JP6578874B2 - Walking cycle detection method and detection apparatus - Google Patents

Walking cycle detection method and detection apparatus Download PDF

Info

Publication number
JP6578874B2
JP6578874B2 JP2015203986A JP2015203986A JP6578874B2 JP 6578874 B2 JP6578874 B2 JP 6578874B2 JP 2015203986 A JP2015203986 A JP 2015203986A JP 2015203986 A JP2015203986 A JP 2015203986A JP 6578874 B2 JP6578874 B2 JP 6578874B2
Authority
JP
Japan
Prior art keywords
foot
time
walking
acceleration
time point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015203986A
Other languages
Japanese (ja)
Other versions
JP2017074263A (en
Inventor
直人 高柳
直人 高柳
正孝 佐々木
正孝 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2015203986A priority Critical patent/JP6578874B2/en
Publication of JP2017074263A publication Critical patent/JP2017074263A/en
Application granted granted Critical
Publication of JP6578874B2 publication Critical patent/JP6578874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、歩行周期の検出方法及び検出装置に関する。   The present invention relates to a walking cycle detection method and detection apparatus.

歩行において、片方の足の踵着地からその足の次の踵着地までは1歩行周期と言われ、歩行動作の詳細な解析を行う上で広く使用されている。   In walking, from one foot landing to the next foot landing is said to be one walking cycle, which is widely used for detailed analysis of walking motion.

歩行周期の計測方法としては、被験者の画像を多方向から撮影し、3次元人物モデルの両脚のくるぶし間距離を算出し、その両脚のくるぶし間距離の最小値から歩行周期を算出する方法(特許文献1)、シート式圧力センサを使用して歩行周期を測定する方法(特許文献2)、被験者が携帯する加速度計によって歩行中の上下方向又は前後方向の加速度を計測し、計測した加速度を周波数解析してパワースペクトルのピークを検出し、そのピーク周波数に基づいて歩行周期を求める方法(特許文献3)などが知られている。   As a method of measuring the walking cycle, a method is used in which images of the subject are taken from multiple directions, the distance between the ankles of both legs of the 3D human model is calculated, and the walking cycle is calculated from the minimum value of the distance between the ankles of both legs (patent) Reference 1), method of measuring walking cycle using a seat-type pressure sensor (Patent Document 2), measuring acceleration in the vertical direction or front-rear direction while walking with an accelerometer carried by the subject, and measuring the measured acceleration as a frequency A method is known in which a peak of a power spectrum is detected by analysis and a walking cycle is obtained based on the peak frequency (Patent Document 3).

特開2009−189671号公報JP 2009-189671 A 特開2014―94069号公報JP 2014-94069 A 特開2005−342254号公報JP 2005-342254 A

しかしながら、特許文献1に記載のように、足の位置情報を利用して歩行周期を検出する場合、足に左右差がある被験者では両脚のくるぶし間距離から歩行周期を正確に検出することができない。また、複数台の撮像装置を用いて多方向から撮影することが必要とされるので、大掛かりな計測装置を設置できる専用の大きなスペースを必要とし、検出システムが複雑である。   However, as described in Patent Document 1, when the walking cycle is detected using the foot position information, the walking cycle cannot be accurately detected from the distance between the ankles of both legs in a subject having a left-right difference in the foot. . In addition, since it is necessary to shoot from multiple directions using a plurality of imaging devices, a dedicated large space where a large measuring device can be installed is required, and the detection system is complicated.

特許文献2に記載のようにシート式圧力センサを使用すると、歩行特徴の検査会場などで被験者にシート式圧力センサ上を歩行してもらったときの歩行周期は正確に得られるが、そうして得られた歩行周期が、日常生活における歩行周期と一致するとは限らない。   When a seat type pressure sensor is used as described in Patent Document 2, the walking cycle when the subject walks on the seat type pressure sensor in a walking feature inspection hall or the like can be obtained accurately. The obtained walking cycle does not always coincide with the walking cycle in daily life.

特許文献3に記載のように被験者が携帯する加速度計を用いる方法によれば、日常生活における歩行周期を検出することができる。しかしながら、検出した加速度を周波数解析してパワースペクトルを求めることが必要とされるので、歩行周期を得るまでに多大な計算量が必要とされ、リアルタイムで簡便に歩行周期を求めることができない。   According to the method using an accelerometer carried by a subject as described in Patent Document 3, it is possible to detect a walking cycle in daily life. However, since it is necessary to obtain a power spectrum by performing frequency analysis on the detected acceleration, a large amount of calculation is required to obtain a walking cycle, and the walking cycle cannot be easily obtained in real time.

これに対し、本発明の課題は、日常生活の歩行周期を正確に、かつリアルタイムで検出可能とすることに関する。   On the other hand, the subject of this invention is related with making it possible to detect the walk cycle of everyday life correctly and in real time.

本発明者は、歩行時に前方に動き出している足が右足であるか左足であるかに対応して腰が回旋することに着目し、腰に装着した加速度計によって検出される加速度から、前方に動き出している足が右足であるか左足であるかをリアルタイムで検査できるアルゴリズムを考案し、さらにその検査結果から歩行周期を検査する本発明を想到した。   The inventor paid attention to the fact that the hip rotates in response to whether the foot starting to move forward during walking is the right foot or the left foot, and from the acceleration detected by the accelerometer attached to the waist, We have devised an algorithm that can inspect in real time whether the moving foot is the right foot or the left foot, and further conceived the present invention to inspect the walking cycle from the inspection result.

即ち、本発明は、被験者の腰に装着された加速度センサを用いて所定の計測周期で被験者の歩行中の加速度を計測し、ある時点T0より所定時間t2過去の時点がT2、前記時点T0より所定時間t3過去の時点がT3であるときに(ただし、t2<t3)、
時点T3と時点T2の間の左右方向の加速度の移動平均Y3-2
時点T2と時点T0の間の左右方向の加速度の移動平均Y2-0
移動平均Y2-0 と移動平均Y3-2 との差ΔY、
を算出し、
左右の一方の足(以下、第1足という)が前方へ動き出していると判定するためのΔYの閾値y1、及び他方の足(以下、第2足という)が前方へ動き出していると判定するためのΔYの閾値y2を設定し、
前記時点T0のΔYと閾値y1の大小関係、及び前記時点T0のΔYと閾値y2の大小関係に基づき、前記時点T0が、第1足が前方へ動き出してから第2足が前方に動き出すまでの状態(以下、第1足移行状態という)にあるか、第2足が前方へ動き出してから第1足が前方に動き出すまでの状態(以下、第2足移行状態という)にあるかを判定する歩行状態検査を周期的に行い、
第1足移行状態又は第2足移行状態の繰り返し周期を歩行周期とする歩行周期の検出方法を提供する。
That is, according to the present invention, the acceleration during walking of the subject is measured at a predetermined measurement cycle using an acceleration sensor mounted on the waist of the subject, and a time point that is a predetermined time t2 after a certain time point T0 is T2, and the time point T0 is higher than the time point T0. When the point in time in the predetermined time t3 is T3 (where t2 <t3),
Moving average Y 3-2 of acceleration in the left-right direction between time T3 and time T2,
Moving average Y 2-0 of acceleration in the left-right direction between time T2 and time T0,
Difference ΔY between moving average Y 2-0 and moving average Y 3-2 ,
To calculate
A threshold value y1 for determining that one of the left and right feet (hereinafter referred to as the first foot) has started moving forward, and that the other foot (hereinafter referred to as the second foot) has started moving forward. Set a threshold value y2 of ΔY for
Based on the magnitude relationship between ΔY at time point T0 and threshold y1, and the magnitude relationship between ΔY at time point T0 and threshold value y2, the time from time point T0 until the first foot starts moving forward until the second foot starts moving forward. It is determined whether it is in a state (hereinafter referred to as a first foot transition state) or in a state (hereinafter referred to as a second foot transition state) from when the second foot starts moving forward until the first foot starts moving forward. Periodically check the walking state,
Provided is a walking cycle detection method in which a repetition cycle of a first foot transition state or a second foot transition state is a walking cycle.

また本発明は、上述の歩行周期の検出方法を実施する歩行周期検出装置として、歩行中の被験者の腰部の加速度から歩行周期を検出する歩行周期検出装置であって、
腰に装着され、歩行における腰部の左右方向の加速度を計測可能な加速度センサ、及び
加速度センサで計測された加速度から歩行周期を検出する演算装置を有し、
該演算装置が、
加速度センサで計測された左右方向の加速度を所定の計測周期で抽出する機能、
ある時点T0、該時点T0より所定時間t2過去の時点がT2、及び前記時点T0より所定時間t3過去の時点がT3であるときに(ただし、t2<t3)、
時点T3と時点T2の間の左右方向の加速度の移動平均Y3-2
時点T2と時点T0の間の左右方向の加速度の移動平均Y2-0 、及び
移動平均Y2-0 と移動平均Y3-2 との差ΔY、
を算出する機能、
第1足が前方へ動き出していると判定するためのΔYの閾値がy1、及び第2足が前方へ動き出していると判定するためのΔYの閾値がy2であるときに、前記ΔYと閾値y1との大小関係、及び前記ΔYと閾値y2との大小関係に基づき、前記時点T0が第1足移行状態にあるか、第2足移行状態にあるかを判定する歩行状態検査を周期的に行う歩行状態検査機能、及び
第1足移行状態又は第2足移行状態の繰り返し周期を検出し、歩行周期として出力する機能、
を有する歩行周期検出装置を提供する。
Further, the present invention is a walking cycle detection device that detects the walking cycle from the acceleration of the waist of the subject who is walking, as a walking cycle detection device that implements the above-described walking cycle detection method,
An acceleration sensor that is mounted on the waist and that can measure the lateral acceleration of the waist during walking, and an arithmetic device that detects the walking cycle from the acceleration measured by the acceleration sensor,
The arithmetic unit is
A function of extracting the acceleration in the left-right direction measured by the acceleration sensor at a predetermined measurement cycle;
When a certain time T0, a time point T2 past the predetermined time T0 is T2, and a time point T3 past the predetermined time T0 is T3 (where t2 <t3),
Moving average Y 3-2 of acceleration in the left-right direction between time T3 and time T2,
The moving average Y 2-0 of the lateral acceleration between the time point T2 and the time point T0, and the difference ΔY between the moving average Y 2-0 and the moving average Y 3-2 ,
The ability to calculate
When the threshold value of ΔY for determining that the first foot starts moving forward is y1, and when the threshold value of ΔY for determining that the second foot starts moving forward is y2, the ΔY and the threshold value y1 A walking state test is periodically performed to determine whether the time point T0 is in the first foot transition state or the second foot transition state based on the magnitude relationship between the current time T0 and the threshold value y2. A walking state inspection function and a function of detecting a repetition cycle of the first foot transition state or the second foot transition state and outputting as a walking cycle;
A walking cycle detection device is provided.

本発明によれば、被験者の腰に装着した加速度センサで計測される、被験者の左右方向の加速度を用いて、被験者の日常生活の歩行周期を正確に、かつリアルタイムで検出することができる。   ADVANTAGE OF THE INVENTION According to this invention, the walk cycle of a test subject's daily life can be detected correctly and in real time using the acceleration of a test subject's left-right direction measured with the acceleration sensor with which the test subject was mounted | worn.

特に、被験者の鉛直方向の加速度も用いた場合には、片方の足の踵着地からその足の次の踵着地までを正確に、かつリアルタイムで検出することができ、生体物理工学的に有用な歩行データを得ることが可能となる。   In particular, when the acceleration in the vertical direction of the subject is also used, it is possible to accurately and in real time detect from one foot landing to the next foot landing, which is useful for biophysical engineering. Walking data can be obtained.

図1は、実施例の歩行周期の検出方法の流れ図である。FIG. 1 is a flowchart of a walking cycle detection method according to an embodiment. 図2は、3軸加速度センサを使用した場合に、歩行周期の検出に使用する左右方向の加速度と鉛直方向の加速度の説明図である。FIG. 2 is an explanatory diagram of the lateral acceleration and the vertical acceleration used for detecting the walking cycle when a triaxial acceleration sensor is used. 図3は、左右方向の加速度の移動平均と鉛直方向の加速度の移動平均の算出方法の説明図である。FIG. 3 is an explanatory diagram of a method of calculating a moving average of accelerations in the left-right direction and a moving average of accelerations in the vertical direction. 図4は、ΔYの波形とΔXの波形の説明図である。FIG. 4 is an explanatory diagram of the waveform of ΔY and the waveform of ΔX. 図5は、歩行状態検査におけるアルゴリズムの流れ図である。FIG. 5 is a flowchart of the algorithm in the walking state inspection. 図6は、3軸加速度センサにおける3軸の加速度のデータに、歩行状態検査及び着床検査の判定結果を重ねたものである。FIG. 6 is obtained by superimposing the determination results of the walking state inspection and the landing inspection on the data of the triaxial acceleration in the triaxial acceleration sensor. 図7は、実施例の装置により被験者1について検出した歩行周期に関する判定値のグラフである。FIG. 7 is a graph of determination values related to the walking cycle detected for the subject 1 by the apparatus of the example. 図8は、実施例の装置により被験者2について検出した歩行周期に関する判定値のグラフである。FIG. 8 is a graph of determination values related to the walking cycle detected for the subject 2 by the apparatus of the example. 図9は、実施例の装置により被験者3について検出した歩行周期に関する判定値のグラフである。FIG. 9 is a graph of determination values related to the walking cycle detected for the subject 3 by the apparatus of the example. 図10は、実施例の装置により被験者4について検出した歩行周期に関する判定値のグラフである。FIG. 10 is a graph of determination values related to the walking cycle detected for the subject 4 by the apparatus of the example.

以下、図面を参照しつつ本発明を詳細に説明する。なお、各図中、同一符号は同一又は同等の構成要素を表している。   Hereinafter, the present invention will be described in detail with reference to the drawings. In each figure, the same numerals indicate the same or equivalent components.

<歩行周期検出装置>
図1は、本発明の一実施例の歩行周期検出装置1で行われる歩行周期の検出方法の流れ図である。
<Walking cycle detection device>
FIG. 1 is a flowchart of a walking cycle detection method performed by the walking cycle detection device 1 according to an embodiment of the present invention.

この歩行周期検出装置1は、腰部に装着可能な携帯型の装置であって、加速度センサ2と演算装置3を備えており、加速度センサ2が、歩行に伴う腰の回旋の加速度を計測し、演算装置3が、加速度センサ2によって計測された加速度を特定の方法で処理することにより歩行周期を検出する。   This walking cycle detection device 1 is a portable device that can be worn on the waist, and includes an acceleration sensor 2 and an arithmetic device 3, and the acceleration sensor 2 measures the acceleration of the rotation of the waist accompanying walking, The arithmetic device 3 detects the walking cycle by processing the acceleration measured by the acceleration sensor 2 by a specific method.

<加速度センサ>
加速度センサ2としては、歩行中の被験者の腰部の少なくとも左右方向の加速度を計測可能なものを使用し、好ましくは後述するように腰部の鉛直方向の加速度も計測可能なものを使用する。例えば、図2に示すように3軸加速度センサ2を使用し、その加速度センサ2で計測される左右方向(Y方向)の加速度を使用する。なお、歩行周期を検出するだけでなく、後述するように足の踵着地時も検出し、左右の片方の踵着地からその足の次の踵着地までの歩行周期を検出する場合には、左右方向(Y方向)の加速度に加えて鉛直方向(即ち上下方向)(X方向)の加速度を使用する。
<Acceleration sensor>
As the acceleration sensor 2, a sensor that can measure at least the lateral acceleration of the waist of the subject who is walking is used, and preferably a sensor that can also measure the vertical acceleration of the waist as described later. For example, as shown in FIG. 2, a triaxial acceleration sensor 2 is used, and the acceleration in the left-right direction (Y direction) measured by the acceleration sensor 2 is used. In addition to detecting the walking cycle, as will be described later, it is also detected when the foot is landing on the foot, and when detecting the walking cycle from the left and right foot landing to the next foot landing, In addition to the acceleration in the direction (Y direction), the acceleration in the vertical direction (that is, the vertical direction) (X direction) is used.

また、加速度センサ2は、被験者Aの好ましくは左右の片側に寄った腰部に装着される。これにより歩行に伴う腰の回旋の加速度の変化が大きくなるので計測が容易になり、歩行周期の検出精度が向上する。   The acceleration sensor 2 is mounted on the waist of the subject A, preferably on the left and right sides. As a result, the change in the acceleration of the hip rotation accompanying walking increases, so that the measurement becomes easy and the detection accuracy of the walking cycle is improved.

以下、一例として右腰に加速度センサを装着し、右足を第1足とし、左足を第2足とした場合について本発明を説明するが、左腰に加速度センサを装着し、左足を第1足とし、右足を第2足とする場合や、腰幅の中央に加速度センサを装着し、左右の一方の足を第1足とし、他方の足を第2足とする場合も、同様に検出できる。その場合、後述する閾値y1、y2を適宜設定することで、より精度よく、本発明によって歩行周期を検出することができる。   Hereinafter, as an example, the present invention will be described in the case where an acceleration sensor is attached to the right waist, the right foot is the first foot, and the left foot is the second foot. However, the acceleration sensor is attached to the left waist and the left foot is the first foot. In the case where the right foot is the second foot, or when the acceleration sensor is attached to the center of the waist width, one of the left and right feet is the first foot, and the other foot is the second foot, the same can be detected. . In that case, the walking cycle can be detected more accurately by the present invention by appropriately setting thresholds y1 and y2 described later.

<演算装置>
(歩行周期の検出方法の概要)
演算装置3においては、概略、所定の計測周期で左右方向の加速度を抽出し、各計測時点における左右方向の加速度が、右足が前方へ動き出してから左足が前方へ動き出すまでの右足移行状態と、左足が前方へ動き出してから右足が前方に動き出すまでの左足移行状態のいずれに対応するかを判定する歩行状態検査を行い、その判定結果の右足移行状態又は左足移行状態の周期的繰り返しを検出することにより歩行周期を検出する。
<Calculation device>
(Outline of walking cycle detection method)
In the arithmetic device 3, roughly, the right and left direction acceleration is extracted at a predetermined measurement cycle, and the right and left direction acceleration at each measurement time point is the right foot transition state from when the right foot starts moving forward until the left foot starts moving forward, A walking state test is performed to determine which of the left foot transition state from when the left foot starts to move forward until the right foot starts to move forward, and a periodic repetition of the determination result of the right foot transition state or the left foot transition state is detected. Thus, the walking cycle is detected.

(計測周期)
演算装置3は、上述の歩行状態検査を行うために、加速度センサ2から出力される左右方向の加速度信号を所定の計測周期で抽出し記憶する機能を有する。一般に人の歩行周期は0.8〜1.2秒であることを踏まえると、加速度の計測周期は、好ましくは10Hz〜250Hzとし、後述する特定のアルゴリズムで歩行状態検査を行う場合の誤判定を防止する点から、より好ましくは32〜128Hzとする。
(Measurement cycle)
The arithmetic device 3 has a function of extracting and storing a lateral acceleration signal output from the acceleration sensor 2 at a predetermined measurement cycle in order to perform the above-described walking state inspection. Considering that a person's walking cycle is generally 0.8 to 1.2 seconds, the acceleration measurement cycle is preferably 10 Hz to 250 Hz, and erroneous determination is performed when a walking state inspection is performed using a specific algorithm described later. From the point of prevention, it is more preferably 32 to 128 Hz.

(左右方向の移動平均)
歩行状態検査をより具体的に説明すると、演算装置は、任意のある時点T0における歩行状態を検査する場合に、図3に示すようにその時点T0より所定時間t2過去の時点がT2、その時点T0より所定時間t3過去の時点がT3であるときに(ただし、t2<t3)、
時点T3と時点T2の間の左右方向の加速度の移動平均Y3-2 、及び
時点T2と時点T0の間の左右方向の加速度の移動平均Y2-0
を算出し、さらに移動平均Y2-0 と移動平均Y3-2 との差ΔY=Y2-0−Y3-2
を算出する。
(Moving average in the horizontal direction)
More specifically describing the walking state inspection, when the arithmetic unit inspects the walking state at an arbitrary time point T0, as shown in FIG. 3, the time point T2 past the predetermined time t2 from the time point T0 is the time point T2. When the time point T3 past the time T0 is T3 (where t2 <t3),
A moving average Y 3-2 of acceleration in the left-right direction between time T3 and time T2, and a moving average Y 2-0 of acceleration in the left-right direction between time T2 and time T0,
Difference calculated, further a moving average Y 2-0 and the moving average Y 3-2 and ΔY = Y 2-0 -Y 3-2
Is calculated.

このようにある時点T0よりも所定時間過去の左右方向の移動平均Y2-0 、Y3-2 を用いてΔYを算出することにより、ΔYは当該時点T0における脚の前方方向への移行度合を示すものとなる。そして、所定周期で計測した左右方向の加速度について順次ΔYを算出することにより、ΔYは図4に示す周期的な波形を描く。 As described above, ΔY is calculated by using the moving averages Y 2-0 and Y 3-2 in the left and right directions for a predetermined time before a certain time T 0, so that ΔY is the degree of the forward movement of the leg at the time T 0. Will be shown. Then, by sequentially calculating ΔY for the lateral acceleration measured at a predetermined cycle, ΔY draws a periodic waveform shown in FIG.

左右方向の加速度の移動平均を算出するにあたり、移行初期の左右方向の加速度合を検出するため、T2はある時点T0から64m秒〜1600m秒過去の時点とすることが好ましく、T3はある時点T0から192m秒〜4800m秒過去の時点とすることが好ましい。
また、ある時点T0は現時点とすることができ、これによりリアルタイムで歩行周期を検出することが可能となる。
In calculating the moving average of the acceleration in the left-right direction, in order to detect the degree of acceleration in the left-right direction at the beginning of the transition, T2 is preferably set to a time point 64 ms to 1600 ms past a certain time point T0, and T3 is set to a certain time point T0. From 192 msec to 4800 msec.
In addition, the certain time T0 can be set as the current time, which makes it possible to detect the walking cycle in real time.

(ΔYの閾値y1、y2)
一方、演算装置には、右足が前方へ動き出していると判定するためのΔYの閾値y1と、左足が前方へ動き出していると判定するためのΔYの閾値y2を設定しておく。
ΔYが閾値y1から閾値y2に至る間は、右足が前方へ動き出してから左足が前方に動き出すまでの歩行状態であり、本発明ではこれを右足移行状態という。同様に、ΔYが閾値y2から閾値y1に至る間は、左足が前方へ動き出してから右足が前方へ動き出すまでの歩行状態であり、本発明ではこれを左足移行状態という。
(ΔY thresholds y1, y2)
On the other hand, a threshold value y1 for determining that the right foot starts moving forward and a threshold value y2 for determining that the left foot starts moving forward are set in the arithmetic unit.
While ΔY reaches from the threshold value y1 to the threshold value y2, it is a walking state from when the right foot starts moving forward until the left foot starts moving forward, and in the present invention this is called a right foot transition state. Similarly, while ΔY reaches the threshold value y1 from the threshold value y2, it is a walking state from when the left foot starts moving forward until the right foot starts moving forward, and in the present invention this is referred to as a left foot transition state.

閾値y1、y2の設定においては、図4に示すように、右足移行状態に右足の遊脚期が含まれ、左足移行状態に左足の遊脚期が含まれるようにする。また、ΔYの値から当該時点が右足移行状態であるか、左足移行状態であるかを判定する歩行状態検査を行うにあたり、誤判定を防止するため、y1≠y2とすることが好ましい。閾値y1、y2の差が小さすぎると、後述するように歩行状態検査と着床検査とを組み合わせて右足踵着地時を判定するときに誤判定が生じる場合があり、閾値y1、y2の差が大きすぎると、歩行時に腰の回旋が少ない被験者については歩行周期の検出が困難となる。好ましい閾値は、本発明の方法により検出した歩行周期が、モーションキャプチャシステム(例えば、複数のビデオカメラを使用する3次元動作解析システム、VICON社製VICONMXシステム、VICON NEXUS)あるいは床反力計により検出した歩行周期と一致するように適宜定めることができ、例えば、ΔYの波形の最大値を+8、最小値を−8とした場合に、y1は−6〜−1とし、y2は1〜6とすることが好ましい。   In setting the threshold values y1 and y2, as shown in FIG. 4, the right leg transition state includes the right leg swing leg period, and the left foot transition state includes the left leg swing leg period. Further, in order to prevent erroneous determination in performing a walking state test for determining whether the time point is the right foot transition state or the left foot transition state from the value of ΔY, it is preferable that y1 ≠ y2. If the difference between the threshold values y1 and y2 is too small, an erroneous determination may occur when determining the landing time of the right footpad by combining the walking state inspection and the landing inspection as will be described later, and the difference between the threshold values y1 and y2 If it is too large, it will be difficult to detect the walking cycle for subjects with low hip rotation during walking. A preferable threshold is detected by a motion capture system (for example, a three-dimensional motion analysis system using a plurality of video cameras, a VICON MX system manufactured by VICON, or a VICON NEXUS) or a floor reaction force meter detected by the method of the present invention. For example, when the maximum value of the waveform of ΔY is +8 and the minimum value is −8, y1 is −6 to −1 and y2 is 1 to 6. It is preferable to do.

演算装置では、加速度センサーを装着する腰の位置、被験者の歩行時の腰の回旋の程度等に応じて閾値y1、y2の設定値を調整できるようにしてもよい。   The arithmetic device may be configured such that the set values of the threshold values y1 and y2 can be adjusted in accordance with the position of the waist where the acceleration sensor is mounted, the degree of hip rotation when the subject walks, and the like.

(歩行状態検査)
歩行状態検査では、ΔYの値と閾値y1、y2の大小関係に基づき、ある計測時点T0における歩行状態が、右足移行状態か左足移行状態かを判定をする。この判定は周期的に行う。好ましくは、所定の計測周期で抽出した各左右方向の加速度に対して、その加速度の計測周期と同じ周期で順次判定を行う。これにより、歩行時の加速度を計測するのと同時にリアルタイムで歩行周期を検出することができる。
(Walking state inspection)
In the walking state test, it is determined whether the walking state at a certain measurement time T0 is the right foot transition state or the left foot transition state based on the magnitude relationship between the value of ΔY and the threshold values y1 and y2. This determination is performed periodically. Preferably, for each lateral acceleration extracted in a predetermined measurement cycle, the determination is sequentially performed in the same cycle as the acceleration measurement cycle. As a result, the walking cycle can be detected in real time at the same time as the acceleration during walking is measured.

(歩行状態検査におけるアルゴリズム)
演算装置では、歩行状態検査に要する計算量を少なくするため、例えば、図5に示すアルゴリズムにより、ある計測時点T0の歩行状態が右足移行状態か左足移行状態かを判定する。以下、この計測時点T0が現時点であるとしてアルゴリズムを説明する。
(Algorithm for walking state inspection)
In order to reduce the amount of calculation required for the walking state inspection, the arithmetic device determines, for example, whether the walking state at a certain measurement time T0 is the right foot transition state or the left foot transition state by an algorithm shown in FIG. Hereinafter, the algorithm will be described assuming that the measurement time T0 is the current time.

まず、現時点T0におけるΔY≦y1とΔY≧y2の充足の有無を判断し、Y≦y1のとき、現時点T0を右足移行状態と判定し、Y≧y2のとき、現時点T0を左足移行状態と判定する。   First, it is determined whether or not ΔY ≦ y1 and ΔY ≧ y2 are satisfied at the current time T0. When Y ≦ y1, the current time T0 is determined as the right foot transition state, and when Y ≧ y2, the current time T0 is determined as the left foot transition state. To do.

一方、現時点T0においてy1<ΔY<y2 のとき、図4からわかるように、ΔYは(d)の右足移行状態であるか(b)の左足移行状態であるかを判定することができない。そこで、次の計測時点T0’におけるΔY≦y1又はΔY≧y2の充足の有無を判断する。この時点T0’において、ΔYが(c)のΔY≦y1のとき、現時点T0と次の計測時点T0’の間隔が前述の計測周期である点を踏まえると、現時点T0が(d)の右足移行状態である可能性は排除してよい。したがって、次の計測時点T0’で(c)のΔY≦y1となったとき、現時点T0は(b)の左足移行状態となる。同様に、次の計測時点T0’において、ΔYが(a)のΔY≧y2のとき、現時点T0が(b)の左足移行状態である可能性は排除してよい。したがって、次の計測時点T0’で(a)のΔY≧y2となったとき、現時点T0は(d)の右足移行状態となる。   On the other hand, when y1 <ΔY <y2 at the current time T0, as can be seen from FIG. 4, it cannot be determined whether ΔY is in the right foot transition state of (d) or the left foot transition state of (b). Therefore, whether or not ΔY ≦ y1 or ΔY ≧ y2 is satisfied at the next measurement time T0 ′ is determined. At this time T0 ′, when ΔY is ΔY ≦ y1 in (c), considering that the interval between the current time T0 and the next measurement time T0 ′ is the above-described measurement cycle, the current time T0 is shifted to the right foot of (d). The possibility of a state may be excluded. Accordingly, when ΔY ≦ y1 in (c) at the next measurement time T0 ′, the current time T0 is in the left foot transition state in (b). Similarly, when ΔY is ΔY ≧ y2 in (a) at the next measurement time T0 ′, the possibility that the current T0 is in the left foot transition state in (b) may be excluded. Therefore, when ΔY ≧ y2 in (a) at the next measurement time T0 ′, the current T0 is in the right foot transition state in (d).

なお、図5には、現時点T0において、まず、ΔY≦y1の真偽を判断し、次にΔY≧y2の真偽を判断するフローを示し、次の計測時点T0’でもΔY≦y1の真偽を判断し、次にΔY≧y2の真偽を判断するフローを示したが、これらの判断において、まずΔY≧y2の真偽を判断し、次にΔY≦y1の真偽を判断してもよい。   FIG. 5 shows a flow of determining whether or not ΔY ≦ y1 at the current time T0, and then determining whether or not ΔY ≧ y2, and whether ΔY ≦ y1 is true at the next measurement time T0 ′. The flow for judging false and then judging whether or not ΔY ≧ y2 is shown. In these judgments, first, whether or not ΔY ≧ y2 is judged, and then whether or not ΔY ≦ y1 is judged. Also good.

また、次の計測時点T0’において、ΔY≦y1又はΔY≧y2にならなかったことにより現時点T0の歩行状態を判定できない場合には、次の計測時点T0’のさらに次の計測時点におけるΔY≦y1又はΔY≧y2の充足の有無を判断し、上述の次の計測時点T0’における判断と同様にして現時点T0における歩行状態を判定する。   If the walking state at the current time T0 cannot be determined because ΔY ≦ y1 or ΔY ≧ y2 at the next measurement time point T0 ′, ΔY ≦ at the next measurement time point after the next measurement time point T0 ′. Whether or not y1 or ΔY ≧ y2 is satisfied is determined, and the walking state at the current time T0 is determined in the same manner as the determination at the next measurement time point T0 ′.

こうして、ΔYの波形を描いたり、ある時点T0におけるΔYの傾きを算出したりすることなく、簡便な判定方法により、ある時点T0における歩行状態を判定することができる。よって、所定の計測周期で算出される左右方向の加速度に対して、リアルタイムでΔYを算出し、さらに、リアルタイムで右足移行状態か、左足移行状態かも判定することができる。   Thus, the walking state at a certain time T0 can be determined by a simple determination method without drawing a waveform of ΔY or calculating the slope of ΔY at a certain time T0. Therefore, ΔY can be calculated in real time with respect to the acceleration in the left-right direction calculated at a predetermined measurement cycle, and it can also be determined whether the right foot transition state or the left foot transition state in real time.

歩行状態検査により得られる右足移行状態又は左足移行状態の繰り返し周期は歩行周期に対応する。したがって、判定結果の繰り返し周期から歩行周期を容易に検出することができる。   The repetition cycle of the right foot transition state or the left foot transition state obtained by the walking state inspection corresponds to the walking cycle. Therefore, the walking cycle can be easily detected from the repetition cycle of the determination result.

図4における歩行状態検査の判定値は、上述の歩行状態検査において、右足移行状態と判定された時点に数値50を与え、左足以降状態と判定された時点に数値100を与えたものである。このように右足移行状態と左足移行状態の判定値に異なる数値を与えることにより判定値は矩形のパルス型波形となり、1歩行周期をより一層容易に抽出することが可能となる。   The determination value of the walking state test in FIG. 4 is obtained by giving a numerical value 50 at the time point when the right foot transition state is determined in the above-described walking state inspection, and by giving a numerical value 100 at a time point when the left foot and subsequent state is determined. Thus, by giving different numerical values to the determination values of the right foot transition state and the left foot transition state, the determination value becomes a rectangular pulse waveform, and one walking cycle can be extracted more easily.

なお、歩行周期は、一般には、片方の足の踵着地からその足の次の踵着地までの時間とされる。しかしながら、歩行周期は踵着地を基準とする場合でも、一歩行周期における任意の歩行期(例えば、足底接地、つま先離地など)を基準とする場合でも、歩行の繰り返し周期としては等しい。したがって、上述の判定結果の繰り返し周期から歩行周期を求めることができる。   The walking cycle is generally the time from the landing of one foot to the next landing of that foot. However, the walking cycle is the same as the walking repetition cycle even when the landing is based on the landing or the arbitrary walking phase in one walking cycle (for example, ground contact with the foot, toe off). Therefore, the walking cycle can be obtained from the repetition cycle of the above determination result.

(別法による歩行状態検査)
本発明において、ΔYの波形と所定の閾値y1又はy2から歩行周期を求める方法は、上述のアルゴリズムによる方法に限られない。例えば、図4に示したように、ΔYの傾きがマイナスでかつΔYが閾値y1を下回るときが右足移行状態の開始時であり、また、当該時点におけるΔYの傾きがプラスでかつ閾値y2を超えるときが左足移行状態の開始時であるから、ΔYの傾きと、ΔYが閾値y1、y2をとる時点から右足移行状態の開始時又は左足移行状態の開始時を検出し、その繰り返し周期を検出することにより歩行周期を検出してもよい。計算をより簡便にする点からは、前述のアルゴリズムによる方法が好ましい。
(Examination of walking state by other method)
In the present invention, the method for obtaining the walking cycle from the waveform of ΔY and the predetermined threshold value y1 or y2 is not limited to the method based on the algorithm described above. For example, as shown in FIG. 4, when the slope of ΔY is negative and ΔY falls below the threshold value y1, the right foot transition state starts, and the slope of ΔY at that time is positive and exceeds the threshold value y2. Since the time is the start time of the left foot transition state, the slope of ΔY and the time when ΔY takes thresholds y1 and y2 are detected from the start time of the right foot transition state or the start time of the left foot transition state, and the repetition cycle is detected. Thus, the walking cycle may be detected. From the viewpoint of simplifying the calculation, the above-described algorithm method is preferable.

(踵着地を基準とする歩行周期の検出)
一方、本発明において、右足の踵着地から次の右足の踵着地までという、踵着地を基準とした歩行周期を求める場合、左右方向の加速度と共に鉛直方向の加速度も計測する。鉛直方向の加速度は、左右方向の加速度の計測周期に同期させて同じ計測周期で計測することが好ましい。
(Detection of walking cycle based on the landing)
On the other hand, in the present invention, when the walking cycle from the right foot heel landing to the next right foot heel landing is obtained with reference to the foot landing, the acceleration in the vertical direction is measured together with the acceleration in the left-right direction. The acceleration in the vertical direction is preferably measured at the same measurement cycle in synchronization with the measurement cycle of the acceleration in the left-right direction.

右足の踵着地時は、鉛直方向の加速度を用いて、ある時点T0における足の着床の有無を判定する着床検査と、前述の歩行状態検査とを組み合わせて次のように検出することができる。まず、図3に示すように、ある時点T0より時間t1過去の時点T1と、前述の時点T2、T3を考え(ただし、t1<t2)、演算装置において、
時点T3と時点T2の間の鉛直方向の加速度の移動平均X3-2 、及び
時点T2と時点T1の間の鉛直方向の加速度の移動平均X2-1
を算出し、さらに移動平均X2-1 と移動平均X3-2 との差ΔX=X2-1―X3-2を算出する。このように、ある時点T0における足の着床の有無を判定するために、ある時点T0の直近の加速度を含まない過去の移動平均X2-1、X3-2 の差ΔXを算出するのは、脚の鉛直方向への振り上げ度合を検出するためである。このΔXは図4に示すような周期的な波形となる。
When the right foot is landing on the heel, it is possible to detect the following using a combination of the landing test for determining the presence or absence of the foot landing at a certain time T0 using the vertical acceleration and the above-mentioned walking state test. it can. First, as shown in FIG. 3, a time T1 past time t1 from a certain time T0 and the above-mentioned times T2 and T3 are considered (where t1 <t2).
A moving average X 3-2 of vertical acceleration between time T3 and time T2, and a moving average X 2-1 of vertical acceleration between time T2 and time T1,
Further, the difference ΔX = X 2-1 −X 3-2 between the moving average X 2-1 and the moving average X 3-2 is calculated. In this way, in order to determine whether or not the foot has landed at a certain time T0, the difference ΔX between the past moving averages X 2-1 and X 3-2 not including the most recent acceleration at the certain time T0 is calculated. Is for detecting the degree of swinging up of the legs in the vertical direction. This ΔX has a periodic waveform as shown in FIG.

鉛直方向の加速度の移動平均を算出するにあたり、踵着地を行う前の足の振り下ろしを検出するため、T1はある時点T0から32m秒〜800m秒過去の時点とし、時点T2及びT3は前述と同様にすることが好ましい。なお、左右方向の加速度の移動平均を求める場合と同様に、鉛直方向の加速度の移動平均を求める場合も、ある時点T0は現時点とすることができ、それにより踵着地を基準とした歩行周期をリアルタイムで検出することが可能となる。   In calculating the moving average of the acceleration in the vertical direction, in order to detect the swinging down of the foot before landing, T1 is a time point 32 to 800 milliseconds past a certain time point T0, and the time points T2 and T3 are as described above. The same is preferable. As in the case of obtaining the moving average of the acceleration in the left-right direction, when obtaining the moving average of the acceleration in the vertical direction, a certain time T0 can be set as the current time. It becomes possible to detect in real time.

(着床検査)
一方、足が着床していると判定するためのΔXの値x1を予め設定しておき、ΔXの値に基づいて着床の有無を判定する着床検査を行う。より具体的には、ΔXがx1以下になったときに右足又は左足が着床したと判定する閾値x1を演算装置に設定しておく。また、演算装置には、ΔXの傾きがマイナスでΔXが閾値x1以下になったときに、右足又は左足の着床有りと判定する着床検査の機能をもたせる。
(Implantation inspection)
On the other hand, a value x1 of ΔX for determining that the foot is landing is set in advance, and a landing test is performed to determine whether or not there is a landing based on the value of ΔX. More specifically, a threshold value x1 for determining that the right foot or the left foot has landed when ΔX is equal to or less than x1 is set in the arithmetic unit. In addition, the computing device is provided with a function of landing inspection that determines that the right foot or the left foot is landed when the slope of ΔX is negative and ΔX is equal to or less than the threshold value x1.

閾値x1のより具体的な設定方法としては、ΔXの波形の最大値が+8、最小値が−8の場合に、x1を−1〜−6とすることが好ましい。このx1の数値は、本発明の方法により検出する踵着地時がモーションキャプチャシステム(例えば、複数のビデオカメラを使用する3次元動作解析システム、VICON社製VICONMXシステム、VICON NEXUS)、床反力計等により検出した踵着地時と一致するように経験的に定められる。   As a more specific setting method of the threshold value x1, when the maximum value of the waveform of ΔX is +8 and the minimum value is −8, it is preferable to set x1 to −1 to −6. The numerical value of x1 is a motion capture system (for example, a three-dimensional motion analysis system using a plurality of video cameras, a VICON MX system or a VICON NEXUS) using a plurality of video cameras, and a floor reaction force meter. It is determined empirically so as to coincide with the time of landing of the saddle detected by the above.

図4からわかるように、着床検査において着床有りの判定がなされる時点、即ち、ΔXの傾きがマイナスでΔXが閾値x1以下となる時点には、右足踵着地時と左足踵着地時が含まれる。そこで、演算装置では、着床検査において着床有りと判定され、かつ前述の歩行状態検査において右足移行状態であると判定された区間の最初の計測時が右足踵着地時と判定されるようにする。そして、この右足踵着地時の繰り返し周期を検出することにより、右足踵着地を基準とする歩行周期を検出する。   As can be seen from FIG. 4, when the presence of landing is determined in the landing test, that is, when the slope of ΔX is negative and ΔX is equal to or less than the threshold value x1, the time when the right foot landing and the left foot landing are reached. included. Therefore, in the arithmetic device, the first measurement time of the section determined to be landing in the landing inspection and determined to be the right foot transition state in the above-described walking state inspection is determined as the right footpad landing time. To do. Then, by detecting the repetition cycle at the time of landing on the right footpad, the walking cycle based on the landing on the right footpad is detected.

図4における「着床検査+歩行状態検査」の判定値は、上述の着床検査で着床有りと判定され、かつ歩行状態検査で右足移行状態と判定された場合に判定値50を与え、それ以外に判定値100を与えたものである。この矩形のパルス波形において判定値50への立ち下がり部分が右足踵着地時となるから、右足踵着地を基準とする1歩行周期を容易に抽出することができる。   The determination value of “landing inspection + walking state inspection” in FIG. 4 gives a determination value of 50 when it is determined that there is landing in the above-described landing inspection and in the walking state inspection that the right foot transition state is determined, In addition, a determination value 100 is given. In this rectangular pulse waveform, the falling portion to the determination value 50 is when the right footpad is landing, so that one walking cycle based on the right footpad landing can be easily extracted.

図6は、横軸に時間をとり、縦軸に3軸加速度センサで計測された左右方向の加速度、鉛直方向の加速度及び前後方向の加速度をとったグラフであって、上述の「着床検査+歩行状態検査」の判定値の波形を書き入れたものである。このように、生の加速度データから直接的に歩行周期を抽出することは極めて困難であるが、着床検査と歩行状態検査の判定から容易に右足踵着地を基準とした1歩行周期を抽出できることがわかる。   FIG. 6 is a graph in which time is taken on the horizontal axis, and the acceleration in the horizontal direction, the acceleration in the vertical direction, and the acceleration in the front-rear direction measured by the triaxial acceleration sensor are taken on the vertical axis. The waveform of the judgment value of “+ walking state inspection” is entered. Thus, although it is extremely difficult to extract the walking cycle directly from the raw acceleration data, it is possible to easily extract one walking cycle based on the right footpad landing from the determination of the landing examination and the walking state examination. I understand.

右足踵着地を基準とする歩行周期を簡便に抽出できることは、例えば、大勢の被験者の歩行時の加速度データを解析するときに、右足踵着地から次の右足踵着地までの1ストライドという統一されたデータの抽出を可能とするので、生体力学的にも非常に意義が高く、日常生活における歩行の解析に有用なものとなる。   The ability to easily extract the walking cycle based on the right footpad landing is, for example, one stride from the right footpad landing to the next right footpad landing when analyzing acceleration data during walking of many subjects. Since the data can be extracted, it is very significant in terms of biomechanics, and is useful for analysis of walking in daily life.

本発明は種々の態様をとることができる。
例えば、歩行周期検出装置は、演算装置が出力した歩行周期、歩行周期に関する判定値、右足の踵着地時等を表示する表示装置として、ディスプレイ、プリンタ等を備えることができる。
The present invention can take various forms.
For example, the walking cycle detection device can include a display, a printer, or the like as a display device that displays the walking cycle output by the arithmetic device, the determination value related to the walking cycle, the time of landing on the right foot, and the like.

歩行周期検出装置は、加速度センサと演算装置が組み込まれた、好ましくはディスプレイも組み込こまれた携帯可能な装置に構成することができる。一方、加速度センサとして携帯電話等に組み込まれたものを使用する場合、歩行周期検出装置を構成する演算装置は、加速度センサとは別個に設けたものとすることが好ましい。この場合、加速度センサで計測された加速度データが公衆電気通信回線を通じて演算装置へ転送され、演算装置で検出された歩行周期、あるいはそれに関する判定値が公衆電気通信回線を通じて携帯電話等へ転送され、携帯電話等の例えば操作画面に表示される構成とすることができる。   The walking cycle detection device can be configured as a portable device in which an acceleration sensor and a calculation device are incorporated, preferably a display. On the other hand, when an acceleration sensor incorporated in a mobile phone or the like is used, it is preferable that the arithmetic device constituting the walking cycle detection device is provided separately from the acceleration sensor. In this case, the acceleration data measured by the acceleration sensor is transferred to the arithmetic device through the public telecommunication line, the walking cycle detected by the arithmetic device, or the determination value related thereto is transferred to the mobile phone etc. through the public telecommunication line, For example, it may be configured to be displayed on an operation screen of a mobile phone or the like.

以下、図面を参照しつつ本発明を具体的に説明する。
実施例
加速度センサとして3軸加速度センサ搭載データロガー((株)アコーズ製)を使用し、加速度データがbluetoothを利用してPCローカル環境に送信されるようにして、図1に示したフローで右踵着地に基づく歩行周期を検出する歩行周期検出装置を作製した。この場合、左右方向の加速度と鉛直方向の加速度が64Hzで計測されるようにし、計測した各加速度に対してリアルタイムで歩行状態検査と着床検査が行えるようにした。また、着床検査で着床有りと判定され、かつ歩行状態検査で右足移行状態と判定された場合の判定値を350をとし、それ以外の判定値を450とした。
Hereinafter, the present invention will be specifically described with reference to the drawings.
Example A data logger equipped with a three-axis acceleration sensor (manufactured by Accors Corporation) is used as an acceleration sensor, and acceleration data is transmitted to the PC local environment using Bluetooth, and the flow shown in FIG. A gait cycle detection device that detects the gait cycle based on the landing point was made. In this case, the lateral acceleration and the vertical acceleration are measured at 64 Hz, and the walking state inspection and the landing inspection can be performed in real time for each measured acceleration. In addition, when the landing inspection determines that there is a landing and the walking state inspection determines the right foot transition state, the determination value is 350, and the other determination values are 450.

20代の健常な男性4名を被験者(被験者1〜被験者4)とした。各被験者が加速度センサを右腰(上前腸骨棘付近)に装着した状態で床反力計(BP400600−1000P、Amti社製)上を歩行し、この歩行中に床反力計で床反力を測定すると共に、実施例の歩行周期検出装置で上述の判定値を出力させる歩行周期検出試験を行った。各被験者について、この歩行周期検出試験を3回行った。結果を図7〜図9に示す。   Four healthy men in their twenties were subjects (subjects 1 to 4). Each subject walks on the floor reaction force meter (BP400600-1000P, manufactured by Amti) with the acceleration sensor attached to the right waist (near the upper anterior iliac spine), and the floor reaction force meter is used during this walking. While measuring force, the walk period detection test which outputs the above-mentioned judgment value with the walk period detector of an example was done. This walking cycle detection test was performed three times for each subject. The results are shown in FIGS.

一般に、右踵着地から次の右踵着地までの歩行周期は、床反力計で計測することが標準的な計測方法とされており、それによれば、右足着床時に床反力が急激に立ち上がり、右足着床に続く両足支持期、右足立脚期及び両足支持期に二山タイプの床反力が計測され、右足遊脚期で床反力はゼロとなる。   In general, the walking cycle from starboard landing to the next starboard landing is measured using a floor reaction force meter as a standard measurement method. Two-mountain type floor reaction force is measured during the two-foot support period following the standing up, right foot landing, the right-legged stance phase, and the both-foot support period, and the floor reaction force becomes zero during the right leg swing phase period.

図7〜図9において、実施例の歩行周期検出装置による判定値が450から350に下がった時点は、床反力計による床反力が急激に立ち上がった時点と略一致している。   7 to 9, the time point when the determination value by the walking cycle detection device of the embodiment decreases from 450 to 350 substantially coincides with the time point when the floor reaction force by the floor reaction force meter suddenly rises.

次に、実施例の歩行周期検出試験で判定値が350になった時点と、床反力計で計測された床反力の立ち上がり開始時点との差を、歩行周期検出装置による踵着地時の検出誤差として計算した。また、平均誤差として、各誤差の絶対値の平均を算出した。結果を表1に示す。   Next, the difference between the time point when the determination value becomes 350 in the walking cycle detection test of the example and the start point of rising of the floor reaction force measured by the floor reaction force meter Calculated as detection error. Moreover, the average of the absolute value of each error was calculated as an average error. The results are shown in Table 1.

この歩行周期検出試験において、加速度の計測周期は64Hz(15.625msec)だから、踵着地時の検出誤差は概ね加速度の計測間隔程度に収まっており、この歩行周期検出装置によれば、右足踵着地時を正確に検出できることがわかる。   In this walking cycle detection test, since the acceleration measurement cycle is 64 Hz (15.625 msec), the detection error at the time of landing is generally within the measurement interval of acceleration. According to this walking cycle detection device, the right footpad landing It can be seen that the time can be detected accurately.

1 歩行周期検出装置
2 加速度センサ又は3軸加速度センサ
3 演算装置
A 被験者
DESCRIPTION OF SYMBOLS 1 Walking cycle detection apparatus 2 Acceleration sensor or 3-axis acceleration sensor 3 Arithmetic apparatus A Test subject

Claims (9)

被験者の腰に装着された加速度センサを用いて所定の計測周期で被験者の歩行中の左右方向の加速度を計測し、ある時点T0より所定時間t2過去の時点がT2、前記時点T0より所定時間t3過去の時点がT3であるときに(ただし、t2<t3)、
時点T3と時点T2の間の左右方向の加速度の移動平均Y3-2
時点T2と時点T0の間の左右方向の加速度の移動平均Y2-0
移動平均Y2-0と移動平均Y3-2との差ΔY、
を算出し、
左右の一方の足(以下、第1足という)が前方へ動き出していると判定するためのΔYの閾値y1、及び他方の足(以下、第2足という)が前方へ動き出していると判定するためのΔYの閾値y2を設定し、
前記時点T0のΔYと閾値y1の大小関係、及び前記時点T0のΔYと閾値y2の大小関係に基づき、前記時点T0が、第1足が前方へ動き出してから第2足が前方に動き出すまでの状態(以下、第1足移行状態という)にあるか、第2足が前方へ動き出してから第1足が前方に動き出すまでの状態(以下、第2足移行状態という)にあるかを判定する歩行状態検査を周期的に行い、
第1足移行状態又は第2足移行状態の繰り返し周期を歩行周期とする歩行周期の検出方法。
The acceleration in the left-right direction during walking of the subject is measured at a predetermined measurement cycle using an acceleration sensor mounted on the subject's waist, the time point T2 is a predetermined time t2 from a certain time point T0, and the predetermined time t3 is a time point T3 from the time point T0. When the past time point is T3 (where t2 <t3),
Moving average Y 3-2 of acceleration in the left-right direction between time T3 and time T2,
Moving average Y 2-0 of acceleration in the left-right direction between time T2 and time T0,
Difference ΔY between moving average Y 2-0 and moving average Y 3-2 ,
To calculate
A threshold value y1 for determining that one of the left and right feet (hereinafter referred to as the first foot) has started moving forward, and that the other foot (hereinafter referred to as the second foot) has started moving forward. Set a threshold value y2 of ΔY for
Based on the magnitude relationship between ΔY at time point T0 and threshold y1, and the magnitude relationship between ΔY at time point T0 and threshold value y2, the time from time point T0 until the first foot starts moving forward until the second foot starts moving forward. It is determined whether it is in a state (hereinafter referred to as a first foot transition state) or in a state (hereinafter referred to as a second foot transition state) from when the second foot starts moving forward until the first foot starts moving forward. Periodically check the walking state,
A method for detecting a walking cycle in which a repetition cycle of a first foot transition state or a second foot transition state is a walking cycle.
歩行状態検査において、ΔYが閾値y1以下の場合に第1足移行状態と判定され、ΔYが閾値y2以上の場合に第2足移行状態と判定されるように閾値y1及びy2を設定した場合に、
前記時点T0におけるΔY≦y1とΔY≧y2の充足の有無を判断し、
ΔY≦y1のとき、前記時点T0を第1足移行状態と判定し、
ΔY≧y2のとき、前記時点T0を第2足移行状態と判定し、
y1<ΔY<y2 のとき、次の計測時点T0'におけるΔY≦y1とΔY≧y2の充足の有無を判断し、その時点T0'において
ΔY≦y1のとき、前記時点T0を第2足移行状態と判定し、
ΔY≧y2のとき、前記時点T0を第1足移行状態と判定する
請求項1記載の歩行周期の検出方法。
When the threshold values y1 and y2 are set in the walking state test so that the first foot transition state is determined when ΔY is equal to or less than the threshold value y1, and the second foot transition state is determined when ΔY is equal to or greater than the threshold value y2. ,
Determining whether or not ΔY ≦ y1 and ΔY ≧ y2 at the time T0,
When ΔY ≦ y1, the time point T0 is determined as the first foot transition state,
When ΔY ≧ y2, the time T0 is determined to be the second foot transition state,
y1 <When [Delta] Y <y2, 'to determine the presence or absence of satisfaction of delta Y ≦ y1 and [Delta] Y ≧ y2 in, the time T0' next measurement time T0 when the [Delta] Y ≦ y1 in, the time T0 transition 2nd foot It is determined that
The method of detecting a walking cycle according to claim 1, wherein when ΔY ≧ y2, the time point T0 is determined to be the first foot transition state.
前記加速度センサを用いて所定の計測周期で被験者の歩行中の鉛直方向の加速度を計測し、
時点T0より所定時間t1過去の時点がT1(ただし、t1<t2)であるときに、
時点T3と時点T2の間の鉛直方向の加速度の移動平均X3-2
時点T2と時点T1の間の鉛直方向の加速度の移動平均X2-1
移動平均X2-1と移動平均X3-2との差ΔX
を算出し、
第1足又は第2足が着床していると判定するためのΔXの値x1を設定し、
第1足又は第2足の着床の有無を判定する着床検査を行い、
着床検査で第1足又は第2足の着床ありと判定され、かつ歩行状態検査で第1足移行状態と判定された区間の最初の計測時を第1足の踵着地時とする請求項1又は2記載の歩行周期の検出方法。
Measure the acceleration in the vertical direction during walking of the subject at a predetermined measurement cycle using the acceleration sensor,
When the point in time T1 past the point T0 is T1 (where t1 <t2),
Moving average X 3-2 of vertical acceleration between time T3 and time T2,
Moving average X 2-1 of vertical acceleration between time T2 and time T1,
Difference ΔX between moving average X 2-1 and moving average X 3-2
To calculate
1st foot or the bipedal sets a threshold value x1 of ΔX for determining that landed,
Perform an implantation test to determine the presence or absence of the first or second foot ,
Claim that the first measurement time of the section in which it is determined that the first foot or the second foot is landing in the landing inspection and the first foot transition state is determined in the walking state inspection is the time when the first foot is landing on the heel Item 3. A method for detecting a walking cycle according to item 1 or 2.
計測周期を10Hz〜250Hzとする請求項1〜3のいずれかに記載の歩行周期の検出方法。   The method for detecting a walking cycle according to any one of claims 1 to 3, wherein the measurement cycle is 10 Hz to 250 Hz. 前記時点T2を、ある時点T0から64m秒〜1600m秒過去の時点とし、
前記時点T3を、ある時点T0から192m秒〜4800m秒過去の時点とする請求項1〜4のいずれかに記載の歩行周期の検出方法。
The time point T2 is a time point 64 ms to 1600 ms past a certain time point T0,
The method of detecting a walking cycle according to any one of claims 1 to 4, wherein the time point T3 is set to a time point 192 msec to 4800 msec past a certain time point T0.
前記時点T1を、ある時点T0から32m秒〜800m秒過去の時点とする請求項3〜5のいずれかに記載の歩行周期の検出方法。   The method for detecting a walking cycle according to any one of claims 3 to 5, wherein the time point T1 is a time point 32 to 800 milliseconds past a certain time point T0. 歩行中の被験者の腰部の加速度から歩行周期を検出する歩行周期検出装置であって、
腰に装着され、歩行における腰部の左右方向の加速度を計測可能な加速度センサ、及び
加速度センサで計測された加速度から歩行周期を検出する演算装置を有し、
該演算装置が、
加速度センサで計測された左右方向の加速度を所定の計測周期で抽出する機能、
ある時点T0、該時点T0より所定時間t2過去の時点がT2、及び前記時点T0より所定時間t3過去の時点がT3であるときに(ただし、t2<t3)、
時点T3と時点T2の間の左右方向の加速度の移動平均Y3-2
時点T2と時点T0の間の左右方向の加速度の移動平均Y2-0、及び
移動平均Y2-0と移動平均Y3-2との差ΔY、
を算出する機能、
第1足が前方へ動き出していると判定するためのΔYの閾値がy1、及び第2足が前方へ動き出していると判定するためのΔYの閾値がy2であるときに、前記ΔYと閾値y1との大小関係、及び前記ΔYと閾値y2との大小関係に基づき、前記時点T0が第1足移行状態にあるか、第2足移行状態にあるかを判定する歩行状態検査を周期的に行う歩行状態検査機能、及び
第1足移行状態又は第2足移行状態の繰り返し周期を検出し、歩行周期として出力する機能、
を有する歩行周期検出装置。
A walking cycle detection device that detects a walking cycle from the acceleration of the waist of a subject who is walking,
An acceleration sensor that is mounted on the waist and that can measure the lateral acceleration of the waist during walking, and an arithmetic device that detects the walking cycle from the acceleration measured by the acceleration sensor,
The arithmetic unit is
A function of extracting the acceleration in the left-right direction measured by the acceleration sensor at a predetermined measurement cycle;
When a certain time T0, a time point T2 past the predetermined time T0 is T2, and a time point T3 past the predetermined time T0 is T3 (where t2 <t3),
Moving average Y 3-2 of acceleration in the left-right direction between time T3 and time T2,
The moving average Y 2-0 of the lateral acceleration between the time point T2 and the time point T0, and the difference ΔY between the moving average Y 2-0 and the moving average Y 3-2 ,
The ability to calculate
When the threshold value of ΔY for determining that the first foot starts moving forward is y1, and when the threshold value of ΔY for determining that the second foot starts moving forward is y2, the ΔY and the threshold value y1 A walking state test is periodically performed to determine whether the time point T0 is in the first foot transition state or the second foot transition state based on the magnitude relationship between the current time T0 and the threshold value y2. A walking state inspection function and a function of detecting a repetition cycle of the first foot transition state or the second foot transition state and outputting as a walking cycle;
A walking cycle detection device.
歩行状態検査において、ΔYが閾値y1以下の場合に第1足移行状態と判定され、ΔYが閾値y2以上の場合に第2足移行状態と判定されるように閾値y1及びy2が設定された場合に、
前記時点T0におけるΔY≦y1とΔY≧y2の充足の有無を判断し、
ΔY≦y1のとき、前記時点T0を第1足移行状態と判定し、
ΔY≧y2のとき、前記時点T0を第2足移行状態と判定し、
y1<ΔY<y2 のとき、次の計測時点T0'におけるΔY≦y1とΔY≧y2の充足の有無を判断し、その時点T0'において
ΔY≦y1のとき、前記時点T0を第2足移行状態と判定し、
ΔY≧y2のとき、前記時点T0を第1足移行状態と判定する
請求項7記載の歩行周期検出装置。
In the walking state examination, when ΔY is less than or equal to threshold y1, the first foot transition state is determined, and when ΔY is greater than or equal to threshold y2, thresholds y1 and y2 are set so that the second foot transition state is determined. In addition,
Determining whether or not ΔY ≦ y1 and ΔY ≧ y2 at the time T0,
When ΔY ≦ y1, the time point T0 is determined as the first foot transition state,
When ΔY ≧ y2, the time T0 is determined to be the second foot transition state,
y1 <When [Delta] Y <y2, 'to determine the presence or absence of satisfaction of delta Y ≦ y1 and [Delta] Y ≧ y2 in, the time T0' next measurement time T0 when the [Delta] Y ≦ y1 in, the time T0 transition 2nd foot It is determined that
The walking cycle detection device according to claim 7, wherein when ΔY ≧ y 2, the time point T 0 is determined as the first foot transition state.
加速度センサが、歩行における腰部の左右方向の加速度と共に鉛直方向の加速度を計測可能であり、
時点T0より所定時間t1過去の時点がT1であるときに(ただし、t1<t2)、
演算装置が、
時点T3と時点T2の間の鉛直方向の加速度の移動平均X3-2
時点T2と時点T1の間の鉛直方向の加速度の移動平均X2-1
移動平均X2-1と移動平均X3-2との差ΔX
を算出する機能、
該ΔXと、第1足又は第2足が着床していると判定するときのΔXとして設定された値x1に基づいて第1足又は第2足の着床の有無を判定する着床検査を行う機能、
着床検査で第1足又は第2足の着床ありと判定され、かつ歩行状態検査で第1足移行状態と判定された区間の最初の計測時を第1足の踵着地時として出力する機能、
を有する請求項7又は8記載の歩行周期検出装置。
The acceleration sensor can measure the acceleration in the vertical direction along with the lateral acceleration of the waist during walking,
When the time point T1 past the time point T0 is T1 (where t1 <t2),
Arithmetic unit is
Moving average X 3-2 of vertical acceleration between time T3 and time T2,
Moving average X 2-1 of vertical acceleration between time T2 and time T1,
Difference ΔX between moving average X 2-1 and moving average X 3-2
The ability to calculate
And said [Delta] X, determines landing the first foot or absence of implantation of the second foot on the basis of the threshold value x1 set as [Delta] X when the first foot and second foot is determined to be landed The ability to inspect,
The first measurement time of the section determined to have the first foot or the second foot landing in the landing inspection and the first foot transition state in the walking state inspection is output as the time of landing on the first foot. function,
The walking cycle detection device according to claim 7 or 8, comprising:
JP2015203986A 2015-10-15 2015-10-15 Walking cycle detection method and detection apparatus Active JP6578874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015203986A JP6578874B2 (en) 2015-10-15 2015-10-15 Walking cycle detection method and detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015203986A JP6578874B2 (en) 2015-10-15 2015-10-15 Walking cycle detection method and detection apparatus

Publications (2)

Publication Number Publication Date
JP2017074263A JP2017074263A (en) 2017-04-20
JP6578874B2 true JP6578874B2 (en) 2019-09-25

Family

ID=58550641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015203986A Active JP6578874B2 (en) 2015-10-15 2015-10-15 Walking cycle detection method and detection apparatus

Country Status (1)

Country Link
JP (1) JP6578874B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI641522B (en) * 2017-05-18 2018-11-21 晶翔微系統股份有限公司 Deceleration alert device and method
CN113133761B (en) * 2020-01-17 2024-05-28 宝成工业股份有限公司 Method for judging left and right gait and analysis device thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3832792B2 (en) * 1998-12-09 2006-10-11 三菱化学株式会社 Biological rhythm inspection device and biological rhythm inspection method
JP4504071B2 (en) * 2003-04-10 2010-07-14 パナソニック株式会社 Body motion analysis device
JP5174425B2 (en) * 2007-10-26 2013-04-03 パナソニック株式会社 Gait improvement support system
CN102548474B (en) * 2009-09-30 2014-09-03 三菱化学株式会社 Body movement signal information processing method, information processing system and information processing device
JP5504810B2 (en) * 2009-10-06 2014-05-28 オムロンヘルスケア株式会社 Walking posture determination device, control program, and control method
JP5733503B2 (en) * 2011-02-28 2015-06-10 国立大学法人広島大学 Measuring device, measuring method, and measuring program

Also Published As

Publication number Publication date
JP2017074263A (en) 2017-04-20

Similar Documents

Publication Publication Date Title
CN107080540B (en) System and method for analyzing gait and postural balance of a person
CN107174255B (en) Three-dimensional gait information acquisition and analysis method based on Kinect somatosensory technology
RU2550934C2 (en) Fall prevention
US9392966B2 (en) Fall prevention system
JP2010005033A (en) Walking motion analyzer
JP6127873B2 (en) Analysis method of walking characteristics
US11207003B2 (en) Walking state determination device, walking state determination system, walking state determination method, and storage medium
JP2017023689A (en) Monitoring system, monitoring method, and program
JP6127455B2 (en) Walking age evaluation method
KR20120017948A (en) Rehabilitation device using motion analysis based on motion capture and method thereof
JP5303712B2 (en) Lower limb coordination evaluation system
JP2006320533A (en) Muscular strength measuring instrument
US20200375503A1 (en) Lower limb muscle strength evaluation method, non-transitory computer-readable recording medium storing lower limb muscle strength evaluation program, lower limb muscle strength evaluation device, and lower limb muscle strength evaluation system
JP2012161402A (en) Exercise characteristics evaluation system and exercise characteristics evaluation method
JP6578874B2 (en) Walking cycle detection method and detection apparatus
JP2019042209A (en) Walking posture analysis method and walking posture analysis device
JP4500104B2 (en) Equilibrium function verification device when walking
JP5322168B2 (en) Fatigue detection device
JP2013138783A (en) Stumble risk evaluation equipment, stumble risk evaluation system, and stumble risk evaluation method
JP2017148287A (en) Evaluation method of stumbling risk
JP2006087735A (en) Walking analyzer
JP6303746B2 (en) Setting the walking target
JP6486200B2 (en) Mobile motion analysis apparatus, system, and program
WO2020072666A1 (en) Method and system for assessing human movements
JP6445232B2 (en) Motion analysis apparatus and motion analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190812

R151 Written notification of patent or utility model registration

Ref document number: 6578874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250