JP6584257B2 - Tuning-fork type crystal vibrating element - Google Patents

Tuning-fork type crystal vibrating element Download PDF

Info

Publication number
JP6584257B2
JP6584257B2 JP2015185916A JP2015185916A JP6584257B2 JP 6584257 B2 JP6584257 B2 JP 6584257B2 JP 2015185916 A JP2015185916 A JP 2015185916A JP 2015185916 A JP2015185916 A JP 2015185916A JP 6584257 B2 JP6584257 B2 JP 6584257B2
Authority
JP
Japan
Prior art keywords
vibrating
support arm
width
tuning fork
arm portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015185916A
Other languages
Japanese (ja)
Other versions
JP2017060131A (en
Inventor
孝宏 尾賀
孝宏 尾賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2015185916A priority Critical patent/JP6584257B2/en
Publication of JP2017060131A publication Critical patent/JP2017060131A/en
Application granted granted Critical
Publication of JP6584257B2 publication Critical patent/JP6584257B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、例えば基準信号源やクロック信号源に用いられる音叉型水晶振動素子(以下「音叉素子」と略称する。)について説明する。   In the present invention, a tuning fork type crystal vibrating element (hereinafter, abbreviated as “tuning fork element”) used for a reference signal source and a clock signal source will be described.

図6[A]は関連技術1の音叉素子を示す概略平面図である。図6[B]は関連技術2の音叉素子を示す概略平面図である。以下、これらの図面に基づき説明する。   FIG. 6A is a schematic plan view showing a tuning fork element of Related Art 1. FIG. FIG. 6B is a schematic plan view showing a tuning fork element according to Related Technique 2. Hereinafter, description will be given based on these drawings.

関連技術1の音叉素子210は、基部211と振動腕部212a,212bとを備えており、図示しない素子搭載部材及び蓋部材によって封止される。基部211は、平面視略四角形状であり、下面側が導電性接着剤によって素子搭載部材に固定される。つまり、音叉素子210は片持ち梁状に素子搭載部材に固定される。そのため、音叉素子210に衝撃が加わると、振動腕部212a,212bの先端が素子搭載部材又は蓋部材に接触して、音叉素子210の動作不良を招くおそれがあった。   The tuning fork element 210 of Related Art 1 includes a base 211 and vibrating arm portions 212a and 212b, and is sealed by an element mounting member and a lid member (not shown). The base 211 has a substantially rectangular shape in plan view, and the lower surface side is fixed to the element mounting member with a conductive adhesive. That is, the tuning fork element 210 is fixed to the element mounting member in a cantilever shape. For this reason, when an impact is applied to the tuning fork element 210, the tips of the vibrating arm portions 212a and 212b may come into contact with the element mounting member or the lid member, causing a malfunction of the tuning fork element 210.

そのような関連技術1の問題を解決する、関連技術2の音叉素子310が知られている(特許文献1参照)。音叉素子310は、基部311、振動腕部312a,312b及び支持腕部313を備えており、支持腕部313を備えた点で関連技術1と異なる。支持腕部313は、基部311から振動腕部312aの短手方向に延び、その先端から更に振動腕部312aの長手方向に延びた形状である。例えば支持腕部313の先端側を導電性接着剤によって素子搭載部材に固定することにより、音叉素子310をほぼ両持ち梁状に固定できるので、音叉素子310の耐衝撃性が向上する。   A tuning fork element 310 of Related Technology 2 that solves the problem of Related Technology 1 is known (see Patent Document 1). The tuning fork element 310 includes a base 311, vibrating arm portions 312 a and 312 b, and a support arm portion 313, and is different from the related technique 1 in that the support arm portion 313 is provided. The support arm portion 313 has a shape extending from the base portion 311 in the short direction of the vibrating arm portion 312a and further extending from the distal end thereof in the longitudinal direction of the vibrating arm portion 312a. For example, by fixing the tip side of the support arm 313 to the element mounting member with a conductive adhesive, the tuning fork element 310 can be fixed substantially in the form of a double-supported beam, so that the impact resistance of the tuning fork element 310 is improved.

特許第4049017号公報Japanese Patent No. 4049017

しかしながら、関連技術2の音叉素子310には、発振周波数に設計値からのずれ(以下「周波数ずれ」という。)が生じたり、等価直列抵抗値が大きくなったりする等、電気的特性が関連技術1に比べて劣るという問題があった。   However, the tuning fork element 310 of the related technique 2 has electrical characteristics such as a deviation of the oscillation frequency from the design value (hereinafter referred to as “frequency shift”) or an increase in the equivalent series resistance value. There was a problem that it was inferior to 1.

そこで、本発明の目的は、支持腕部を有する音叉素子において、周波数ずれの低減等、電気的特性を向上し得る技術を提供することにある。   Therefore, an object of the present invention is to provide a technique capable of improving electrical characteristics such as reduction of frequency deviation in a tuning fork element having a support arm portion.

本発明者は、関連技術2の音叉素子310において周波数ずれ等の電気的特性が劣るという問題を解決すべく研究を重ねた結果、次の知見を得た。   The inventor conducted research to solve the problem that the electrical characteristics such as frequency shift are inferior in the tuning fork element 310 of Related Art 2, and as a result, obtained the following knowledge.

支持腕部313と振動腕部312a,312bとが同一方向に延びているため、振動腕部312a,312bを屈曲振動させると、その振動が支持腕部313に伝わって、支持腕部313にも屈曲振動が生じてしまう。また、支持腕部313には実装用の電極パターンが形成されているので、その電極パターンから印加される電圧によっても屈曲振動が生じてしまう。このとき、振動腕部312a,312bと支持腕部313とで屈曲振動の周波数が近いと、互いの振動が影響し合う。その結果、周波数ずれが生じたり等価直列抵抗値が大きくなったりする等、電気的特性の悪化を招くことになる。   Since the support arm portion 313 and the vibrating arm portions 312a and 312b extend in the same direction, when the vibrating arm portions 312a and 312b are bent and vibrated, the vibration is transmitted to the support arm portion 313 and also to the support arm portion 313. Bending vibration will occur. Further, since the mounting arm pattern is formed on the support arm portion 313, bending vibration also occurs due to the voltage applied from the electrode pattern. At this time, when the vibration arm portions 312a and 312b and the support arm portion 313 have close bending vibration frequencies, the vibrations of each other influence each other. As a result, the electrical characteristics are deteriorated, such as a frequency shift or an increased equivalent series resistance value.

本発明は、この知見に基づきなされたものであり、
対向する第一辺及び第二辺並びに対向する第三辺及び第四辺からなる平面視略四角形状の基部と、
前記第一辺から同じ方向に延びた一対の振動腕部と、
前記第三辺の前記第二辺側及び前記第四辺の前記第二辺側の少なくとも一方に設けられ、前記第二辺側から前記振動腕部の短手方向に延び、その先端から更に前記振動腕部の長手方向に延びた支持腕部と、
を備えた音叉素子において、
前記振動腕部の短手方向に平行な寸法を幅としたとき、
前記支持腕部は、その幅が前記振動腕部の幅よりも部分的に細い細幅部を有し、
前記一対の振動腕部の先端には、それぞれ周波数調整用の錘部が設けられ、
前記細幅部は、前記錘部に対向する位置に形成された、
ことを特徴とする。
そして、前記長手方向は結晶軸のY’軸方向であり、前記短手方向は結晶軸のX軸方向であり、
前記細幅部は、前記支持腕部の+X面側のみがウェットエッチングによって除去された残りからなる。
又は、一枚の水晶ウェハから同一形状の多数個が製造される音叉素子であって、
前記支持腕部は、前記第三辺の前記第二辺側及び前記第四辺の前記第二辺側のどちらか一方に設けられ、かつ、隣接する他の音叉型水晶振動素子の前記錘部と対向するように前記水晶ウェハに配置され、
当該錘部の凸部形状と前記細幅部の凹部形状とが一定間隔を介して一致する。
The present invention has been made based on this finding,
A substantially quadrangular base portion in plan view composed of first and second sides facing each other and third and fourth sides facing each other;
A pair of vibrating arms extending in the same direction from the first side;
Provided on at least one of the second side of the third side and the second side of the fourth side, extends from the second side in the lateral direction of the vibrating arm portion, and further from the tip thereof A support arm extending in the longitudinal direction of the vibrating arm;
In a tuning fork element with
When the width parallel to the short direction of the vibrating arm portion,
The support arm portion has a width have a partially thin narrow section than the width of said vibrating arms,
At the tips of the pair of vibrating arms, weight portions for frequency adjustment are provided,
The narrow width portion is formed at a position facing the weight portion,
It is characterized by that.
The longitudinal direction is the Y′-axis direction of the crystal axis, and the short direction is the X-axis direction of the crystal axis,
The narrow width portion is formed by removing only the + X plane side of the support arm portion by wet etching.
Or a tuning fork element in which a large number of the same shape is manufactured from one crystal wafer,
The supporting arm portion is provided on either the second side of the third side or the second side of the fourth side, and the weight portion of another adjacent tuning-fork type crystal vibrating element Arranged on the quartz wafer so as to face
The convex shape of the weight portion and the concave shape of the narrow width portion coincide with each other at a constant interval.

本発明によれば、支持腕部が振動腕部の幅よりも部分的に細い細幅部を有することにより、支持腕部の屈曲振動と振動腕部の屈曲振動との周波数差を大きくできるので、支持腕部の屈曲振動が振動腕部に与える影響を抑制でき、周波数ずれの低減等、電気的特性を向上できる。   According to the present invention, since the supporting arm portion has a narrow width portion that is partially narrower than the width of the vibrating arm portion, the frequency difference between the bending vibration of the supporting arm portion and the bending vibration of the vibrating arm portion can be increased. In addition, the influence of the bending vibration of the support arm portion on the vibrating arm portion can be suppressed, and electrical characteristics such as reduction of frequency deviation can be improved.

実施形態1の音叉素子を示す平面図である。FIG. 3 is a plan view showing a tuning fork element according to the first embodiment. 図2[A]は図1におけるIIa−IIa線断面図であり、図2[B]は図1の音叉素子を素子搭載部材に実装した状態を示す概略断面図であり、図2[C]は図1の音叉素子における第一辺乃至第四辺の変形例を示す概略平面図である。2A is a cross-sectional view taken along line IIa-IIa in FIG. 1, and FIG. 2B is a schematic cross-sectional view showing a state where the tuning fork element in FIG. 1 is mounted on an element mounting member. FIG. 5 is a schematic plan view showing a modification of the first side to the fourth side of the tuning fork element of FIG. 1. 図3[A]乃至図3[C]は実施形態1における細幅部の変形例を示す部分平面図であり、図3[A]は変形例1、図3[B]は変形例2、図3[C]は変形例3であり、図3[D]は変形例4である。FIGS. 3A to 3C are partial plan views showing a modification of the narrow portion in the first embodiment, FIG. 3A is a modification 1, FIG. 3B is a modification 2, FIG. 3C is a third modification, and FIG. 3D is a fourth modification. 図4[A]は実施形態2の音叉素子を示す概略平面図、図4[B]は比較例を示す部分斜視図、図4[C]は実施形態2を示す部分斜視図、図4[D]は比較例を示す部分平面図、図4[E]は実施形態2を示す部分平面図である。4A is a schematic plan view showing the tuning fork element of Embodiment 2, FIG. 4B is a partial perspective view showing a comparative example, FIG. 4C is a partial perspective view showing Embodiment 2, and FIG. D] is a partial plan view showing a comparative example, and FIG. 4E is a partial plan view showing the second embodiment. 図5[A]は実施形態3の音叉素子を示す概略平面図、図5[B]は比較例を示す概略平面図、図5[C]は実施形態4を示す概略平面図である。5A is a schematic plan view showing a tuning fork element according to the third embodiment, FIG. 5B is a schematic plan view showing a comparative example, and FIG. 5C is a schematic plan view showing the fourth embodiment. 関連技術を示す概略平面図であり、図6[A]は関連技術1、図6[B]は関連技術2を示す。FIG. 6A is a schematic plan view showing a related technique, FIG. 6A shows the related technique 1, and FIG.

以下、添付図面を参照しながら、本発明を実施するための形態(以下「実施形態」という。)について説明する。なお、本明細書及び図面において、実質的に同一の構成要素については同一の符号を用いる。また、図面に描かれた形状は、当業者が理解しやすいように描かれているため、実際の寸法及び比率とは必ずしも一致していない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as “embodiments”) will be described with reference to the accompanying drawings. In the present specification and drawings, the same reference numerals are used for substantially the same components. Moreover, since the shape drawn on drawing is drawn so that those skilled in the art can understand easily, it does not necessarily correspond with an actual dimension and ratio.

図1は、実施形態1の音叉素子を示す平面図である。図2[A]は、図1におけるIIa−IIa線断面図である。図2[B]は、図1の音叉素子を素子搭載部材に実装した状態を示す概略断面図である。図2[C]は、図1の音叉素子における第一辺乃至第四辺の変形例を示す概略平面図である。以下、これらの図面に基づき説明する。   FIG. 1 is a plan view showing a tuning fork element according to the first embodiment. 2A is a cross-sectional view taken along line IIa-IIa in FIG. FIG. 2B is a schematic cross-sectional view showing a state where the tuning fork element of FIG. 1 is mounted on an element mounting member. FIG. 2C is a schematic plan view showing a modification of the first to fourth sides of the tuning fork element of FIG. Hereinafter, description will be given based on these drawings.

図1及び図2[A]に示すように、本実施形態1の音叉素子10は、基部11と一対の振動腕部12a,12bと支持腕部13とを備えている。基部11は、対向する第一辺111及び第二辺112並びに対向する第三辺113及び第四辺114からなる平面視略四角形状である。一対の振動腕部12a,12bは、第一辺111から同じ方向に延びている。支持腕部13は、第三辺113の第二辺112側及び第四辺114の第二辺112側の少なくとも一方に設けられ、第二辺112側から振動腕部12a,12bの短手方向に延び、その先端から更に振動腕部12a,12bの長手方向に延びている。本実施形態1では、第三辺113の第二辺112側にのみ支持腕部13が設けられている。そして、振動腕部12a,12bの短手方向に平行な寸法を幅としたとき、支持腕部13は、その幅W2が振動腕部12a,12bの幅W1よりも部分的に細い細幅部131を有する。すなわちW2<W1が成り立つ。   As shown in FIGS. 1 and 2A, the tuning fork element 10 according to the first embodiment includes a base 11, a pair of vibrating arms 12a and 12b, and a support arm 13. The base 11 has a substantially quadrangular shape in plan view, which includes a first side 111 and a second side 112 facing each other, and a third side 113 and a fourth side 114 facing each other. The pair of vibrating arm portions 12 a and 12 b extend from the first side 111 in the same direction. The support arm portion 13 is provided on at least one of the second side 112 side of the third side 113 and the second side 112 side of the fourth side 114, and the short side direction of the vibrating arm portions 12a and 12b from the second side 112 side. And extending further in the longitudinal direction of the vibrating arms 12a and 12b from the tip. In the first embodiment, the support arm portion 13 is provided only on the second side 112 side of the third side 113. When the dimension parallel to the short direction of the vibrating arm portions 12a and 12b is defined as the width, the support arm portion 13 has a narrow width portion whose width W2 is partially narrower than the width W1 of the vibrating arm portions 12a and 12b. 131. That is, W2 <W1 holds.

本実施形態1では、振動腕部12a,12bの先端に、それぞれ周波数調整用の錘部16a,16bが設けられている。細幅部131は、錘部16aに対向する位置に形成されている。   In the first embodiment, weight adjusting portions 16a and 16b are provided at the tips of the vibrating arm portions 12a and 12b, respectively. The narrow portion 131 is formed at a position facing the weight portion 16a.

振動腕部12a,12bは、それぞれ基部11から同じ方向に延設され、その延設方向に沿って溝部15a,15bが設けられている。基部11、振動腕部12a,12b、支持腕部13及び錘部16a,16bは、水晶振動片19からなる。音叉素子10は、水晶振動片19の他に、パッド電極21a,21b、励振電極22a,22b、周波数調整用金属膜23a,23b、配線パターン24a,24bなども備えている。   The vibrating arm portions 12a and 12b are extended from the base portion 11 in the same direction, and groove portions 15a and 15b are provided along the extending direction. The base portion 11, the vibrating arm portions 12 a and 12 b, the support arm portion 13, and the weight portions 16 a and 16 b are made of a crystal vibrating piece 19. The tuning fork element 10 includes pad electrodes 21a and 21b, excitation electrodes 22a and 22b, frequency adjusting metal films 23a and 23b, and wiring patterns 24a and 24b in addition to the crystal vibrating piece 19.

次に、音叉素子10の構成について更に詳しく説明する。   Next, the configuration of the tuning fork element 10 will be described in more detail.

基部11は、平面視略四角形(実線及び破線で囲まれた領域)の平板となっている。水晶振動片19は、基部11、振動腕部12a,12b、支持腕部13及び錘部16a,16bが一体となって音叉形状をなしており、成膜技術、フォトリソグラフィ技術、ウェットエッチング技術によって製造される。   The base 11 is a flat plate having a substantially rectangular shape in a plan view (a region surrounded by a solid line and a broken line). The quartz crystal vibrating piece 19 has a tuning fork shape in which the base 11, the vibrating arms 12a and 12b, the supporting arm 13 and the weights 16a and 16b are integrated, and is formed by a film forming technique, a photolithography technique, and a wet etching technique. Manufactured.

溝部15a,15bは、振動腕部12aの表裏面に二本ずつ及び振動腕部12bの表裏面に二本ずつ、基部11との境界部分から振動腕部12a,12bの先端に向って、振動腕部12a,12bの長手方向と平行に所定の長さで設けられる。なお、溝部15a,15bは、本実施形態1では振動腕部12aの表裏面に二本ずつ及び振動腕部12bの表裏面に二本ずつ設けられているが、それらの本数に制限はなく、例えば振動腕部12aの表裏面に一本ずつ及び振動腕部12bの表裏面に一本ずつ設けてもよく、また、表裏のどちらか片面にのみ設けてもよい。溝部15a,15b内には、ウェットエッチング時に水晶振動片19の外形形成と同時に貫通しない溝部15a、15bを形成できるように、エッチング抑制パターンを設けてもよい。   The groove portions 15a and 15b vibrate from the boundary portion with the base 11 toward the tip of the vibrating arm portions 12a and 12b, two grooves on the front and rear surfaces of the vibrating arm portion 12a and two grooves on the front and rear surfaces of the vibrating arm portion 12b. It is provided with a predetermined length in parallel with the longitudinal direction of the arms 12a, 12b. In the first embodiment, two grooves 15a and 15b are provided on the front and back surfaces of the vibrating arm 12a and two grooves on the front and back surfaces of the vibrating arm 12b. However, the number of the grooves 15a and 15b is not limited. For example, one may be provided on the front and back surfaces of the vibrating arm portion 12a and one on each of the front and back surfaces of the vibrating arm portion 12b, or may be provided on only one side of the front and back surfaces. An etching suppression pattern may be provided in the grooves 15a and 15b so that the grooves 15a and 15b that do not penetrate at the same time as the outer shape of the crystal vibrating piece 19 is formed during wet etching.

振動腕部12aには、水晶を挟んで対向する平面同士が同極となるように、両側面に励振電極22aが設けられ、表裏面の溝部15aの内側に励振電極22bが設けられる。同様に、振動腕部12bには、水晶を挟んで対向する平面同士が同極となるように、両側面に励振電極22bが設けられ、表裏面の溝部15bの内側に励振電極22aが設けられる。したがって、振動腕部12aにおいては両側面に設けられた励振電極22aと溝部15a内に設けられた励振電極22bとが異極同士となり、振動腕部12bにおいては両側面に設けられた励振電極22bと溝部15b内に設けられた励振電極22aとが異極同士となる。   The vibrating arm 12a is provided with excitation electrodes 22a on both side surfaces so that the planes facing each other across the crystal have the same polarity, and excitation electrodes 22b are provided inside the groove portions 15a on the front and back surfaces. Similarly, the vibrating arm portion 12b is provided with excitation electrodes 22b on both side surfaces so that the planes facing each other across the crystal have the same polarity, and the excitation electrode 22a is provided inside the groove portion 15b on the front and back surfaces. . Therefore, in the vibrating arm portion 12a, the excitation electrode 22a provided on both sides and the excitation electrode 22b provided in the groove 15a have different polarities, and in the vibrating arm portion 12b, the excitation electrode 22b provided on both sides. And the excitation electrode 22a provided in the groove 15b have different polarities.

支持腕部13にはパッド電極21a,21bが設けられ、支持腕部13及び基部11には配線パターン24a,24bが設けられ、錘部16a,16bには周波数調整用金属膜23a,23bが設けられる。配線パターン24aはパッド電極21aと励振電極22aとの間を電気的に接続し、配線パターン24bはパッド電極21bと励振電極22bとの間を電気的に接続する。パッド電極21a、励振電極22a、周波数調整用金属膜23a及び配線パターン24aは、互いに電気的に導通している。パッド電極21b、励振電極22b、周波数調整用金属膜23b及び配線パターン24bも、互いに電気的に導通している。   The support arm portion 13 is provided with pad electrodes 21a and 21b, the support arm portion 13 and the base portion 11 are provided with wiring patterns 24a and 24b, and the weight portions 16a and 16b are provided with frequency adjusting metal films 23a and 23b. It is done. The wiring pattern 24a electrically connects the pad electrode 21a and the excitation electrode 22a, and the wiring pattern 24b electrically connects the pad electrode 21b and the excitation electrode 22b. The pad electrode 21a, the excitation electrode 22a, the frequency adjusting metal film 23a, and the wiring pattern 24a are electrically connected to each other. The pad electrode 21b, the excitation electrode 22b, the frequency adjusting metal film 23b, and the wiring pattern 24b are also electrically connected to each other.

図2[B]に示すように、音叉素子10は、パッド電極21a,21b(図1)及び導電性接着剤31a,31bを介して、素子搭載部材32側のパッド電極33a,32bにほぼ両持ち梁状に固定されると同時に電気的に接続される。音叉素子10が実装された素子搭載部材32は、蓋部材34によって封止される。その封止方法には、例えば電気溶接や溶融ガラスが用いられる。   As shown in FIG. 2 [B], the tuning fork element 10 is substantially connected to the pad electrodes 33a and 32b on the element mounting member 32 side via the pad electrodes 21a and 21b (FIG. 1) and the conductive adhesives 31a and 31b. At the same time it is fixed in the shape of a cantilever, it is electrically connected. The element mounting member 32 on which the tuning fork element 10 is mounted is sealed with a lid member 34. For the sealing method, for example, electric welding or molten glass is used.

水晶の結晶は三方晶系である。水晶の頂点を通る結晶軸をZ軸、Z軸に垂直な平面内の稜線を結ぶ三つの結晶軸をX軸、X軸及びZ軸に直交する座標軸をY軸とする。ここで、これらのX軸、Y軸及びZ軸からなる座標系をX軸を中心として±5度の範囲で回転させたときの回転後のY軸及びZ軸を、それぞれY’軸及びZ’軸とする。この場合、本実施形態1では、二本の振動腕部12a,12bの長手方向がY’軸の方向であり、二本の振動腕部12a,12bの短手方向がX軸の方向である。また、法線が+X軸方向を向く結晶面が+X面であり、法線が−X軸方向を向く結晶面が−X面である。   Quartz crystals are trigonal. A crystal axis passing through the crystal apex is defined as a Z axis, three crystal axes connecting ridge lines in a plane perpendicular to the Z axis are defined as an X axis, and a coordinate axis orthogonal to the X axis and the Z axis is defined as a Y axis. Here, when the coordinate system consisting of these X, Y, and Z axes is rotated within a range of ± 5 degrees around the X axis, the rotated Y axis and Z axis are respectively represented as Y ′ axis and Z axis. 'As axis. In this case, in the first embodiment, the longitudinal direction of the two vibrating arm portions 12a and 12b is the Y′-axis direction, and the short direction of the two vibrating arm portions 12a and 12b is the X-axis direction. . Further, the crystal plane in which the normal line faces the + X axis direction is the + X plane, and the crystal plane in which the normal line faces the −X axis direction is the −X plane.

ここで、第一辺乃至第四辺111〜114の変形例について説明する。第一辺乃至第四辺111〜114は、それぞれ直線的なものに限らず、凹部や凸部を設けたものしてもよい。例えば、図2[C]に示すように、第一辺111にはリフトオフ法で電極を形成する際に側面での電気的な短絡を防ぐために好適な突起部171及びスリット172を設けてもよいし、第三辺113及び第四辺114には振動腕部12a,12bからの振動漏れを抑制する切れ込み部18a,18bを設けてもよい。また、一対の肩部14a,14bを設けてもよい。一対の肩部14a,14bは、第三辺113及び第四辺114がそれぞれ振動腕部12a,12bの根本から振動腕部12a,12bの短手方向に延びてなる。   Here, modified examples of the first side to the fourth side 111 to 114 will be described. The first side to the fourth side 111 to 114 are not limited to linear ones, and may be provided with concave portions or convex portions. For example, as shown in FIG. 2C, the first side 111 may be provided with a protrusion 171 and a slit 172 suitable for preventing an electrical short circuit on the side surface when forming an electrode by the lift-off method. The third side 113 and the fourth side 114 may be provided with notches 18a and 18b for suppressing vibration leakage from the vibrating arm portions 12a and 12b. Moreover, you may provide a pair of shoulder part 14a, 14b. The pair of shoulder portions 14a and 14b has a third side 113 and a fourth side 114 extending from the roots of the vibrating arm portions 12a and 12b in the short direction of the vibrating arm portions 12a and 12b, respectively.

ここで、音叉素子10の大きさについて説明する。基部11の第一辺111の長さは、250〜350μmとなっており、基部11の第三辺113の長さは、115〜210μmとなっている。振動腕部12a,12bは、長さが450〜550μmとなっており、幅W1が20〜55μmとなっている。また、支持腕13に設けられている細幅部131の幅W2は、10〜45μmとなっている。また、錘部16a,16bは、長さが195〜580μmとなっており、幅が25〜85μmとなっている。   Here, the size of the tuning fork element 10 will be described. The length of the first side 111 of the base 11 is 250 to 350 μm, and the length of the third side 113 of the base 11 is 115 to 210 μm. The vibrating arm portions 12a and 12b have a length of 450 to 550 μm and a width W1 of 20 to 55 μm. Further, the width W2 of the narrow portion 131 provided on the support arm 13 is 10 to 45 μm. Further, the weight portions 16a and 16b have a length of 195 to 580 μm and a width of 25 to 85 μm.

次に、音叉素子10の動作を説明する。音叉素子10を屈曲振動させる場合、パッド電極21a,21bに交番電圧を印加する。印加後のある電気的状態を瞬間的に捉えると、振動腕部12aの表裏の溝部15aに設けられた励振電極22bはプラス電位となり、振動腕部12aの両側面に設けられた励振電極22aはマイナス電位となり、プラスからマイナスに電界が生じる。このとき、振動腕部12bの表裏の溝部15bに設けられた励振電極22aはマイナス電位となり、振動腕部12bの両側面に設けられた励振電極22bはプラス電位となり、振動腕部12aに生じた極性とは反対の極性となり、プラスからマイナスに電界が生じる。この交番電圧で生じた電界によって、振動腕部12a,12bに伸縮現象が生じ、所定の共振周波数の屈曲振動モードが得られる。   Next, the operation of the tuning fork element 10 will be described. When the tuning fork element 10 is bent and vibrated, an alternating voltage is applied to the pad electrodes 21a and 21b. When an electrical state after application is instantaneously captured, the excitation electrodes 22b provided in the groove portions 15a on the front and back of the vibrating arm portion 12a have a positive potential, and the excitation electrodes 22a provided on both side surfaces of the vibrating arm portion 12a are A negative electric potential is generated, and an electric field is generated from positive to negative. At this time, the excitation electrodes 22a provided in the groove portions 15b on the front and back of the vibrating arm portion 12b have a negative potential, and the excitation electrodes 22b provided on both side surfaces of the vibrating arm portion 12b have a positive potential, and are generated in the vibrating arm portion 12a. The polarity is opposite to the polarity, and an electric field is generated from plus to minus. The electric field generated by the alternating voltage causes a stretching phenomenon in the vibrating arm portions 12a and 12b, and a flexural vibration mode having a predetermined resonance frequency is obtained.

次に、音叉素子10の作用及び効果について説明する。   Next, the operation and effect of the tuning fork element 10 will be described.

(1)本実施形態1によれば、支持腕部13が振動腕部12a,12bの幅W1よりも部分的に細い細幅部131(幅W2、W2<W1)を有することにより、支持腕部13の屈曲振動と振動腕部12a,12bの屈曲振動との周波数差を大きくできるので、支持腕部13の屈曲振動が振動腕部12a,12bに与える影響を抑制でき、周波数ずれの低減等、電気的特性を向上できる。   (1) According to the first embodiment, the support arm portion 13 has the narrow width portion 131 (width W2, W2 <W1) that is partially narrower than the width W1 of the vibrating arm portions 12a and 12b. Since the frequency difference between the bending vibration of the portion 13 and the bending vibration of the vibrating arm portions 12a and 12b can be increased, the influence of the bending vibration of the support arm portion 13 on the vibrating arm portions 12a and 12b can be suppressed, and the frequency deviation can be reduced. , Electrical characteristics can be improved.

支持腕部13及び振動腕部12a,12bの幅が細くなるほど、それらの屈曲振動の周波数は高くなる。そこで、支持腕部13の一部の幅を細くすることにより、支持腕部13で生じる屈曲振動の周波数を高い周波数帯へシフトさせる。その結果、支持腕部13の屈曲振動と振動腕部12a,12bの屈曲振動との周波数差が大きくなる。   As the widths of the support arm 13 and the vibrating arms 12a and 12b become thinner, the frequency of the bending vibrations becomes higher. Therefore, by narrowing the width of a part of the support arm portion 13, the frequency of the bending vibration generated in the support arm portion 13 is shifted to a high frequency band. As a result, the frequency difference between the bending vibration of the support arm portion 13 and the bending vibration of the vibrating arm portions 12a and 12b increases.

なお、支持腕部13の幅全体を狭くして、支持腕部13の屈曲振動の周波数を変えることも考えられる。しかし、支持腕13の幅全体が振動腕12a,12bより細い場合は、支持腕部13が折れやすくなるため、好ましくない。   It is also conceivable to change the frequency of the bending vibration of the support arm 13 by narrowing the entire width of the support arm 13. However, when the entire width of the support arm 13 is narrower than the vibrating arms 12a and 12b, the support arm portion 13 is easily broken, which is not preferable.

これとは逆に、支持腕部13の幅を太くして、支持腕部13の屈曲振動の周波数を変えることも考えられる。しかし、支持腕13の幅全体が錘部16a,16bの幅より太い場合も、発振回路に不具合を生じるため、好ましくない。なぜなら、支持腕部13の幅を太くすると、支持腕部13の周波数が振動腕部12a,12bの周波数よりも低くなり、そうなると、一般の発振回路は支持腕部13の周波数帯で発振しようとするからである。これに加え、支持腕部13の幅を太くすることは、音叉素子10の大型化を招くという欠点もある。   On the contrary, it is also conceivable to increase the width of the support arm 13 and change the frequency of the bending vibration of the support arm 13. However, it is not preferable that the entire width of the support arm 13 is larger than the widths of the weight portions 16a and 16b because it causes a problem in the oscillation circuit. This is because if the width of the support arm portion 13 is increased, the frequency of the support arm portion 13 becomes lower than the frequency of the vibrating arm portions 12a and 12b. Then, a general oscillation circuit tries to oscillate in the frequency band of the support arm portion 13. Because it does. In addition to this, increasing the width of the support arm portion 13 has a disadvantage that the tuning fork element 10 is increased in size.

(2)振動腕部12a,12bの周波数は、主に振動腕部12a,12bの長さ(長手方向の寸法)及び幅によって設計し、錘部16a,16bの質量によって調整する。本実施形態1では、細幅部131が錘部16aに対向する位置に形成されていることにより、支持腕部13の周波数を計算しやすい。その理由は、細幅部131を除く支持腕部13の長さ及び幅と細幅部131の質量とは、振動腕部12a,12bの長さ及び幅と錘部16a,16bの質量とに対応するからである。そのため、振動腕部12a,12bの周波数の計算過程を、支持腕部13の周波数の計算にも利用できることになる。 (2) The frequency of the vibrating arm portions 12a and 12b is designed mainly by the length (longitudinal dimension) and width of the vibrating arm portions 12a and 12b, and is adjusted by the mass of the weight portions 16a and 16b. In the first embodiment, since the narrow portion 131 is formed at a position facing the weight portion 16a, the frequency of the support arm portion 13 can be easily calculated. The reason is that the length and width of the support arm portion 13 excluding the narrow width portion 131 and the mass of the narrow width portion 131 are the same as the length and width of the vibrating arm portions 12a and 12b and the mass of the weight portions 16a and 16b. It is because it corresponds. Therefore, the frequency calculation process of the vibrating arm portions 12 a and 12 b can also be used for calculating the frequency of the support arm portion 13.

次に、実施形態1における細幅部131の変形例について説明する。図3[A]乃至図3[C]は実施形態1における細幅部の変形例を示す部分平面図であり、図3[A]は変形例1、図3[B]は変形例2、図3[C]は変形例3であり、図3[D]は変形例4である。   Next, a modification of the narrow portion 131 in the first embodiment will be described. FIGS. 3A to 3C are partial plan views showing a modification of the narrow portion in the first embodiment, FIG. 3A is a modification 1, FIG. 3B is a modification 2, FIG. 3C is a third modification, and FIG. 3D is a fourth modification.

図3でも、図1と同様に、長手方向は結晶軸のY’軸方向であり、短手方向は結晶軸のX軸方向である。図3[A]に示す変形例1の細幅部131aは、支持腕部13の+X面側のみがウェットエッチングによって除去された残りからなる。図3[B]に示す変形例2の細幅部131bは、支持腕部13の+X面側及び−X面側の両方がウェットエッチングによって除去された残りからなる。図3[C]に示す変形例3の細幅部131cは、支持腕部13の−X面側のみがウェットエッチングによって除去された残りからなる。   3, as in FIG. 1, the longitudinal direction is the Y′-axis direction of the crystal axis, and the short direction is the X-axis direction of the crystal axis. The narrow portion 131a of the first modification shown in FIG. 3A is formed by the remainder obtained by removing only the + X plane side of the support arm portion 13 by wet etching. The narrow portion 131b of Modification 2 shown in FIG. 3B is formed by removing both the + X plane side and the −X plane side of the support arm portion 13 by wet etching. The narrow portion 131c of Modification 3 shown in FIG. 3 [C] consists of the remainder obtained by removing only the −X surface side of the support arm portion 13 by wet etching.

換言すると、変形例1の細幅部131aでは、図1に示す細幅部131と同様に、錘部に対向する面の反対側の面が切り欠かれて、それが切り欠き部C1になっている。変形例2の細幅部131bは、錘部に対向する面とその反対側の面との両方が切り欠かれて、それぞれが切り欠き部C2,C1になっている。変形例3の細幅部131cは、錘部に対向する面が切り欠かれて、それが切り欠き部C2になっている。   In other words, in the narrow width portion 131a of the modified example 1, the surface opposite to the surface facing the weight portion is cut out, as in the narrow width portion 131 shown in FIG. 1, and this becomes the cutout portion C1. ing. In the narrow width portion 131b of the modified example 2, both the surface facing the weight portion and the surface on the opposite side are notched, and the respective portions are notched portions C2 and C1. The narrow portion 131c of Modification 3 has a surface that is opposed to the weight portion, which is a notch C2.

フッ酸などを用いた水晶のウェットエッチングでは、水晶に特有の異方性エッチングによって、エッチング残渣が水晶に付着する。切り欠き部C1,C2には、それぞれエッチング残渣L1,L2が生じる。−X面に生じるエッチング残渣L2は、エッチングレートの差に起因して、+X面に生じるエッチング残渣L1よりも大きくなる。したがって、エッチング残渣の量は、変形例1(L1)<変形例3(L2)<変形例2(L1+L2)となる。エッチング残渣の量が少ないほど、設計どおりの形状が得られるので、好ましいと言える。   In wet etching of quartz using hydrofluoric acid or the like, etching residues adhere to the quartz by anisotropic etching unique to quartz. Etching residues L1 and L2 are generated in the notches C1 and C2, respectively. The etching residue L2 generated on the −X plane is larger than the etching residue L1 generated on the + X plane due to the difference in etching rate. Therefore, the amount of etching residue is modified example 1 (L1) <modified example 3 (L2) <modified example 2 (L1 + L2). It can be said that the smaller the amount of etching residue, the better the shape as designed.

変形例4は、一枚の水晶ウェハから同一形状の多数個が製造される音叉素子に用いられる。図1を使って説明すると、変形例4における支持腕部13は、第三辺113の第二辺112側にのみ設けられ、かつ、隣接する他の音叉素子10の錘部16bと対向するように水晶ウェハ(図示せず)に配置される。なお、支持腕部は、第四辺114の第二辺112側にのみ設けてもよい。   The modification 4 is used for a tuning fork element in which a large number of the same shape is manufactured from one crystal wafer. If it demonstrates using FIG. 1, the support arm part 13 in the modification 4 will be provided only in the 2nd side 112 side of the 3rd side 113, and it may oppose the weight part 16b of the other adjacent tuning fork element 10. FIG. To a quartz wafer (not shown). Note that the support arm portion may be provided only on the second side 112 side of the fourth side 114.

そして、図3[D]に示すように、錘部16bの凸部形状と細幅部131dの凹部形状とが、一定間隔dを介して一致する。変形例4によれば、隣接する音叉素子の錘部16bの凸部形状に、細幅部131aの凹部形状を合わせることにより、水晶ウェハ上において隣接する音叉素子同士を接近させることができるので、水晶ウェハ一枚当たりの音叉素子数を増やすことができる。   Then, as shown in FIG. 3D, the convex shape of the weight portion 16b and the concave shape of the narrow width portion 131d coincide with each other with a constant interval d. According to the fourth modification, by matching the concave shape of the narrow portion 131a with the convex shape of the weight portion 16b of the adjacent tuning fork element, the adjacent tuning fork elements can be brought closer to each other on the crystal wafer. The number of tuning fork elements per crystal wafer can be increased.

次に、図4に基づき、実施形態2について説明する。図4では、溝部、電極等の図示を省略している。   Next, Embodiment 2 will be described with reference to FIG. In FIG. 4, illustration of a groove part, an electrode, etc. is abbreviate | omitted.

図4[A]に示すように、本実施形態2の音叉素子40における細幅部132は、振動腕部12a,12bの短手方向に延び、更に振動腕部12a,12bの長手方向に延びる角に形成されている。図4[B]乃至図4[E]に示すように、素子搭載部材32上に導電性接着剤31を円状に塗布し、その上に音叉素子40を載置することにより、音叉素子40を素子搭載部材32に実装する。このとき、本実施形態2によれば、以下に説明する効果を奏する。なお、比較例は、細幅部132が無い点を除き、音叉素子40と同じ構成である。   As shown in FIG. 4A, the narrow width portion 132 in the tuning fork element 40 of the second embodiment extends in the short direction of the vibrating arm portions 12a and 12b, and further extends in the longitudinal direction of the vibrating arm portions 12a and 12b. It is formed at the corner. As shown in FIG. 4B to FIG. 4E, the tuning fork element 40 is formed by applying a conductive adhesive 31 in a circular shape on the element mounting member 32 and placing the tuning fork element 40 thereon. Is mounted on the element mounting member 32. At this time, according to the second embodiment, the following effects can be obtained. The comparative example has the same configuration as the tuning fork element 40 except that the narrow portion 132 is not provided.

図4[B]に示す比較例では、支持腕部13の二つの面にだけ、導電性接着剤31が這い上がる。これに対し、図4[C]に示す本実施形態2では、細幅部132が設けられている部分の支持腕部13の二つの面と、細幅部132が設けられていない部分の支持腕部13の二つの面との、合計四つの面に、導電性接着剤31が這い上がる。よって、本実施形態2によれば、導電性接着剤31が多面的に広がるので、導電性接着剤31による接着強度を向上できる。更には、図4[D]に示す比較例と比べて、図4[E]に示す本実施形態2の方が、角部が1箇所よりも3箇所と多いので、角部に這い上がった導電性接着剤31のメニスカスによって、更に導電性接着剤31の這い上がり面積が大きくなり、素子搭載部材32と音叉素子10との境界部分に存在する導電性接着剤31の量を増加させ、音叉素子10の裏面から表面に向かう向きに平行な厚み部分が滑らかに変化するように形作ることができる。そのため、接着強度を向上させて外部からの衝撃による耐衝撃性をも向上させることが可能となる。   In the comparative example shown in FIG. 4B, the conductive adhesive 31 crawls up only on the two surfaces of the support arm 13. On the other hand, in the second embodiment shown in FIG. 4C, the two surfaces of the support arm portion 13 where the narrow portion 132 is provided and the support where the narrow portion 132 is not provided. The conductive adhesive 31 crawls up on a total of four surfaces including the two surfaces of the arm portion 13. Therefore, according to the second embodiment, since the conductive adhesive 31 spreads in many ways, the adhesive strength by the conductive adhesive 31 can be improved. Furthermore, compared to the comparative example shown in FIG. 4D, the second embodiment shown in FIG. 4E has three corners rather than one, so that the corners crawl up. The meniscus of the conductive adhesive 31 further increases the creeping area of the conductive adhesive 31, increasing the amount of the conductive adhesive 31 present at the boundary between the element mounting member 32 and the tuning fork element 10, and tuning fork. It can be formed such that the thickness portion parallel to the direction from the back surface to the front surface of the element 10 changes smoothly. Therefore, it is possible to improve the adhesive strength and also improve the impact resistance due to external impact.

図4[D]に示す比較例では、素子搭載部材32と支持腕部13とに挟まれる導電性接着剤31の量が多いので、その導電性接着剤31が基部11側まで押し広げられることにより、振動腕部12a,12bの振動漏れを増加させるおそれがあった。振動腕部12a,12bの屈曲振動は、導電性接着剤31を介して素子搭載部材32側へ漏れるからである。これに対し、図4[E]に示す本実施形態2では、細幅部132が設けられているため、素子搭載部材32と支持腕部13とに挟まれる導電性接着剤31の量を少なくできる。これにより、導電性接着剤31が基部11側まで押し広げられることがないので、振動腕部12a,12bの振動漏れを抑制できる。また、基部11に設けられている配線パターン24a,24b間が導電性接着剤31により短絡することを低減できる。   In the comparative example shown in FIG. 4D, since the amount of the conductive adhesive 31 sandwiched between the element mounting member 32 and the support arm portion 13 is large, the conductive adhesive 31 is spread to the base 11 side. Therefore, there is a risk of increasing the vibration leakage of the vibrating arm portions 12a and 12b. This is because the bending vibration of the vibrating arm portions 12 a and 12 b leaks to the element mounting member 32 side through the conductive adhesive 31. On the other hand, in the second embodiment shown in FIG. 4E, since the narrow width portion 132 is provided, the amount of the conductive adhesive 31 sandwiched between the element mounting member 32 and the support arm portion 13 is reduced. it can. Thereby, since the conductive adhesive 31 is not spread to the base 11 side, vibration leakage of the vibrating arm portions 12a and 12b can be suppressed. Further, it is possible to reduce a short circuit between the wiring patterns 24 a and 24 b provided on the base 11 by the conductive adhesive 31.

なお、素子搭載部材32と支持腕部13とに挟まれる導電性接着剤31の量が減ることによる接着強度への影響は、図4[C]に示す効果によって補うことができる。本実施形態2のその他の構成、作用及び効果は、実施形態1のそれらと同様である。   Note that the effect on the adhesive strength due to the decrease in the amount of the conductive adhesive 31 sandwiched between the element mounting member 32 and the support arm portion 13 can be compensated by the effect shown in FIG. 4C. Other configurations, operations, and effects of the second embodiment are the same as those of the first embodiment.

次に、図5[A]及び図5[B]に基づき、実施形態3について説明する。図5では、溝部、電極等の図示を省略している。   Next, Embodiment 3 will be described based on FIG. 5A and FIG. 5B. In FIG. 5, illustration of a groove part, an electrode, etc. is abbreviate | omitted.

図5[A]に示すように、本実施形態3の音叉素子50における細幅部133は、基部11に対向する位置に形成されている。詳しく言えば、支持腕部13の基部11に対向する面が切り欠かれ、そこが細幅部133になっている。なお、図5[B]に示す比較例の音叉素子50’は、細幅部133が無い点を除き、音叉素子50と同じ構成である。   As shown in FIG. 5A, the narrow width portion 133 in the tuning fork element 50 according to the third embodiment is formed at a position facing the base portion 11. More specifically, the surface of the support arm 13 that faces the base 11 is cut out, and the narrow portion 133 is formed there. The tuning fork element 50 ′ of the comparative example shown in FIG. 5B has the same configuration as the tuning fork element 50 except that the narrow width portion 133 is not provided.

図5[A]には、本実施形態3における基部11から支持腕部13までの距離W3、及び、そこに生ずるエッチング残渣L3が示されている。図5[B]には、比較例における基部11から支持腕部13までの距離W4、及び、そこに生ずるエッチング残渣L4が示されている。このとき、本実施形態3では細幅部133が設けられているため、距離W3は距離W4よりも長くなる。そして、基部11から支持腕部13までの距離が長いほどエッチング残渣が小さくなるため、エッチング残渣L3はエッチング残渣L4よりも小さい。エッチング残渣L3,L4は、振動腕部12aから基部11を経て支持腕部13へ至る振動漏れを伝達する働きをするので、できるだけ小さいことが望まれる。   FIG. 5A shows the distance W3 from the base 11 to the support arm 13 and the etching residue L3 generated there in the third embodiment. FIG. 5B shows the distance W4 from the base 11 to the support arm 13 and the etching residue L4 generated there in the comparative example. At this time, since the narrow portion 133 is provided in the third embodiment, the distance W3 is longer than the distance W4. Since the etching residue becomes smaller as the distance from the base 11 to the support arm 13 becomes longer, the etching residue L3 is smaller than the etching residue L4. The etching residues L3 and L4 function to transmit vibration leakage from the vibrating arm portion 12a through the base portion 11 to the support arm portion 13, and are therefore desirably as small as possible.

したがって、本実施形態3によれば、基部11から支持腕部13までの距離W3を長くできることにより、その間に生じるエッチング残渣L3を小さくできるので、振動腕部12aから支持腕部13への振動漏れを低減できる。本実施形態3のその他の構成、作用及び効果は、実施形態1、2のそれらと同様である。   Therefore, according to the third embodiment, since the distance W3 from the base 11 to the support arm 13 can be increased, the etching residue L3 generated therebetween can be reduced, so that the vibration leakage from the vibration arm 12a to the support arm 13 can be reduced. Can be reduced. Other configurations, operations, and effects of the third embodiment are the same as those of the first and second embodiments.

次に、図5[C]に基づき、実施形態4について説明する。   Next, Embodiment 4 will be described based on FIG.

本実施形態4の音叉素子60は、実施形態1乃至3で述べた細幅部131,132,133の全てを備えている。したがって、本実施形態5によれば、実施形態1乃至3で述べた全ての効果を相乗的に奏する。なお、細幅部131,132,133のうちいずれか二つを備えたものとしてもよい。本実施形態4のその他の構成、作用及び効果は、実施形態1乃至3のそれらと同様である。   The tuning fork element 60 of the fourth embodiment includes all of the narrow portions 131, 132, 133 described in the first to third embodiments. Therefore, according to the fifth embodiment, all the effects described in the first to third embodiments are synergistically exhibited. It should be noted that any two of the narrow portions 131, 132, 133 may be provided. Other configurations, operations, and effects of the fourth embodiment are the same as those of the first to third embodiments.

以上、上記各実施形態を参照して本発明を説明したが、本発明は上記各実施形態に限定されるものではない。本発明の構成や詳細については、当業者が理解し得るさまざまな変更を加えることができる。また、本発明には、上記各実施形態の構成の一部又は全部を相互に適宜組み合わせたものも含まれる。   Although the present invention has been described with reference to the above embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention. Further, the present invention includes a combination of some or all of the configurations of the above-described embodiments as appropriate.

本発明は、基部と振動腕部と支持腕部とを備える音叉素子であれば、どのようなものにでも利用可能である。   The present invention can be applied to any tuning fork element including a base, a vibrating arm, and a support arm.

<実施形態1>
10 音叉素子
11 基部
111 第一辺
112 第二辺
113 第三辺
114 第四辺
12a,12b 振動腕部
13 支持腕部
131,131a,131b,131c,131d 細幅部
14a,14b 肩部
15a,15b 溝部
16a,16b 錘部
171 突起部
172 スリット
18a,18b 切れ込み部
19 水晶振動片
21a,21b パッド電極
22a,22b 励振電極
23a,23b 周波数調整用金属膜
24a,24b 配線パターン
31a,31b 導電性接着剤
32 素子搭載部材
33a,32b パッド電極
34 蓋部材
C1,C2 切り欠き部
L1,L2 エッチング残渣
W1,W2 幅
d 一定間隔
<実施形態2>
40 音叉素子
132 細幅部
31 導電性接着剤
<実施形態3>
50,50’ 音叉素子
133 細幅部
W3,W4 距離
L3,L4 エッチング残渣
<実施形態4>
60 音叉素子
<関連技術1>
210 音叉素子
211 基部
212a,212b 振動腕部
<関連技術2>
310 音叉素子
311 基部
312a,312b 振動腕部
313 支持腕部
<Embodiment 1>
10 tuning fork element 11 base 111 first side 112 second side 113 third side 114 fourth side 12a, 12b vibrating arm part 13 support arm part 131, 131a, 131b, 131c, 131d narrow part 14a, 14b shoulder part 15a, 15b Groove portion 16a, 16b Weight portion 171 Protrusion portion 172 Slit 18a, 18b Notch portion 19 Crystal vibrating piece 21a, 21b Pad electrode 22a, 22b Excitation electrode 23a, 23b Frequency adjustment metal film 24a, 24b Wiring pattern 31a, 31b Conductive adhesion Agent 32 Element mounting member 33a, 32b Pad electrode 34 Lid member C1, C2 Notch L1, L2 Etching residue W1, W2 Width d Fixed interval <Embodiment 2>
40 tuning fork element 132 narrow portion 31 conductive adhesive <Embodiment 3>
50, 50 'tuning fork element 133 narrow portion W3, W4 distance L3, L4 etching residue <Embodiment 4>
60 Tuning Fork Element <Related Technology 1>
210 tuning fork element 211 base 212a, 212b vibrating arm <related technology 2>
310 tuning fork element 311 base 312a, 312b vibrating arm 313 support arm

Claims (2)

対向する第一辺及び第二辺並びに対向する第三辺及び第四辺からなる平面視略四角形状の基部と、
前記第一辺から同じ方向に延びた一対の振動腕部と、
前記第三辺の前記第二辺側及び前記第四辺の前記第二辺側の少なくとも一方に設けられ、前記第二辺側から前記振動腕部の短手方向に延び、その先端から更に前記振動腕部の長手方向に延びた支持腕部と、
を備えた音叉型水晶振動素子において、
前記振動腕部の短手方向に平行な寸法を幅としたとき、
前記支持腕部は、その幅が前記振動腕部の幅よりも部分的に細い細幅部を有し、
前記一対の振動腕部の先端には、それぞれ周波数調整用の錘部が設けられ、
前記細幅部は、前記錘部に対向する位置に形成され、
前記長手方向は結晶軸のY’軸方向であり、前記短手方向は結晶軸のX軸方向であり、
前記細幅部は、前記支持腕部の+X面側のみがウェットエッチングによって除去された残りからなる、
ことを特徴とする音叉型水晶振動素子。
A substantially quadrangular base portion in plan view composed of first and second sides facing each other and third and fourth sides facing each other;
A pair of vibrating arms extending in the same direction from the first side;
Provided on at least one of the second side of the third side and the second side of the fourth side, extends from the second side in the lateral direction of the vibrating arm portion, and further from the tip thereof A support arm extending in the longitudinal direction of the vibrating arm;
In the tuning fork type crystal vibrating element with
When the width parallel to the short direction of the vibrating arm portion,
The support arm portion has a width have a partially thin narrow section than the width of said vibrating arms,
At the tips of the pair of vibrating arms, weight portions for frequency adjustment are provided,
The narrow width portion is formed at a position facing the weight portion,
The longitudinal direction is the Y′-axis direction of the crystal axis, and the short direction is the X-axis direction of the crystal axis,
The narrow width portion consists of the remainder obtained by removing only the + X plane side of the support arm portion by wet etching.
A tuning-fork type crystal vibrating element characterized by that.
対向する第一辺及び第二辺並びに対向する第三辺及び第四辺からなる平面視略四角形状の基部と、
前記第一辺から同じ方向に延びた一対の振動腕部と、
前記第三辺の前記第二辺側及び前記第四辺の前記第二辺側の少なくとも一方に設けられ、前記第二辺側から前記振動腕部の短手方向に延び、その先端から更に前記振動腕部の長手方向に延びた支持腕部と、
を備えた音叉型水晶振動素子において、
前記振動腕部の短手方向に平行な寸法を幅としたとき、
前記支持腕部は、その幅が前記振動腕部の幅よりも部分的に細い細幅部を有し、
前記一対の振動腕部の先端には、それぞれ周波数調整用の錘部が設けられ、
前記細幅部は、前記錘部に対向する位置に形成され、
かつ、一枚の水晶ウェハから同一形状の多数個が製造される音叉型水晶振動素子であって、
前記支持腕部は、前記第三辺の前記第二辺側及び前記第四辺の前記第二辺側のどちらか一方に設けられ、かつ、隣接する他の音叉型水晶振動素子の前記錘部と対向するように前記水晶ウェハに配置され、
当該錘部の凸部形状と前記細幅部の凹部形状とが一定間隔を介して一致する、
ことを特徴とする音叉型水晶振動素子。
A substantially quadrangular base portion in plan view composed of first and second sides facing each other and third and fourth sides facing each other;
A pair of vibrating arms extending in the same direction from the first side;
Provided on at least one of the second side of the third side and the second side of the fourth side, extends from the second side in the lateral direction of the vibrating arm portion, and further from the tip thereof A support arm extending in the longitudinal direction of the vibrating arm;
In the tuning fork type crystal vibrating element with
When the width parallel to the short direction of the vibrating arm portion,
The support arm part has a narrow part whose width is partially narrower than the width of the vibrating arm part,
At the tips of the pair of vibrating arms, weight portions for frequency adjustment are provided,
The narrow width portion is formed at a position facing the weight portion,
And a tuning fork type crystal resonator element in which a large number of the same shape is manufactured from one crystal wafer,
The supporting arm portion is provided on either the second side of the third side or the second side of the fourth side, and the weight portion of another adjacent tuning-fork type crystal vibrating element Arranged on the quartz wafer so as to face
The convex shape of the weight portion and the concave shape of the narrow width portion coincide with each other at a constant interval.
A tuning-fork type crystal vibrating element characterized by that .
JP2015185916A 2015-09-18 2015-09-18 Tuning-fork type crystal vibrating element Expired - Fee Related JP6584257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015185916A JP6584257B2 (en) 2015-09-18 2015-09-18 Tuning-fork type crystal vibrating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015185916A JP6584257B2 (en) 2015-09-18 2015-09-18 Tuning-fork type crystal vibrating element

Publications (2)

Publication Number Publication Date
JP2017060131A JP2017060131A (en) 2017-03-23
JP6584257B2 true JP6584257B2 (en) 2019-10-02

Family

ID=58390955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015185916A Expired - Fee Related JP6584257B2 (en) 2015-09-18 2015-09-18 Tuning-fork type crystal vibrating element

Country Status (1)

Country Link
JP (1) JP6584257B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005065189A (en) * 2003-08-20 2005-03-10 Seiko Epson Corp Piezo-electric device and its manufacturing method, mobile telephone using piezo-electric device, and electronic apparatus using piezo-electric device
ATE421799T1 (en) * 2005-06-09 2009-02-15 Eta Sa Mft Horlogere Suisse COMPACT PIEZOELECTRIC RESONATOR
JP4609196B2 (en) * 2005-06-20 2011-01-12 セイコーエプソン株式会社 Piezoelectric vibrating piece, piezoelectric device, electronic apparatus and mobile phone device
JP4629094B2 (en) * 2007-12-28 2011-02-09 日本電波工業株式会社 Piezoelectric vibrating piece, piezoelectric device and manufacturing method thereof
JP5399767B2 (en) * 2009-04-28 2014-01-29 京セラクリスタルデバイス株式会社 Crystal oscillator

Also Published As

Publication number Publication date
JP2017060131A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
US7437932B2 (en) Gyro vibration piece and gyro sensor
JP2014200026A5 (en)
JP6322400B2 (en) Piezoelectric vibrating piece, method for manufacturing piezoelectric vibrating piece, and piezoelectric vibrator
JP5652122B2 (en) Vibrating piece, vibrating device and electronic device
JP2017060130A (en) Tuning-fork type crystal vibration element
JP5972686B2 (en) Crystal oscillator
JP6569874B2 (en) Quartz crystal resonator and manufacturing method thereof
JP2004135052A (en) Tuning fork type vibrator
JP6584257B2 (en) Tuning-fork type crystal vibrating element
JP5399888B2 (en) Tuning fork type bending crystal resonator element
JP6525821B2 (en) Tuning fork type crystal element
JP6632347B2 (en) Tuning fork type crystal vibrating element
JP6084068B2 (en) Crystal oscillator
JP5847540B2 (en) Crystal wafer
JP2010246020A (en) Tuning fork type crystal resonator
JP6108708B2 (en) Crystal oscillator
JP2020043484A (en) Tuning fork-type crystal element and crystal device
JP6689684B2 (en) Tuning fork crystal unit
JP2019087774A (en) Tuning fork type crystal vibrating element and piezoelectric device
JP2019102826A (en) Tuning-fork type crystal vibration element and piezoelectric device
US8212458B2 (en) Flexural-mode tuning-fork type quartz crystal resonator
JP2011176701A (en) Tuning fork type bending crystal vibrating element
JP2017085345A (en) Tuning fork type crystal vibration element
JP2018074370A (en) Piezoelectric device
JP6150433B2 (en) Quartz vibrating element and method for manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190903

R150 Certificate of patent or registration of utility model

Ref document number: 6584257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees