子31に固定されており、主軸受22と副軸受23とにより保持されている。ローリングピストン24は、回転軸21に固定され、円筒シリンダ25内に偏芯回転可能に収容されている。円筒シリンダ25は、ベーン26により圧縮室毎に区切られており、圧縮室を移動し、高圧となった冷媒が密閉容器1内部の空間に吐出される。   The compression mechanism unit 2 includes a rotary shaft 21, a main bearing 22, a sub bearing 23, a rolling piston 24, a cylindrical cylinder 25, and a vane 26. The rotating shaft 21 is fixed to the rotor 31 of the electric motor unit 3 and is held by the main bearing 22 and the sub bearing 23. The rolling piston 24 is fixed to the rotary shaft 21 and accommodated in the cylindrical cylinder 25 so as to be eccentrically rotatable. The cylindrical cylinder 25 is divided for each compression chamber by a vane 26, moves through the compression chamber, and the high-pressure refrigerant is discharged into the space inside the sealed container 1.

図2は、上部密閉容器12の上面図である。図2に示すように、円筒形の胴部11の上端が形成するXY面において胴部11に接続された上部密閉容器12は、上面視において円形状であり、その中心部には、吐出管4が設けられている。上部密閉容器12の表面は、平面部17と、曲面部18とにより構成されている。平面部17は、端部17a、17bを有する楕円形であり、縁部が曲面部18に接続している。   FIG. 2 is a top view of the upper sealed container 12. As shown in FIG. 2, the upper closed container 12 connected to the body 11 on the XY plane formed by the upper end of the cylindrical body 11 has a circular shape when viewed from above, and a discharge pipe is formed at the center of the container. 4 is provided. The surface of the upper sealed container 12 is composed of a flat surface portion 17 and a curved surface portion 18. The flat surface portion 17 has an elliptical shape having end portions 17 a and 17 b, and an edge portion is connected to the curved surface portion 18.

平面部17は、楕円形に形成され、一方の端部17aには、密閉容器1内部の電動機部3が接続し、最外殻16aが平面部17に連続する複数の気密端子16が設けられている。また、平面部17の他方の端部17bには、平面部17に対して垂直なロッド7が設けられている。上部密閉容器12の中心部に設けられた吐出管4は、上部密閉容器12の外径の0.1倍以上0.2倍以下の外径を有する。一方、上部密閉容器12の表面のうち、曲面部18は、例えば、複数の曲面により、半球形に近似された形状に形成されている。   The flat surface portion 17 is formed in an elliptical shape, and one end portion 17 a is provided with a plurality of airtight terminals 16 to which the electric motor portion 3 inside the sealed container 1 is connected and the outermost shell 16 a is continuous with the flat surface portion 17. ing. In addition, a rod 7 perpendicular to the planar portion 17 is provided at the other end 17 b of the planar portion 17. The discharge pipe 4 provided at the center of the upper sealed container 12 has an outer diameter of 0.1 to 0.2 times the outer diameter of the upper sealed container 12. On the other hand, of the surface of the upper closed container 12, the curved surface portion 18 is formed in a shape approximated to a hemispherical shape by a plurality of curved surfaces, for example.

図3は、図2のX軸に沿った断面をY方向に見たときの図である。図3に示すように、平面部17をY方向に見ると、平面部17は、胴部11の上端で形成されるXY面に対してθ1の角度で傾斜し、平面部17の縁部が凹部18aの滑らかな曲線により曲面部18に接続している。具体的には、胴部11の上端で形成され、胴部11の軸方向に直交するXY面に位置するX軸に対し、XY面から離れる方向に傾斜角度θ1を成して傾斜している。傾斜角度θ1は、例えば、θ1=5°であり、平面部17の一方の端部17aは、曲面部18により形成される半球状の面よりも外側に突出している。そして、平面部17の一方の端部17aから胴部11の上端が形成するXY面までの距離は、他方の端部17bから胴部11の上端が形成するXY面までの距離よりも遠くに位置している。傾斜角度θ1で傾斜する平面部17が凹部18aにより曲面部18と接続されることで、気密端子16の最外殻16aと、吐出管4の側面との間の面に沿った距離、及び気密端子16の最外殻16aと、上部密閉容器12の内面との間の面に沿った距離が増加される。凹部18aは、厚みが厚く形成されており、強度を向上させるリブとしての機能を有する。   FIG. 3 is a view when a cross section along the X axis in FIG. 2 is viewed in the Y direction. As shown in FIG. 3, when the plane portion 17 is viewed in the Y direction, the plane portion 17 is inclined at an angle of θ1 with respect to the XY plane formed at the upper end of the body portion 11, and the edge of the plane portion 17 is The curved portion 18 is connected to the curved portion 18a by a smooth curve. Specifically, it is formed at the upper end of the body portion 11 and is inclined at an inclination angle θ1 in a direction away from the XY plane with respect to the X axis located on the XY plane orthogonal to the axial direction of the body portion 11. . The inclination angle θ1 is, for example, θ1 = 5 °, and one end 17a of the flat surface portion 17 protrudes outward from the hemispherical surface formed by the curved surface portion 18. The distance from one end 17a of the plane portion 17 to the XY plane formed by the upper end of the body 11 is farther than the distance from the other end 17b to the XY plane formed by the upper end of the body 11. positioned. The flat surface portion 17 inclined at the inclination angle θ1 is connected to the curved surface portion 18 by the concave portion 18a, so that the distance along the surface between the outermost shell 16a of the airtight terminal 16 and the side surface of the discharge pipe 4, and the airtightness The distance along the surface between the outermost shell 16a of the terminal 16 and the inner surface of the upper sealed container 12 is increased. The concave portion 18a is formed thick and has a function as a rib for improving strength.

図4は、図2のY軸に沿った断面をX方向に見たときの図である。図4に示すように、平面部17をX方向に見ると、平面部17は、胴部11の上端で形成されるXY面に対し、例えばθ2=10°の角度で傾斜している。具体的には、X軸と直交するY軸に対して、XY面から離れる方向に傾斜角度θ2を成して傾斜している。この場合も、平面部17が傾斜角度θ2で傾斜することで、気密端子16の最外殻16aと、吐出管4の側面との間の面に沿った距離、及び、気密端子16の最外殻16aと、上部密閉容器12の内面との間の面に沿った距離が増加される。Y方向に見た場合にも、平面部17の一方の端部17aは曲面部18よりも突出しており、平面部17の縁部は、凹部18aの滑らかな曲線により曲面部18に接続されている。なお、XY面は、本発明の仮想垂直面の一例であり、X軸及びY軸は、第1軸及び第2軸の一例であり、傾斜角度θ1及び傾斜角度θ2は、第1傾斜角度及び第2傾斜角度の一例である。   FIG. 4 is a view when a cross section along the Y-axis in FIG. 2 is viewed in the X direction. As shown in FIG. 4, when the plane portion 17 is viewed in the X direction, the plane portion 17 is inclined at an angle of θ2 = 10 °, for example, with respect to the XY plane formed at the upper end of the body portion 11. Specifically, it is inclined with respect to the Y axis orthogonal to the X axis at an inclination angle θ2 in a direction away from the XY plane. Also in this case, the flat surface portion 17 is inclined at the inclination angle θ2, so that the distance along the surface between the outermost shell 16a of the hermetic terminal 16 and the side surface of the discharge pipe 4 and the outermost of the hermetic terminal 16 are increased. The distance along the surface between the shell 16a and the inner surface of the upper closed vessel 12 is increased. Also when viewed in the Y direction, one end 17a of the flat surface portion 17 protrudes from the curved surface portion 18, and the edge portion of the flat surface portion 17 is connected to the curved surface portion 18 by a smooth curve of the concave portion 18a. Yes. Note that the XY plane is an example of a virtual vertical plane of the present invention, the X axis and the Y axis are examples of a first axis and a second axis, and the tilt angle θ1 and the tilt angle θ2 are the first tilt angle and It is an example of the 2nd inclination angle.

このように、平面部17は、上部密閉容器12を上面視した時に直交するX方向及びY方向の2方向の断面において、胴部11の上端の面に対して傾斜を有し、凹部18aにより曲面部18と滑らかに接続されている。そのため、上面視した時の気密端子16と吐出管4との間の距離が維持された場合でも、気密端子16の最外殻16aと、吐出管4の側面との間の面に沿った距離及び、気密端子16の最外殻16aと、上部密閉容器12の内面との間の面に沿った距離が延長される。平面部17の傾斜角度θ1、θ2を大きくすることで、平面部17の一方の端部17aが曲面部18から更に離れ、且つ、平面部17の一方の端部17aは曲面部18よりも突出し、XY面までの距離が大きくなっている。そのため、気密端子16から吐出管4までの間の面に沿った距離が更に延長される。   As described above, the plane portion 17 has an inclination with respect to the upper end surface of the body portion 11 in two cross sections in the X direction and the Y direction orthogonal to each other when the upper sealed container 12 is viewed from above, and is formed by the recess 18a. The curved surface portion 18 is smoothly connected. Therefore, even when the distance between the airtight terminal 16 and the discharge pipe 4 is maintained when viewed from above, the distance along the surface between the outermost shell 16 a of the airtight terminal 16 and the side surface of the discharge pipe 4. And the distance along the surface between the outermost shell 16a of the airtight terminal 16 and the inner surface of the upper sealed container 12 is extended. By increasing the inclination angles θ <b> 1 and θ <b> 2 of the flat surface portion 17, one end portion 17 a of the flat surface portion 17 is further away from the curved surface portion 18, and one end portion 17 a of the flat surface portion 17 protrudes from the curved surface portion 18. The distance to the XY plane is large. Therefore, the distance along the surface from the airtight terminal 16 to the discharge pipe 4 is further extended.

密閉容器の直径が100mmである場合に、平面部17が傾斜していないと、吐出管4の側面と、気密端子16の最外殻16aとの距離、及び、気密端子16の最外殻16aと、上部密閉容器12の内面との間の距離を十分確保することができない。一方、傾斜角度θ1、θ2で傾斜した平面部17、吐出管4の側面と、気密端子16の最外殻16aとの距離を5mmとし、気密端子16の最外殻16aと、上部密閉容器12の内面との距離を5mmとし、絶縁距離の規定に準ずる設計が可能となる。従って、吐出管4の側面と、気密端子16の最外殻16aとの距離は、5mm以上とし、気密端子16の最外殻16aと、上部密閉容器12の内面との距離を5mm以上とすることが望ましい。また、平面部17の傾斜角度θ1、θ2としては、いずれも、XY面に対し、5°以上30°以下であるとよい。傾斜角度θ1、θ2をこの範囲とすることで、吐出管4の側面と、気密端子16の最外殻16aとの距離、及び、気密端子16の最外殻16aと、上部密閉容器12の内面との間の距離が確保される。また、平面部17が傾斜することで、平面視において気密端子16が上部密閉容器12の開口よりも外側に飛び出てしまうことが防止される。   If the diameter of the sealed container is 100 mm and the flat surface portion 17 is not inclined, the distance between the side surface of the discharge pipe 4 and the outermost shell 16a of the hermetic terminal 16 and the outermost shell 16a of the hermetic terminal 16 will be described. And a sufficient distance from the inner surface of the upper sealed container 12 cannot be secured. On the other hand, the distance between the flat portion 17 inclined at the inclination angles θ1, θ2 and the side surface of the discharge pipe 4 and the outermost shell 16a of the hermetic terminal 16 is 5 mm, and the outermost shell 16a of the hermetic terminal 16 and the upper sealed container 12 are set. The distance between the inner surface and the inner surface is 5 mm, and the design conforming to the regulation of the insulation distance is possible. Therefore, the distance between the side surface of the discharge pipe 4 and the outermost shell 16a of the airtight terminal 16 is 5 mm or more, and the distance between the outermost shell 16a of the airtight terminal 16 and the inner surface of the upper sealed container 12 is 5 mm or more. It is desirable. In addition, the inclination angles θ1 and θ2 of the plane portion 17 are preferably 5 ° or more and 30 ° or less with respect to the XY plane. By setting the inclination angles θ1 and θ2 in this range, the distance between the side surface of the discharge pipe 4 and the outermost shell 16a of the hermetic terminal 16, the outermost shell 16a of the hermetic terminal 16, and the inner surface of the upper sealed container 12 The distance between is secured. In addition, since the flat surface portion 17 is inclined, the airtight terminal 16 is prevented from jumping out of the opening of the upper sealed container 12 in a plan view.

続いて、回転圧縮機100の動作について説明する。回転圧縮機100は、冷媒を吸入マフラー14から吸入管15を介して吸入する。吸入管15から吸入された冷媒は、圧縮機構部2に導入され、圧縮機構部2において圧縮されて高温高圧のガス冷媒となって密閉容器1内に吐出される。そして、ガス冷媒は、密閉容器1内面と電動機部3とのすきまを通り、上部密閉容器12の吐出管4から吐出される。その結果、回転圧縮機100により高温高圧のガス冷媒が生成される。   Next, the operation of the rotary compressor 100 will be described. The rotary compressor 100 sucks the refrigerant from the suction muffler 14 through the suction pipe 15. The refrigerant sucked from the suction pipe 15 is introduced into the compression mechanism unit 2, is compressed in the compression mechanism unit 2, becomes a high-temperature / high-pressure gas refrigerant, and is discharged into the sealed container 1. The gas refrigerant passes through the gap between the inner surface of the sealed container 1 and the electric motor unit 3 and is discharged from the discharge pipe 4 of the upper sealed container 12. As a result, a high-temperature and high-pressure gas refrigerant is generated by the rotary compressor 100.

密閉容器1は、圧縮機構部2において圧縮された冷媒が密閉容器1内部に吐出されると、高温高圧のガス冷媒により外向きの力を受ける。密閉容器1のうち、胴部11及び下部密閉容器13は、円筒形状及び半球形に近似された形状により、外向きの力による応力集中が低減される。   When the refrigerant compressed in the compression mechanism unit 2 is discharged into the closed container 1, the sealed container 1 receives an outward force from the high-temperature and high-pressure gas refrigerant. Among the sealed containers 1, the body 11 and the lower sealed container 13 have a shape approximate to a cylindrical shape and a hemispherical shape, so that stress concentration due to an outward force is reduced.

一方、上部密閉容器12は、楕円形の平面部17と、半球形に近似された曲面部18と、により表面が形成されている。平面部17には、気密端子16、及び、それを保護するカバーが取付けられるロッド7が設けられており、曲面部18には、上部密閉容器12の中心となる位置に吐出管4が設けられている。平面部17は、2方向に傾斜しており、楕円形の平面部17の一方の端部17aが上部密閉容器12の曲面部18よりも外側に突出し、上部密閉容器12の中心よりも高い位置まで延長されている。また、平面部17と、曲面部18とは、滑らかな曲線状の凹部18aにより接続されている。そのため、気密端子16と吐出管4との距離が、上部密閉容器12が平坦である場合、又は、球形に沿った平面とした場合よりも増大される。凹部18aは、厚みが増加され、リブとしての機能を有する。   On the other hand, the upper airtight container 12 has a surface formed by an elliptical flat surface portion 17 and a curved surface portion 18 approximated to a hemispherical shape. The flat surface portion 17 is provided with an airtight terminal 16 and a rod 7 to which a cover for protecting the airtight terminal 16 is attached, and the curved surface portion 18 is provided with a discharge pipe 4 at a center position of the upper sealed container 12. ing. The flat surface portion 17 is inclined in two directions, and one end portion 17a of the elliptical flat surface portion 17 protrudes outward from the curved surface portion 18 of the upper closed container 12 and is higher than the center of the upper closed container 12. Has been extended. Further, the flat surface portion 17 and the curved surface portion 18 are connected by a smooth curved concave portion 18a. Therefore, the distance between the airtight terminal 16 and the discharge pipe 4 is increased as compared with the case where the upper sealed container 12 is flat or a plane along a spherical shape. The concave portion 18a has an increased thickness and functions as a rib.

このように、上部密閉容器12は、平面部17と、曲面部18とにより表面が形成され、特に応力が集中しやすい平面部17の縁部が、厚みが厚く形成された、滑らかな凹部18aにより曲面部18に接続している。上部密閉容器12のうち、平面部17以外の領域は、半球形に近似された曲面部18により形成されている。これにより、密閉容器1内部の圧力が上昇しても、応力が集中することが低減され、上部密閉容器12の変形が抑制される。   In this way, the upper closed container 12 has a surface formed by the flat surface portion 17 and the curved surface portion 18, and a smooth concave portion 18a in which the edge portion of the flat surface portion 17 where stress is particularly concentrated is formed thick. To the curved surface portion 18. A region other than the flat surface portion 17 in the upper sealed container 12 is formed by a curved surface portion 18 approximated to a hemispherical shape. Thereby, even if the pressure inside the airtight container 1 rises, stress concentration is reduced, and deformation of the upper airtight container 12 is suppressed.

平面部17は、2方向に傾斜しており、平面部17に設けられた気密端子16と、曲面部18に設けられた吐出管4との間の距離が延長されている。そのため、例えば、上部密閉容器12の外径の0.1倍の大径な吐出管4を用いた場合であっても、気密端子16と、吐出管4とを十分離して配置することが可能となる。   The plane portion 17 is inclined in two directions, and the distance between the airtight terminal 16 provided on the plane portion 17 and the discharge pipe 4 provided on the curved surface portion 18 is extended. Therefore, for example, even when the discharge pipe 4 having a diameter 0.1 times larger than the outer diameter of the upper sealed container 12 is used, the airtight terminal 16 and the discharge pipe 4 can be arranged sufficiently separated from each other. It becomes.

気密端子16は、気密端子16を覆うためのカバーを必要とするが、そのためには、カバーを取付けるロッド7も配置されていなければならない。平面部17は、上部密閉容器12の曲面部18よりも外側に突出し、高い位置まで延長され、面積が大きく形成されている。そのため、気密端子16、及び、ロッド7の配置、又は、取付け作業が容易であるとともに、ロッド7へのカバーの取り付けも容易となる。   The airtight terminal 16 requires a cover for covering the airtight terminal 16, and for this purpose, the rod 7 for attaching the cover must also be disposed. The flat surface portion 17 protrudes outward from the curved surface portion 18 of the upper sealed container 12, extends to a high position, and has a large area. Therefore, it is easy to arrange or attach the airtight terminal 16 and the rod 7 and to attach the cover to the rod 7.

性能評価.
性能評価においては、本実施の形態に係る回転圧縮機100の上部密閉容器12と、従来の上部密閉容器とについて、数値解析を行い負荷時の変形量を算出して比較を行った。本実施の形態に係る上部密閉容器12は、図2のX軸に対し10°、Y軸に対し15°の傾斜角になるように平面部17の傾斜を設定した。比較例の上部密閉容器においては、表面を傾斜のない平坦な平面として気密端子を設けるとともに、上部密閉容器の中心に吐出管を設けた。比較例の上部密閉容器の外径、及び、板厚は上部密閉容器12と同一とした。また、上部密閉容器12に用いた吐出管4の外径は、比較例の上部密閉容器に用いた吐出管の外径の1.5倍とした。
Performance evaluation.
In the performance evaluation, the upper closed container 12 of the rotary compressor 100 according to the present embodiment and the conventional upper closed container were subjected to numerical analysis and the deformation amount under load was calculated and compared. In the upper sealed container 12 according to the present embodiment, the inclination of the plane portion 17 is set so as to have an inclination angle of 10 ° with respect to the X axis and 15 ° with respect to the Y axis in FIG. In the upper sealed container of the comparative example, the airtight terminal was provided with a flat surface with no inclination, and a discharge pipe was provided at the center of the upper sealed container. The outer diameter and plate thickness of the upper sealed container of the comparative example were the same as those of the upper sealed container 12. The outer diameter of the discharge pipe 4 used for the upper sealed container 12 was 1.5 times the outer diameter of the discharge pipe used for the upper sealed container of the comparative example.

図5は、本実施の形態の上部密閉容器12、及び、従来例の上部密閉容器の内圧に対する変形量の比較結果を示すグラフである。図5においては、上部密閉容器について、負荷圧力を5MPaとして数値解析条件を設定し、負荷時の変形量について算出した。黒の棒グラフは、実施例の変化量であり、白抜きの棒グラフは、比較例の変化量である。比較においては、比較例の上部密閉容器の変形量を100%とした。   FIG. 5 is a graph showing a comparison result of the deformation amount with respect to the internal pressure of the upper sealed container 12 of the present embodiment and the upper sealed container of the conventional example. In FIG. 5, numerical analysis conditions were set for the upper closed container with a load pressure of 5 MPa, and the deformation amount under load was calculated. The black bar graph is the amount of change in the example, and the white bar graph is the amount of change in the comparative example. In the comparison, the deformation amount of the upper sealed container of the comparative example was set to 100%.

図5に示すように、上部密閉容器12の吐出管4と、気密端子16との間の変形量は、比較例の上部密閉容器の吐出管と、気密端子との間の変形量の約50%程度にまで減少している。また、気密端子16の中心部分の変形量は、比較例の気密端子の中心部分の変形量の約80%程度に減少している。このように、吐出管4の外形が1.5倍に増加しても変形量が減少したのは、吐出管4と気密端子16との間の距離が十分維持されたためであると考えられる。また、気密端子16が配置された平面部17と、吐出管4が配置された曲面部18とが滑らかな凹部18aにより接続されたことも要因の一つであると考えられる。以上より、本実施の形態の上部密閉容器12の構造を採用することで、応力集中が緩和され、上部密閉容器12の変形を大幅に低減できることがわかった。   As shown in FIG. 5, the amount of deformation between the discharge tube 4 of the upper sealed container 12 and the airtight terminal 16 is about 50 of the amount of deformation between the discharge tube of the upper sealed container of the comparative example and the airtight terminal. It has decreased to about%. Further, the deformation amount of the central portion of the hermetic terminal 16 is reduced to about 80% of the deformation amount of the central portion of the hermetic terminal of the comparative example. Thus, it is considered that the amount of deformation decreased even when the outer shape of the discharge pipe 4 increased by 1.5 times because the distance between the discharge pipe 4 and the airtight terminal 16 was sufficiently maintained. In addition, it is considered that one of the factors is that the flat portion 17 where the airtight terminal 16 is arranged and the curved surface portion 18 where the discharge pipe 4 is arranged are connected by a smooth concave portion 18a. From the above, it was found that by adopting the structure of the upper sealed container 12 of the present embodiment, the stress concentration is alleviated and the deformation of the upper sealed container 12 can be greatly reduced.

なお、上記の説明においては、圧縮室を2つ設けたツインロータリー圧縮機を例にとり説明したが、本発明は、冷媒流量の大きいシングルロータリー、スクロール圧縮機などに適用し、吐出管の拡大を図ることもできる。   In the above description, a twin rotary compressor having two compression chambers has been described as an example. However, the present invention is applied to a single rotary having a large refrigerant flow rate, a scroll compressor, and the like, and the discharge pipe is expanded. You can also plan.

また、上記の説明においては、縦置き型の圧縮機に適用する場合を想定して説明しているが、横置き型の圧縮機において、椀形密閉容器が円筒型密閉容器の解放部に圧入され、中心に吐出管が設けられている場合にも、本発明を適用することができる。   In the above description, the case where the compressor is applied to a vertical type compressor is described. However, in a horizontal type compressor, the vertical sealed container is press-fitted into the open part of the cylindrical sealed container. The present invention can also be applied when a discharge pipe is provided at the center.

以上説明した、本実施の形態に係る回転圧縮機100によれば、気密端子16が配置される平面部17が胴部11の開口により形成されたXY面から傾斜角度θ1、θ2で傾斜している。これにより、気密端子16の最外殻16aと、吐出管4の側面との間の面に沿った距離及び、気密端子16の最外殻16aと、上部密閉容器12の内面との間の面に沿った距離が延長される。そのため、密閉容器1の外径を維持したまま吐出管4の外径を拡大させても、密閉容器1の強度を確保することが可能となる。また、平面部17に大きな面積を確保することができるため、気密端子16の配置、接続などが容易になる。   According to the rotary compressor 100 according to the present embodiment described above, the flat surface portion 17 on which the airtight terminal 16 is disposed is inclined at the inclination angles θ1 and θ2 from the XY plane formed by the opening of the body portion 11. Yes. Thereby, the distance along the surface between the outermost shell 16a of the hermetic terminal 16 and the side surface of the discharge pipe 4, and the surface between the outermost shell 16a of the hermetic terminal 16 and the inner surface of the upper sealed container 12. The distance along is extended. Therefore, even if the outer diameter of the discharge pipe 4 is enlarged while the outer diameter of the sealed container 1 is maintained, the strength of the sealed container 1 can be ensured. In addition, since a large area can be secured in the flat portion 17, the arrangement and connection of the airtight terminals 16 are facilitated.

以上説明した、本実施の形態に係る回転圧縮機100によれば、傾斜角度θ1、θ2は、異なる角度に形成される。このため、吐出管4の側面と、気密端子16の最外殻16aとの距離、及び、気密端子16の最外殻16aと、上部密閉容器12の内面との間の距離を十分に確保することができる。   According to the rotary compressor 100 according to the present embodiment described above, the inclination angles θ1 and θ2 are formed at different angles. For this reason, the distance between the side surface of the discharge pipe 4 and the outermost shell 16a of the airtight terminal 16 and the distance between the outermost shell 16a of the airtight terminal 16 and the inner surface of the upper sealed container 12 are sufficiently secured. be able to.

本実施の形態に係る回転圧縮機100によれば、平面部17の一方の端部17aを曲面部18よりも突出させ、XY面からの距離を大きくているため、平面部17の吐出管4からの距離を保ちながら平面部17の面積を十分拡大し、気密端子16と吐出管4との距離を増大することができる。   According to the rotary compressor 100 according to the present embodiment, one end portion 17a of the flat surface portion 17 is protruded from the curved surface portion 18 and the distance from the XY plane is increased. The area of the flat surface portion 17 can be sufficiently enlarged while maintaining the distance from the distance, and the distance between the airtight terminal 16 and the discharge pipe 4 can be increased.

本実施の形態に係る回転圧縮機100によれば、平面部17と曲面部18とが凹部18aにより滑らかな曲線で接続されることで、密閉容器1の強度が向上する。   According to the rotary compressor 100 according to the present embodiment, the flat portion 17 and the curved surface portion 18 are connected by the concave portion 18a with a smooth curve, whereby the strength of the sealed container 1 is improved.

本実施の形態に係る回転圧縮機100によれば、吐出管4の外径が拡大され、密閉容器1の強度を維持しながら、冷媒循環量を増加させることが可能となり、高能力な回転圧縮機100が得られる。   According to the rotary compressor 100 according to the present embodiment, the outer diameter of the discharge pipe 4 is enlarged, and it is possible to increase the amount of refrigerant circulation while maintaining the strength of the hermetic container 1, and high-performance rotary compression. A machine 100 is obtained.

本実施の形態に係る回転圧縮機100によれば、平面部17の傾斜角度θ1、θ2をそれぞれ5°以上30°以下とすることで、気密端子16と吐出管4との距離を増大させ、且つ、平面部17の面積を十分拡大することができる。また、気密端子16が密閉容器1よりも外側に突出してしまうことも防ぐことができる。   According to the rotary compressor 100 according to the present embodiment, by setting the inclination angles θ1 and θ2 of the plane portion 17 to 5 ° or more and 30 ° or less, the distance between the airtight terminal 16 and the discharge pipe 4 is increased. And the area of the plane part 17 can be expanded sufficiently. Further, it is possible to prevent the airtight terminal 16 from protruding outward from the sealed container 1.

本実施の形態に係る回転圧縮機100によれば、例えば、密閉容器の直径が100mmであっても、吐出管4の側面と、気密端子16との距離は、5mm以上とし、気密端子16と、上部密閉容器12の側面との距離は、5mm以上とすることができる。そのため、絶縁距離の規定に則った設計が可能となる。   According to the rotary compressor 100 according to the present embodiment, for example, even if the diameter of the sealed container is 100 mm, the distance between the side surface of the discharge pipe 4 and the hermetic terminal 16 is 5 mm or more. The distance from the side surface of the upper sealed container 12 can be 5 mm or more. Therefore, it is possible to design according to the regulation of the insulation distance.

本実施の形態に係る回転圧縮機100によれば、ロッド7が平面部17に設けられるため、気密端子16を覆うカバーの取付けの作業が容易になる。   According to the rotary compressor 100 according to the present embodiment, since the rod 7 is provided on the flat surface portion 17, the operation of attaching the cover that covers the airtight terminal 16 becomes easy.

本実施の形態に係る回転圧縮機100によれば、R22冷媒よりも高い飽和圧力を有する冷媒を圧縮しても、密閉容器1の強度が十分であるため、安全が保たれる。   According to the rotary compressor 100 according to the present embodiment, even when a refrigerant having a saturation pressure higher than that of the R22 refrigerant is compressed, safety is maintained because the strength of the sealed container 1 is sufficient.

1 密閉容器、2 圧縮機構部、3 電動機部、4 吐出管、7 ロッド、11 胴部、12 上部密閉容器、13 下部密閉容器、14 吸入マフラー、15 吸入管、16 気密端子、16a 最外殻、17 平面部、17a 端部、17b 端部、18 曲面部、18a 凹部、21 回転軸、22 主軸受、23 副軸受、24 ローリングピストン、25 円筒シリンダ、26 ベーン、31 回転子、32 固定子、100 回転圧縮機。   DESCRIPTION OF SYMBOLS 1 Airtight container, 2 Compression mechanism part, 3 Electric motor part, 4 Discharge pipe, 7 Rod, 11 Trunk part, 12 Upper airtight container, 13 Lower airtight container, 14 Inhalation muffler, 15 Inhalation pipe, 16 Airtight terminal, 16a Outermost shell , 17 plane part, 17a end part, 17b end part, 18 curved surface part, 18a recessed part, 21 rotating shaft, 22 main bearing, 23 auxiliary bearing, 24 rolling piston, 25 cylindrical cylinder, 26 vane, 31 rotor, 32 stator , 100 rotary compressor.

Claims (9)

圧縮機構部、及び、電動機部を収容する密閉容器を備え、
前記密閉容器は、
円筒形の胴部と、
前記胴部の一端の開口を塞ぎ、冷媒を吐出させる吐出管が中央部に接続された第1密閉容器と、
前記胴部の他端の開口を塞ぐ第2密閉容器と、を有し、
前記第1密閉容器は、
前記電動機部に接続される気密端子が配置された平面部と、
前記平面部以外を形成する、少なくとも1つの曲面部と、を有し、
前記平面部は、
長軸方向に第1端部と第2端部とを有する楕円形状を有し、
前記一端の開口により形成され、前記胴部の軸方向に直交する仮想垂直面に位置し、前記仮想垂直面において前記楕円形状の長軸を前記仮想垂直面に投影した軸と直交する第1軸に対して、前記吐出管に近づくにつれて前記仮想垂直面から離れる方向に第1傾斜角度を成して傾斜し、
前記仮想垂直面において前記第1軸と直交する第2軸に対して、前記第1端部が前記第2端部よりも前記仮想垂直面から離れる方向に第2傾斜角度を成して傾斜する
回転圧縮機。
A compression mechanism section, and a sealed container that houses the electric motor section;
The sealed container is
A cylindrical body,
A first sealed container in which an opening at one end of the body portion is closed and a discharge pipe for discharging a refrigerant is connected to a central portion;
A second sealed container that closes an opening at the other end of the body part,
The first sealed container is
A plane portion in which an airtight terminal connected to the electric motor portion is disposed;
Having at least one curved surface part other than the flat part,
The plane portion is
Having an elliptical shape having a first end and a second end in the longitudinal direction;
A first axis that is formed by the opening at the one end, is located on a virtual vertical plane that is orthogonal to the axial direction of the body portion, and that is orthogonal to the axis that projects the major axis of the elliptical shape on the virtual vertical plane on the virtual vertical plane On the other hand, as it approaches the discharge pipe, it is inclined at a first inclination angle in a direction away from the virtual vertical plane,
A second axis perpendicular to the first axis in the virtual vertical plane, said first end portion is inclined at a second inclination angle in a direction away from the imaginary vertical plane than the second end Rotary compressor.
前記第1傾斜角度と、前記第2傾斜角度とが異なるように形成されている、
請求項1に記載の回転圧縮機。
The first tilt angle and the second tilt angle are formed to be different from each other.
The rotary compressor according to claim 1.
前記仮想垂直面と、前記平面部の前記仮想垂直面から最も離れた位置との距離は、
前記仮想垂直面と、前記曲面部との距離よりも大きい
請求項1又は2に記載の回転圧縮機。
The distance between the virtual vertical plane and the position of the plane portion farthest from the virtual vertical plane is:
The rotary compressor according to claim 1 or 2, wherein the rotary compressor is larger than a distance between the virtual vertical plane and the curved surface portion.
前記平面部と前記曲面部とは、
前記曲面部に形成された凹部により接続されている、
請求項1〜3のいずれか一項に記載の回転圧縮機。
The flat surface portion and the curved surface portion are
Connected by a recess formed in the curved portion,
The rotary compressor as described in any one of Claims 1-3.
前記吐出管の外径は、
前記第1密閉容器の外径の0.1倍以上となるように形成されている、
請求項1〜4のいずれか一項に記載の回転圧縮機。
The outer diameter of the discharge pipe is
It is formed to be 0.1 times or more of the outer diameter of the first sealed container,
The rotary compressor as described in any one of Claims 1-4.
前記第1傾斜角度は、前記仮想垂直面に対して5°以上30°以下であり、
前記第2傾斜角度は、前記仮想垂直面に対して5°以上30°以下である、
請求項1〜5のいずれか一項に記載の回転圧縮機。
The first inclination angle is not less than 5 ° and not more than 30 ° with respect to the virtual vertical plane,
The second inclination angle is not less than 5 ° and not more than 30 ° with respect to the virtual vertical plane.
The rotary compressor as described in any one of Claims 1-5.
前記吐出管の側面と、前記気密端子との距離は、5mm以上であり、
前記気密端子と、前記第2密閉容器の側面との距離は、5mm以上である
請求項1〜6のいずれか一項に記載の回転圧縮機。
The distance between the side surface of the discharge pipe and the airtight terminal is 5 mm or more,
The rotary compressor according to any one of claims 1 to 6, wherein a distance between the hermetic terminal and a side surface of the second hermetic container is 5 mm or more.
前記平面部は、
前記平面部に対して垂直に設けられ、前記気密端子を覆うカバーが取付けられるロッドを備えた、
請求項1〜7のいずれか一項に記載の回転圧縮機。
The plane portion is
Provided with a rod that is provided perpendicular to the plane portion and to which a cover that covers the hermetic terminal is attached;
The rotary compressor as described in any one of Claims 1-7.
前記圧縮機構部は、
R22冷媒よりも高い飽和圧力を有する冷媒を圧縮するものである、
請求項1〜8のいずれか一項に記載の回転圧縮機。
The compression mechanism is
Compresses a refrigerant having a higher saturation pressure than the R22 refrigerant.
The rotary compressor as described in any one of Claims 1-8.
JP2018501461A 2016-02-24 2016-02-24 Rotary compressor Active JP6584631B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055349 WO2017145277A1 (en) 2016-02-24 2016-02-24 Rotary compressor

Publications (2)

Publication Number Publication Date
JPWO2017145277A1 JPWO2017145277A1 (en) 2018-05-17
JP6584631B2 true JP6584631B2 (en) 2019-10-02

Family

ID=59684969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018501461A Active JP6584631B2 (en) 2016-02-24 2016-02-24 Rotary compressor

Country Status (5)

Country Link
JP (1) JP6584631B2 (en)
KR (1) KR102041118B1 (en)
CN (1) CN108700075B (en)
CZ (1) CZ308836B6 (en)
WO (1) WO2017145277A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045845A (en) * 2018-09-20 2020-03-26 日立ジョンソンコントロールズ空調株式会社 Hermetic electric compressor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3727459B2 (en) 1997-11-28 2005-12-14 東芝キヤリア株式会社 Hermetic compressor
CZ294083B6 (en) * 2002-08-26 2004-09-15 Jaroslav Ing. Švéda Rotary compressor or internal combustion engine
WO2012050129A1 (en) * 2010-10-13 2012-04-19 東芝キヤリア株式会社 Hermetically enclosed rotary compressor and refrigeration cycle device
US8876496B2 (en) * 2012-03-23 2014-11-04 Bitzer Kuehlmaschinenbau Gmbh Offset electrical terminal box with angled studs
JP5868247B2 (en) * 2012-04-09 2016-02-24 三菱電機株式会社 Rotary compressor
JP2014202117A (en) * 2013-04-04 2014-10-27 ダイキン工業株式会社 Compressor
CN203272142U (en) * 2013-04-19 2013-11-06 广东高品压缩机有限公司 Micro-compressor shell structure
FR3015796B1 (en) * 2013-12-20 2017-02-10 Tecumseh Europe S A FIXING DEVICE AND ELECTRICAL CONNECTION OF A HERMETIC COMPRESSOR
JP6109063B2 (en) * 2013-12-26 2017-04-05 三菱電機株式会社 Hermetic compressor
JP6331631B2 (en) 2014-04-16 2018-05-30 住友ベークライト株式会社 Compressor, compressor casing and compressor casing manufacturing method
KR20160067531A (en) 2014-12-04 2016-06-14 엘지전자 주식회사 A sealing member, a scroll compressor including the same and a method for manufacturing the scroll compressor

Also Published As

Publication number Publication date
CZ2018417A3 (en) 2018-09-26
CN108700075A (en) 2018-10-23
CZ308836B6 (en) 2021-06-30
WO2017145277A1 (en) 2017-08-31
JPWO2017145277A1 (en) 2018-05-17
KR102041118B1 (en) 2019-11-06
CN108700075B (en) 2019-12-20
KR20180091881A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6484796B2 (en) Scroll compressor
KR101716936B1 (en) Sealed compressor
KR101164320B1 (en) Scroll type compressor
JP6584631B2 (en) Rotary compressor
JP2013167256A (en) Rotary compressor
US10309399B2 (en) Rotary compressor
JP2012127198A (en) Compressor
JP6926745B2 (en) Compressor
JP5246052B2 (en) Compressor
JP2009299608A (en) Hermetically-sealed compressor
CN217129795U (en) Compressor pump body and compressor
EP3643919B1 (en) Compressor including cylinder block corresponding to outer rotor type motor
JP2014015911A (en) Rotary compressor
JP2014129796A (en) Compressor
JP5920406B2 (en) Compressor
CN219795558U (en) Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a
JP2012107575A (en) Hermetic compressor
CN209129854U (en) Rotary compressor, gas compression system, refrigeration system and heat pump system
WO2019111620A1 (en) Electric compressor
CN115614278A (en) Compressor pump body and compressor
JP6432340B2 (en) Rotary compressor
KR20060011169A (en) A compressing portion supporting structure of rotary compressor
WO2020204826A1 (en) Crankshaft for hermetic compressor and hermetic compressor
CN117404294A (en) Compressor shell and compressor with same
JP2017187005A (en) Rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190903

R150 Certificate of patent or registration of utility model

Ref document number: 6584631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250