JP6581251B2 - Inner ear characteristic evaluation device, program - Google Patents

Inner ear characteristic evaluation device, program Download PDF

Info

Publication number
JP6581251B2
JP6581251B2 JP2018118091A JP2018118091A JP6581251B2 JP 6581251 B2 JP6581251 B2 JP 6581251B2 JP 2018118091 A JP2018118091 A JP 2018118091A JP 2018118091 A JP2018118091 A JP 2018118091A JP 6581251 B2 JP6581251 B2 JP 6581251B2
Authority
JP
Japan
Prior art keywords
sound
inner ear
phase modulation
otoacoustic emission
characteristic evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018118091A
Other languages
Japanese (ja)
Other versions
JP2018161515A (en
Inventor
翔 大塚
翔 大塚
茂人 古川
茂人 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2018118091A priority Critical patent/JP6581251B2/en
Publication of JP2018161515A publication Critical patent/JP2018161515A/en
Application granted granted Critical
Publication of JP6581251B2 publication Critical patent/JP6581251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、内耳の特性(聴力など)を評価する内耳特性評価装置、プログラムに関する。   The present invention relates to an inner ear characteristic evaluation device and a program for evaluating inner ear characteristics (such as hearing ability).

内耳特性(内耳機能)を評価する方法として聴力検査が用いられている。また、聴力検査より詳細に内耳特性(内耳機能)を評価する方法として、非侵襲に内耳の入出力特性を推定する方法が提案されている(非特許文献1)。内耳は、主に、音の入力に合わせて振動する基底膜とそれを増幅する細胞(外有毛細胞)、振動を検知する細胞(内有毛細胞)で構成されている。外有毛細胞の特性により、基底膜振動の入出力特性は図1に示すような圧縮特性を示す。図1は非特許文献2に開示された入力音圧レベルと基底膜振動速度の関係を表す図である。また受検者(被評価者)の解答に依らず、耳音響放射を用いて内耳特性を測定する方法が提案されている(非特許文献3)。耳音響放射とは、基底膜振動に由来し、耳から放出される音である。耳音響放射の入出力特性は基底膜振動と同様に圧縮特性を示すことが知られている。耳音響放射には、歪型、反射型の2種類が存在する。歪型の耳音響放射は、基底膜振動の圧縮特性により生じる歪成分である。反射型の耳音響放射は、基底膜の機械的特性の不均一性による反射音であって、刺激音の特性を保つ。図2は非特許文献4に開示された耳音響放射、刺激音の例を示す図である。図2(A)は耳音響放射の音圧(Pa)の時間変化の例、図2(B)は刺激音の音圧(Pa)の時間変化の例を示す図である。   Hearing test is used as a method for evaluating inner ear characteristics (inner ear function). Further, as a method for evaluating inner ear characteristics (inner ear function) in more detail than a hearing test, a method for non-invasively estimating input / output characteristics of the inner ear has been proposed (Non-Patent Document 1). The inner ear mainly includes a basement membrane that vibrates in accordance with sound input, cells that amplify it (outer hair cells), and cells that detect vibration (inner hair cells). Due to the characteristics of the outer hair cells, the input / output characteristics of the basement membrane vibration show compression characteristics as shown in FIG. FIG. 1 is a diagram showing the relationship between the input sound pressure level and the basement membrane vibration speed disclosed in Non-Patent Document 2. In addition, a method for measuring inner ear characteristics using otoacoustic radiation has been proposed regardless of the answer of the examinee (evaluator) (Non-patent Document 3). Otoacoustic emissions are sounds emitted from the ears that originate from basement membrane vibrations. It is known that the input / output characteristics of otoacoustic radiation exhibit compression characteristics as well as basement membrane vibration. There are two types of otoacoustic emissions: distorted and reflective. Strain-type otoacoustic radiation is a distortion component caused by the compression characteristics of basement membrane vibration. Reflective otoacoustic radiation is a reflected sound due to the non-uniformity of the mechanical properties of the basement membrane and retains the properties of the stimulating sound. FIG. 2 is a diagram illustrating an example of otoacoustic emission and stimulation sound disclosed in Non-Patent Document 4. FIG. 2A is a diagram showing an example of the temporal change of the sound pressure (Pa) of the otoacoustic emission, and FIG. 2B is a diagram showing an example of the temporal change of the sound pressure (Pa) of the stimulating sound.

D. A. Nelson, A. C. Schroder, and M. Wojtczak, "A new procedure for measuring peripheral compression in normal-hearing and hearing-impaired listeners," J. Acoust. Soc. Am., October 2001, Vol. 110, No. 4, pp. 2045-2064DA Nelson, AC Schroder, and M. Wojtczak, "A new procedure for measuring peripheral compression in normal-hearing and hearing-impaired listeners," J. Acoust. Soc. Am., October 2001, Vol. 110, No. 4, pp. 2045-2064 R. Nobili, F. Mammano, and J. Ashmore, "How well do we understand the cochlea?," TINS, 1998, Vol. 21, No. 4, pp. 159-166R. Nobili, F. Mammano, and J. Ashmore, "How well do we understand the cochlea ?," TINS, 1998, Vol. 21, No. 4, pp. 159-166 P. T. Johannesen, and E. A. Lopez-Poveda, "Cochlear nonlinearity in normal-hearing subjects as inferred psychophysically and from distortion-product otoacoustic emissions," J. Acoust. Soc. Am., October 2008, Vol. 124, No. 4, pp. 2149-2163PT Johannesen, and EA Lopez-Poveda, "Cochlear nonlinearity in normal-hearing subjects as inferred psychophysically and from distortion-product otoacoustic emissions," J. Acoust. Soc. Am., October 2008, Vol. 124, No. 4, pp . 2149-2163 Goodman SS, Withnell RH, De Boer E, Lilly DJ, and Nuttall AL. , "Cochlear delays measured with amplitude-modulated tone-burst evoked OAEs," Hearing Research, February 2004, Vol. 188, Issues 1-2, pp. 57-69Goodman SS, Withnell RH, De Boer E, Lilly DJ, and Nuttall AL., "Cochlear delays measured with amplitude-modulated tone-burst evoked OAEs," Hearing Research, February 2004, Vol. 188, Issues 1-2, pp. 57-69

非特許文献1に開示された心理物理的な推定方法は、測定に時間がかかる上に、主観的な応答を必要とするため、新生児などの解答が難しい受検者(被評価者)には適用が難しい。特に、新生児を対象としたスクリーニングへの応用が難しいという欠点があった。   The psychophysical estimation method disclosed in Non-Patent Document 1 takes time to measure and requires a subjective response, so it is applicable to examinees who are difficult to answer such as newborns (evaluators). Is difficult. In particular, there is a drawback that application to screening for newborns is difficult.

一方、非特許文献3に開示された耳音響放射を用いて内耳特性を評価する方法は、理論的背景が十分でなく、図3に示すように心理物理的に推定された入出力特性との違いが大きくなる場合があることが問題となっている。図3は、参考非特許文献1に開示された、心理物理的推定方法で内耳の反応を推定した結果と、耳音響放射の入出力特性を用いて内耳の反応を推定した結果とを比較して示す図である。同図の被験者1、被験者2の結果に顕著なように、耳音響放射の入出力特性を用いて内耳機能(内耳特性)を推定した場合、心理物理的手法による推定結果との誤差が大きくなる場合があることが問題であった。
(参考非特許文献1:M. Epstein, and M. Florentine, "Inferring basilar-membrane motion from tone-burst otoacoustic emissions and psychoacoustic measurements," J.Acoust. Soc. Am., January 2005, Vol. 117, No. 1, pp. 263-274)
On the other hand, the method of evaluating the inner ear characteristics using the otoacoustic emission disclosed in Non-Patent Document 3 has insufficient theoretical background, and the psychophysically estimated input / output characteristics as shown in FIG. The problem is that the differences can be significant. FIG. 3 compares the result of estimating the inner ear response by the psychophysical estimation method disclosed in Reference Non-Patent Document 1 with the result of estimating the inner ear response using the input / output characteristics of otoacoustic emission. FIG. As is evident from the results of subjects 1 and 2 in the figure, when the inner ear function (inner ear characteristics) is estimated using the input / output characteristics of the otoacoustic emission, the error from the estimation result by the psychophysical method increases. The problem was that there were cases.
(Reference Non-Patent Document 1: M. Epstein, and M. Florentine, "Inferring basilar-membrane motion from tone-burst otoacoustic emissions and psychoacoustic measurements," J. Acoust. Soc. Am., January 2005, Vol. 117, No 1, pp. 263-274)

そこで本発明では、非侵襲かつ対象者の解答に依存せずに、内耳特性を評価することができる内耳特性評価装置を提供することを目的とする。   Therefore, an object of the present invention is to provide an inner ear characteristic evaluation apparatus that can evaluate inner ear characteristics without being invasive and not depending on the answer of the subject.

本発明の内耳特性評価装置は、刺激音呈示部と、耳音響放射算出部と、表示部を含む。   The inner ear characteristic evaluation apparatus of the present invention includes a stimulation sound presenting unit, an otoacoustic emission calculation unit, and a display unit.

刺激音呈示部は、振幅変調音である刺激音を被評価者の外耳道に呈示する。耳音響放射算出部は、刺激音の呈示によって生じた耳音響放射を算出する。表示部は、刺激音に対する耳音響放射の位相変調量にピークが存在するか否かを視認可能な情報を表示する。 The stimulation sound presentation unit presents a stimulation sound that is an amplitude-modulated sound to the external auditory canal of the person to be evaluated. The otoacoustic emission calculation unit calculates otoacoustic emission generated by the presentation of the stimulation sound. The display unit displays the information capable of visually whether peaks exist in the phase modulation amount of otoacoustic emission against stimuli.

本発明の内耳特性評価装置によれば、非侵襲かつ対象者の解答に依存せずに、内耳特性を評価することができる。   According to the inner ear characteristic evaluation apparatus of the present invention, it is possible to evaluate the inner ear characteristic without being invasive and not depending on the answer of the subject.

非特許文献2に開示された入力音圧レベルと基底膜振動速度の関係を表す図。The figure showing the relationship between the input sound pressure level and the basement membrane vibration speed disclosed in Non-Patent Document 2. 非特許文献4に開示された耳音響放射、刺激音の例を示す図であって、図2(A)は耳音響放射の音圧(Pa)の時間変化の例、図2(B)は刺激音の音圧(Pa)の時間変化の例を示す図。It is a figure which shows the example of the otoacoustic radiation and the stimulation sound disclosed by the nonpatent literature 4, Comprising: FIG. 2 (A) is an example of the time change of the sound pressure (Pa) of otoacoustic radiation, FIG.2 (B) is The figure which shows the example of the time change of the sound pressure (Pa) of a stimulus sound. 参考非特許文献1に開示された、心理物理的推定方法で内耳の反応を推定した結果と、耳音響放射の入出力特性を用いて内耳の反応を推定した結果とを比較して示す図。The figure which compares and compares the result of having estimated the reaction of the inner ear with the psychophysical estimation method disclosed by reference nonpatent literature 1, and the result of having estimated the reaction of the inner ear using the input / output characteristic of otoacoustic emission. 実施例1の耳音響放射測定装置、内耳特性評価装置の構成を示すブロック図。The block diagram which shows the structure of the otoacoustic emission measuring apparatus and inner ear characteristic evaluation apparatus of Example 1. FIG. 実施例1の耳音響放射測定装置を挿入した際の外耳道および内耳を示す概略断面図。FIG. 3 is a schematic cross-sectional view showing the external auditory canal and the inner ear when the otoacoustic emission measuring apparatus of Example 1 is inserted. 実施例1の耳音響放射測定装置の動作を示すフローチャート。5 is a flowchart showing the operation of the otoacoustic emission measurement apparatus according to the first embodiment. 実施例1の内耳特性評価装置の動作を示すフローチャート。5 is a flowchart showing the operation of the inner ear characteristic evaluation apparatus according to the first embodiment. 実施例1の刺激音生成部が生成する刺激音を説明する図。The figure explaining the stimulus sound which the stimulus sound generation part of Example 1 generates. 検証実験において耳音響放射算出部が算出した耳音響放射の例を示す図であって、図9(A)は耳音響放射の位相変調量を示す図、図9(B)は耳音響放射の振幅の時間変化を示す図。It is a figure which shows the example of the otoacoustic emission which the otoacoustic emission calculation part calculated in verification experiment, Comprising: FIG. 9 (A) is a figure which shows the phase modulation amount of otoacoustic emission, FIG.9 (B) is an otoacoustic emission figure. The figure which shows the time change of an amplitude. 検証実験において位相変調量計算部が計算した位相変調量の例を示す図であって、位相変調量と刺激音の音圧との関係を表す図。It is a figure which shows the example of the phase modulation amount which the phase modulation amount calculation part calculated in verification experiment, Comprising: The figure showing the relationship between a phase modulation amount and the sound pressure of a stimulus sound. ある被評価者における心理物理的方法で推定した内耳の入出力関数の増幅率と位相変調量との関係についての実験結果を示す図であって、図11(A)は、心理物理的方法で推定した内耳における増幅率と刺激音の音圧との関係を示す図、図11(B)は位相変調量と刺激音の音圧との関係を示す図。It is a figure which shows the experimental result about the relationship between the amplification factor of the input / output function of the inner ear estimated by the psychophysical method in a certain evaluated person, and a phase modulation amount, Comprising: FIG. 11 (A) is a psychophysical method. The figure which shows the relationship between the amplification factor in the estimated inner ear, and the sound pressure of a stimulus sound, FIG.11 (B) is a figure which shows the relationship between the amount of phase modulation, and the sound pressure of a stimulus sound. 位相変調量の最大値と内耳特性(内耳機能)の相関関係について示す図。The figure shown about the correlation of the maximum value of phase modulation amount, and an inner ear characteristic (inner ear function).

以下、本発明の実施の形態について、詳細に説明する。なお、同じ機能を有する構成部には同じ番号を付し、重複説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail. In addition, the same number is attached | subjected to the structure part which has the same function, and duplication description is abbreviate | omitted.

以下、図4を参照して実施例1の耳音響放射測定装置、内耳特性評価装置の構成について説明する。図4は、本実施例の耳音響放射測定装置1、内耳特性評価装置2、内耳特性評価装置3の構成を示すブロック図である。図4に示すように、本実施例の耳音響放射測定装置1は、刺激音呈示部11と、外耳道内音取得部12と、AD変換部13を含む構成である。本実施例の内耳特性評価装置2は、刺激音生成部21と、耳音響放射算出部22と、位相変調量計算部23と、内耳特性推定部24と、表示部25を含む構成である。内耳特性評価装置の構成は上述の構成に限らず、同図に示すように、耳音響放射測定装置1と内耳特性評価装置2の構成要件の全てを含む内耳特性評価装置3の構成としてもよい。また、耳音響放射測定装置と内耳特性評価装置を分離して構成した場合、AD変換部13は同図に示すように耳音響放射測定装置内に設けてもよいし、内耳特性評価装置内に設けてもよい。耳音響放射測定装置と内耳特性評価装置を分離して構成した場合、耳音響放射測定装置と内耳特性評価装置は有線または無線で通信可能に接続されているものとする。   Hereinafter, the configurations of the otoacoustic emission measurement apparatus and the inner ear characteristic evaluation apparatus of Example 1 will be described with reference to FIG. FIG. 4 is a block diagram illustrating a configuration of the otoacoustic emission measurement apparatus 1, the inner ear characteristic evaluation apparatus 2, and the inner ear characteristic evaluation apparatus 3 of the present embodiment. As shown in FIG. 4, the otoacoustic emission measurement apparatus 1 of the present embodiment includes a stimulation sound presentation unit 11, an external auditory canal sound acquisition unit 12, and an AD conversion unit 13. The inner ear characteristic evaluation apparatus 2 according to the present embodiment includes a stimulation sound generation unit 21, an otoacoustic emission calculation unit 22, a phase modulation amount calculation unit 23, an inner ear characteristic estimation unit 24, and a display unit 25. The configuration of the inner ear characteristic evaluation device is not limited to the above-described configuration, and as shown in the figure, the inner ear characteristic evaluation device 3 may include all of the configuration requirements of the otoacoustic emission measurement device 1 and the inner ear characteristic evaluation device 2. . Further, when the otoacoustic emission measurement device and the inner ear characteristic evaluation device are configured separately, the AD conversion unit 13 may be provided in the otoacoustic emission measurement device as shown in FIG. It may be provided. When the otoacoustic emission measurement device and the inner ear characteristic evaluation device are configured separately, it is assumed that the otoacoustic emission measurement device and the inner ear characteristic evaluation device are connected to be communicable by wire or wirelessly.

以下の説明では、同図に示された耳音響放射測定装置1と内耳特性評価装置2の構成を前提として説明を進める。   In the following description, the description will be made on the premise of the configurations of the otoacoustic emission measuring device 1 and the inner ear characteristic evaluation device 2 shown in FIG.

以下、図5、図6を参照して本実施例の耳音響放射測定装置1の動作を説明する。図5は、本実施例の耳音響放射測定装置1を挿入した際の外耳道および内耳を示す概略断面図である。図6は、本実施例の耳音響放射測定装置1の動作を示すフローチャートである。   Hereinafter, the operation of the otoacoustic emission measuring apparatus 1 of the present embodiment will be described with reference to FIGS. 5 and 6. FIG. 5 is a schematic cross-sectional view showing the ear canal and the inner ear when the otoacoustic emission measuring apparatus 1 of the present embodiment is inserted. FIG. 6 is a flowchart showing the operation of the otoacoustic emission measuring apparatus 1 of the present embodiment.

耳音響放射測定装置1は、振幅変調音を刺激音として、内耳の基底膜から反射して生じた(反射型の)耳音響放射を計測する。計測には従来手法(参考非特許文献2)を用いた。
(参考非特許文献2:D. H. Keefe, "Double-evoked otoacoustic emissions. I.Measurement theory and nonlinear coherence," J. Acoust. Soc. Am., June 1998, Vol. 103,No. 6, pp.3489-3498)
The otoacoustic emission measuring device 1 measures (acoustic) otoacoustic emission generated by reflection from the basement membrane of the inner ear using an amplitude-modulated sound as a stimulation sound. The conventional method (reference nonpatent literature 2) was used for the measurement.
(Reference Non-Patent Document 2: DH Keefe, “Double-evoked otoacoustic emissions. I. Measurement theory and nonlinear coherence,” J. Acoust. Soc. Am., June 1998, Vol. 103, No. 6, pp.3489- 3498)

より詳細には、刺激音呈示部11は、振幅変調音である刺激音を被評価者9の外耳道に呈示する(S11)。刺激音呈示部11は、例えば2つのスピーカで構成することができ、後述する刺激音生成部21が生成した刺激音系列(Ss)を取得して、外耳道へ刺激音を呈示する(S11、詳細は後述)。外耳道内音取得部12は、外耳道内音を収音する(S12)。外耳道内音取得部12は、例えば小型のマイクロフォンで実現することができる。外耳道内音取得部12は、外耳道内音を収音し、収音信号(Sm a)をAD変換器13へと出力する(S12)。AD変換部13は、収音された外耳道内音をデジタル化する(S13)。AD変換部13は収音信号(Sm a)をデジタル信号(Sm d、デジタル収音信号ともいう)に変換し、耳音響放射算出部22へ出力する(S13)。 More specifically, the stimulus sound presentation unit 11 presents a stimulus sound that is an amplitude-modulated sound on the external auditory canal of the person to be evaluated 9 (S11). The stimulation sound presenting unit 11 can be composed of, for example, two speakers, acquires a stimulation sound sequence (S s ) generated by a stimulation sound generation unit 21 described later, and presents the stimulation sound to the ear canal (S11, Details will be described later). The external auditory canal sound acquisition unit 12 collects the external auditory canal sound (S12). The external ear canal sound acquisition unit 12 can be realized by a small microphone, for example. The external auditory canal sound acquisition unit 12 collects the external auditory canal sound and outputs the collected sound signal (S m a ) to the AD converter 13 (S12). The AD conversion unit 13 digitizes the collected sound in the ear canal (S13). The AD conversion unit 13 converts the sound collection signal (S m a ) into a digital signal (S m d , also referred to as a digital sound collection signal), and outputs it to the otoacoustic emission calculation unit 22 (S 13).

次に、図7を参照して本実施例の内耳特性評価装置2の動作を説明する。図7は、本実施例の内耳特性評価装置2の動作を示すフローチャートである。刺激音生成部21は、振幅変調音である刺激音系列(Ss)を生成し、刺激音呈示部11に出力する(S21)。
刺激音系列(Ss)の生成には、参考非特許文献2に開示された手法を使用した。図8に示すように、刺激音系列(Ss)は3つの刺激音(S1〜S3)で構成される。刺激音(S1〜S3)は2チャネルで構成される。刺激音生成部21は、S1〜S3の各刺激音を
S1:チャネル1にAM音、チャネル2に無音
S2:チャネル1に無音、チャネル2にAM音
S3:チャネル1にAM音、チャネル2にAM音となるように生成する(S21)。前述の刺激音呈示部11は、このように生成された刺激音系列(Ss)を、1ブロックを指定回数(例えば100−1000回)繰り返して呈示する(S11)。耳音響放射算出部22は、刺激音の呈示によって生じた耳音響放射を算出する(S22)。より詳細には、耳音響放射算出部22は、AD変換部13からデジタル収音信号(Sm d)を取得し、デジタル収音信号(Sm d)に基づいて耳音響放射(Soae)を算出し、位相変調量計算部23に出力する(S22)。
Next, the operation of the inner ear characteristic evaluation apparatus 2 according to the present embodiment will be described with reference to FIG. FIG. 7 is a flowchart showing the operation of the inner ear characteristic evaluation device 2 of the present embodiment. The stimulation sound generation unit 21 generates a stimulation sound sequence (S s ) that is an amplitude-modulated sound, and outputs it to the stimulation sound presenting unit 11 (S21).
The method disclosed in Reference Non-Patent Document 2 was used to generate the stimulus sound sequence (S s ). As shown in FIG. 8, the stimulus sound sequence (S s ) is composed of three stimulus sounds (S1 to S3). The stimulation sound (S1 to S3) is composed of two channels. The stimulation sound generation unit 21 outputs the stimulation sounds S1 to S3 to S1: AM sound on channel 1, silence on channel 2, S2: silence on channel 1, AM sound on channel 2, S3: AM sound on channel 1, and channel 2 An AM sound is generated (S21). The aforementioned stimulus sound presenting unit 11 presents the stimulus sound sequence (S s ) generated in this manner by repeating one block a specified number of times (for example, 100 to 1000 times) (S11). The otoacoustic emission calculation unit 22 calculates the otoacoustic emission generated by the presentation of the stimulation sound (S22). More particularly, otoacoustic emission calculating unit 22 acquires the digital sound pickup signal (S m d) from the AD converter 13, otoacoustic emission based on the digital sound pickup signal (S m d) (S oae ) Is output to the phase modulation amount calculator 23 (S22).

<ステップS22の詳細な手順>
耳音響放射算出部22は、刺激音系列(Ss)の刺激音S1〜S3について計測された信号をそれぞれ平均する。平均を取った信号をR1〜R3と呼ぶ。耳音響放射算出部22は、下式を用いて、振幅変調音誘発耳音響放射(amplitude-modulated-tone-evoked otoacoustic emissions: AMEOAE)(Soae)を算出する(参考非特許文献2)。
AMEOAE=R1+R2-R3
<Detailed Procedure of Step S22>
The otoacoustic emission calculation unit 22 averages the signals measured for the stimulation sounds S1 to S3 of the stimulation sound sequence (S s ). The averaged signals are called R1 to R3. The otoacoustic emission calculation unit 22 calculates amplitude-modulated-tone-evoked otoacoustic emissions (AMEOAE) ( Soae ) using the following equation (Reference Non-Patent Document 2).
AMEOAE = R1 + R2-R3

<Keefeらの手法(参考非特許文献2)の原理>
鼓膜からの反射音と耳音響放射は重複された状態で外耳道内音として外耳道内音取得部12で取得される。従って、外耳道内音から耳音響放射のみを取り出す処理が必要になる。鼓膜からの反射音は刺激音圧に対して線形であることから、上式を計算すると反射音は0になる。一方、OAEは圧縮特性を持っているため、R1+R2>R3となる。そのため、上式を計算すると、耳音響放射の一部(非線形な部分)を取り出すことが出来る。S1とS2を異なるスピーカから呈示しているのは、スピーカの非線形性の影響を避けるためである。一つのチャネルからS1〜S3を呈示すると、スピーカの非線形性により、S3がS1+S2と等しくなくなる。
<Principle of Keefe et al. (Reference Non-Patent Document 2)>
The reflected sound from the eardrum and the otoacoustic emission are acquired by the external auditory canal sound acquisition unit 12 as an external auditory canal sound in an overlapped state. Therefore, it is necessary to extract only the otoacoustic radiation from the sound in the ear canal. Since the reflected sound from the eardrum is linear with respect to the stimulation sound pressure, the reflected sound becomes zero when the above equation is calculated. On the other hand, since OAE has compression characteristics, R1 + R2> R3. Therefore, when the above equation is calculated, a part (nonlinear part) of the otoacoustic emission can be extracted. The reason why S1 and S2 are presented from different speakers is to avoid the influence of non-linearity of the speakers. When S1 to S3 are presented from one channel, S3 is not equal to S1 + S2 due to the nonlinearity of the speaker.

次に、位相変調量計算部23は、耳音響放射算出部22から耳音響放射(Soae)を取得し、刺激音に対する耳音響放射(Soae)の位相変調量(Spm)を計算し、位相変調量の最大値(max Spm)、位相変調量の最大値(max Spm)における刺激音の音圧(Lf)の少なくとも何れかを出力する(S23)。 Next, the phase modulation amount calculation unit 23 acquires the otoacoustic emission (S oae ) from the otoacoustic emission calculation unit 22 and calculates the phase modulation amount (S pm ) of the otoacoustic emission (S oae ) with respect to the stimulus sound. , the maximum value of the phase modulation amount (max S pm), outputs at least one of the sound pressure of the stimuli at the maximum value of the phase modulation amount (max S pm) (L f ) (S23).

<ステップS23の詳細な手順>
位相変調量計算部23は、AMEOAE(Soae)の位相(θOAE[t])を計算する。この計算には、ヒルベルト変換、短時間FFTなどを使用することができる。θOAE[t]は、刺激音と同一の変調周波数で変調されるため、位相変調量計算部23は、その振幅値を計算し、位相変調量(Spm)とする。
<Detailed Procedure of Step S23>
The phase modulation amount calculating unit 23 calculates the phase (θ OAE [t]) of AMEOAE (S oae ). For this calculation, Hilbert transform, short-time FFT, or the like can be used. Since θ OAE [t] is modulated at the same modulation frequency as that of the stimulus sound, the phase modulation amount calculation unit 23 calculates the amplitude value to obtain the phase modulation amount (S pm ).

内耳特性推定部24は、位相変調量の最大値(の有無)、位相変調量の最大値における刺激音の音圧の少なくとも何れかに基づいて内耳特性を推定する(S24)。表示部25は、一方の軸を刺激音の音圧とし、他方の軸を位相変調量とし、両者の関係を可視化して表示する(S25)。   The inner ear characteristic estimation unit 24 estimates the inner ear characteristic based on at least one of the maximum value of the phase modulation amount (presence / absence) and the sound pressure of the stimulation sound at the maximum value of the phase modulation amount (S24). The display unit 25 uses one axis as the sound pressure of the stimulation sound and the other axis as the phase modulation amount, and visualizes and displays the relationship between the two (S25).

<検証実験>
以下、本発明の原理を検証した検証実験の結果を開示する。搬送波、変調波は正弦波とした。搬送波の周波数を1000Hzとし、時間長さを80msとした。変調波の周波数を50Hzとし、変調深さを0.44とした。刺激音の音圧レベルは30dBから80dBまでとし、5dB刻みとした。呈示回数として、前述のブロックを100〜1000回呈示することとした。ここで、AM音の変調波が正弦波の場合は、変調周波数に制限はないが、刺激長は振幅変調を1周期以上含むようにした。AM音の変調波は正弦波である必要はない(変調周波数が一定でなくてもよい)。ただし、変調深さは一定とし、刺激長は、振幅変調が1周期以上含まれる長さとする必要がある。AM音の搬送波は正弦波である必要はない。AM音の搬送波を正弦波以外とした場合には、周波数帯域は一定とする必要がある(AM音の搬送波として、例えばホワイトノイズ、狭帯域ノイズなども可)。
<Verification experiment>
Hereinafter, the result of the verification experiment which verified the principle of the present invention will be disclosed. The carrier wave and the modulated wave were sine waves. The frequency of the carrier wave was 1000 Hz, and the time length was 80 ms. The frequency of the modulation wave was 50 Hz, and the modulation depth was 0.44. The sound pressure level of the stimulating sound was set from 30 dB to 80 dB, and 5 dB increments. As the number of presentations, the above-mentioned block was presented 100 to 1000 times. Here, when the modulation wave of the AM sound is a sine wave, the modulation frequency is not limited, but the stimulation length includes one or more periods of amplitude modulation. The modulation wave of AM sound need not be a sine wave (the modulation frequency may not be constant). However, the modulation depth is constant, and the stimulation length needs to be a length that includes one or more periods of amplitude modulation. The carrier wave of AM sound need not be a sine wave. When the AM sound carrier is other than a sine wave, the frequency band needs to be constant (for example, white noise, narrowband noise, etc. may be used as the AM sound carrier).

検証実験の結果、耳音響放射算出部22において、刺激音と同一の搬送波周波数、変調周波数を持つ耳音響放射が算出された(図9(B)参照)。また耳音響放射の位相は、刺激音と同一の変調周波数で変調されていた(図9(A)参照)。また、位相変調量は、刺激音のある音圧レベルにおいて最大となっていた(図10参照)。   As a result of the verification experiment, the otoacoustic emission calculation unit 22 calculated the otoacoustic emission having the same carrier frequency and modulation frequency as the stimulation sound (see FIG. 9B). In addition, the phase of the otoacoustic emission was modulated at the same modulation frequency as the stimulation sound (see FIG. 9A). Further, the phase modulation amount was the maximum at the sound pressure level with the stimulating sound (see FIG. 10).

<心理物理的方法で推定した内耳の増幅率と位相変調量の最大値との関係>
以下、図11を参照して心理物理的方法で推定した内耳の増幅率と位相変調量の最大値との関係について考察する。図11は、ある被評価者における心理物理的方法で推定した内耳の入出力関数の増幅率と位相変調量との関係についての実験結果を示す図である。図11(A)は、心理物理的方法で推定した内耳における増幅率と刺激音の音圧との関係を示す図である。図11(B)は位相変調量と刺激音の音圧との関係を示す図である。
<Relationship between inner ear gain and phase modulation amount estimated by psychophysical method>
Hereinafter, the relationship between the amplification factor of the inner ear estimated by the psychophysical method and the maximum value of the phase modulation amount will be considered with reference to FIG. FIG. 11 is a diagram showing an experimental result on the relationship between the amplification factor of the input / output function of the inner ear and the phase modulation amount estimated by a psychophysical method in a certain person to be evaluated. FIG. 11A is a diagram showing the relationship between the amplification factor in the inner ear estimated by the psychophysical method and the sound pressure of the stimulating sound. FIG. 11B is a diagram showing the relationship between the phase modulation amount and the sound pressure of the stimulation sound.

この実験の結果、何れの被験者においても、位相変調量が最大値となる刺激音の音圧(Lf、図11(B)の例では0dB近傍)において、心理物理的方法で推定した内耳の増幅率の傾きが0.5とほぼ等しくなることが分かった。以下では内耳の増幅率の傾きが0.5となる座標を、屈折点と呼ぶものとする。上記の実験の結果から、位相変調量が最大値となる刺激音の音圧と屈折点における刺激音の音圧とがほぼ一致することが分かった。なお、図11(A)(B)の横軸、図11(B)の縦軸は相対値とした。図11(A)(B)の横軸については、Lfをすべての被験者に対して算出し、入出力特性と位相変調特性の刺激音圧を、それぞれ、Lfに対する相対的な値として表現した。図11(B)の縦軸については、位相変調量を各被験者の最大値で正規化した。 As a result of this experiment, in any subject, the inner ear estimated by the psychophysical method at the sound pressure of the stimulation sound (L f , near 0 dB in the example of FIG. 11B) with the maximum phase modulation amount. It was found that the slope of the amplification factor was almost equal to 0.5. In the following, the coordinates where the slope of the amplification factor of the inner ear is 0.5 are called refraction points. From the results of the above-described experiment, it was found that the sound pressure of the stimulating sound having the maximum phase modulation amount and the sound pressure of the stimulating sound at the refraction point almost coincide. Note that the horizontal axis of FIGS. 11A and 11B and the vertical axis of FIG. 11B are relative values. 11 (A) and 11 (B), L f is calculated for all subjects, and the stimulus sound pressures of the input / output characteristics and the phase modulation characteristics are expressed as relative values with respect to L f , respectively. did. About the vertical axis | shaft of FIG. 11 (B), the amount of phase modulation was normalized with the maximum value of each test subject.

検証実験の結果が示す通り、耳音響放射の位相変調量から内耳の入出力特性(圧縮特性)を評価することができる。一般に、難聴の度合いに応じて入出力特性の屈折点は高い音圧レベル側にずれる。さらに重度の難聴の場合は、圧縮特性が失われることが知られている。本発明では、耳音響放射の位相変調量から入出力特性の屈折点の位置を推測することができる。図12に示すように、屈折点の位置(耳音響放射の位相変調量のピーク位置)から、難聴の重症度を評価することが出来る。また、位相変調量にピークが検出されなかった場合には、重度の難聴であると判断できる。この新たな知見に基づいて、上述した内耳特性推定部24は、被評価者の聴力(内耳特性)を評価することができる。また上述した表示部25は、図11(B)相当のグラフを評価者に表示することにより、評価者に位相変調量にピークが存在するか否か、ピークが存在する場合にはその位置を見せることができ、評価者に被評価者の聴力を判定させることができる。 As the result of the verification experiment shows, the input / output characteristics (compression characteristics) of the inner ear can be evaluated from the phase modulation amount of the otoacoustic emission. In general, the refraction point of the input / output characteristics shifts to a higher sound pressure level depending on the degree of hearing loss. It is also known that compression characteristics are lost in cases of severe hearing loss. In the present invention, the position of the refraction point of the input / output characteristics can be estimated from the phase modulation amount of the otoacoustic radiation. As shown in FIG. 12, the severity of hearing loss can be evaluated from the position of the refraction point (the peak position of the phase modulation amount of the otoacoustic emission). If no peak is detected in the phase modulation amount, it can be determined that the hearing loss is severe. Based on this new knowledge, the inner ear characteristic estimation unit 24 described above can evaluate the hearing ability (inner ear characteristic) of the person to be evaluated. The display unit 25 described above, by displaying in FIG 11 (B) evaluating the corresponding graph's whether evaluator to peak phase modulation amount is present, if the peak exists that The position can be shown, and the evaluator can determine the hearing ability of the evaluator.

本実施例の内耳特性評価装置2(3)は、被評価者の主観的な解答に依存せずに、内耳特性を評価できる。そのため、新生児など自力での回答が難しい被評価者の聴力を評価することができる。   The inner ear characteristic evaluation device 2 (3) of the present embodiment can evaluate the inner ear characteristic without depending on the subjective answer of the person to be evaluated. Therefore, it is possible to evaluate the hearing ability of a to-be-evaluated person who is difficult to answer by himself such as a newborn baby.

なお、上述の実施例において耳音響放射の算出方法は、参考非特許文献2の方法に依ったが、耳音響放射の算出方法はこれに限られない。例えば、耳音響放射の算出方法として、同様に非線形性を利用した方法である参考非特許文献3の方法を利用してもよい。
(参考非特許文献3:J. J. Guinan Jr., B. C. Backus, W. Lilaonitkul,and V.Aharonson, "Medial Olivocochlear Efferent Reflex in Humans: Otoacoustic Emission (OAE) Measurement Issues and the Advantages of Stimulus Frequency OAEs," J. Assoc. Res. Otolaryngol., December 2003, Volume 4, Issue 4, pp. 521-540)
In the above-described embodiment, the method for calculating the otoacoustic emission depends on the method of Reference Non-Patent Document 2, but the method for calculating the otoacoustic emission is not limited to this. For example, as a method for calculating the otoacoustic emission, the method of Reference Non-Patent Document 3, which is a method that similarly uses nonlinearity, may be used.
(Reference Non-Patent Document 3: JJ Guinan Jr., BC Backus, W. Lilaonitkul, and V. Aharonson, "Medial Olivocochlear Efferent Reflex in Humans: Otoacoustic Emission (OAE) Measurement Issues and the Advantages of Stimulus Frequency OAEs," J. Assoc. Res. Otolaryngol., December 2003, Volume 4, Issue 4, pp. 521-540)

また、耳音響放射の計測は、ドップラーシフト振動計などを使って、鼓膜の振動を測定する方法でもよい。上述の実施例では、刺激音を刺激音系列として生成したが、これに限らず刺激音圧を連続的に変えて、一つの刺激音として生成、呈示してもよい。   The otoacoustic emission may be measured by a method of measuring the eardrum vibration using a Doppler shift vibrometer or the like. In the above-described embodiment, the stimulation sound is generated as the stimulation sound series. However, the present invention is not limited to this, and the stimulation sound pressure may be continuously changed to be generated and presented as one stimulation sound.

原理的には、変調深さを一定にしていれば、刺激音圧に応じて位相変調量が変化するはずである。その位相変調量と刺激音圧の関係を、位相変調特性としてもよい。   In principle, if the modulation depth is constant, the amount of phase modulation should change according to the stimulation sound pressure. The relationship between the phase modulation amount and the stimulation sound pressure may be the phase modulation characteristic.

上述の検証実験では、変調深さを固定して音圧レベルを変えたがこれに限らず、音圧レベルを固定して、変調深さを変えて位相変調特性としてもよい。   In the above-described verification experiment, the sound pressure level is changed by fixing the modulation depth. However, the present invention is not limited thereto, and the phase modulation characteristic may be obtained by changing the modulation depth by fixing the sound pressure level.

<補記>
本発明の装置は、例えば単一のハードウェアエンティティとして、キーボードなどが接続可能な入力部、液晶ディスプレイなどが接続可能な出力部、ハードウェアエンティティの外部に通信可能な通信装置(例えば通信ケーブル)が接続可能な通信部、CPU(Central Processing Unit、キャッシュメモリやレジスタなどを備えていてもよい)、メモリであるRAMやROM、ハードディスクである外部記憶装置並びにこれらの入力部、出力部、通信部、CPU、RAM、ROM、外部記憶装置の間のデータのやり取りが可能なように接続するバスを有している。また必要に応じて、ハードウェアエンティティに、CD−ROMなどの記録媒体を読み書きできる装置(ドライブ)などを設けることとしてもよい。このようなハードウェア資源を備えた物理的実体としては、汎用コンピュータなどがある。
<Supplementary note>
The apparatus of the present invention includes, for example, a single hardware entity as an input unit to which a keyboard or the like can be connected, an output unit to which a liquid crystal display or the like can be connected, and a communication device (for example, a communication cable) capable of communicating outside the hardware entity. Can be connected to a communication unit, a CPU (Central Processing Unit, may include a cache memory or a register), a RAM or ROM that is a memory, an external storage device that is a hard disk, and an input unit, an output unit, or a communication unit thereof , A CPU, a RAM, a ROM, and a bus connected so that data can be exchanged between the external storage devices. If necessary, the hardware entity may be provided with a device (drive) that can read and write a recording medium such as a CD-ROM. A physical entity having such hardware resources includes a general-purpose computer.

ハードウェアエンティティの外部記憶装置には、上述の機能を実現するために必要となるプログラムおよびこのプログラムの処理において必要となるデータなどが記憶されている(外部記憶装置に限らず、例えばプログラムを読み出し専用記憶装置であるROMに記憶させておくこととしてもよい)。また、これらのプログラムの処理によって得られるデータなどは、RAMや外部記憶装置などに適宜に記憶される。   The external storage device of the hardware entity stores a program necessary for realizing the above functions and data necessary for processing the program (not limited to the external storage device, for example, reading a program) It may be stored in a ROM that is a dedicated storage device). Data obtained by the processing of these programs is appropriately stored in a RAM or an external storage device.

ハードウェアエンティティでは、外部記憶装置(あるいはROMなど)に記憶された各プログラムとこの各プログラムの処理に必要なデータが必要に応じてメモリに読み込まれて、適宜にCPUで解釈実行・処理される。その結果、CPUが所定の機能(上記、…部、…手段などと表した各構成要件)を実現する。   In the hardware entity, each program stored in an external storage device (or ROM or the like) and data necessary for processing each program are read into a memory as necessary, and are interpreted and executed by a CPU as appropriate. . As a result, the CPU realizes a predetermined function (respective component requirements expressed as the above-described unit, unit, etc.).

本発明は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。また、上記実施形態において説明した処理は、記載の順に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されるとしてもよい。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention. In addition, the processing described in the above embodiment may be executed not only in time series according to the order of description but also in parallel or individually as required by the processing capability of the apparatus that executes the processing. .

既述のように、上記実施形態において説明したハードウェアエンティティ(本発明の装置)における処理機能をコンピュータによって実現する場合、ハードウェアエンティティが有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、上記ハードウェアエンティティにおける処理機能がコンピュータ上で実現される。   As described above, when the processing functions in the hardware entity (the apparatus of the present invention) described in the above embodiment are realized by a computer, the processing contents of the functions that the hardware entity should have are described by a program. Then, by executing this program on a computer, the processing functions in the hardware entity are realized on the computer.

この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。具体的には、例えば、磁気記録装置として、ハードディスク装置、フレキシブルディスク、磁気テープ等を、光ディスクとして、DVD(Digital Versatile Disc)、DVD−RAM(Random Access Memory)、CD−ROM(Compact Disc Read Only Memory)、CD−
R(Recordable)/RW(ReWritable)等を、光磁気記録媒体として、MO(Magneto-Optical disc)等を、半導体メモリとしてEEP−ROM(Electronically Erasable and Programmable-Read Only Memory)等を用いることができる。
The program describing the processing contents can be recorded on a computer-readable recording medium. As the computer-readable recording medium, for example, any recording medium such as a magnetic recording device, an optical disk, a magneto-optical recording medium, and a semiconductor memory may be used. Specifically, for example, as a magnetic recording device, a hard disk device, a flexible disk, a magnetic tape or the like, and as an optical disk, a DVD (Digital Versatile Disc), a DVD-RAM (Random Access Memory), a CD-ROM (Compact Disc Read Only). Memory), CD-
R (Recordable) / RW (ReWritable) or the like can be used as a magneto-optical recording medium, MO (Magneto-Optical disc) or the like as a semiconductor memory, EEP-ROM (Electronically Erasable and Programmable-Read Only Memory) or the like as a semiconductor memory. .

また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD−ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。   The program is distributed by selling, transferring, or lending a portable recording medium such as a DVD or CD-ROM in which the program is recorded. Furthermore, the program may be distributed by storing the program in a storage device of the server computer and transferring the program from the server computer to another computer via a network.

このようなプログラムを実行するコンピュータは、例えば、まず、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、一旦、自己の記憶装置に格納する。そして、処理の実行時、このコンピュータは、自己の記録媒体に格納されたプログラムを読み取り、読み取ったプログラムに従った処理を実行する。また、このプログラムの別の実行形態として、コンピュータが可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することとしてもよく、さらに、このコンピュータにサーバコンピュータからプログラムが転送されるたびに、逐次、受け取ったプログラムに従った処理を実行することとしてもよい。また、サーバコンピュータから、このコンピュータへのプログラムの転送は行わず、その実行指示と結果取得のみによって処理機能を実現する、いわゆるASP(Application Service Provider)型のサービスによって、上述の処理を実行する構成としてもよい。なお、本形態におけるプログラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるもの(コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータ等)を含むものとする。   A computer that executes such a program first stores, for example, a program recorded on a portable recording medium or a program transferred from a server computer in its own storage device. When executing the process, the computer reads a program stored in its own recording medium and executes a process according to the read program. As another execution form of the program, the computer may directly read the program from a portable recording medium and execute processing according to the program, and the program is transferred from the server computer to the computer. Each time, the processing according to the received program may be executed sequentially. Also, the program is not transferred from the server computer to the computer, and the above-described processing is executed by a so-called ASP (Application Service Provider) type service that realizes the processing function only by the execution instruction and result acquisition. It is good. Note that the program in this embodiment includes information that is used for processing by an electronic computer and that conforms to the program (data that is not a direct command to the computer but has a property that defines the processing of the computer).

また、この形態では、コンピュータ上で所定のプログラムを実行させることにより、ハードウェアエンティティを構成することとしたが、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。   In this embodiment, a hardware entity is configured by executing a predetermined program on a computer. However, at least a part of these processing contents may be realized by hardware.

Claims (4)

振幅変調音である刺激音を被評価者の外耳道に呈示する刺激音呈示部と、
前記刺激音の呈示によって生じた耳音響放射を算出する耳音響放射算出部と、
前記刺激音に対する前記耳音響放射の位相変調量にピークが存在するか否かを視認可能な情報を表示する表示部と、
を含む内耳特性評価装置。
A stimulus sound presenting unit that presents a stimulus sound, which is an amplitude-modulated sound, to the external auditory canal of the person being evaluated;
An otoacoustic emission calculating unit for calculating otoacoustic emission generated by the presentation of the stimulation sound;
A display unit that displays the ears whether a possible information visible peak phase modulation amount of acoustic radiation exists for the stimuli,
Inner ear characteristic evaluation apparatus including:
前記表示部は、前記刺激音に対する前記耳音響放射の位相変調量にピークが存在する場合に、当該ピークの位置に対応する情報を出力し、前記耳音響放射の位相変調量にピークが存在しない場合に、ピークが無いことに対応する情報を出力する、
請求項1記載の内耳特性評価装置。
The display unit, when said peak phase modulation amount of the otoacoustic emission against stimuli are present, outputs the information corresponding to the position of the peak, peak over to the phase modulation amount of the otoacoustic emissions If the click is not present, and outputs the information corresponding to that peak is not,
The inner ear characteristic evaluation apparatus according to claim 1.
前記表示部は、前記刺激音の音圧の変化に伴う前記位相変調量の変化を可視化して表示する、
請求項1記載の内耳特性評価装置。
The display unit visualizes and displays a change in the phase modulation amount accompanying a change in sound pressure of the stimulation sound.
The inner ear characteristic evaluation apparatus according to claim 1.
コンピュータを請求項1乃至3のいずれか1項に記載の内耳特性評価装置として機能させるプログラム。   A program for causing a computer to function as the inner ear characteristic evaluation apparatus according to any one of claims 1 to 3.
JP2018118091A 2018-06-21 2018-06-21 Inner ear characteristic evaluation device, program Active JP6581251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018118091A JP6581251B2 (en) 2018-06-21 2018-06-21 Inner ear characteristic evaluation device, program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018118091A JP6581251B2 (en) 2018-06-21 2018-06-21 Inner ear characteristic evaluation device, program

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015081845A Division JP6370737B2 (en) 2015-04-13 2015-04-13 Inner ear characteristic evaluation apparatus and inner ear characteristic evaluation method

Publications (2)

Publication Number Publication Date
JP2018161515A JP2018161515A (en) 2018-10-18
JP6581251B2 true JP6581251B2 (en) 2019-09-25

Family

ID=63859533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018118091A Active JP6581251B2 (en) 2018-06-21 2018-06-21 Inner ear characteristic evaluation device, program

Country Status (1)

Country Link
JP (1) JP6581251B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5601091A (en) * 1995-08-01 1997-02-11 Sonamed Corporation Audiometric apparatus and association screening method
US5951486A (en) * 1998-10-23 1999-09-14 Mdi Instruments, Inc. Apparatus and method for analysis of ear pathologies using combinations of acoustic reflectance, temperature and chemical response

Also Published As

Publication number Publication date
JP2018161515A (en) 2018-10-18

Similar Documents

Publication Publication Date Title
Goodman et al. High-frequency click-evoked otoacoustic emissions and behavioral thresholds in humans
Kalluri et al. Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions
US5372142A (en) Cochlear response audiometer
JP5553088B2 (en) Evoked potential inspection device and evoked potential inspection system
WO2018216121A1 (en) Earpad and earphone using same
WO2016071221A1 (en) Method for calibrating headphones
Worthington et al. Comparing two methods to measure preferred listening levels of personal listening devices
Ravicz et al. Middle-ear velocity transfer function, cochlear input immittance, and middle-ear efficiency in chinchilla
Brown et al. On the differential diagnosis of Ménière’s disease using low-frequency acoustic biasing of the 2f1–f2 DPOAE
Abdala et al. Distortion product otoacoustic emission phase and component analysis in human newborns
Hecker et al. A new method to analyze distortion product otoacoustic emissions (DPOAEs) in the high-frequency range up to 18 kHz using windowed periodograms
JP6581251B2 (en) Inner ear characteristic evaluation device, program
US20210386357A1 (en) Determination of cochlear hydrops based on recorded auditory electrophysiological responses
US20190000392A1 (en) Electronic Blood Pressure Monitor, Blood Pressure Measuring Method, and Electronic Stethoscope
JP6370737B2 (en) Inner ear characteristic evaluation apparatus and inner ear characteristic evaluation method
US9807519B2 (en) Method and apparatus for analyzing and visualizing the performance of frequency lowering hearing aids
Gladiné et al. Human middle-ear nonlinearity measurements using laser Doppler vibrometry
JP6503300B2 (en) Sample information processing device
Widmalm et al. The dynamic range of TMJ sounds
Remenschneider et al. Characterization and clinical use of bone conduction transducers at extended high frequencies
US20190038188A1 (en) Method and apparatus for measuring the Acoustic Reflex with artifact management by using multiple probe tones
Drexl et al. Low-frequency modulated quadratic and cubic distortion product otoacoustic emissions in humans
Aranda de Toro et al. Recovery of distortion-product otoacoustic emissions after a 2-kHz monaural sound-exposure in humans: Effects on fine structures
Hsiao et al. Measuring distortion-product otoacoustic emission with a single loudspeaker in the ear: Stimulus design and signal processing techniques
CN116348030A (en) Electronic device and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190829

R150 Certificate of patent or registration of utility model

Ref document number: 6581251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150