JP5553088B2 - Evoked potential inspection device and evoked potential inspection system - Google Patents

Evoked potential inspection device and evoked potential inspection system Download PDF

Info

Publication number
JP5553088B2
JP5553088B2 JP2012144204A JP2012144204A JP5553088B2 JP 5553088 B2 JP5553088 B2 JP 5553088B2 JP 2012144204 A JP2012144204 A JP 2012144204A JP 2012144204 A JP2012144204 A JP 2012144204A JP 5553088 B2 JP5553088 B2 JP 5553088B2
Authority
JP
Japan
Prior art keywords
evoked potential
assr
signal data
waveform
potential signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012144204A
Other languages
Japanese (ja)
Other versions
JP2012228525A (en
JP2012228525A5 (en
Inventor
信子 井川
隆嗣 谷萩
クスマ デウィ
Original Assignee
国立大学法人 千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 千葉大学 filed Critical 国立大学法人 千葉大学
Priority to JP2012144204A priority Critical patent/JP5553088B2/en
Publication of JP2012228525A publication Critical patent/JP2012228525A/en
Publication of JP2012228525A5 publication Critical patent/JP2012228525A5/ja
Application granted granted Critical
Publication of JP5553088B2 publication Critical patent/JP5553088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/12Audiometering
    • A61B5/121Audiometering evaluating hearing capacity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Acoustics & Sound (AREA)
  • Otolaryngology (AREA)
  • Multimedia (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

本発明は、誘発電位検査装置に関し、特に、聴性定常反応(Auditory Steady−State Response、以下「ASSR」という)の検査に好適なものである。   The present invention relates to an evoked potential test apparatus, and is particularly suitable for testing an auditory steady-state response (hereinafter referred to as “ASSR”).

ASSRとは、両耳にあらかじめ周波数特異性のある音刺激を与えることによって得られる聴性誘発反応であって、例えば4つの周波数閾値を同時に検査することによって他覚的聴力検査を精度よく行うことができる。ASSRの信号(以下「ASSR信号」という。)は、周波数特異性のある反応であるため、特に、耳鼻科において乳幼児の補聴器装用に必要なオ−ジオグラムを客観的かつ正確に評価する手段として利用することができる。なお「他覚的聴覚検査」とは、新生児や乳幼児を含め、被験者が自分で“聞こえるか聞こえないか”について正確な意思表示ができない場合、全身麻酔下の被験者や重症な身体障害により意思表示が困難な場合、更には、犯罪捜査などで被験者が“聞こえているのに聞こえないふりをする”いわゆる詐称難聴の可能性のある場合などにおいて実施される検査である。   ASSR is an auditory evoked response obtained by applying a frequency-specific sound stimulus to both ears in advance. For example, an objective hearing test can be accurately performed by simultaneously testing four frequency thresholds. it can. Since the ASSR signal (hereinafter referred to as “ASSR signal”) is a frequency-specific reaction, it is used as a means for objectively and accurately evaluating the audiogram required for hearing aids for infants, especially in otolaryngology. can do. In addition, “objective hearing test” means that if subjects, including newborns and infants, cannot express their intentions as to whether they can hear or hear themselves, they can express their intentions due to subjects under general anesthesia or serious disabilities This is a test that is performed when there is a possibility of so-called deception deafness when the subject “pretends to be heard but can not hear” in a criminal investigation or the like.

ところで、ASSR信号は微弱な信号であって多くのノイズが含まれており、精度の高い検査のためにはこのノイズを除去する必要がある。ノイズを除去する方法としては例えば、ASSR信号を複数加算し、その平均を算出する方法がある(以下「加算平均法」という。例えば下記非特許文献1参照)。   By the way, the ASSR signal is a weak signal and contains a lot of noise, and it is necessary to remove this noise for a highly accurate inspection. As a method of removing noise, for example, there is a method of adding a plurality of ASSR signals and calculating an average thereof (hereinafter referred to as “addition averaging method”, for example, see Non-Patent Document 1 below).

しかしながら、上記加算平均法では、多数回(1反応閾値につき平均500回程度)のASSR信号測定を行う必要があるため、測定に時間がかかるといった課題がある。例えば加算平均法の典型的な例では検査に30分程度要してしまい、被験者に与える負担は大きい。   However, in the above-mentioned averaging method, it is necessary to perform ASSR signal measurement many times (on the average about 500 times per reaction threshold), and thus there is a problem that the measurement takes time. For example, in a typical example of the averaging method, the examination takes about 30 minutes, and the burden on the subject is large.

なお既に、上記加算平均法の平均回数を低減する方法として、下記非特許文献2及び3に、ABR(Auditory Brainstem Response)において、カルマンフィルタを用いて伝達関数を求める方法が記載されている。   As a method for reducing the average number of times of the above-mentioned averaging method, the following Non-Patent Documents 2 and 3 describe a method of obtaining a transfer function using a Kalman filter in ABR (Auditor Brain Brain Response).

「聴性定常反応 その解析法・臨床応用と起源」、青柳優、リオン株式会社、2005年“Steady Steady Response, Its Analysis Method, Clinical Application and Origin”, Yu Aoyagi, Lion Co., Ltd., 2005 井川信子、谷萩隆嗣、“カルマンフィルタを適用した最小分散推定による聴性脳幹反応波形の伝達関数の推定と特徴抽出”、Journal of Signal Processing(信号処理)、2004年、8巻、4号、335〜349頁Nobuko Igawa, Takaaki Tanibe, “Estimation and Feature Extraction of Transfer Function of Auditory Brainstem Response Waveform by Minimum Variance Estimation Using Kalman Filter”, Journal of Signal Processing (Signal Processing), 2004, Vol. 8, No. 4, 335 349 pages Nobuko Ikawa、 Takashi Yahagi、“Feature Extraction and Identification of Transfer Function for Auditory Brainstem Response”、Journal of Signal Processing、2004、Vol.8、No.6、pp.473−484Nobuko Ikawa, Takashi Yahagi, “Feature Extraction and Identification of Transfer Function for Audition Brain 4 Response V, Journal of Venture 4”. 8, no. 6, pp. 473-484

しかしながら、上記非特許文献2及び3はABRに関する技術であって、ASSRに関する技術ではない。ASSRにおいても検査を受ける者に課す負担を軽減するために、測定時間の短縮を行う必要がある。   However, Non-Patent Documents 2 and 3 are related to ABR, not related to ASSR. Even in the ASSR, it is necessary to reduce the measurement time in order to reduce the burden imposed on the person undergoing the inspection.

そこで、本発明は上記課題を鑑み、高い検査精度を有しながらもより測定時間の短縮を行うことが可能な誘発電位検査装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an evoked potential inspection apparatus capable of reducing the measurement time while having high inspection accuracy.

上記課題を解決するための第一の手段として、本発明は、ASSR誘発電位信号デ−タを記録するASSR誘発電位信号デ−タ記録部と、ASSR誘発電位信号デ−タ記録部が記録した前記ASSR誘発電位信号デ−タに対してカルマンフィルタによる波形推定処理を行う波形推定処理部と、波形推定処理部が推定した波形信号デ−タに対して聴力判定処理を行う聴力判定処理部と、聴力判定処理部が処理した結果を表示装置に表示させるための表示制御部と、を有する誘発電位検査装置とする。   As a first means for solving the above-mentioned problems, the present invention records an ASSR evoked potential signal data recording section for recording ASSR evoked potential signal data and an ASSR evoked potential signal data recording section. A waveform estimation processing unit that performs waveform estimation processing using a Kalman filter on the ASSR evoked potential signal data; and an hearing determination processing unit that performs hearing determination processing on the waveform signal data estimated by the waveform estimation processing unit; An evoked potential testing device having a display control unit for displaying a result processed by the hearing determination processing unit on a display device.

ここで「ASSR」とは聴性定常反応を意味し、具体的には、振幅搬送周波数(CF)に振幅変調(AM)をかけた波(AM波)を複数組み合わせた複合音を被験者に与えた際に生じる反応を意味する。また、「ASSR誘発電位信号デ−タ」とは、ASSRにおいて、ASSRの誘発電位信号の強度とその信号を測定した時間とが対応して格納されるデ−タであって、例えば誘発電位検査装置に接続される複数の電極を介して取得されるデ−タである。   Here, “ASSR” means an auditory steady state reaction, and specifically, a composite sound in which a plurality of waves (AM waves) obtained by applying amplitude modulation (AM) to the amplitude carrier frequency (CF) is given to the subject. It means a reaction that occurs in the process. The “ASSR evoked potential signal data” is data in which the intensity of the evoked potential signal of the ASSR and the time when the signal was measured are stored correspondingly in the ASSR. Data acquired via a plurality of electrodes connected to the device.

また、本手段において、限定されるわけではないが、波形推定処理部の行うカルマンフィルタによる波形推定処理が下記式で表されることも好ましい。
Moreover, in this means, although not necessarily limited, it is preferable that the waveform estimation processing by the Kalman filter performed by the waveform estimation processing unit is represented by the following equation.

また、本手段において、限定されるわけではないが、波形推定処理部の行うカルマンフィルタによる波形推定処理は、下記式で表現される波をモデル波形として用いて行うことが好ましい。
Moreover, in this means, although not necessarily limited, it is preferable that the waveform estimation process by the Kalman filter performed by the waveform estimation processing unit is performed using a wave expressed by the following equation as a model waveform.

また、本発明に係る誘発電位検査装置における「ASSR誘発電位信号デ−タに対してカルマンフィルタによる波形推定処理を行う波形推定処理部」とは、ASSR誘発電位信号デ−タに対してカルマンフィルタによる波形推定モジュ−ルを適用して導出電位信号デ−タの波形適合自動判定処理を行う部である。   In the evoked potential inspection apparatus according to the present invention, “a waveform estimation processing unit for performing waveform estimation processing by Kalman filter for ASSR evoked potential signal data” refers to a waveform by Kalman filter for ASSR evoked potential signal data. This is a unit that performs waveform conforming automatic determination processing of the derived potential signal data by applying the estimation module.

また、本手段において、限定されるわけではないが、前記波形推定処理部は、カルマンフィルタによる波形推定処理の前に、ASSR誘発電位信号デ−タ記録部が記録した前記ASSR誘発電位信号デ−タに対し、Wavelet変換を施すことが好ましい。このようにすることで位相に同期しない観測波形を弁別削除することが可能となり、更に本発明の効果が顕著となる。   Further, in this means, the waveform estimation processing unit is not limited, but the waveform estimation processing unit records the ASSR evoked potential signal data recorded by the ASSR evoked potential signal data recording unit before the waveform estimation processing by the Kalman filter. On the other hand, it is preferable to perform Wavelet conversion. By doing so, it is possible to discriminate and delete the observed waveform that is not synchronized with the phase, and the effect of the present invention becomes more remarkable.

また、上記課題を解決する他の一手段として、本発明は、被験者に装着する複数の電極と、被験者に音圧刺激を与えるためのイヤホンと、表示装置と、ASSR誘発電位信号デ−タを記録するASSR誘発電位信号デ−タ記録部、ASSR誘発電位信号デ−タ記録部が記録したASSR誘発電位信号デ−タに対してカルマンフィルタによる波形推定処理を行う波形推定処理部、波形推定処理部が推定した波形信号デ−タに対して聴力判定処理を行う聴力判定処理部、及び、聴力判定処理部が処理した結果を表示装置に表示させるための表示制御部、を有する誘発電位検査装置と、を有する誘発電位検査システムとする。   Further, as another means for solving the above problems, the present invention includes a plurality of electrodes to be attached to a subject, an earphone for giving a sound pressure stimulus to the subject, a display device, and ASSR evoked potential signal data. ASSR evoked potential signal data recording unit for recording, waveform estimation processing unit for performing waveform estimation processing by Kalman filter for ASSR evoked potential signal data recorded by ASSR evoked potential signal data recording unit, waveform estimation processing unit An evoked potential testing apparatus having an audio determination processing unit that performs an audio determination process on the waveform signal data estimated by the audio signal, and a display control unit for displaying a result processed by the audio determination processing unit on a display device; And an evoked potential test system.

また、本手段において、限定されるわけではないが、誘発電位検査装置における波形推定処理部の行うカルマンフィルタによる波形推定処理は、下記式で表されることが好ましい。
Moreover, in this means, although not necessarily limited, it is preferable that the waveform estimation process by the Kalman filter performed by the waveform estimation processing unit in the evoked potential inspection apparatus is represented by the following equation.

また、本手段において、限定されるわけではないが、誘発電位検査装置における波形推定処理部が行うカルマンフィルタによる波形推定処理は、下記式で表現される波をモデル波形として用いて行うことが好ましい。
Moreover, in this means, although not limited, it is preferable that the waveform estimation processing by the Kalman filter performed by the waveform estimation processing unit in the evoked potential inspection apparatus is performed using a wave represented by the following equation as a model waveform.

また、本手段において、限定されるわけではないが、前記波形推定処理部は、カルマンフィルタによる波形推定処理の前に、ASSR誘発電位信号デ−タ記録部が記録した前記ASSR誘発電位信号デ−タに対し、Wavelet変換を施すことが好ましい。このようにすることで位相に同期しない観測波形を弁別削除することが可能となり、更に本発明の効果が顕著となる。   Further, in this means, the waveform estimation processing unit is not limited, but the waveform estimation processing unit records the ASSR evoked potential signal data recorded by the ASSR evoked potential signal data recording unit before the waveform estimation processing by the Kalman filter. On the other hand, it is preferable to perform Wavelet conversion. By doing so, it is possible to discriminate and delete the observed waveform that is not synchronized with the phase, and the effect of the present invention becomes more remarkable.

以上により、高い測定精度でありながらも測定時間の短縮を行うことのできる誘発電位検査装置を提供することができる。   As described above, it is possible to provide an evoked potential inspection apparatus capable of reducing the measurement time while maintaining high measurement accuracy.

以下、本発明を実施するための形態について図面を用いて説明する。本発明は多くの異なる実施形態を採用でき、以下に示す実施形態に狭く限定されることはないのはいうまでもない。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. It goes without saying that the present invention can adopt many different embodiments and is not limited to the embodiments described below.

(実施形態1)
図1に本実施形態にかかる誘発電位検査システムの構成概略図を示す。本誘発電位検査システム1は、誘発電位信号検査装置2と、誘発電位信号検査装置に接続され、被験者に装着される複数の電極3、被験者の耳に音信号を伝達するイヤホン4、及び表示装置5と、を有して構成されている。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of an evoked potential inspection system according to the present embodiment. The evoked potential test system 1 includes an evoked potential signal test apparatus 2, a plurality of electrodes 3 connected to the evoked potential signal test apparatus, an earphone 4 that transmits a sound signal to the subject's ear, and a display device. 5.

次に、本実施形態に係る誘発電位検査システム1の機能ブロック図を図2に示す。図2に示すとおり、本誘発電位検査システム1における本誘発電位検査装置2は、被験者に対して音刺激を与えるために、音信号を生成し、イヤホンにこの音信号を送信する音刺激発生部21と、被験者に装着された複数の電極から入力されるASSR誘発電位信号を増幅するアンプ22と、ASSR誘発電位信号をデジタル信号に変換するA/D変換器23と、このASSR誘発電位信号をASSR誘発電位信号デ−タとして記録するASSR誘発電位信号デ−タ記録部24と、このASSR誘発電位信号デ−タ記録部が記録したASSR誘発電位信号デ−タに対してカルマンフィルタによる波形推定処理を行う波形推定処理部25と、波形推定処理部が推定した波形信号デ−タに対して聴力判定処理を行う聴力判定処理部26と、この結果を表示装置に表示させる表示装置に表示させるための表示制御部27と、を有して構成されている。なお、本実施形態において、限定されるわけではないが、音刺激発生部21、ASSR誘発電位信号デ−タ記録部24、波形推定処理部25、聴力判定処理部26、表示制御部27はコンピュ−タにおけるハ−ドディスクやRAM等の記録媒体に格納されたプログラムを実行することにより上記各部として機能する。   Next, a functional block diagram of the evoked potential test system 1 according to the present embodiment is shown in FIG. As shown in FIG. 2, the evoked potential test apparatus 2 in the evoked potential test system 1 generates a sound signal and transmits the sound signal to the earphone in order to give a sound stimulus to the subject. 21, an amplifier 22 that amplifies an ASSR evoked potential signal input from a plurality of electrodes attached to the subject, an A / D converter 23 that converts the ASSR evoked potential signal into a digital signal, and the ASSR evoked potential signal ASSR evoked potential signal data recording section 24 for recording as ASSR evoked potential signal data, and waveform estimation processing by Kalman filter for the ASSR evoked potential signal data recorded by the ASSR evoked potential signal data recording section. The waveform estimation processing unit 25 for performing the hearing determination, the hearing determination processing unit 26 for performing the hearing determination processing on the waveform signal data estimated by the waveform estimation processing unit, and this result. A display control unit 27 for displaying on the display device to be displayed on the display device, and is configured with a. In the present embodiment, the sound stimulus generator 21, the ASSR evoked potential signal data recorder 24, the waveform estimation processor 25, the hearing determination processor 26, and the display controller 27 are not limited. -Functions as the above-described units by executing programs stored in a recording medium such as a hard disk or a RAM in the computer.

音刺激発生部21は、上記のとおり、被験者に対して音刺激を与えるために、音信号を生成し、イヤホンに生成した音信号を送信することのできるものである。音信号としては、ASSRを行うことができる限りに限定されるわけではないが、通常、振幅搬送周波数(CF)に振幅変調(AM)をかけた波(AM波)を複数組み合わせた複合音を用いる。なお、この場合において、CFの範囲としては限定されるわけではないが、250Hz以上8000Hz以下であることが好ましく、AMの範囲としても、限定されるわけではないが10Hz以上500Hz以下であることが好ましい。また、この場合において、AM波の数は限定されるわけではないが、左右の耳に対し4個程度、合計8個程度であることが好ましい態様である。   As described above, the sound stimulus generation unit 21 can generate a sound signal and transmit the generated sound signal to the earphone in order to give a sound stimulus to the subject. The sound signal is not limited as long as ASSR can be performed, but usually a composite sound in which a plurality of waves (AM waves) obtained by applying amplitude modulation (AM) to the amplitude carrier frequency (CF) is combined. Use. In this case, the CF range is not limited, but is preferably 250 Hz or more and 8000 Hz or less, and the AM range is not limited, but may be 10 Hz or more and 500 Hz or less. preferable. In this case, the number of AM waves is not limited, but it is a preferable aspect that the number of AM waves is about four for the left and right ears, for a total of about eight.

アンプ22は、微弱なASSR誘発電位信号を増幅することができる装置であって、本実施形態に係る誘発電位検査システムにおける検査の精度をより高くするためには設けることが好ましい。用いるアンプとしては周知のアンプを採用することができ、限定されない。   The amplifier 22 is a device that can amplify a weak ASSR evoked potential signal, and is preferably provided in order to further increase the accuracy of the test in the evoked potential test system according to the present embodiment. A well-known amplifier can be adopted as the amplifier to be used, and is not limited.

A/D変換器23は、アナログ信号であるASSR誘発電位信号をデ−タ処理のためにデジタルデ−タに変換するものである。A/D変換器23としては上記処理を実行可能に作成された半導体集積回路を用いることが簡便であるが、この構成はこれに限定されず、例えば上記波形推定処理部25と同様、コンピュ−タにおける記録媒体に格納されたプログラムを実行することでも実現できる。   The A / D converter 23 converts an ASSR evoked potential signal, which is an analog signal, into digital data for data processing. As the A / D converter 23, it is convenient to use a semiconductor integrated circuit prepared so that the above processing can be executed. However, this configuration is not limited to this, and for example, as with the waveform estimation processing unit 25, a computer is used. It can also be realized by executing a program stored in a recording medium in the computer.

ASSR誘発電位信号デ−タ記録部24は、上記のとおり、複数の電極を介して得られる被験者からのASSR誘発電位信号をASSR誘発電位信号デ−タとして記録することができるものであって、例えば、ハ−ドディスク等の記録媒体に誘発電位信号デ−タを格納可能とすることで実現できる。ここでASSR誘発電位信号デ−タは、時間に対するASSR誘発電位の変化を示すデ−タであって、より具体的には時間デ−タに対応するASSR誘発電位デ−タの組を時系列的に複数有して構成されている。なお、ASSR誘発電位信号デ−タは、測定回数に応じ複数格納されていく。   As described above, the ASSR evoked potential signal data recording unit 24 can record an ASSR evoked potential signal from a subject obtained through a plurality of electrodes as ASSR evoked potential signal data, For example, it can be realized by enabling the evoked potential signal data to be stored in a recording medium such as a hard disk. Here, the ASSR evoked potential signal data is data indicating changes in the ASSR evoked potential with respect to time, and more specifically, a set of ASSR evoked potential data corresponding to the time data is time-series. A plurality of them are provided. A plurality of ASSR evoked potential signal data are stored according to the number of measurements.

波形推定処理部25は、上記のASSR誘発電位信号デ−タ記録部に記録されたASSR誘発電位信号デ−タに対し、カルマンフィルタを用いて波形推定を行うことができる部である。従来は単純平均加算処理であったところ、本実施形態のように波形推定処理部25を設けることで高い精度を維持したまま測定時間の短縮を図ることができる。   The waveform estimation processing unit 25 is a unit that can perform waveform estimation using a Kalman filter on the ASSR evoked potential signal data recorded in the above-mentioned ASSR evoked potential signal data recording unit. Conventionally, the simple average addition process is performed, but by providing the waveform estimation processing unit 25 as in the present embodiment, the measurement time can be shortened while maintaining high accuracy.

図3は、本実施形態に係る波形推定処理のイメ−ジを示す図である。本波形推定処理は、実際に取得した誘発電位信号デ−タ及びモデル波形デ−タをカルマンフィルタにかけて推定波形デ−タを作成する。   FIG. 3 is a diagram showing an image of waveform estimation processing according to the present embodiment. In this waveform estimation process, estimated waveform data is generated by applying the Kalman filter to the actually acquired evoked potential signal data and model waveform data.

まず、本実施形態におけるカルマンフィルタのモデル波形としては、以下の式で表現される波を採用する。
First, as a model waveform of the Kalman filter in this embodiment, a wave expressed by the following equation is adopted.

なお上記式においてiは、限定されるわけではないが、左右4本程度のサイン波形を採用すること即ちi=8程度が一般的である。   In the above formula, i is not limited, but it is common to employ about four sine waveforms on the left and right, i.e., about i = 8.

一方、波形推定処理部が行う波形推定処理においては、差分方程式(下記式(1))及び、その伝達関数(下記式(2))が用いられる。
On the other hand, in the waveform estimation processing performed by the waveform estimation processing unit, a difference equation (the following equation (1)) and its transfer function (the following equation (2)) are used.

そして上記伝達関数係数行列をθとし、カルマンフィルタを用いた最小分散推定による逐次推定アルゴリズムを適用して上記パラメ−タを推定する。
The transfer function coefficient matrix is set as θ, and the parameters are estimated by applying a sequential estimation algorithm based on minimum variance estimation using a Kalman filter.

なお、本実施形態において、上記式(1)におけるnの値(次数)としては、15以上17以下、最適な値としては16である。ちなみにこの値は、下記式を用いて推定する。
In the present embodiment, the value (order) of n in the above formula (1) is 15 or more and 17 or less, and the optimum value is 16. Incidentally, this value is estimated using the following equation.

上記式において、AICの値としては小さいことが望ましい一方で、必要以上に大きなパラメ−タ数(n)を用いてしまうと伝達関数モデルとしての妥当性に疑義が生じてしまうこと、を考慮し、n=16近傍でこのAICの値の減少率が急激に少なくなる点に着目し、n=15〜17のときであることが好ましく、最適な次数としてn=16が最適な値として求めた。なお、上記AICの式によるシミュレ−ションの結果を図4に示しておく。なお図中、横軸は次数を、縦軸はAICの値を示している。   In the above equation, it is desirable that the value of AIC is small, but if the number of parameters (n) larger than necessary is used, the validity of the transfer function model will be questioned. Focusing on the fact that the rate of decrease of the AIC value decreases rapidly in the vicinity of n = 16, it is preferable that n = 15 to 17, and n = 16 was obtained as the optimum value as the optimum order. . FIG. 4 shows the result of simulation based on the AIC equation. In the figure, the horizontal axis represents the order, and the vertical axis represents the AIC value.

以上のようにして、本実施形態に係る波形推定処理部25は、推定波形デ−タを作成し、格納する。   As described above, the waveform estimation processing unit 25 according to this embodiment creates and stores estimated waveform data.

なお、本実施形態に係るASSR波形推定処理部25は、カルマンフィルタによる波形推定処理の前に、ASSR誘発電位信号に対し、Wavelet変換を施すことも好ましい態様である。ASSR反応は複合変調サイン波上の音刺激を用いた誘発脳波であり、その誘発反応の発生源からの直接の応答ではないためα波などのASSR信号検出にとってはノイズであるが、ヒトの生体としての応答信号として意味のあるものも混在している。本実施形態においてWavelet変換を行い、その後カルマンフィルタによる波形推定処理を行うと、時間潜時情報を保持したまま周波数特異性を抽出しながらも、位相の同期をとることができる。   In addition, it is also a preferable aspect that the ASSR waveform estimation processing unit 25 according to the present embodiment performs Wavelet transformation on the ASSR evoked potential signal before the waveform estimation process by the Kalman filter. The ASSR response is an evoked brain wave using a sound stimulus on a composite modulated sine wave, and is not a direct response from the source of the evoked response, so it is a noise for detecting an ASSR signal such as an α wave. There are also some meaningful signals as response signals. If Wavelet transform is performed in this embodiment, and then waveform estimation processing by a Kalman filter is performed, phase synchronization can be achieved while extracting frequency specificity while retaining time latency information.

聴力判定処理部26は、この波形推定処理された推定波形デ−タを用いて、被験者の聴力の判定処理を行うことができる部である。判定処理としては、被験者の聴力が正常であるか否かを精度良く判定できる限りにおいて限定されことなく、例えば、(1)高速フ−リエ変換(FFT)を行い、その後、求める反応の周波数成分のパワ−とその周波数成分の周辺の周波数成分のパワ−とをF検定により比較する方法や、(2)いわゆる位相スペクトル解析法(例えば、上記非特許文献1)の方法等を用いることができる。   The hearing determination processing unit 26 is a unit that can perform the hearing determination processing of the subject using the estimated waveform data subjected to the waveform estimation processing. The determination process is not limited as long as it is possible to accurately determine whether or not the subject's hearing is normal. For example, (1) fast Fourier transform (FFT) is performed, and then the frequency component of the reaction to be obtained And the power of frequency components in the vicinity of the frequency component can be compared by F-test, or (2) the so-called phase spectrum analysis method (for example, Non-Patent Document 1). .

なお、いわゆる位相スペクトル解析法の場合、以下の式を用いてCSM値(Component Synchrony Measure)を求め、所定のしきい値よりもこの値が高いか否かで判断を行う。この場合の所定しきい値としては、限定されるわけではないが、無反応の場合のCSM値の平均値の理論値が1/nで、標準偏差の理論値が(n−1)/nの平方根で与えられるため、例えば平均値+3×標準偏差を採用することが好ましい。
In the case of a so-called phase spectrum analysis method, a CSM value (Component Synchronous Measurement) is obtained using the following equation, and a determination is made based on whether this value is higher than a predetermined threshold value. The predetermined threshold value in this case is not limited, but the theoretical value of the average value of CSM values in the case of no reaction is 1 / n, and the theoretical value of standard deviation is (n−1) / n. Since it is given by the square root of 3 , it is preferable to adopt, for example, an average value + 3 × standard deviation.

なお表示制御部27は、上記取得した聴力の判定処理結果に関するデ−タを表示することができる部であって、必要に応じ推定波形デ−タ、実際に測定した誘発電位信号デ−タ等の各デ−タを表示させる。これは、ハ−ドディスク等の記録媒体に記録されたプログラムを実行することで実現できる。   The display control unit 27 is a unit that can display data relating to the acquired hearing determination processing result, and includes estimated waveform data, actually measured evoked potential signal data, and the like as necessary. Each data of is displayed. This can be realized by executing a program recorded on a recording medium such as a hard disk.

ASSR誘発電位信号デ−タにカルマンフィルタによる波形推定処理を施すことにより高い精度を有しながらも測定時間の短縮を行うことが可能な誘発電位検査装置を提供する。この装置の提供によりASSR誘発電位信号デ−タを用いる聴力判定処理装置の改良を可能とした。 Provided is an evoked potential inspection device capable of reducing measurement time while providing high accuracy by performing waveform estimation processing by a Kalman filter on ASSR evoked potential signal data. By providing this device, it is possible to improve the hearing determination processing device using the ASSR evoked potential signal data.

以上、本実施形態に係る誘発電位検査装置及びシステムは、精度を維持したまま加算平均の回数を低減させることが可能となる。   As described above, the evoked potential inspection apparatus and system according to the present embodiment can reduce the number of times of averaging while maintaining accuracy.

(実施例1)
上記実施形態に係る誘発電位検査システムを作成し、また、この機能の評価について従来の場合と比較した。以下説明する。
Example 1
The evoked potential test system according to the above embodiment was created, and the evaluation of this function was compared with the conventional case. This will be described below.

本実施例では、被験者に対する音刺激として、音信号の組み合わせるAM波の数を左右合わせて8個(左4個、右4個とし、両耳ともCFとして500Hz、1000Hz、2000Hz、4000Hzを用い、右耳用AMとして84Hz、89Hz、93Hz、98Hz、左耳用AMとして82Hz、86Hz、91Hz、96Hzを用いた。)とし、刺激音圧を80dB、上記式(1)における次数(nの値)を16とした。この結果を図5に示す。図5において、上段のグラフは、カルマンフィルタによる推定波形とモデル波形を示すグラフであり、中段のグラフは、従来の加算波形とモデル波形を示す図であり、下段のグラフは、上段におけるカルマンフィルタによる推定波形及び中段における従来の加算波形に対するモデル波形との相関係数の値をそれぞれ示している。   In this example, as the sound stimulation for the subject, the number of AM waves combined with the sound signal is 8 in total (4 left, 4 right, and both ears use CF as 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, 84 Hz, 89 Hz, 93 Hz, 98 Hz for the right ear AM, and 82 Hz, 86 Hz, 91 Hz, 96 Hz for the left ear AM.), The stimulation sound pressure is 80 dB, and the order (value of n) in the above equation (1) Was set to 16. The result is shown in FIG. In FIG. 5, the upper graph is a graph showing an estimated waveform and a model waveform by a Kalman filter, the middle graph is a diagram showing a conventional addition waveform and a model waveform, and the lower graph is an estimation by a Kalman filter in the upper row. The value of the correlation coefficient with the model waveform with respect to the waveform and the conventional addition waveform in the middle stage is shown, respectively.

この結果図5で示すように、どの加算回数におけるカルマンフィルタによる推定波形であっても、単純加算の従来例より高い相関係数を得ていることを確認した。   As a result, as shown in FIG. 5, it was confirmed that a correlation coefficient higher than that of the conventional example of simple addition was obtained for any estimated waveform by the Kalman filter at any number of additions.

なお、本実施例におけるCSM値の結果を図6に示す。図中横軸は周波数を、縦軸はCSM値を示す。なお、左側のグラフは、それぞれ左右の耳の反応周波数に対するCSM値と反応のあるなしをボタン表示したものである(反応があれば明るく点灯する)。これによって、精度よく判定ができることを確認した。   In addition, the result of the CSM value in a present Example is shown in FIG. In the figure, the horizontal axis indicates the frequency, and the vertical axis indicates the CSM value. The graph on the left is a button display of the CSM value for the left and right ear response frequencies and whether or not there is a response (lights up if there is a response). Thus, it was confirmed that the determination can be made with high accuracy.

(実施例2、3)
これら実施例においては、刺激音圧以外実施例1と同様の条件とした。具体的には、実施例2は刺激音圧を70dBとした場合の例、実施例3は刺激音圧を60dBとした場合の例である。実施例2による結果を図7、実施例3による結果を図9にそれぞれ示す。
(Examples 2 and 3)
In these examples, the same conditions as in Example 1 except for the stimulating sound pressure were set. Specifically, Example 2 is an example when the stimulation sound pressure is 70 dB, and Example 3 is an example when the stimulation sound pressure is 60 dB. The result of Example 2 is shown in FIG. 7, and the result of Example 3 is shown in FIG.

この結果、いずれの刺激音圧においても、どの加算回数であっても従来例の加算平均よりも高い相関を得ることが確認できた。   As a result, it was confirmed that at any stimulation sound pressure, a correlation higher than the addition average of the conventional example was obtained at any number of additions.

なお、実施例2、3におけるCSM値の結果を図8、10にそれぞれ示す。図中横軸は周波数を、縦軸はCSM値を示す。なお、左側のグラフは、それぞれ左右の耳の反応周波数に対するCSM値と反応のあるなしをボタン表示したものである(反応があれば明るく点灯する)。これによって、精度よく判定ができることを確認した。   The results of CSM values in Examples 2 and 3 are shown in FIGS. In the figure, the horizontal axis indicates the frequency, and the vertical axis indicates the CSM value. The graph on the left is a button display of the CSM value for the left and right ear response frequencies and whether or not there is a response (lights up if there is a response). Thus, it was confirmed that the determination can be made with high accuracy.

(実施例4)
さらに、位相問題の解消のためにカルマンフィルタを用いる前処理としてWavelet変換を用いた場合の有用性について、従来の場合と比較した。
(Example 4)
Furthermore, the usefulness of using Wavelet transform as preprocessing using a Kalman filter to eliminate the phase problem was compared with the conventional case.

従来のMASTER(Bio−logic社)と同じ波形デ−タを用いて、離散Wavelet変換(DWT)多重解像度解析(略して、MR_DWT)を実施した。MR_DWTで分解された各レベルについて、再構成DWT(略してRe−DWT)を実施した。80HzASSRの構成は、slowABRに機序すること(上記非特許文献1参照)拠とし、ASSRに対してもABRで用いたWavelet基底関数である双直交スプラインWavelet(Bior5.5)を適用した(Nobuko Ikawa、 Takashi Yahagi、Huiqin Jian、“Waveform analysis based on latency−frequency characteristic of auditory brainstem response using wavelet transform”、Journal of Signal Processing、2005、Vol.9、No.6、pp.505−518)。   Discrete Wavelet transform (DWT) multi-resolution analysis (MR_DWT for short) was performed using the same waveform data as conventional MASTER (Bio-logic). Reconstruction DWT (Re-DWT for short) was performed for each level decomposed by MR_DWT. The configuration of 80 Hz ASSR is based on the mechanism of slowABR (see Non-Patent Document 1 above), and the Biorthogonal Spline Wavelet (Bior5.5), which is a Wavelet basis function used in ABR, is applied to ASSR as well (Nobuko) Ikawa, Takashi Yahagi, Huiqin Jian, "Waveform analysis based on latency-frequency characteristic of auditory brainstem response using wavelet transform", Journal of Signal Processing, 2005, Vol.9, No.6, pp.505-518).

次にこの適用の有効性を示す。従来技術同様の加算におけるMR_DWTおよびRE−DWTの結果と各分解レベルのFFTが図11である。左側上からオリジナル波形、分解レベルの再構成波形を示し、右側はそれぞれのFFTパワ−スペクトラムである。FFTパワ−スペクトルは80−120Hzのみを表示している。この結果、オリジナル波形のFFTの結果は従来技術における結果と一致している。そして、オリジナル波形とD3レベルの再構成ASSR波形のFFT結果に高い相関が得られた。   Next, the effectiveness of this application is shown. FIG. 11 shows the results of MR_DWT and RE-DWT in the same addition as in the prior art and the FFT of each decomposition level. The original waveform and the reconstructed waveform at the decomposition level are shown from the upper left, and the FFT power spectrum is shown on the right. The FFT power spectrum displays only 80-120 Hz. As a result, the result of FFT of the original waveform is consistent with the result in the prior art. A high correlation was obtained between the FFT results of the original waveform and the D3 level reconstructed ASSR waveform.

実際、分解レベルD3において得られる再構成波形が、ASSR波形を構成していることを求めた。さらに、sweepごとの波形の振幅およびパワ−スペクトルの振幅を比較した結果、sweep回数3回程度において、最終結果時とほぼ同等の振幅値になることを示す。これらのことを根拠として、sweepごとのD3レベルの再構成波形のFFT(60−120Hzの範囲)と観測したオリジナル波形のFFT(60−120Hzの範囲)を比較する。位相に同期して記録されている場合、図11に示したように、D3が主要構成波形なので、両者の振幅比はほぼ半分であるがFFT形状(同じ周波数において反応がある)に相関がある。したがって、この相関係数が閾値より小さいものは、位相同期の度合いが低いものと判定し、加算に加えないようにする。   In fact, it was determined that the reconstructed waveform obtained at the decomposition level D3 constitutes an ASSR waveform. Furthermore, as a result of comparing the amplitude of the waveform for each sweep and the amplitude of the power spectrum, it is shown that the amplitude value is almost the same as the final result when the number of sweeps is about three. Based on these facts, the FFT (60-120 Hz range) of the D3 level reconstructed waveform for each sweep is compared with the observed FFT (60-120 Hz range) of the original waveform. When recorded in synchronization with the phase, as shown in FIG. 11, since D3 is the main component waveform, the amplitude ratio between them is almost half, but there is a correlation in the FFT shape (there is a response at the same frequency). . Therefore, if the correlation coefficient is smaller than the threshold, it is determined that the degree of phase synchronization is low, and is not added to the addition.

図11を得るにいたる各加算回における波形の振幅とFFTパワ−の振幅を比較すると,図12、図13に示すように,sweep加算3回程度でほぼ判定時(この事例では11回)の振幅となる.したがって,3回以降の加算は,位相のずれなどの補正に必要な可能性がある.   When comparing the amplitude of the waveform and the amplitude of the FFT power in each addition time to obtain FIG. 11, as shown in FIGS. 12 and 13, the sweep addition is about 3 times (in this case, 11 times). Amplitude. Therefore, the addition after 3 times may be necessary to correct the phase shift.

図14、15、16はそれぞれsweep加算3、4、5回(図ではプログラム上0からカウントしているため2、3、4回となっている)の際のオリジナル波形とレベルD3における再構成された波形のFFTを示す。cd3およびcd4は参考として、MR_DWTのレベルcD3およびcD4を表示している。加算4回は、加算3回よりも低い相関となり、位相のずれている波形を加算している影響が考えられる。このように判定していくと、図17に示すように加算8回目、実際は2回排除したため6回程度で従来技術(MASTER、Bio−logic社)と同等の結果が得られる。なお、この実験デ−タはMASTERによって測定されたデ−タに基づくが、本手法を直接組み込んだ装置による場合はepoch段階でこの手法を実施するため、さらに加算回数を軽減できると考える。   14, 15 and 16 respectively show the original waveform and the reconstruction at level D3 when sweep addition is 3, 4, and 5 times (in the figure, it is 2, 3, and 4 times because it is counted from 0 in the program) The FFT of the resulting waveform is shown. For reference, cd3 and cd4 indicate MR_DWT levels cD3 and cD4. The addition of 4 times has a lower correlation than the addition of 3 times, and the influence of adding waveforms that are out of phase can be considered. When the determination is made in this way, as shown in FIG. 17, the result is equivalent to the conventional technique (MASTER, Bio-logic Co., Ltd.) in the sixth addition since it is excluded twice and actually twice. Although this experimental data is based on data measured by MASTER, it is considered that the number of additions can be further reduced because this method is implemented at the epoch stage when an apparatus directly incorporating this method is used.

以上、本発明により、精度を維持したまま加算平均の回数を低減させることが可能な誘発電位検査装置及びシステムを提供することができることを確認した。   As described above, according to the present invention, it has been confirmed that an evoked potential inspection apparatus and system capable of reducing the number of times of averaging while maintaining accuracy can be provided.

実施形態に係る誘発電位検査システムの構成概略図である。1 is a schematic configuration diagram of an evoked potential inspection system according to an embodiment. 本実施形態に係る誘発電位検査システムの機能ブロック図である。It is a functional block diagram of the evoked potential inspection system concerning this embodiment. 本実施形態に係る波形推定処理のイメ−ジを示す図である。It is a figure which shows the image of the waveform estimation process which concerns on this embodiment. AICの式によるシミュレ−ションの結果を示す図である。It is a figure which shows the result of the simulation by the formula of AIC. 実施例1における波形評価の結果を示す図である。It is a figure which shows the result of the waveform evaluation in Example 1. FIG. 実施例1におけるCSMの結果を示す図である。It is a figure which shows the result of CSM in Example 1. FIG. 実施例2における波形評価の結果を示す図である。It is a figure which shows the result of the waveform evaluation in Example 2. FIG. 実施例2におけるCSMの結果を示す図である。It is a figure which shows the result of CSM in Example 2. FIG. 実施例3における波形評価の結果を示す図である。It is a figure which shows the result of the waveform evaluation in Example 3. FIG. 実施例3におけるCSMの結果を示す図である。It is a figure which shows the result of CSM in Example 3. 実施例4におけるMR_DWTおよびRE−DWTの結果と各分解レベルのFFTの結果を示す図である。It is a figure which shows the result of MR_DWT and RE-DWT in Example 4, and the result of FFT of each decomposition level. 実施例4における加算回数ごと、RE−DWT各レベルの最大振幅値(80dB聴力正常)Maximum amplitude value of each level of RE-DWT (normality of 80 dB hearing) for each number of additions in Example 4 実施例4におけるFFTパワ−の最大振幅値の(80dB聴力正常)The maximum amplitude value of FFT power in Example 4 (80 dB hearing normal) 実施例4における加算3回のRE−DWTレベル3の結果とオリジナルFFT波形の周波数範囲(80−100Hz)での比較(高い相関あり)Comparison of the results of RE-DWT level 3 of 3 additions in Example 4 and the frequency range (80-100 Hz) of the original FFT waveform (highly correlated) 実施例4における加算4回のRE−DWTレベル3の結果とオリジナルFFT波形の周波数範囲(80−100Hz)での比較(加算3回より低い相関)Comparison of the results of RE-DWT level 3 of 4 additions in Example 4 and the frequency range (80-100 Hz) of the original FFT waveform (correlation lower than 3 additions) 実施例4における加算5回のRE−DWTレベル3の結果とオリジナルFFT波形の周波数範囲(80−100Hz)での比較(加算4回より高い相関)Comparison of the result of RE-DWT level 3 of 5 additions in Example 4 and the frequency range (80-100 Hz) of the original FFT waveform (correlation higher than 4 additions) 実施例4における加算8回のRE−DWTレベル3の結果とオリジナルFFT波形の周波数範囲(80−100Hz)での比較(判定結果時とほぼ同じ)Comparison of the result of RE-DWT level 3 of 8 additions in Example 4 and the frequency range (80-100 Hz) of the original FFT waveform (substantially the same as the determination result)

1…誘発電位信号検査システム、2…誘発電位信号検査装置、3…電極、4…イヤホン、5…表示装置、21…音刺激発生部、22…アンプ、23…A/D変換器、24…誘発電位信号デ−タ記録部、25…波形推定処理部、26…聴力判定処理部、27…表示制御部 DESCRIPTION OF SYMBOLS 1 ... Evoked potential signal test | inspection system, 2 ... Evoked potential signal test | inspection apparatus, 3 ... Electrode, 4 ... Earphone, 5 ... Display apparatus, 21 ... Sound stimulus generation part, 22 ... Amplifier, 23 ... A / D converter, 24 ... Evoked potential signal data recording unit, 25 ... waveform estimation processing unit, 26 ... hearing determination processing unit, 27 ... display control unit

Claims (4)

ASSR誘発電位信号デ−タを記録するASSR誘発電位信号デ−タ記録部と、
前記ASSR誘発電位信号デ−タ記録部が記録した前記ASSR誘発電位信号デ−タに対して下記式で表されるカルマンフィルタによる波形推定処理を行う波形推定処理部と、
前記波形推定処理部が推定した波形信号デ−タに対して聴力判定処理を行う聴力判定処理部と、
前記聴力判定処理部が処理した結果を表示装置に表示させるための表示制御部と、を有する誘発電位検査装置。
An ASSR evoked potential signal data recording section for recording ASSR evoked potential signal data;
A waveform estimation processing unit that performs a waveform estimation process using a Kalman filter expressed by the following equation on the ASSR evoked potential signal data recorded by the ASSR evoked potential signal data recording unit;
A hearing determination processing unit that performs a hearing determination process on the waveform signal data estimated by the waveform estimation processing unit;
An evoked potential testing device, comprising: a display control unit for causing a display device to display a result processed by the hearing determination processing unit.
被験者に装着する複数の電極と、
被験者に音圧刺激を与えるためのイヤホンと、
表示装置と、
ASSR誘発電位信号デ−タを記録するASSR誘発電位信号デ−タ記録部、前記ASSR誘発電位信号デ−タ記録部が記録した前記ASSR誘発電位信号デ−タに対して下記式で表されるカルマンフィルタによる波形推定処理を行う波形推定処理部、前記波形推定処理部が推定した波形信号デ−タに対して聴力判定処理を行う聴力判定処理部、及び、前記聴力判定処理部が処理した結果を前記表示装置に表示させるための表示制御部、を有する誘発電位検査装置と、
を有する誘発電位検査システム。
A plurality of electrodes attached to the subject;
An earphone for applying sound pressure stimulation to the subject;
A display device;
An ASSR evoked potential signal data recording unit for recording ASSR evoked potential signal data, and the ASSR evoked potential signal data recorded by the ASSR evoked potential signal data recording unit are expressed by the following formulae. A waveform estimation processing unit that performs a waveform estimation process using a Kalman filter, an hearing determination processing unit that performs an hearing determination process on the waveform signal data estimated by the waveform estimation processing unit, and a result obtained by processing the hearing determination processing unit. An evoked potential testing device having a display control unit for displaying on the display device;
Evoked potential test system.
前記波形推定処理部は、カルマンフィルタによる波形推定処理の前に、前記ASSR誘発電位信号デ−タ記録部が記録した前記ASSR誘発電位信号デ−タに対し、Wavelet変換を施すことを特徴とする請求項1記載の誘発電位検査装置。   The waveform estimation processing unit performs wavelet transform on the ASSR evoked potential signal data recorded by the ASSR evoked potential signal data recording unit before waveform estimation processing by a Kalman filter. Item 2. The evoked potential test device according to Item 1. 前記波形推定処理部は、カルマンフィルタによる波形推定処理の前に、前記ASSR誘発電位信号デ−タ記録部が記録した前記ASSR誘発電位信号デ−タに対し、Wavelet変換を施すことを特徴とする請求項記載の誘発電位検査システム。 The waveform estimation processing unit performs wavelet transform on the ASSR evoked potential signal data recorded by the ASSR evoked potential signal data recording unit before waveform estimation processing by a Kalman filter. Item 3. The evoked potential test system according to Item 2 .
JP2012144204A 2006-09-27 2012-06-27 Evoked potential inspection device and evoked potential inspection system Active JP5553088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012144204A JP5553088B2 (en) 2006-09-27 2012-06-27 Evoked potential inspection device and evoked potential inspection system

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006262220 2006-09-27
JP2006262220 2006-09-27
JP2007052088 2007-03-01
JP2007052088 2007-03-01
JP2012144204A JP5553088B2 (en) 2006-09-27 2012-06-27 Evoked potential inspection device and evoked potential inspection system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008536389A Division JP5099453B2 (en) 2006-09-27 2007-09-26 Evoked potential inspection device and evoked potential inspection system

Publications (3)

Publication Number Publication Date
JP2012228525A JP2012228525A (en) 2012-11-22
JP2012228525A5 JP2012228525A5 (en) 2013-09-26
JP5553088B2 true JP5553088B2 (en) 2014-07-16

Family

ID=39230086

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008536389A Active JP5099453B2 (en) 2006-09-27 2007-09-26 Evoked potential inspection device and evoked potential inspection system
JP2012144204A Active JP5553088B2 (en) 2006-09-27 2012-06-27 Evoked potential inspection device and evoked potential inspection system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008536389A Active JP5099453B2 (en) 2006-09-27 2007-09-26 Evoked potential inspection device and evoked potential inspection system

Country Status (2)

Country Link
JP (2) JP5099453B2 (en)
WO (1) WO2008038650A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2170169A4 (en) * 2007-03-23 2013-12-18 Widex As System and method for the objective measurement of hearing ability of an individual
JP5219202B2 (en) * 2008-10-02 2013-06-26 学校法人金沢工業大学 Sound signal processing device, headphone device, and sound signal processing method
WO2012063423A1 (en) * 2010-11-12 2012-05-18 パナソニック株式会社 Sound pressure evaluation system, and method and program therefor
CN103081516A (en) * 2011-06-30 2013-05-01 松下电器产业株式会社 Uncomfortable sound pressure determination system, method and program therefor, hearing aid adjustment system, and uncomfortable sound pressure determination device
CN103081515B (en) * 2011-06-30 2016-12-21 松下知识产权经营株式会社 Discomfort threshold level estimation system, method, sonifer adjust system and uncomfortable threshold value supposition processes circuit
WO2013057929A1 (en) * 2011-10-18 2013-04-25 パナソニック株式会社 Uncomfortable loudness level estimating system, uncomfortable loudness level estimating device, uncomfortable loudness level estimating method, and computer program for same
JP5915944B2 (en) 2012-03-19 2016-05-11 パナソニックIpマネジメント株式会社 Unpleasant sound pressure estimation system, unpleasant sound pressure estimation device, unpleasant sound pressure estimation method, and computer program therefor
JP6041271B2 (en) 2012-04-24 2016-12-07 パナソニックIpマネジメント株式会社 Hearing aid gain determination system, hearing aid gain determination method, and computer program
WO2014049979A1 (en) * 2012-09-27 2014-04-03 パナソニック株式会社 Uncomfortable loudness level evaluation system, uncomfortable loudness level evaluation device, uncomfortable loudness level adjustment device, uncomfortable loudness level evaluation method, and computer program therefor
CN109284009B (en) * 2018-11-27 2020-05-22 中国医学科学院生物医学工程研究所 System and method for improving auditory steady-state response brain-computer interface performance
JP7497023B2 (en) 2020-07-02 2024-06-10 国立大学法人 東京大学 Hearing test system and hearing test method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2362357A1 (en) * 1998-11-09 2000-05-18 Xinde Li System and method for processing low signal-to-noise ratio signals
JP4707920B2 (en) * 2000-05-19 2011-06-22 ベイクレスト・センター・フォー・ジェリアトリック・ケア System and method for objectively assessing hearing using auditory steady state responses
US20060153396A1 (en) * 2003-02-07 2006-07-13 John Michael S Rapid screening, threshold, and diagnostic tests for evaluation of hearing

Also Published As

Publication number Publication date
JP2012228525A (en) 2012-11-22
WO2008038650A1 (en) 2008-04-03
JP5099453B2 (en) 2012-12-19
JPWO2008038650A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP5553088B2 (en) Evoked potential inspection device and evoked potential inspection system
US8177726B2 (en) Rapid screening, threshold, and diagnostic tests for evaluation of hearing
RU2481789C2 (en) Method and device for objective detection of hearing impairment
JP2005296607A (en) System and method for objective evaluation of hearing ability using response of steady state of hearing ability
JP2003533258A (en) System and method for objectively assessing hearing using auditory steady-state responses
Berninger et al. Analysis of click-evoked auditory brainstem responses using time domain cross-correlations between interleaved responses
Cobb et al. Test-retest reliability of auditory brainstem responses to chirp stimuli in newborns
Valderrama et al. Auditory brainstem and middle latency responses recorded at fast rates with randomized stimulation
Beim et al. No effects of attention or visual perceptual load on cochlear function, as measured with stimulus-frequency otoacoustic emissions
Polonenko et al. Optimizing parameters for using the parallel auditory brainstem response to quickly estimate hearing thresholds
Felix et al. Avoiding spectral leakage in objective detection of auditory steady-state evoked responses in the inferior colliculus of rat using coherence
Antunes et al. Multichannel search strategy for improving the detection of auditory steady-state response
Rushaidin et al. Wave V detection using instantaneous energy of auditory brainstem response signal
Pérez-Abalo et al. New system for neonatal hearing screening based on auditory steady state responses
JP4547498B2 (en) Evoked potential test apparatus and evoked potential test system using the same
Ma et al. Estimation of distortion product otoacoustic emissions
CN117297596B (en) Auditory pathway evaluation analysis device and method thereof
Torres-Fortuny et al. Comparing auditory steady-state responses amplitude evoked by simultaneous air-and bone-conducted stimulation in newborns
JP3613794B2 (en) Auditory measurement device
Zapata-Rodriguez et al. Do room acoustics affect the amplitude of sound-field auditory steady-state responses?
KR101666474B1 (en) Diagnosis system for pulsatile tinnitus by transcanal sound recording and method thereof
JP7549348B2 (en) DATA PROCESSING APPARATUS, DATA PROCESSING METHOD, AND PROGRAM
Swanepoel Clinical status of the auditory steady-state response in infants
US20230051834A1 (en) Method and system for determining the integrity of auditory nerve fibers and synapses
Arooj et al. Use of instantaneous energy of ABR signals for fast detection of wave V

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5553088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250