JP6577760B2 - Heat source control device and heat source system using heat source control device - Google Patents

Heat source control device and heat source system using heat source control device Download PDF

Info

Publication number
JP6577760B2
JP6577760B2 JP2015119489A JP2015119489A JP6577760B2 JP 6577760 B2 JP6577760 B2 JP 6577760B2 JP 2015119489 A JP2015119489 A JP 2015119489A JP 2015119489 A JP2015119489 A JP 2015119489A JP 6577760 B2 JP6577760 B2 JP 6577760B2
Authority
JP
Japan
Prior art keywords
heat source
air
water supply
outside air
supply temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015119489A
Other languages
Japanese (ja)
Other versions
JP2017003225A (en
Inventor
龍紀 前田
龍紀 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2015119489A priority Critical patent/JP6577760B2/en
Publication of JP2017003225A publication Critical patent/JP2017003225A/en
Application granted granted Critical
Publication of JP6577760B2 publication Critical patent/JP6577760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、複数の空調機に熱源水を循環供給する熱源を制御する熱源制御装置、及び、熱源制御装置を用いた熱源システムに関する。 The present invention, the heat source controller for controlling the circulation supplying the heat source to heat water to a plurality of air conditioners,及 Beauty, about the heat source system using a heat source controller.

熱源から複数の空調機に循環供給する熱源水の送水温度については、年間を通して一定の送水温度に維持する方法が最も簡便な方法として知られている。しかしながら、この方法では、中間期等の低負荷時に往き還りの熱源水の温度差がつかず、熱源の運転効率が低効率となり、しかも、年間を通して大半が低負荷運転となるため、非常に無駄なエネルギを消費する問題がある。このような問題は、低負荷時において、冷房時の熱源水の送水温度を高くし、暖房時の熱源水の送水温度を低くすることで、熱源の運転効率を大きく向上させて改善することができる。そこで、施設管理者によっては自らの経験から季節毎で送水温度を変更しているケースもあるが、夏季の低温高湿時等に送水温度を高くしてしまうと、外気除湿が不十分になって内部結露からカビの発生につながる場合もあり、経験則で安易に送水温度を変更するのも好ましくない。   Regarding the water supply temperature of the heat source water that is circulated from the heat source to the plurality of air conditioners, a method of maintaining a constant water supply temperature throughout the year is known as the simplest method. However, with this method, the temperature difference of the heat source water that goes back and forth at the time of low load such as an intermediate period cannot be obtained, and the operation efficiency of the heat source becomes low efficiency. There is a problem of consuming a lot of energy. Such a problem can be improved by greatly increasing the operating efficiency of the heat source by increasing the water supply temperature of the heat source water during cooling and lowering the water supply temperature of the heat source water during heating at low loads. it can. Therefore, some facility managers change the water supply temperature for each season based on their own experience. However, if the water supply temperature is raised at low temperatures and high humidity in the summer, the dehumidification of the outside air becomes insufficient. Therefore, it may lead to mold from internal condensation, and it is not preferable to change the water supply temperature easily based on empirical rules.

これに対して、特許文献1には、熱源水を共用する設備全体のエネルギ消費量等のシミュレート値を評価関数とし、外気状態及び負荷状態に対する熱源水の送水温度の最適値を演算して最適化制御用データを作成し、この最適化制御用データ等を実際の運転データに即して更新しながら、最新の最適化制御用データに基づき、外気状態や負荷状態に応じた最適な送水温度になるように熱源を制御する熱源制御装置が開示されている。   On the other hand, in Patent Document 1, a simulation value such as the energy consumption of the entire facility sharing the heat source water is used as an evaluation function, and the optimum value of the heat source water supply temperature for the outside air state and the load state is calculated. While creating optimization control data and updating this optimization control data according to the actual operation data, based on the latest optimization control data, the optimal water supply according to the outside air condition and load condition A heat source control device that controls a heat source to reach a temperature is disclosed.

特開2013−127348号公報JP2013-127348A

上記従来の技術では、熱源水の送水温度調整による省エネルギ化を適切に行えるものの、設備全体のエネルギ消費量等のシミュレート値を求めるシミュレート処理や、当該シミュレート値を評価関数として最適化制御用データを作成するための演算処理、更には、実際の運転データに基づく更新処理等の多くの複雑な処理が必要になるため、装置構成や製作作業が複雑化し、コストが嵩む不都合があった。   Although the above-mentioned conventional technology can appropriately save energy by adjusting the water supply temperature of the heat source water, simulation processing to obtain a simulation value such as the energy consumption of the entire facility and optimization of the simulation value as an evaluation function Since many complicated processes such as calculation processes for creating control data and update processes based on actual operation data are required, the configuration of the apparatus and the manufacturing work are complicated, resulting in an increase in cost. It was.

この実情に鑑み、本発明の主たる課題は、熱源水の送水温度の調整による省エネルギ化
を簡易な装置構成や製作作業で安価に実現することができる熱源制御装置、及び、熱源制御装置を用いた熱源システムを提供する点にある。
In view of this situation, the main object of the present invention, the heat source control device can be realized at a low cost energy saving by adjusting the water temperature of the heat source water with a simple apparatus configuration and production tasks,及 beauty, the heat source controller The heat source system used is provided.

本発明の第1特徴構成は、外気状態と熱源水の送水温度との相関を表す相関データを記憶する記憶部と、
外気状態データを取得する外気状態取得部と、
前記外気状態取得部で取得した前記外気状態データと、前記記憶部に記憶された前記相関データとに基づいて、熱源水の目標送水温度を決定する送水温度決定部と、
熱源水の送水温度が前記送水温度決定部で決定した目標送水温度になるように、熱源の運転を制御する運転制御部が備えられている熱源制御装置であって、
前記相関データが、熱源水を共用する複数の空調機から選定した代表空調機の運転に適した外気状態と熱源水の送水温度の相関を表すデータであり、
熱源水を共用する複数の前記空調機として、外気を処理対象とする空調機と、室内空気を処理対象とする空調機との二種が設けられており、これら二種の空調機のうちで外気を処理対象とする空調機が前記代表空調機として選定されている点にある。
The first characteristic configuration of the present invention is a storage unit that stores correlation data representing a correlation between the outside air state and the water supply temperature of the heat source water,
An outside air state acquisition unit for acquiring outside air state data;
A water supply temperature determination unit that determines a target water supply temperature of heat source water based on the outside air state data acquired by the outside air state acquisition unit and the correlation data stored in the storage unit;
A heat source control device provided with an operation control unit that controls the operation of the heat source so that the water supply temperature of the heat source water becomes the target water supply temperature determined by the water supply temperature determination unit,
The correlation data, Ri Oh the data representing the correlation between water temperature of the outside air conditions and heat source water that is suitable for operation of the selected representative air conditioner from a plurality of air conditioners sharing the heat source water,
As the plurality of air conditioners that share heat source water, two types of air conditioners that treat outdoor air and air conditioners that treat indoor air are provided. Among these two types of air conditioners, An air conditioner for processing outside air is selected as the representative air conditioner .

上記構成によれば、外気状態取得部で外気状態データを取得し、その取得した外気状態データと記憶部に記憶された相関データとに基づいて送水温度決定部が熱源水の目標送水温度を決定し、熱源水の送水温度が目標送水温度になるように運転制御部が熱源の運転を制御するので、熱源水の送水温度調整による省エネルギ化を図ることができる。
しかも、前記相関データが、熱源水を共用する複数の空調機から選定した代表空調機の運転に適した外気状態と熱源水の送水温度の相関を表すデータであるので、各空調機の運転に適した外気状態と熱源水の送水温度の相関を表すデータとするのに比べ、相関データ作成に係る計算式やアルゴリズムを単純化することができ、装置構成や製作作業の簡素化を図ることができる。
したがって、熱源水の送水温度調整による省エネルギ化を簡易な装置構成や製作作業で安価に実現することができる。
更に、上記構成によれば、熱源水の送水温度調整の基礎となる代表空調機が、複数の空調機のうちで外気を処理対象とする空調機であるので、熱源水の送水温度調整を外気の処理を優先して実行することができる。そのため、熱源水の送水温度調整による省エネルギ化を図りながら、取り入れ外気の温調処理及び調湿処理を適切に行うことができる。
特に、冷房時においては、このように取り入れ外気の調湿処理(除湿処理)を適切に行うことで、体感温度が下がるために温調負荷を小さくでき、且つ、温調処理(顕熱処理)にも有利な低湿状態に空調対象エリアを保つことができ、その分、空調対象エリアの温調処理を効率化して更なる省エネルギ化を実現することができる。
According to the above configuration, the outside air state acquisition unit acquires outside air state data, and the water supply temperature determination unit determines the target water supply temperature of the heat source water based on the acquired outside air state data and the correlation data stored in the storage unit. In addition, since the operation control unit controls the operation of the heat source so that the water supply temperature of the heat source water becomes the target water supply temperature, energy saving can be achieved by adjusting the water supply temperature of the heat source water.
Moreover, since the correlation data is data representing the correlation between the outside air state suitable for the operation of the representative air conditioner selected from a plurality of air conditioners sharing the heat source water and the water supply temperature of the heat source water, Compared with the data representing the correlation between the appropriate outside air condition and the water temperature of the heat source water, the calculation formulas and algorithms for creating correlation data can be simplified, and the equipment configuration and production work can be simplified. it can.
Therefore, energy saving by adjusting the water supply temperature of the heat source water can be realized at low cost with a simple device configuration and manufacturing work.
Furthermore, according to the above configuration, the representative air conditioner serving as the basis for adjusting the water supply temperature of the heat source water is an air conditioner that treats outside air among a plurality of air conditioners. This process can be executed with priority. Therefore, it is possible to appropriately perform the temperature adjustment process and the humidity adjustment process of the intake outside air while saving energy by adjusting the water supply temperature of the heat source water.
In particular, during cooling, by appropriately performing the humidity adjustment process (dehumidification process) of the outside air as described above, the temperature can be reduced because the temperature of the sensible temperature decreases, and the temperature adjustment process (sensible heat treatment) can be performed. In addition, the air-conditioning target area can be maintained in an advantageous low-humidity state, and the temperature adjustment processing of the air-conditioning target area can be made more efficient, and further energy saving can be realized.

本発明の第2特徴構成は、前記代表空調機として、複数の前記空調機のうちで設計時のピーク負荷に対する運転余裕が最も少ない空調機が選定されている点にある。   The second characteristic configuration of the present invention is that an air conditioner having the smallest operating margin with respect to a peak load at the time of design is selected from the plurality of air conditioners as the representative air conditioner.

上記構成によれば、熱源水の送水温度調整の基礎となる代表空調機が、複数の空調機のうちで設計時のピーク負荷に対する運転余裕が最も少ない空調機であるので、代表空調機以外の空調機の運転に対しても安全を見込んだ状態で熱源水の送水温度調整を実行することができる。
したがって、熱源水の送水温度調整による省エネルギ化を図りながら、各空調機が受け持つ空調対象エリアの環境調整を適切に行うことができる。
According to the above configuration, the representative air conditioner serving as the basis for adjusting the water supply temperature of the heat source water is the air conditioner with the least operating margin with respect to the peak load at the time of designing among the plurality of air conditioners. The water supply temperature adjustment of the heat source water can be executed in a state where safety is expected for the operation of the air conditioner.
Therefore, it is possible to appropriately adjust the environment of the air-conditioning target area of each air conditioner while saving energy by adjusting the water supply temperature of the heat source water.

本発明の第3特徴構成は、前記相関データが、冷房を行うための冷房モードで用いるデータである点にある。 A third characteristic configuration of the present invention is that the correlation data is data used in a cooling mode for cooling .

また、第1〜3特徴構成のいずれかに記載の熱源制御装置に用いる前記相関データを作成する相関データ作成方法であって、
前記相関データが、前記代表空調機に適した熱交換コイルの仕様決定に用いた熱交換コ
イル仕様決定式を利用して作成されてもよい。
Moreover, it is the correlation data creation method which creates the said correlation data used for the heat-source control apparatus in any one of the 1st-3rd characteristic structure,
The correlation data may be created using a heat exchange coil specification determination formula used for determining the specification of a heat exchange coil suitable for the representative air conditioner .

上記構成によれば、熱源水の送水温度の調整用の相関データを作成するのに、実際に代表空調機の熱交換コイルの仕様決定に用いた熱交換コイル仕様決定式を利用するので、相関データの作成処理の効率化を図ることができる。   According to the above configuration, the correlation data for adjusting the feed temperature of the heat source water is actually used by the heat exchange coil specification determination formula used to determine the specifications of the heat exchange coil of the representative air conditioner. The efficiency of the data creation process can be improved.

本発明の第特徴構成は、第1〜第3特徴構成のいずれかに記載の熱源制御装置を用い
た熱源システムであって、
熱源と前記熱源制御装置とが備えられ、施設に設置される空調機のうちから選定された
空調負荷が主に外気状態に影響される外気影響下の複数の空調機に対して、前記熱源制御
装置の制御下で前記熱源から熱源水を送水するように構成されている点にある。
A fourth feature configuration of the present invention is a heat source system using the heat source control device according to any one of the first to third feature configurations,
The heat source control is provided for a plurality of air conditioners that are provided with a heat source and the heat source control device and that are selected from the air conditioners installed in the facility and that are affected mainly by the outside air condition. It exists in the point comprised so that heat source water may be sent from the said heat source under control of an apparatus.

上記構成によれば、施設に設置される空調機のうち、外気影響下の複数の空調機については、前記熱源制御装置の制御下で前記熱源から熱源水を送水することで、熱源水の送水温度調整による省エネルギ化を図りながら、外気状態に影響される空調負荷の実情に応じて空調対象エリアの環境調整を適切に行うことができる。他方、施設に設置される残りの空調機については、別の熱供給形態を採用する等によって内部発熱等に影響される空調負荷の実情に応じて環境調整を適切に行うことができる。したがって、施設内全体の環境調整を適切に行うことができる。   According to the above configuration, among the air conditioners installed in the facility, for a plurality of air conditioners under the influence of outside air, the heat source water is fed from the heat source under the control of the heat source control device. It is possible to appropriately adjust the environment of the air-conditioning target area according to the actual condition of the air-conditioning load affected by the outside air state, while saving energy by adjusting the temperature. On the other hand, for the remaining air conditioners installed in the facility, environmental adjustment can be appropriately performed according to the actual condition of the air conditioning load that is affected by internal heat generation or the like by adopting another heat supply form or the like. Therefore, environmental adjustment of the entire facility can be appropriately performed.

(a)熱源システムの構成図、(b)施設の構成図(A) Configuration diagram of heat source system, (b) Configuration diagram of facility 相関データ(冷房モード)の概念図Conceptual diagram of correlation data (cooling mode) 相関データ(暖房モード)の概念図Conceptual diagram of correlation data (heating mode) 熱源制御装置の制御フローを示す図The figure which shows the control flow of the heat source control device 空調機の運転余裕の判定手法を示す図The figure which shows the judgment method of the operation margin of the air conditioner

本発明に係る熱源制御装置10を用いた熱源システム20の実施形態を図面に基づいて説明する。この熱源システム20は、図1(a)に示すように、熱源21と熱源制御装置10とが主要構成として備えられ、熱源制御装置10による外気状態に応じた制御下において、熱源21と複数の空調機23との間で循環路22を通じて熱源水Wを循環させるように構成されている。   An embodiment of a heat source system 20 using a heat source control device 10 according to the present invention will be described based on the drawings. As shown in FIG. 1A, the heat source system 20 includes a heat source 21 and a heat source control device 10 as main components, and the heat source 21 and a plurality of heat sources 21 are controlled under the control according to the outside air state by the heat source control device 10. The heat source water W is circulated through the circulation path 22 with the air conditioner 23.

熱源制御装置10は、例えば、コンピュータ等からなり、記憶部11、外気状態取得部12、送水温度決定部13、運転制御部14が備えられ、温度センサ等の熱源送水温度計測手段25で計測する熱源水Wの送水温度STを監視しながら、空調機23に付設した温湿度センサや別途に設置した複合気象センサ等の外気状態計測手段24で計測した外気状態データODに応じた制御指令αを熱源21に出力するように構成されている。   The heat source control device 10 includes, for example, a computer, and includes a storage unit 11, an outside air state acquisition unit 12, a water supply temperature determination unit 13, and an operation control unit 14, and measures the heat source water supply temperature measurement unit 25 such as a temperature sensor. While monitoring the water supply temperature ST of the heat source water W, a control command α corresponding to the outside air state data OD measured by the outside air state measuring means 24 such as a temperature / humidity sensor attached to the air conditioner 23 or a separate weather sensor installed separately is provided. It is configured to output to the heat source 21.

熱源21は、例えば、熱源水Wを加熱する加熱部や熱源水Wを冷却する冷却部を備えたチラー等の冷温水発生機からなり、熱源制御装置10からの制御指令αに応じた運転制御により、熱源水Wの送水温度STを調整するように構成されている。   The heat source 21 includes, for example, a cold / hot water generator such as a chiller provided with a heating unit that heats the heat source water W and a cooling unit that cools the heat source water W, and performs operation control according to a control command α from the heat source control device 10. Thus, the water supply temperature ST of the heat source water W is adjusted.

熱源水Wの供給先となる複数の空調機23の種別や構造は各種のものであってよいが、本実施形態では、外気を処理対象とする外調機23Aと、室内空気を処理対象とするFCU(ファンコイルユニット)23Bとの二種がある場合を例に挙げている。   The types and structures of the plurality of air conditioners 23 to which the heat source water W is supplied may be various, but in the present embodiment, the external air conditioner 23A that treats outside air and the room air that is treated. The case where there are two types of FCU (fan coil unit) 23B to be performed is taken as an example.

なお、外調機23Aは、例えば、AHU(エアハンドリングユニット)からなり、取り入れた外気の温度及び湿度を調整した上で室内に導入するように構成されているとともに、FCU23Bは、取り入れた室内空気の温度を調整した上で室内に戻すように構成されている。   The external air conditioner 23A includes, for example, an AHU (air handling unit), and is configured to be introduced into the room after adjusting the temperature and humidity of the taken-in outside air. The FCU 23B It is configured to return to the room after adjusting the temperature.

また、本実施形態では、熱源制御装置10により外気状態に応じて熱源21を制御することに対して、図1(b)に示すように、施設1内に設置された空調機23のうち、施設1内の外周側エリア1Aに位置する空調機23を、空調負荷が主に外気に影響される外気影響下の複数の空調機23に選定し、これらの外気影響下の空調機23に対して熱源21から熱源水Wを送水(供給)することで、施設1の外周側エリア1Aにおいて、外気状態に影響される空調負荷の実情に応じた環境調整を適切に行うようにしている。   Moreover, in this embodiment, with respect to controlling the heat source 21 according to an external air state with the heat source control apparatus 10, as shown in FIG.1 (b), among the air conditioners 23 installed in the facility 1, The air conditioner 23 located in the outer peripheral side area 1A in the facility 1 is selected as a plurality of air conditioners 23 under the influence of the outside air whose air conditioning load is mainly influenced by the outside air, and the air conditioners 23 under the influence of the outside air are selected. Thus, by supplying (supplying) the heat source water W from the heat source 21, in the outer peripheral side area 1A of the facility 1, the environment adjustment according to the actual condition of the air conditioning load affected by the outside air state is appropriately performed.

他方、施設1内の中央側エリア1Bに設置された空調機23は、空調負荷が外気よりも内部発熱等に影響される非外気影響下の空調機23とし、これらの非外気影響下の空調機23に対して熱源21とは独立した適宜の熱源(図示省略)から熱を供給することで、内部発熱等に影響される空調負荷の実情に応じた環境調整を適切に行うようにしている。   On the other hand, the air conditioner 23 installed in the central area 1B in the facility 1 is an air conditioner 23 under the influence of non-outside air in which the air conditioning load is influenced by internal heat generation or the like rather than outside air. By supplying heat to the machine 23 from an appropriate heat source (not shown) independent of the heat source 21, the environment adjustment according to the actual condition of the air conditioning load affected by internal heat generation or the like is appropriately performed. .

そして、この熱源システム20では、熱源制御装置10による外気状態に応じた制御下において、複数の空調機23から選定した代表空調機Xの運転に適した目標送水温度TTに熱源水Wの送水温度STを自動的に調整することで、熱源水Wの送水温度STの調整による省エネルギ化を簡易な装置構成で安価に実現している。以下、熱源制御装置10、及び、この熱源制御装置10により実行される制御内容の詳細について説明を加える。   In this heat source system 20, the water supply temperature of the heat source water W is set to the target water supply temperature TT suitable for the operation of the representative air conditioner X selected from the plurality of air conditioners 23 under the control according to the outside air state by the heat source control device 10. By automatically adjusting ST, energy saving by adjusting the water supply temperature ST of the heat source water W is realized at a low cost with a simple device configuration. Hereinafter, the heat source control device 10 and details of the control contents executed by the heat source control device 10 will be described.

熱源制御装置10の記憶部11には、図2、図3に概念的に示すように、外気状態と熱源水Wの送水温度(候補送水温度CT)の相関を表す相関データCDが記憶されている。図2は冷房モードで用いる相関データCDを示し、図3は暖房モードで用いる相関データCDを示している。なお、この相関データCDは、熱源制御装置10の制御動作開始前に予め作成して記憶部11に記憶されており、熱源制御装置10は作成済みの相関データCDを用いて熱源21を制御する。   The storage unit 11 of the heat source control device 10 stores correlation data CD representing the correlation between the outside air state and the water supply temperature of the heat source water W (candidate water supply temperature CT), as conceptually shown in FIGS. Yes. FIG. 2 shows correlation data CD used in the cooling mode, and FIG. 3 shows correlation data CD used in the heating mode. The correlation data CD is created in advance and stored in the storage unit 11 before the start of the control operation of the heat source control device 10, and the heat source control device 10 controls the heat source 21 using the created correlation data CD. .

当該相関データCDは、両モードにおいて、外気状態を湿り空気線図上で区分した外気状態エリアA〜F(図2(a)、図3(a)参照)の各々に関連付けて、代表空調機Xの運転に適した候補送水温度CT(図2(b)、図3(b)参照)が設定されたデータ構成になっている。このように相関データCDを1つの代表空調機Xの運転に適したデータとすることで、相関データCDの作成処理に要する計算式やアルゴリズムを単純化している。   The correlation data CD is associated with each of the outside air state areas A to F (see FIGS. 2 (a) and 3 (a)) in which the outside air state is divided on the wet air diagram in both modes. The data structure is such that a candidate water supply temperature CT (see FIGS. 2B and 3B) suitable for the operation of X is set. In this way, the correlation data CD is data suitable for the operation of one representative air conditioner X, thereby simplifying the calculation formulas and algorithms required for the creation process of the correlation data CD.

熱源制御装置10の外気状態取得部12は、図1(a)に示すように、外気状態計測手段24との通信等により外気状態計測手段24から外気状態データODを取得するように構成されている。なお、外気状態データODの取得先や取得方法は如何なるものであってよく、例えば、第三者が運営する気象情報提供サービスや気象情報提供システム等を利用し、第三者から外気状態データODの提供を受けて取得するようにしてもよい。   As shown in FIG. 1A, the outside air state acquisition unit 12 of the heat source control device 10 is configured to obtain outside air state data OD from the outside air state measuring unit 24 by communication with the outside air state measuring unit 24 or the like. Yes. The outside air condition data OD may be acquired by any method, for example, by using a weather information providing service or a weather information providing system operated by a third party. You may make it acquire with provision of.

熱源制御装置10の送水温度決定部13は、記憶部11に記憶された相関データCDを読み出し、外気状態取得部12で取得した外気状態データODと照合する演算形態で、外気状態データODに対応する候補送水温度CTを目標送水温度TTに決定するように構成されている。   The water supply temperature determination unit 13 of the heat source control device 10 reads the correlation data CD stored in the storage unit 11 and matches the outside air state data OD acquired by the outside air state acquisition unit 12 and corresponds to the outside air state data OD. The candidate water supply temperature CT to be determined is determined to be the target water supply temperature TT.

熱源制御装置10の運転制御部14は、熱源水Wの送水温度STと目標送水温度TTに応じた運転内容に変更する制御指令αを熱源21に出力することで、熱源水Wの送水温度STが目標送水温度TTになるように熱源21の運転を制御するように構成されている。   The operation control unit 14 of the heat source control device 10 outputs to the heat source 21 a control command α for changing the operation content according to the water supply temperature ST of the heat source water W and the target water supply temperature TT, thereby supplying the water supply temperature ST of the heat source water W. Is configured to control the operation of the heat source 21 so that the water supply temperature TT becomes the target water supply temperature TT.

具体的には、図4に示すように、この熱源制御装置10は、設定時間毎や設定時刻毎、或いは、施設管理者の操作毎において、外気状態データ取得ステップ♯1、目標送水温度決定ステップ♯2、運転制御ステップ♯3を順次に実行するように構成されている。   Specifically, as shown in FIG. 4, the heat source control device 10 performs an outside air state data acquisition step # 1 and a target water supply temperature determination step at every set time, every set time, or every operation of the facility manager. It is configured to execute # 2 and operation control step # 3 sequentially.

まず、外気状態データ取得ステップ♯1において、熱源制御装置10の外気状態取得部12は、外気状態計測手段24で計測した外気状態データODを外気状態計測手段24から取得する。なお、本実施形態では、外気状態データODとして、外気の温度と湿度を取得する。   First, in the outside air state data acquisition step # 1, the outside air state acquisition unit 12 of the heat source control device 10 acquires the outside air state data OD measured by the outside air state measuring unit 24 from the outside air state measuring unit 24. In the present embodiment, the temperature and humidity of the outside air are acquired as the outside air state data OD.

次に、目標送水温度決定ステップ♯2において、熱源制御装置10の送水温度決定部13は、記憶部11に記憶された相関データCDを読み出し、外気状態データ取得ステップ♯1で取得した外気状態データODが外気状態エリアA〜Fのいずれに該当するかを判定し、判定した外気状態エリアに関連付けられた候補送水温度CTを目標送水温度TTに決定する。   Next, in the target water supply temperature determination step # 2, the water supply temperature determination unit 13 of the heat source control device 10 reads the correlation data CD stored in the storage unit 11, and the outside air state data acquired in the outside air state data acquisition step # 1. It is determined which of the outside air state areas A to F corresponds to the OD, and the candidate water supply temperature CT associated with the determined outside air state area is determined as the target water supply temperature TT.

そして、運転制御ステップ♯3において、熱源制御装置10の運転制御部14は、熱源送水温度計測手段25で計測する熱源水Wの送水温度STが、送水温度決定ステップ♯2で決定した目標送水温度TTになるように熱源21の運転を制御する。このようにして、熱源制御装置10は、熱源水Wの送水温度STを外気状態に応じて代表空調機Xの運転に適した目標送水温度TTに自動的に調整する。   In operation control step # 3, the operation control unit 14 of the heat source control device 10 determines that the water supply temperature ST of the heat source water W measured by the heat source water supply temperature measuring means 25 is the target water supply temperature determined in the water supply temperature determination step # 2. The operation of the heat source 21 is controlled so as to be TT. In this manner, the heat source control device 10 automatically adjusts the water supply temperature ST of the heat source water W to the target water supply temperature TT suitable for the operation of the representative air conditioner X according to the outside air state.

次に、熱源制御装置10の記憶部11に記憶された相関データCDの詳細について説明を加える。この相関データCDは、熱源制御装置10の設計時において、熱源水Wを共有する複数の空調機23から代表空調機Xを選定する代表空調機選定ステップと、外気状態毎に代表空調機Xの運転に適した候補送水温度CTを設定する候補送水温度設定ステップとを実行して作成する。   Next, the detail of the correlation data CD memorize | stored in the memory | storage part 11 of the heat source control apparatus 10 is added. This correlation data CD is obtained by selecting a representative air conditioner selection step for selecting the representative air conditioner X from the plurality of air conditioners 23 sharing the heat source water W at the time of designing the heat source control device 10, and the representative air conditioner X for each outside air state. A candidate water supply temperature setting step for setting a candidate water supply temperature CT suitable for operation is executed and created.

(代表空調機選定ステップ)
この代表空調機選定ステップでは、まず、熱源水Wの供給先の空調機23のうちから外調機23Aを選定する一次選定を行い、その後、一次選定で選定した外調機23Aのうちから運転時のピーク負荷に対する運転余裕が最も小さいものを代表空調機Xとして選定する二次選定を行う。
(Representative air conditioner selection step)
In this representative air conditioner selection step, first, primary selection is performed to select the external air conditioner 23A from among the air conditioners 23 to which the heat source water W is supplied, and then the external air conditioner 23A selected in the primary selection is operated. Secondary selection is performed in which the air conditioner X having the smallest operating margin with respect to the peak load is selected as the representative air conditioner X.

図5は、二次選定において、運転時のピーク負荷に対する運転余裕の判定手法を示す図である。同図5に示すように、この二次選定では、事前の空調機設計の際に外調機23A毎に設置環境に応じて算出した必要コイル列数Rowcと、空調機設計で実際に決定した決定コイル列数Zとの差(Z−Rowc)をピーク負荷に対する運転余裕とし、この運転余裕が最も小さいものを代表空調機Xに選定する。例えば、図5の例では、運転余裕が最も小さい外調機23Aとして上から二列目の外調機bを代表空調機Xに選定する。   FIG. 5 is a diagram illustrating a method for determining an operation margin with respect to a peak load during operation in secondary selection. As shown in FIG. 5, in this secondary selection, the required number of coil rows Rowc calculated according to the installation environment for each external air conditioner 23A at the time of prior air-conditioner design, and actually determined by the air-conditioner design. The difference (Z-Rowc) from the determined coil array number Z is set as an operation margin for the peak load, and the representative air conditioner X having the smallest operation margin is selected. For example, in the example of FIG. 5, the external air conditioner b in the second row from the top is selected as the representative air conditioner X as the external air conditioner 23A having the smallest operating margin.

外調機23A毎の必要コイル列数Rowcについては、公知の各種のコイル列数算出式(コイル仕様決定式の一例)で算出可能であるが、本実施形態では、次の(式1)を採用している。
Rowc=1000×qt/(Kf×Δtlm×Af×WSF) (式1)
Rowc:必要コイル列数[本]
Af:コイル正面面積[m](設定値)
WSF:濡れ面係数(設定値)
Kf:伝熱係数(設定値)
Δtlm:対数平均温度差[℃]
qt:空調負荷[kW]
The necessary number of coil rows Rowc for each external air conditioner 23A can be calculated by various known coil row number calculation formulas (an example of a coil specification determination formula). In the present embodiment, the following (Formula 1) is calculated. Adopted.
Rowc = 1000 × qt / (Kf × Δtlm × Af × WSF) (Formula 1)
Rowc: Necessary number of coil arrays [pieces]
Af: Coil front area [m 2 ] (set value)
WSF: Wet surface coefficient (set value)
Kf: Heat transfer coefficient (set value)
Δtlm: Logarithmic average temperature difference [° C.]
qt: Air conditioning load [kW]

ここで、(式1)で用いる対数平均温度差Δtlmは、以下の(式2)に対し、(式3−1)と(式3−2)を代入して求める。
Δtlm=(Δt−Δt)/(2.3×log10(Δt/Δt)) (式2)
Δt=DB1C−tw2C=DB1C−(tw1C+WTR) (式3−1)
Δt=DB2C−tw1C (式3−2)
DB1C:入口空気乾球温度[℃](設定値:ピーク負荷時)
WB1C:入口空気湿球温度[℃](設定値:ピーク負荷時)
tw1C:熱源水入口温度[℃](設定値:目標値)
WTR:熱源水出入口温度差[℃](設定値:目標値)
tw2C:熱源水出口温度[℃](=tw1C+WTR
DB2C:出口空気乾球温度[℃](設定値:目標値)
WB2C:出口空気湿球温度[℃](設定値:目標値)
Here, the logarithmic average temperature difference Δtlm used in (Expression 1) is obtained by substituting (Expression 3-1) and (Expression 3-2) for the following (Expression 2).
Δtlm = (Δt 1 −Δt 2 ) / (2.3 × log 10 (Δt 1 / Δt 2 )) (Formula 2)
Δt 1 = DB 1C -tw 2C = DB 1C - (tw 1C + WTR C) ( Equation 3-1)
Δt 2 = DB 2C -tw 1C (Formula 3-2)
DB 1C : Inlet air dry bulb temperature [° C.] (set value: at peak load)
WB 1C : Inlet air wet bulb temperature [° C] (set value: at peak load)
tw 1C : Heat source water inlet temperature [° C.] (set value: target value)
WTR C : Heat source water inlet / outlet temperature difference [° C] (set value: target value)
tw 2C : Heat source water outlet temperature [° C.] (= tw 1C + WTR C )
DB 2C : outlet air dry bulb temperature [° C.] (set value: target value)
WB 2C : outlet air wet bulb temperature [° C.] (set value: target value)

また、(式1)で用いる空調負荷(ピーク負荷)qtは、以下の(式4)から求める。
qt=Qr×γa×(ia1−ia2)/3600 (式4)
qt:空調負荷・全熱量[kW]
Qr:所要風量[m/h](設定値)
γa:空気密度[kg/m](設定値)
a1:入口空気比エンタルピー[kJ/kg(DA)]
(設定値:DB1CとWB1Cから湿り空気線図で算出した値)
a2:出口空気比エンタルピー[kJ/kg(DA)]
(設定値:DB2CとWB2Cから湿り空気線図で算出した値)
Further, the air conditioning load (peak load) qt used in (Expression 1) is obtained from the following (Expression 4).
qt = Qr × γa × (i a1 −i a2 ) / 3600 (Formula 4)
qt: Air conditioning load / total heat [kW]
Qr: Required air volume [m 3 / h] (set value)
γa: air density [kg / m 3 ] (set value)
i a1 : Inlet air specific enthalpy [kJ / kg (DA)]
(Set value: Value calculated from wet air diagram from DB 1C and WB 1C )
i a2 : exit air ratio enthalpy [kJ / kg (DA)]
(Set value: Value calculated from wet air diagram from DB 2C and WB 2C )

(候補送水温度設定ステップ)
この候補送水温度設定ステップでは、外気状態を湿り空気線図上で区分した外気状態エリアA〜F(図2(a)、図3(a)参照)を作成するとともに、この外気状態エリアA〜Fの夫々で代表空調機Xの運転に適した熱源水Wの候補送水温度CT(図2(b)、図3(b)参照)を設定する。
(Candidate water supply temperature setting step)
In this candidate water supply temperature setting step, outside air state areas A to F (see FIGS. 2A and 3A) in which the outside air state is divided on the wet air diagram are created, and the outside air state areas A to F are created. A candidate water supply temperature CT (see FIGS. 2B and 3B) of the heat source water W suitable for the operation of the representative air conditioner X is set for each of F.

外気状態エリアA〜Fは、図2(a)、図3(a)に示すように、湿り空気線図上において、相対湿度限界線LL1、乾球温度限界線LL2、絶対湿度限界線LL3と、送水温度毎の最適な外気状態を示す複数本の外気状態線SLで仕切られたエリアとして構成されている。なお、図3(a)に示す暖房モードの相関データCDでは、暖房運転時における外調機23Aの高温側(乾球温度)での加湿能力を予め見込み、絶対湿度限界線LL3を低温側のみに設定している。   As shown in FIGS. 2 (a) and 3 (a), the outside air condition areas A to F include a relative humidity limit line LL1, a dry bulb temperature limit line LL2, and an absolute humidity limit line LL3 on the wet air diagram. The area is defined by a plurality of outside air condition lines SL indicating the optimum outside air state for each water supply temperature. In the heating mode correlation data CD shown in FIG. 3A, the humidifying capacity on the high temperature side (dry bulb temperature) of the external air conditioner 23A during the heating operation is anticipated in advance, and the absolute humidity limit line LL3 is set only on the low temperature side. Is set.

この外気状態線SLは、各種の方法で求めることができるが、本実施形態では、空調機設計に用いた前述のコイル列数算出式(式1)を利用して効率的に求める。   The outside air condition line SL can be obtained by various methods, but in the present embodiment, the outside air state line SL is efficiently obtained by using the above-described coil array number calculation formula (formula 1) used for the air conditioner design.

具体的には、まず、前述の(式1)において、実際の代表空調機Xを熱源水Wの送水温度調整の基礎とするため、代表空調機Xの決定コイル列数Zを必要コイル列数Rowcに代入し、更に、コイル正面面積Af、濡れ面係数WSF、伝熱係数Kfを代表空調機Xの必要コイル列数Rowcの算出に用いた設定値とすることで、次の(式5)に示すように、対数平均温度差Δtlmは、空調負荷qtを変数とした関数Aで表すことができる。
Rowc=1000×qt/(Kf×Δtlm×Af×WSF) (式1)
→Δtlm=A(qt) (式5)
Δtlm:対数平均温度差[℃]
qt:空調負荷・全熱量[kW]
Specifically, first, in (Equation 1) described above, since the actual representative air conditioner X is used as a basis for adjusting the water supply temperature of the heat source water W, the number of determined coil rows Z of the representative air conditioner X is set to the required number of coil rows. Substituting into Rowc, and further setting the coil front area Af, wetted surface coefficient WSF, and heat transfer coefficient Kf as the set values used for calculating the required number of coil rows Rowc of the representative air conditioner X, the following (Formula 5) As shown, the logarithm average temperature difference Δtlm can be expressed by a function A with the air conditioning load qt as a variable.
Rowc = 1000 × qt / (Kf × Δtlm × Af × WSF) (Formula 1)
→ Δtlm = A (qt) (Formula 5)
Δtlm: Logarithmic average temperature difference [° C.]
qt: Air conditioning load / total heat [kW]

また、前述した(式4)において、所要風量Qr、空気密度γa、出口空気比エンタルピーia2を代表空調機Xの必要コイル列数Rowcの算出に用いた設定値とすることで、次の(式6)に示すように、空調負荷qtは、入口空気比エンタルピーia1を変数とした関数Bで表すことができる。
qt=Qr×γa×(ia1−ia2)/3600 (式4)
→ qt=B(ia1) (式6)
qt:空調負荷・全熱量[kW]
a1:入口空気比エンタルピー[kJ/kg(DA)]
Further, in the above-described (Equation 4), the required air volume Qr, air density .gamma.a, by a setting value used for the calculation of the required coil columns Rowc representative air conditioner X the outlet air ratio enthalpy i a2, the following ( As shown in Expression 6), the air conditioning load qt can be expressed by a function B with the inlet air ratio enthalpy i a1 as a variable.
qt = Qr × γa × (i a1 −i a2 ) / 3600 (Formula 4)
→ qt = B (i a1 ) (Formula 6)
qt: Air conditioning load / total heat [kW]
i a1 : Inlet air specific enthalpy [kJ / kg (DA)]

そして、(式5)と(式6)とを整理すると、次の(式7)に示すように、対数平均温度差Δtlmは入口空気比エンタルピーia1を変数とした関数Cで表すことができる。
Δtlm=C(ia1) (式7)
Δtlm:対数平均温度差[℃]
a1:入口空気比エンタルピー[kJ/kg(DA)]
Then, by arranging (Equation 5) and (Equation 6), as shown in the following (Equation 7), the logarithm average temperature difference Δtlm can be expressed by a function C using the inlet air ratio enthalpy i a1 as a variable. .
Δtlm = C (i a1 ) (Formula 7)
Δtlm: Logarithmic average temperature difference [° C.]
i a1 : Inlet air specific enthalpy [kJ / kg (DA)]

更に、前述の(式2)、(式3−1)、(式3−2)において、出口空気乾球温度DB2Cを代表空調機Xの必要コイル列数Rowcの算出に用いた設定値とすることで、次の(式8)に示すように、対数平均温度差Δtlmは、入口空気乾球温度DB1C、熱源水出入口温度差WTRc、及び、熱源水入口温度tw1Cを変数とした関数Dで表すことができる。
Δtlm=(Δt−Δt)/(2.3×log10(Δt/Δt)) (式2)
Δt=DB1C−tw2C=DB1C−(tw1C+WTR) (式3−1)
Δt=DB2C−tw1C (式3−2)
→Δtlm=D(DB1C,WTR,tw1C) (式8)
Δtlm:対数平均温度差[℃]
DB1C:入口空気乾球温度[℃]
WTRc:熱源水出入口温度差[℃]
tw1C:熱源水入口温度[℃]
Further, in the above-described (Expression 2), (Expression 3-1), and (Expression 3-2), the outlet air dry bulb temperature DB 2C is used as the setting value used for calculating the required number of coil rows Rowc of the representative air conditioner X; Thus, as shown in the following (Expression 8), the logarithmic average temperature difference Δtlm is a function in which the inlet air dry bulb temperature DB 1C , the heat source water inlet / outlet temperature difference WTRc, and the heat source water inlet temperature tw 1C are variables. D can be represented.
Δtlm = (Δt 1 −Δt 2 ) / (2.3 × log 10 (Δt 1 / Δt 2 )) (Formula 2)
Δt 1 = DB 1C -tw 2C = DB 1C - (tw 1C + WTR C) ( Equation 3-1)
Δt 2 = DB 2C -tw 1C (Formula 3-2)
→ Δtlm = D (DB 1C, WTR C, tw 1C) ( Equation 8)
Δtlm: Logarithmic average temperature difference [° C.]
DB 1C : Inlet air dry bulb temperature [° C.]
WTRc: Heat source water inlet / outlet temperature difference [° C]
tw 1C : Heat source water inlet temperature [° C.]

また、熱交換コイルを通過する熱源水流量Wc[l/min]を算出する以下の(式9)において、熱源水流量Wcを設定値とすることで、次の(式10)に示すように、熱源水出入口温度差WTRcは、空調負荷qtを変数とした関数Eで表すことができる。
Wc=60×qt/(4.186×WTRc) (式9)
→WTRc=E(qt) (式10)
WTRc:熱源水出入口温度差[℃]
qt:空調負荷・全熱量[kW]
Further, in the following (Equation 9) for calculating the heat source water flow rate Wc [l / min] passing through the heat exchange coil, the heat source water flow rate Wc is set as a set value, as shown in the following (Equation 10). The heat source water inlet / outlet temperature difference WTRc can be expressed by a function E with the air conditioning load qt as a variable.
Wc = 60 × qt / (4.186 × WTRc) (Formula 9)
→ WTRc = E (qt) (Formula 10)
WTRc: Heat source water inlet / outlet temperature difference [° C]
qt: Air conditioning load / total heat [kW]

この(式10)と(式6)とを整理すると、次の(式11)に示すように、熱源水出入口温度差WTRcは、入口空気比エンタルピーia1を変数とした関数Fで表すことができる。
WTRc=F(ia1) (式11)
WTRc:熱源水出入口温度差[℃]
a1:入口空気比エンタルピー[kJ/kg(DA)]
By arranging (Equation 10) and (Equation 6), as shown in the following (Equation 11), the heat source water inlet / outlet temperature difference WTRc can be expressed by a function F with the inlet air ratio enthalpy i a1 as a variable. it can.
WTRc = F (i a1 ) (Formula 11)
WTRc: Heat source water inlet / outlet temperature difference [° C]
i a1 : Inlet air specific enthalpy [kJ / kg (DA)]

次に、(式11)と(式8)を整理すると、次の式(式12)に示すように、対数平均温度差Δtlmは、入口空気乾球温度DB1C、入口空気比エンタルピーia1、及び、熱源水入口温度tw1Cを変数とした関数Gで表すことができる。
を求める。
Δtlm=G(DB1C,ia1,tw1C) (式12)
Δtlm:対数平均温度差[℃]
DB1C:入口空気乾球温度[℃]
a1:入口空気比エンタルピー[kJ/kg(DA)]
tw1C:熱源水入口温度[℃]
Next, when (Equation 11) and (Equation 8) are rearranged, as shown in the following equation (Equation 12), the logarithm average temperature difference Δtlm is expressed as the inlet air dry bulb temperature DB 1C , the inlet air ratio enthalpy i a1 , And it can represent with the function G which made the heat source water inlet temperature tw 1C a variable.
Ask for.
Δtlm = G (DB 1C , i a1 , tw 1C ) (Formula 12)
Δtlm: Logarithmic average temperature difference [° C.]
DB 1C : Inlet air dry bulb temperature [° C.]
i a1 : Inlet air specific enthalpy [kJ / kg (DA)]
tw 1C : Heat source water inlet temperature [° C.]

この(式12)と(式7)とを整理すれば、熱源水入口温度tw1Cと、入口空気乾球温度DB1Cと、入口空気比エンタルピーia1との三者の相関を示す(式13)を求めることができる。
C(ia1)=G(DB1C,ia1,tw1C) (式13)
tw1C:熱源水入口温度[℃]
a1:入口空気比エンタルピー[kJ/kg(DA)]
DB1C:入口空気乾球温度[℃]
By arranging (Equation 12) and (Equation 7), a three-way correlation between the heat source water inlet temperature tw 1C , the inlet air dry bulb temperature DB 1C, and the inlet air specific enthalpy i a1 is shown (Equation 13). ).
C (i a1 ) = G (DB 1C , i a1 , tw 1C ) (Formula 13)
tw 1C : Heat source water inlet temperature [° C.]
i a1 : Inlet air specific enthalpy [kJ / kg (DA)]
DB 1C : Inlet air dry bulb temperature [° C.]

この(式13)において、例えば1℃毎等で熱源水入口温度tw1Cを変化させることで、熱源水入口温度tw1C(つまり、候補送水温度CT)に応じた入口空気乾球温度DB1Cと入口空気比エンタルピーia1との相関を示す外気状態関係式を求め、これらの外気状態関係式を外気状態線SLとして設定する。なお、例えば、当該外気状態関係式から相対湿度限界線LL1上に外気状態点をプロットし、この外気状態点と比エンタルピーが等しい等比エンタルピー線を外気状態線SLとしてもよい。 In this (Expression 13), for example, by changing the heat source water inlet temperature tw 1C every 1 ° C. or the like, the inlet air dry bulb temperature DB 1C corresponding to the heat source water inlet temperature tw 1C (that is, the candidate water supply temperature CT) and An external air state relational expression showing a correlation with the inlet air ratio enthalpy ia1 is obtained, and these external air state relational expressions are set as an external air state line SL. In addition, for example, an outside air state point may be plotted on the relative humidity limit line LL1 from the outside air state relational expression, and an equivalent enthalpy line having the same specific enthalpy as the outside air state point may be used as the outside air state line SL.

そして、図2に示す冷房モードの相関データCDでは、各外気状態線SLに対応する熱源水入口温度tw1Cを、当該外気状態線SLを下限とする外気状態エリアの候補送水温度CTに設定するとともに、図3に示す暖房モードの相関データCDでは、各外気状態線SLに対応する熱源水入口温度tw1Cを、当該外気状態線SLを上限とする外気状態エリアの候補送水温度CTに設定し、相関データCDの作成処理を完了する。 In the cooling mode correlation data CD shown in FIG. 2, the heat source water inlet temperature tw 1C corresponding to each outside air state line SL is set to the candidate water supply temperature CT of the outside air state area having the outside air state line SL as a lower limit. At the same time, in the correlation data CD of the heating mode shown in FIG. 3, the heat source water inlet temperature tw 1C corresponding to each outside air state line SL is set to the candidate water supply temperature CT of the outside air state area with the outside air state line SL as the upper limit. Then, the creation process of the correlation data CD is completed.

〔別実施形態〕
(1)前述の実施形態では、熱源水Wを共用する空調機23(外調機23A、FCU23B)から外調機23Aを選定した上で、外調機23Aのうちで設計時のピーク負荷に対する運転余裕が最も少ないものを代表空調機Xとする場合を例に示したが、例えば、外調機23AとFCU23Bとを区別せず、熱源水Wを共用する全ての空調機23のうちで設計時のピーク負荷に対する運転余裕が最も少ないものを代表空調機Xとしてもよく、代表空調機Xは設置環境や使用目標等に応じて適宜に選択すればよい。
[Another embodiment]
(1) In the above-mentioned embodiment, after selecting the external air conditioner 23A from the air conditioner 23 (external air conditioner 23A, FCU 23B) sharing the heat source water W, the external air conditioner 23A is designed for the peak load at the time of design. Although the case where the one with the least operating margin is used as the representative air conditioner X is shown as an example, for example, the external air conditioner 23A and the FCU 23B are not distinguished, and are designed among all the air conditioners 23 sharing the heat source water W. The air conditioner X having the least operating margin with respect to the peak load at the time may be used as the representative air conditioner X, and the representative air conditioner X may be appropriately selected according to the installation environment, the use target, and the like.

(2)相関データCDの具体的構成は、前述の実施形態で示した構成に限らず、代表空調機Xの運転に適した外気状態と熱源水Wの送水温度(候補送水温度CT)との相関を表すものであれば種々の構成を採用することができる。また、相関データCDの具体的な作成方法も種々の方法を採用することができる。   (2) The specific configuration of the correlation data CD is not limited to the configuration shown in the above-described embodiment, but the relationship between the outside air state suitable for the operation of the representative air conditioner X and the water supply temperature of the heat source water W (candidate water supply temperature CT). Various configurations can be adopted as long as they represent correlation. Various methods can be adopted as a specific method of creating the correlation data CD.

(3)前述の実施形態では、熱源制御装置10の制御下で熱源21から熱源水Wを循環供給する空調機23を、施設1内の外周側エリア1Aに位置する空調機23とする場合を例に示したが、施設1内の全ての空調機23にしたり、施設1内の外調機23Aだけにしてもよい。   (3) In the above-described embodiment, the air conditioner 23 that circulates and supplies the heat source water W from the heat source 21 under the control of the heat source control device 10 is the air conditioner 23 that is located in the outer peripheral side area 1A in the facility 1. As shown in the example, all of the air conditioners 23 in the facility 1 or only the external air conditioner 23A in the facility 1 may be used.

1 施設
10 熱源制御装置
11 記憶部
12 外気状態取得部
13 送水温度決定部
14 運転制御部
20 熱源システム
21 熱源
23 空調機
23A 外調機
CD 相関データ
OD 外気状態データ
TT 目標送水温度
W 熱源水
X 代表空調機

DESCRIPTION OF SYMBOLS 1 Facility 10 Heat source control apparatus 11 Memory | storage part 12 Outside air condition acquisition part 13 Water supply temperature determination part 14 Operation control part 20 Heat source system 21 Heat source 23 Air conditioner 23A Air conditioner CD Correlation data OD Outside air state data TT Target water supply temperature W Heat source water X Representative air conditioner

Claims (4)

外気状態と熱源水の送水温度との相関を表す相関データを記憶する記憶部と、
外気状態データを取得する外気状態取得部と、
前記外気状態取得部で取得した前記外気状態データと、前記記憶部に記憶された前記相関データとに基づいて、熱源水の目標送水温度を決定する送水温度決定部と、
熱源水の送水温度が前記送水温度決定部で決定した目標送水温度になるように、熱源の運転を制御する運転制御部が備えられている熱源制御装置であって、
前記相関データが、熱源水を共用する複数の空調機から選定した代表空調機の運転に適した外気状態と熱源水の送水温度の相関を表すデータであり、
熱源水を共用する複数の前記空調機として、外気を処理対象とする空調機と、室内空気を処理対象とする空調機との二種が設けられており、これら二種の空調機のうちで外気を処理対象とする空調機が前記代表空調機として選定されている熱源制御装置。
A storage unit for storing correlation data representing a correlation between the outside air state and the water supply temperature of the heat source water;
An outside air state acquisition unit for acquiring outside air state data;
A water supply temperature determination unit that determines a target water supply temperature of heat source water based on the outside air state data acquired by the outside air state acquisition unit and the correlation data stored in the storage unit;
A heat source control device provided with an operation control unit that controls the operation of the heat source so that the water supply temperature of the heat source water becomes the target water supply temperature determined by the water supply temperature determination unit,
The correlation data is data representing a correlation between an outside air state suitable for operation of a representative air conditioner selected from a plurality of air conditioners sharing heat source water and a water supply temperature of the heat source water,
As the plurality of air conditioners that share heat source water, two types of air conditioners that treat outdoor air and air conditioners that treat indoor air are provided. Among these two types of air conditioners, A heat source control device in which an air conditioner for processing outside air is selected as the representative air conditioner.
前記代表空調機として、複数の前記空調機のうちで設計時のピーク負荷に対する運転余裕が最も少ない空調機が選定されている請求項1記載の熱源制御装置。   The heat source control device according to claim 1, wherein an air conditioner having the smallest operating margin with respect to a peak load at the time of design is selected as the representative air conditioner from the plurality of air conditioners. 前記相関データが、冷房を行うための冷房モードで用いるデータである請求項1又は2記載の熱源制御装置。   The heat source control device according to claim 1 or 2, wherein the correlation data is data used in a cooling mode for cooling. 請求項1〜3のいずれか1項に記載の熱源制御装置を用いた熱源システムであって、
熱源と前記熱源制御装置とが備えられ、施設に設置される空調機のうちから選定された空調負荷が主に外気状態に影響される外気影響下の複数の空調機に対して、前記熱源制御装置の制御下で前記熱源から熱源水を送水するように構成されている熱源システム。
A heat source system using the heat source control device according to any one of claims 1 to 3,
The heat source control is provided for a plurality of air conditioners that are provided with a heat source and the heat source control device and that are selected from the air conditioners installed in the facility and that are affected mainly by the outside air condition. A heat source system configured to send heat source water from the heat source under control of the apparatus.
JP2015119489A 2015-06-12 2015-06-12 Heat source control device and heat source system using heat source control device Active JP6577760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015119489A JP6577760B2 (en) 2015-06-12 2015-06-12 Heat source control device and heat source system using heat source control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015119489A JP6577760B2 (en) 2015-06-12 2015-06-12 Heat source control device and heat source system using heat source control device

Publications (2)

Publication Number Publication Date
JP2017003225A JP2017003225A (en) 2017-01-05
JP6577760B2 true JP6577760B2 (en) 2019-09-18

Family

ID=57753925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015119489A Active JP6577760B2 (en) 2015-06-12 2015-06-12 Heat source control device and heat source system using heat source control device

Country Status (1)

Country Link
JP (1) JP6577760B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6508287B1 (en) * 2017-10-23 2019-05-08 栗田工業株式会社 Water temperature control method, water temperature control system and model construction device
CN110513931B (en) * 2019-09-19 2021-04-23 四川虹美智能科技有限公司 Method and device for determining target value of return water temperature of air source heat pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595802B2 (en) * 1979-12-19 1984-02-07 恵三 犬塚 Method of controlling thermal capacity of fan coil unit
WO2013145005A1 (en) * 2012-03-29 2013-10-03 三菱電機株式会社 Air-conditioning system

Also Published As

Publication number Publication date
JP2017003225A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6941772B2 (en) Air conditioning system, air conditioning system controller
US11783203B2 (en) Building energy system with energy data simulation for pre-training predictive building models
US7836712B2 (en) Air conditioning apparatus
TWI439644B (en) Air conditioning control device and the use of its air conditioning control system
CN105143781B (en) Air-conditioner control system and air conditioning control method
CN104024749B (en) Air-conditioning system that adjusts temperature and humidity
US10948884B2 (en) Building control based on uneven load distribution
US20150060557A1 (en) Energy saving apparatus, system and method
WO2020195338A1 (en) Air conditioning system controller
US20180313564A1 (en) Building network device for generating communication models for connecting building devices to a network
US20190338979A1 (en) Hvac system with economizer switchover control
JP6577760B2 (en) Heat source control device and heat source system using heat source control device
CN108291734A (en) Method and system for operating heat energy exchanger
JP6843941B2 (en) Air conditioning system
JP7089869B2 (en) Air conditioning system and control device
JP2009109046A (en) Air-conditioning system
JP2010071591A (en) Air conditioning system, set temperature control method, and program
JP4989256B2 (en) Control device and control method for air conditioning equipment and heat source equipment, air conditioning system and control method therefor.
JP7352780B2 (en) Air conditioning system, air conditioning system controller
Dong et al. Simplified characterization of building thermal response rates
KR20160107963A (en) Thermo-Hygrostat Control Method for Energy Saving
JP7075149B1 (en) How to control the air handling unit
JP7411869B2 (en) Air conditioning system, air conditioning system controller
JP7209485B2 (en) air conditioning system
Lee et al. Lessons learned in modeling underfloor air distribution system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190823

R150 Certificate of patent or registration of utility model

Ref document number: 6577760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150