JP6577431B2 - Hydraulic drive unit for construction machinery - Google Patents

Hydraulic drive unit for construction machinery Download PDF

Info

Publication number
JP6577431B2
JP6577431B2 JP2016178616A JP2016178616A JP6577431B2 JP 6577431 B2 JP6577431 B2 JP 6577431B2 JP 2016178616 A JP2016178616 A JP 2016178616A JP 2016178616 A JP2016178616 A JP 2016178616A JP 6577431 B2 JP6577431 B2 JP 6577431B2
Authority
JP
Japan
Prior art keywords
pressure
throttle
flow rate
switching valve
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016178616A
Other languages
Japanese (ja)
Other versions
JP2018044326A (en
Inventor
夏樹 中村
夏樹 中村
吉田 肇
肇 吉田
圭文 竹林
圭文 竹林
和繁 森
和繁 森
太平 前原
太平 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Tierra Co Ltd
Original Assignee
Hitachi Construction Machinery Tierra Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Tierra Co Ltd filed Critical Hitachi Construction Machinery Tierra Co Ltd
Priority to JP2016178616A priority Critical patent/JP6577431B2/en
Publication of JP2018044326A publication Critical patent/JP2018044326A/en
Application granted granted Critical
Publication of JP6577431B2 publication Critical patent/JP6577431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

本発明は、建設機械の油圧駆動装置に係り、特に油圧掘削機等の建設機械に装着したアタッチメント用アクチュエータを駆動する圧油の流量をアタッチメントの種類に応じて切り換えることのできるアタッチメント用流量切換弁装置を備えた建設機械の油圧駆動装置に関する。   The present invention relates to a hydraulic drive device for a construction machine, and in particular, an attachment flow rate switching valve capable of switching a flow rate of pressure oil for driving an attachment actuator mounted on a construction machine such as a hydraulic excavator according to the type of attachment. The present invention relates to a hydraulic drive device for a construction machine including the device.

上部旋回体と下部走行体とからなる油圧掘削機においては、作業機を構成しているブーム、アーム、バケット等を回転させるための油圧シリンダや、左右の履帯を駆動する走行モータ等、多数の油圧アクチュエータを備えており、これらの各アクチュエータを自在に駆動するため、通常、2個の可変容量型の油圧ポンプを搭載している。また、作業機として通常装着されているバケットの代わりにアタッチメントとしてクラッシャ、油圧ブレーカ等を装着して構造物、岩塊等の破砕作業その他を行うことがある。これらのアタッチメントは、それぞれのアタッチメントに用いられている油圧機器が異なるため、要求流量も異なっている。例えば、クラッシャを駆動する場合は2ポンプ分の流量を必要とし、油圧ブレーカを駆動する場合は1ポンプ分の流量でも良い。   In a hydraulic excavator composed of an upper swing body and a lower traveling body, there are a number of hydraulic cylinders for rotating booms, arms, buckets, etc. constituting the working machine, and traveling motors for driving left and right crawler tracks. In general, two variable displacement hydraulic pumps are mounted to drive each actuator freely. In addition, a crusher, a hydraulic breaker, or the like may be attached as an attachment instead of a bucket that is normally attached as a working machine, and a crushing operation such as a structure or a rock mass may be performed. These attachments have different required flow rates because the hydraulic equipment used for each attachment is different. For example, when driving the crusher, a flow rate for two pumps is required, and when driving a hydraulic breaker, a flow rate for one pump may be used.

一方、上記の各アタッチメントは1台の油圧掘削機を用いて、必要とする度にアタッチメントを交換して使用することが多い。したがって、油圧掘削機に対しては、装着したアタッチメントに即時適応できるように、アタッチメントに供給する流量を容易に切り換えられることが要求されている。   On the other hand, each of the above attachments is often used by exchanging the attachment whenever necessary using one hydraulic excavator. Therefore, the hydraulic excavator is required to easily switch the flow rate supplied to the attachment so that it can be immediately applied to the attached attachment.

このような要求に対して、特許文献1に記載の技術がある。   In response to such a request, there is a technique described in Patent Document 1.

特許文献1に記載の技術は、アタッチメント用制御弁とアタッチメント用アクチュエータとの間に配置される建設機械のアタッチメント用流量切換装置において、アタッチメント用アクチュエータが大流量を必要とするアクチュエータか、小流量を必要とするアクチュエータかに応じて、大流量側と小流量側のいずれかに操作される操作手段と、アタッチメント用制御弁とアタッチメント用アクチュエータとの間に配置され、操作手段の操作によりアタッチメント用アクチュエータに供給される圧油の流量を大流量と小流量とに切り換える最大流量カット弁装置とを備え、最大流量カット弁装置は、アタッチメント用制御弁から出力された圧油の流量をアタッチメント用アクチュエータに供給する油路と、この油路を流れる圧油の最大流量をカットするバルブ手段と、操作手段が大流量側に操作されたときはバルブ手段の機能を無効とし、小流量側に操作されるとバルブ手段の機能を有効とする操作切換手段とを有し、バルブ手段は、油路に配置された絞りと、閉方向作動のばねを有し、絞りの前後差圧がばねによって定まる設定値以下のときはばねの力により閉じ、絞りの前後差圧が設定値を超えると開いて油路の圧油を戻り回路にバイパスさせるバイパス弁とを有し、操作切換手段は、大流量側に操作されたときはバイパス弁を閉状態に保持し、小流量側に操作されるとバイパス弁の閉状態の保持を解除する構成となっている。   In the technique described in Patent Document 1, in an attachment flow switching device for a construction machine disposed between an attachment control valve and an attachment actuator, the attachment actuator is an actuator that requires a large flow rate or a small flow rate. Depending on the required actuator, it is arranged between the operation means operated on either the large flow side or the small flow side, and between the attachment control valve and the attachment actuator, and the attachment actuator is operated by operating the operation means. The maximum flow cut valve device that switches the flow rate of the pressure oil supplied to the large flow rate and the small flow rate, and the maximum flow cut valve device supplies the flow rate of the pressure oil output from the attachment control valve to the attachment actuator. The oil path to be supplied and the maximum flow rate of pressurized oil flowing through this oil path And a valve switching means for disabling the function of the valve means when the operating means is operated to the large flow rate side and for enabling the function of the valve means when operated to the small flow rate side. The valve means has a throttle disposed in the oil passage and a spring that operates in the closing direction. When the differential pressure across the throttle is below a set value determined by the spring, the valve means is closed by the spring force, and the differential pressure across the throttle is It has a bypass valve that opens when the set value is exceeded and bypasses the pressure oil in the oil passage to the return circuit, and the operation switching means keeps the bypass valve closed when operated to the large flow rate side, When operated to the side, the closed state of the bypass valve is released.

特許第4215164号公報Japanese Patent No. 4215164

特許文献1に記載の技術においては、最大流量カット弁装置をアタッチメント用制御弁とアタッチメント用アクチュエータとの間に配置する構成としたため、配置構成が簡単で装着が容易であり汎用性に優れている。また、油圧回路構成が簡素化されるので、油圧回路の信頼性が高く、最大流量カット弁装置を機械に組み込む前(事前)に流量調整を行うことができるため、流量調整作業が容易であり、アタッチメント用制御弁とアタッチメント用アクチュエータとの間に最大流量カット弁装置を配置する構成であるため、装着する油圧回路の種類を問わず対応可能である。   In the technique described in Patent Document 1, since the maximum flow cut valve device is arranged between the attachment control valve and the attachment actuator, the arrangement configuration is simple, easy to install, and excellent in versatility. . Moreover, since the hydraulic circuit configuration is simplified, the reliability of the hydraulic circuit is high, and the flow rate can be adjusted before (in advance) the maximum flow rate cut-off valve device is incorporated into the machine. Since the maximum flow cut-off valve device is arranged between the attachment control valve and the attachment actuator, it can be used regardless of the type of hydraulic circuit to be mounted.

しかしながら、特許文献1に記載の技術では、電気スイッチが大流量側に操作されたときは、絞りの前後差圧を用いてバイパス弁を開位置に操作しないにも関わらず、絞りを介して大流量を必要とするアクチュエータに圧油が給排される。その結果、大流量を必要とするアクチュエータを駆動する際に、絞りで生じる圧損によりポンプ負荷が増加し、省エネ性が損なわれることとなっていた。   However, in the technique described in Patent Document 1, when the electrical switch is operated to the large flow rate side, the bypass valve is not operated to the open position using the differential pressure before and after the throttle, but the large amount is set via the throttle. Pressure oil is supplied to and discharged from an actuator that requires a flow rate. As a result, when driving an actuator that requires a large flow rate, the pump load increases due to the pressure loss caused by the throttle, and the energy saving performance is impaired.

本発明の目的は、上記問題点に鑑みてなされたものであり、その目的は、装着が容易で汎用性に優れ、信頼性が高く、流量調整が容易であり、装着する油圧回路の種類を問わず対応可能であり、さらに省エネ性を向上させたアタッチメント用流量切換装置を備えた建設機械の油圧駆動装置を提供することである。   The object of the present invention has been made in view of the above-mentioned problems, and the object of the present invention is to make it easy to mount, excellent in versatility, highly reliable, easy to adjust the flow rate, and select the type of hydraulic circuit to be mounted. The present invention is to provide a hydraulic drive device for a construction machine that can be used regardless of the condition and further includes an attachment flow rate switching device with improved energy saving performance.

上記目的を達成するために、本発明は、油圧ポンプと、前記油圧ポンプの吐出油が供給されるアタッチメント用制御弁と、このアタッチメント用制御弁によって制御されるアタッチメント用アクチュエータと、前記アタッチメント用アクチュエータが大流量を必要とする第1アクチュエータか小流量を必要とする第2アクチュエータかに応じて大流量側と小流量側のいずれかに操作される操作装置と、前記アタッチメント用制御弁と前記アタッチメント用アクチュエータとを接続する第1及び第2アクチュエータラインに配置され、前記操作装置の操作により前記アタッチメント用アクチュエータに供給される圧油の流量を大流量と小流量とに切り換える最大流量カット弁装置とを備えた建設機械の油圧駆動装置において、前記最大流量カット弁装置は、前記第1及び第2アクチュエータラインにそれぞれ接続され、前記アタッチメント用制御弁の切換方向に応じて圧油供給側又は圧油排出側となる第1及び第2油路と、前記第1及び第2油路に配置され、前記第1及び第2油路の両方を開放する開位置と前記第1及び第2油路のうち少なくとも圧油供給側となる油路を絞る絞り位置とに切換可能な絞り切換弁装置と、閉方向作動の第1バネを有し、前記第1油路が圧油供給側であるときに前記絞り切換弁装置における前記第1油路側の前後差圧が前記第1バネの設定値以下のときは前記第1バネの力により閉位置に保持され、前記絞り切換弁装置における前記第1油路側の前後差圧が前記第1バネの設定値を超えると開いて前記第1油路の圧油の一部を前記第2油路にバイパスさせる第1バイパス弁と、閉方向作動の第2バネを有し、前記第2油路が圧油供給側であるときに前記絞り切換弁装置における前記第2油路側の前後差圧が前記第2バネの設定値以下のときは前記第2バネの力により閉位置に保持され、前記絞り切換弁装置における前記第2油路側の前後差圧が前記第2バネの設定値を超えると開いて前記第2油路の圧油の一部を前記第1油路にバイパスさせる第2バイパス弁と、前記操作装置が大流量側に操作されたときは前記絞り切換弁装置を開位置に、前記第1及び第2バイパス弁を閉位置に保持し、前記操作装置が小流量側に操作されたときは前記第1及び第2油路のうち少なくとも圧油供給側となる油路の前記絞り切換弁装置を絞り位置に保持し、前記第1及び第2バイパス弁の閉位置の保持を解除する操作切換装置とを備えるものとする。   In order to achieve the above object, the present invention provides a hydraulic pump, an attachment control valve to which discharge oil of the hydraulic pump is supplied, an attachment actuator controlled by the attachment control valve, and the attachment actuator. According to whether the first actuator requiring a large flow rate or the second actuator requiring a small flow rate is operated on either the large flow rate side or the small flow rate side, the attachment control valve, and the attachment A maximum flow rate cut-off valve device that is disposed in first and second actuator lines that connect to the actuator for switching, and that switches the flow rate of pressure oil supplied to the attachment actuator by operating the operating device between a large flow rate and a small flow rate; In the hydraulic drive device for a construction machine equipped with The valve device is connected to the first and second actuator lines, respectively, and first and second oil passages on the pressure oil supply side or pressure oil discharge side according to the switching direction of the attachment control valve, and the first An open position that is disposed in the first and second oil passages and opens both the first and second oil passages; and a throttling position that restricts at least the oil passage on the pressure oil supply side of the first and second oil passages; A throttle switching valve device that can be switched between the first oil passage side and the first oil passage side in the throttle switching valve device when the first oil passage is on the pressure oil supply side. Is kept in the closed position by the force of the first spring when the first spring is less than the set value, the differential pressure on the first oil passage side in the throttle switching valve device exceeds the set value of the first spring And open a part of the pressure oil in the first oil passage to the second oil passage. And a second spring that operates in the closing direction, and when the second oil passage is on the pressure oil supply side, the front-rear differential pressure on the second oil passage side in the throttle switching valve device is When it is less than the set value of 2 springs, it is held in the closed position by the force of the second spring, and opens when the front-rear differential pressure on the second oil passage in the throttle switching valve device exceeds the set value of the second spring. A second bypass valve for bypassing part of the pressure oil in the second oil passage to the first oil passage; and when the operation device is operated to a large flow rate side, the throttle switching valve device is set to an open position, When the first and second bypass valves are held in the closed positions and the operating device is operated to the small flow rate side, the throttling switching of the oil passage that is at least the pressure oil supply side of the first and second oil passages Hold the valve device in the throttle position, and release the closed position of the first and second bypass valves. And an operation switching device.

以上のように構成した本発明においては、特許文献1の技術と同様に、最大流量カット弁装置をアタッチメント用制御弁とアタッチメント用アクチュエータとの間に配置する構成としたため、配置構成が簡単で装着が容易であり汎用性に優れている。また、油圧回路構成が簡素化されるので、油圧回路の信頼性が高く、流量調整を最大流量カット弁装置を機械に組み込む前(事前)に行うことができるため、流量調整作業が容易であり、アタッチメント用制御弁とアタッチメント用アクチュエータとの間に最大流量カット弁装置を配置する構成であるため、装着する油圧回路の種類を問わず対応可能である。   In the present invention configured as described above, the maximum flow rate cut valve device is arranged between the attachment control valve and the attachment actuator, as in the technique of Patent Document 1, so that the arrangement configuration is simple and mounted. Is easy and versatile. In addition, since the hydraulic circuit configuration is simplified, the reliability of the hydraulic circuit is high and the flow rate can be adjusted before the maximum flow rate cut-off valve device is installed in the machine (in advance). Since the maximum flow cut-off valve device is arranged between the attachment control valve and the attachment actuator, it can be used regardless of the type of hydraulic circuit to be mounted.

また、本発明においては、第1及び第2油路の両方を開放する開位置と第1及び第2油路のうち少なくとも圧油供給側となる油路を絞る絞り位置とに切換可能な絞り切換弁装置を最大流量カット弁装置に設け、操作装置が大流量側に操作されたときに絞り切換弁装置を開位置に保持する構成としたことにより、操作装置が大流量側に操作されたときは、第1及び第2油路の両方が開放され、アタッチメント用制御弁と大流量を必要とするアタッチメント用アクチュエータとが絞りを介さずに接続されるため、アタッチメント用アクチュエータを駆動する際のエネルギー損失を低減することが可能となる。   In the present invention, the throttle that can be switched between an open position that opens both the first and second oil passages and a throttle position that restricts at least the oil passage on the pressure oil supply side of the first and second oil passages. Since the switching valve device is provided in the maximum flow cut valve device and the throttle switching valve device is held in the open position when the operating device is operated to the large flow rate side, the operating device is operated to the large flow rate side. When both the first and second oil passages are opened and the attachment control valve and the actuator for attachment that require a large flow rate are connected without a restriction, the actuator for driving the attachment actuator Energy loss can be reduced.

本発明によれば、装着が容易で汎用性に優れ、信頼性が高く、流量調整が容易であり、装着する油圧回路の種類を問わず対応可能であり、さらに省エネ性を向上させたアタッチメント用流量切換装置を備えた建設機械の油圧駆動装置を提供することが可能となる。   According to the present invention, the attachment is easy to mount, excellent in versatility, highly reliable, easy to adjust the flow rate, can be applied regardless of the type of hydraulic circuit to be mounted, and further improves energy saving. It is possible to provide a hydraulic drive device for a construction machine provided with a flow rate switching device.

本発明の第1の実施例に係る建設機械の油圧駆動装置を示す油圧回路図である。1 is a hydraulic circuit diagram illustrating a hydraulic drive device for a construction machine according to a first embodiment of the present invention. 本発明の第2の実施例に係る建設機械の油圧駆動装置を示す油圧回路図である。It is a hydraulic circuit diagram which shows the hydraulic drive apparatus of the construction machine which concerns on 2nd Example of this invention.

以下、本発明の実施例を図面を用いて説明する。なお、各図中、同一の作用又は機能を有する部材又は要素には同一の符号を付し、重複した説明を適宜省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the member or element which has the same effect | action or function, and the overlapping description is abbreviate | omitted suitably.

図1は、本発明を油圧掘削機の油圧駆動装置に適用した第1の実施例を示す油圧回路図である。   FIG. 1 is a hydraulic circuit diagram showing a first embodiment in which the present invention is applied to a hydraulic drive device of a hydraulic excavator.

図1において、主ポンプとしての油圧ポンプ1,5にアクチュエータ60(又は61),62を駆動するための流量制御弁2,3がそれぞれ接続されている。流量制御弁2は主ポンプ1,5の合計流量を通すことができるスプールを備え、主ポンプ1の主回路9と主ポンプ5の主回路10との合流回路11に配置されている。流量制御弁3は主ポンプ5の主回路10に配置されている。これにより、流量制御弁2には2つの主ポンプ1,5の吐出油が合流して供給され、流量制御弁3には、1つの主ポンプ5の吐出油のみが供給される。   In FIG. 1, flow control valves 2 and 3 for driving actuators 60 (or 61) and 62 are connected to hydraulic pumps 1 and 5 as main pumps, respectively. The flow rate control valve 2 includes a spool that can pass the total flow rate of the main pumps 1 and 5, and is disposed in a junction circuit 11 of the main circuit 9 of the main pump 1 and the main circuit 10 of the main pump 5. The flow control valve 3 is arranged in the main circuit 10 of the main pump 5. As a result, the oil discharged from the two main pumps 1 and 5 is supplied to the flow control valve 2, and only the oil discharged from the one main pump 5 is supplied to the flow control valve 3.

流量制御弁2,3はいずれも6ポート3位置のセンターバイパス型の切換弁であり、流量制御弁2のアクチュエータポートはアクチュエータライン21a,21b、最大流量カット弁装置40(後述)、アクチュエータライン22a,22bを介してアクチュエータ60(又は61)に接続され、流量制御弁3のアクチュエータポートはアクチュエータライン23,24を介してアクチュエータ62に接続されている。また、流量制御弁2,3は油圧パイロット切換式であり、それらの両端にパイロット受圧部2a,2b及び3a,3bが設けられている。   Each of the flow control valves 2 and 3 is a 6-port 3-position center bypass switching valve. The actuator ports of the flow control valve 2 are actuator lines 21a and 21b, a maximum flow cut valve device 40 (described later), and an actuator line 22a. 22b is connected to the actuator 60 (or 61), and the actuator port of the flow control valve 3 is connected to the actuator 62 via the actuator lines 23 and 24. The flow control valves 2 and 3 are hydraulic pilot switching type, and pilot pressure receiving portions 2a and 2b and 3a and 3b are provided at both ends thereof.

アクチュエータ60,61はアタッチメント用のアクチュエータであり、例えばアクチュエータ60はクラッシャ用であり、アクチュエータ61はブレーカ用である。クラッシャ及びブレーカは作業機アタッチメントとして交換可能である。作業機アタッチメントは油圧掘削機の作業機の先端にバケットの代わりに装着される。また、クラッシャ用のアクチュエータ60は大流量(例えば2ポンプ分)を必要とするアクチュエータであり、ブレーカ用のアクチュエータ61はそれよりも少ない小流量(例えば1ポンプ分)を必要とするアクチュエータである。   The actuators 60 and 61 are attachment actuators. For example, the actuator 60 is for a crusher, and the actuator 61 is for a breaker. The crusher and breaker can be exchanged as work implement attachments. The work machine attachment is attached to the tip of the work machine of the hydraulic excavator instead of the bucket. The crusher actuator 60 is an actuator that requires a large flow rate (for example, two pumps), and the breaker actuator 61 is an actuator that requires a smaller flow rate (for example, one pump).

アクチュエータ62は例えば油圧掘削機のアーム用である。   The actuator 62 is for an arm of a hydraulic excavator, for example.

主回路10及び合流回路11には例えば油圧掘削機のブーム、旋回、走行等のアクチュエータを駆動する流量制御弁も配置されているが、それらは省略している。   The main circuit 10 and the junction circuit 11 are also provided with flow control valves that drive actuators such as booms, swivels, and traveling of a hydraulic excavator, for example, but these are omitted.

また、アタッチメント操作用のペダル13により作動するパイロット弁14が設けられ、パイロット弁14はパイロットポンプ12の吐出圧を元圧として、ペダル13の操作方向と操作量に応じた操作パイロット圧を生成し、この操作パイロット圧はパイロット回路15又は16を介して流量制御弁2の両端のパイロット受圧部2a,2bに送られる。パイロットポンプ12の吐出圧は、リリーフ弁17によって制限される。   A pilot valve 14 that is operated by an attachment operation pedal 13 is provided. The pilot valve 14 generates an operation pilot pressure corresponding to the operation direction and the operation amount of the pedal 13 using the discharge pressure of the pilot pump 12 as a source pressure. The operation pilot pressure is sent to the pilot pressure receiving portions 2a and 2b at both ends of the flow control valve 2 via the pilot circuit 15 or 16. The discharge pressure of the pilot pump 12 is limited by the relief valve 17.

以上のように構成した油圧駆動装置にアタッチメント用流量切換装置100が設けられている。このアタッチメント用流量切換装置100は、油圧掘削機に装着されたアタッチメント用アクチュエータが大流量を必要とするクラッシャ用のアクチュエータ60であるか小流量を必要とするブレーカ用のアクチュエータ61かに応じて操作される電気スイッチ54と、アタッチメント用の流量制御弁2とアタッチメント用のアクチュエータ60(又は61)とを接続するアクチュエータライン21a,21b及び22a,22bに配置され、電気スイッチ54の操作によりアクチュエータ60(又は61)に供給される圧油の流量を大流量と小流量とに切り換える最大流量カット弁装置40とを備えている。   The attachment flow rate switching device 100 is provided in the hydraulic drive device configured as described above. The attachment flow switching device 100 is operated according to whether the attachment actuator mounted on the hydraulic excavator is a crusher actuator 60 that requires a large flow rate or a breaker actuator 61 that requires a small flow rate. Arranged on actuator lines 21a, 21b and 22a, 22b that connect the electrical switch 54, the flow control valve 2 for attachment, and the actuator 60 (or 61) for attachment, and the actuator 60 ( Or the maximum flow cut valve device 40 which switches the flow volume of the pressure oil supplied to 61) to a large flow volume and a small flow volume is provided.

最大流量カット弁装置40は、アクチュエータライン21a,21b及び22a,22bにそれぞれ接続され、流量制御弁2の切換方向に応じて圧油供給側又は圧油排出側となる油路50,51と、油路50,51にそれぞれ配置された絞り切換弁81a,81bを有する絞り切換弁装置80と、油路50と油路51を接続するバイパスライン52,53と、バイパスライン52,53に設けられたバイパス弁42a,42bと、バイパス弁42a,42bを操作する操作切換弁45aと、絞り切換弁装置80を操作する操作切換弁45bとからなり、操作切換弁45a,45bは電気スイッチ54により操作される。   The maximum flow cut valve device 40 is connected to the actuator lines 21a, 21b and 22a, 22b, respectively, and according to the switching direction of the flow control valve 2, oil passages 50, 51 on the pressure oil supply side or pressure oil discharge side, The throttle switching valve device 80 having throttle switching valves 81a and 81b disposed in the oil passages 50 and 51, the bypass lines 52 and 53 connecting the oil passage 50 and the oil passage 51, and the bypass lines 52 and 53, respectively. The bypass valve 42a, 42b, the operation switching valve 45a for operating the bypass valve 42a, 42b, and the operation switching valve 45b for operating the throttle switching valve device 80. The operation switching valves 45a, 45b are operated by an electric switch 54. Is done.

絞り切換弁81aは、油路50に配置され、開位置Cと絞り位置Dとに切換可能であり、圧力信号ライン15a,15bを介してパイロット回路15で発生した操作パイロット圧(アタッチメント用の流量制御弁2をアクチュエータライン21a,22aに圧油が供給されるように切り換える操作パイロット圧)が信号圧として導かれる絞り方向作動の受圧部83aと開方向作動のバネ82aとを有し、当該操作パイロット圧がタンク圧以下のときはバネ82aの力により開位置Cに保持され、当該操作パイロット圧がタンク圧よりも大きくなると絞り位置Dに切り換わる。   The throttle switching valve 81a is disposed in the oil passage 50 and can be switched between the open position C and the throttle position D, and the operation pilot pressure (flow rate for attachment) generated in the pilot circuit 15 via the pressure signal lines 15a and 15b. An operation pilot pressure for switching the control valve 2 so that pressure oil is supplied to the actuator lines 21a and 22a) includes a pressure-receiving portion 83a that operates in the throttle direction and a spring 82a that operates in the opening direction. When the pilot pressure is equal to or lower than the tank pressure, it is held at the open position C by the force of the spring 82a, and when the operation pilot pressure becomes higher than the tank pressure, it switches to the throttle position D.

絞り切換弁81bは、油路51に配置され、開位置Eと絞り位置Fとに切換可能であり、圧力信号ライン16a,16bを介してパイロット回路16で発生した操作パイロット圧(アタッチメント用の流量制御弁2をアクチュエータライン21b,22bに圧油が供給されるように切り換える操作パイロット圧)が信号圧として導かれる絞り方向作動の受圧部83bと開方向作動のバネ82bとを有し、当該操作パイロット圧がタンク圧以下のときはバネ82bの力により開位置Eに保持され、当該操作パイロット圧がタンク圧よりも大きくなると絞り位置Fに切り換わる。   The throttle switching valve 81b is disposed in the oil passage 51 and can be switched between the open position E and the throttle position F, and the operation pilot pressure (flow rate for attachment) generated in the pilot circuit 16 via the pressure signal lines 16a and 16b. An operation pilot pressure that switches the control valve 2 so that pressure oil is supplied to the actuator lines 21b and 22b) is provided with a pressure receiving portion 83b that operates in the throttle direction and a spring 82b that operates in the opening direction. When the pilot pressure is equal to or lower than the tank pressure, it is held at the open position E by the force of the spring 82b, and when the operation pilot pressure becomes larger than the tank pressure, it switches to the throttle position F.

バイパスライン52は、油路50が圧油供給側となるときの絞り切換弁81aの上流側と油路51の絞り切換弁81bの下流側とを接続し、バイパスライン53は、油路51が圧油供給側となるときの絞り切換弁81bの上流側と油路50の絞り切換弁81aの下流側とを接続している。   The bypass line 52 connects the upstream side of the throttle switching valve 81a when the oil path 50 is on the pressure oil supply side and the downstream side of the throttle switching valve 81b of the oil path 51. The upstream side of the throttle switching valve 81b at the pressure oil supply side and the downstream side of the throttle switching valve 81a in the oil passage 50 are connected.

バイパス弁42a,42bは閉位置と開位置との間で動作する切換弁であり、バイパス弁42a,42bは閉方向作動のバネ43,44を備えている。バネ43、44はプリセット力(バネ強さの設定値)を調整可能な可変バネであり、例えばネジの出し入れによりバネ強さを変えることができる。   The bypass valves 42a and 42b are switching valves that operate between a closed position and an open position, and the bypass valves 42a and 42b include springs 43 and 44 that operate in the closing direction. The springs 43 and 44 are variable springs that can adjust a preset force (a set value of the spring strength). For example, the spring strength can be changed by inserting and removing a screw.

また、バイパス弁42a,42bはそれぞれ開方向作動の受圧部71a,71bと閉方向作動の受圧部72a,72bとを有し、バイパス弁42aの受圧部71aには圧力信号ライン46a,46bを介して絞り切換弁81aの上流側の圧力が信号圧として導かれ、バイパス弁42aの受圧部72aには圧力信号ライン46cを介して絞り切換弁81aの下流側の圧力が信号圧として導かれ、バイパス弁42bの受圧部71bには圧力信号ライン47a,47bを介して絞り切換弁81bの上流側の圧力が信号圧として導かれ、バイパス弁42bの受圧部72bには圧力信号ライン47cを介して絞り切換弁81bの下流側の圧力が信号圧として導かれている。   The bypass valves 42a and 42b have pressure-receiving portions 71a and 71b that operate in the opening direction and pressure-receiving portions 72a and 72b that operate in the closing direction, respectively. The pressure-receiving portions 71a of the bypass valve 42a are connected via pressure signal lines 46a and 46b. Thus, the pressure on the upstream side of the throttle switching valve 81a is guided as a signal pressure, and the pressure on the downstream side of the throttle switching valve 81a is guided as a signal pressure to the pressure receiving portion 72a of the bypass valve 42a via the pressure signal line 46c. The pressure upstream of the throttle switching valve 81b is guided to the pressure receiving part 71b of the valve 42b via the pressure signal lines 47a and 47b, and the pressure receiving line 72c of the bypass valve 42b is throttled via the pressure signal line 47c. The pressure on the downstream side of the switching valve 81b is guided as a signal pressure.

つまり、バイパス弁42aの受圧部71a,72aには、油路50が圧油供給側となるときは絞り切換弁81aの前後差圧が開弁方向に作用し、バイパス弁42bの受圧部71b,72bには、油路51が圧油供給側となるときは絞り切換弁81bの前後差圧が開弁方向に作用している。   That is, when the oil passage 50 is on the pressure oil supply side, the differential pressure across the throttle switching valve 81a acts in the valve opening direction on the pressure receiving portions 71a and 72a of the bypass valve 42a, and the pressure receiving portions 71b and 71b of the bypass valve 42b. In 72b, when the oil passage 51 is on the pressure oil supply side, the differential pressure across the throttle switching valve 81b acts in the valve opening direction.

操作切換弁45aは、絞り切換弁81a,81bの上流側の圧力を信号圧としてバイパス弁42a,42bの受圧部71a,71bにそれぞれ導く圧力信号ライン46a,46b及び47a,47bに配置され、圧力信号ライン46a,46bを非導通としかつ圧力信号ライン47a,47bを非導通とする閉位置Aと、圧力信号ライン46a,46bを導通しかつ圧力信号ライン47a,47bを導通する開位置Bとの間で切換可能である。また、操作切換弁45aはソレノイド駆動部45cを有し、電気スイッチ54がOFFのとき(大流量側に操作されたとき)にソレノイド駆動部45cは非励磁となり、操作切換弁45aは閉位置Aにあり、電気スイッチ54がONになる(小流量側に操作される)とソレノイド駆動部45cは励磁され、操作切換弁45aは開位置Bに切り換えられ、油路50,51における絞り切換弁84の上流側の圧力が受圧部71a,71bにそれぞれ作用する。電気スイッチ54がOFFのときは電気スイッチ54を大流量側に操作したときであり、電気スイッチ54がONのときは電気スイッチ54を小流量側に操作したときである。   The operation switching valve 45a is disposed in pressure signal lines 46a, 46b and 47a, 47b, respectively, which lead the pressure upstream of the throttle switching valves 81a, 81b to the pressure receiving portions 71a, 71b of the bypass valves 42a, 42b as signal pressures. A closed position A where the signal lines 46a and 46b are non-conductive and the pressure signal lines 47a and 47b are non-conductive, and an open position B where the pressure signal lines 46a and 46b are conductive and the pressure signal lines 47a and 47b are conductive. Can be switched between. Further, the operation switching valve 45a has a solenoid driving unit 45c. When the electric switch 54 is OFF (when operated to a large flow rate side), the solenoid driving unit 45c is de-energized, and the operation switching valve 45a is in the closed position A. When the electric switch 54 is turned on (operated to the small flow rate side), the solenoid drive unit 45c is excited, the operation switching valve 45a is switched to the open position B, and the throttle switching valve 84 in the oil passages 50, 51 is switched. The upstream pressure acts on the pressure receiving portions 71a and 71b. When the electrical switch 54 is OFF, it is when the electrical switch 54 is operated to the large flow rate side, and when the electrical switch 54 is ON, it is when the electrical switch 54 is operated to the small flow rate side.

以上により操作切換弁45aは、電気スイッチ54が大流量側に操作されたときはバイパス弁42a,42bを閉位置に保持し、電気スイッチ54が小流量側に操作されるとバイパス弁42a,42bの閉位置の保持を解除する操作切換装置として機能する。   As described above, the operation switching valve 45a holds the bypass valves 42a and 42b in the closed position when the electric switch 54 is operated to the large flow rate side, and the bypass valves 42a and 42b when the electric switch 54 is operated to the small flow rate side. Functions as an operation switching device for releasing the holding of the closed position.

操作切換弁45bは、アタッチメント用の流量制御弁2をアクチュエータライン21a,22aに圧油が供給されるように切り換える操作パイロット圧(パイロット回路15で発生した操作パイロット圧)及びアタッチメント用の流量制御弁2をアクチュエータライン21b,22bに圧油が供給されるように切り換える操作パイロット圧(パイロット回路16で発生した操作パイロット圧)を絞り切換弁81a,81bの受圧部83a,83bにそれぞれ導く圧力信号ライン15a,15b及び16a,16bに配置され、圧力信号ライン15a,15bを非導通としかつ圧力信号ライン16a,16bを非導通とする閉位置Gと、圧力信号ライン15a,15bを導通しかつ圧力信号ライン16a,16bを導通する開位置Hとの間で切換可能である。また、操作切換弁45bは、開方向作動のソレノイド駆動部45dを有し、電気スイッチ54がOFFのとき(大流量側に操作されたとき)にソレノイド駆動部45dは非励磁となり、操作切換弁45bは閉位置Gにあり、電気スイッチ54がONになる(小流量側に操作される)とソレノイド駆動部45dは励磁され、操作切換弁45bは開位置Hに切り換えられ、パイロット回路15,16で発生した操作パイロット圧が受圧部71a,71bにそれぞれ作用する。   The operation switching valve 45b is an operation pilot pressure (operation pilot pressure generated in the pilot circuit 15) for switching the attachment flow control valve 2 so that pressure oil is supplied to the actuator lines 21a and 22a, and an attachment flow control valve. 2 is a pressure signal line that guides an operation pilot pressure (operation pilot pressure generated in the pilot circuit 16) to the pressure receiving portions 83a and 83b of the throttle switching valves 81a and 81b. 15a, 15b and 16a, 16b, a closed position G in which the pressure signal lines 15a, 15b are non-conductive and the pressure signal lines 16a, 16b are non-conductive, and the pressure signal lines 15a, 15b are conductive and pressure signals Cut between line 16a, 16b and open position H that conducts Possible it is. Further, the operation switching valve 45b has a solenoid driving unit 45d that operates in the opening direction, and when the electric switch 54 is OFF (when operated to the large flow rate side), the solenoid driving unit 45d is de-energized, and the operation switching valve 45b is operated. 45b is in the closed position G, and when the electric switch 54 is turned on (operated to the small flow rate side), the solenoid drive unit 45d is excited, the operation switching valve 45b is switched to the open position H, and the pilot circuits 15, 16 The operating pilot pressure generated in step 1 acts on the pressure receiving portions 71a and 71b.

以上により操作切換弁45bは、電気スイッチ54が大流量側に操作されたときは絞り切換弁81a、81bを開位置C,Eに保持し、電気スイッチ54が小流量側に操作されると絞り切換弁81a,81bの開位置C,Eの保持を解除する操作切換装置として機能する。   Thus, the operation switching valve 45b holds the throttle switching valves 81a and 81b at the open positions C and E when the electric switch 54 is operated to the large flow rate side, and the throttle when the electric switch 54 is operated to the small flow rate side. It functions as an operation switching device that releases the holding of the open positions C and E of the switching valves 81a and 81b.

次に、最大流量カット弁装置40を備えたアタッチメント用流量切換装置100の機能及び動作について説明する。   Next, the function and operation of the attachment flow switching device 100 including the maximum flow cut valve device 40 will be described.

油圧掘削機の作業機アタッチメントとして例えばクラッシャを装着した場合、つまり装着した作業機アタッチメントのアクチュエータが大流量を必要とするアクチュエータ60である場合は、電気スイッチ54をOFFのままとして(大流量側に操作して)操作切換弁45a,45bのソレノイド駆動部45c,45dを非励磁とする。この場合は、操作切換弁45a,45bはそれぞれ閉位置A,Gにあり、圧力信号ライン46a,46bを非導通とし、圧力信号ライン47a,47bを非導通とし、圧力信号ライン15a,15bを非導通とし、圧力信号ライン16a,16bを非導通とする。その結果、絞り切換弁81a,81bはそれぞれ開位置C,Eとなり、バイパス弁42a,42bはそれぞれ図示の閉位置となる。   For example, when a crusher is attached as a work machine attachment of a hydraulic excavator, that is, when the actuator of the attached work machine attachment is an actuator 60 that requires a large flow rate, the electric switch 54 is kept OFF (to the large flow rate side). In operation), the solenoid drive portions 45c and 45d of the operation switching valves 45a and 45b are de-energized. In this case, the operation switching valves 45a and 45b are in the closed positions A and G, respectively, the pressure signal lines 46a and 46b are turned off, the pressure signal lines 47a and 47b are turned off, and the pressure signal lines 15a and 15b are turned off. The pressure signal lines 16a and 16b are made non-conductive. As a result, the throttle switching valves 81a and 81b are in the open positions C and E, respectively, and the bypass valves 42a and 42b are in the illustrated closed positions.

このような状態で、アタッチメント操作用のペダル13を操作して流量制御弁2を操作した場合、バイパス弁42a,42bは上記のように図示の閉位置にあるので、主ポンプ1,5より吐出され、流量制御弁2を通過した流量は、アクチュエータライン21a又は21b、最大流量カット弁装置40の油路50又は51及び絞り切換弁81a又は81bを介して、その全流量がアクチュエータ60に供給される。つまり、この場合は従来と同様に主ポンプ1,5からの圧油が合流してアクチュエータ60に供給される。   When the flow control valve 2 is operated by operating the pedal 13 for operating the attachment in such a state, the bypass valves 42a and 42b are in the illustrated closed position as described above. The total flow rate of the flow rate that has passed through the flow rate control valve 2 is supplied to the actuator 60 via the actuator line 21a or 21b, the oil passage 50 or 51 of the maximum flow rate cut valve device 40, and the throttle switching valve 81a or 81b. The That is, in this case, the pressure oil from the main pumps 1 and 5 merges and is supplied to the actuator 60 as in the conventional case.

油圧掘削機の作業機アタッチメントとして例えばブレーカを装着した場合、つまり装着した作業機アタッチメントのアクチュエータが小流量を必要とするアクチュエータ61である場合は、作業員は電気スイッチ54をON(小流量側)に操作して操作切換弁45a,45bのソレノイド駆動部45c,45dを励磁する。この場合は、操作切換弁45a,45bはそれぞれ開位置B,Hに切り換えられ、圧力信号ライン46a,46bを導通し、圧力信号ライン47a,47bを導通し、圧力信号ライン15a,15bを導通し、圧力信号ライン16a,16bを導通する。その結果、絞り切換弁81a,81bは、ペダル13の操作に応じてパイロット回路15,16で発生した圧力によって切り換わることができ、バイパス弁42a,42bの受圧部71a,72a及び71b,72bには絞り切換弁81a,81bの前後差圧が作用する。   For example, when a breaker is attached as a work machine attachment of a hydraulic excavator, that is, when the actuator of the attached work machine attachment is an actuator 61 that requires a small flow rate, the worker turns on the electric switch 54 (small flow rate side). To excite the solenoid drive portions 45c and 45d of the operation switching valves 45a and 45b. In this case, the operation switching valves 45a and 45b are respectively switched to the open positions B and H, the pressure signal lines 46a and 46b are conducted, the pressure signal lines 47a and 47b are conducted, and the pressure signal lines 15a and 15b are conducted. The pressure signal lines 16a and 16b are conducted. As a result, the throttle switching valves 81a and 81b can be switched by the pressure generated in the pilot circuits 15 and 16 according to the operation of the pedal 13, and the pressure receiving portions 71a and 72a and 71b and 72b of the bypass valves 42a and 42b are switched. The differential pressure across the throttle switching valves 81a and 81b acts.

このような状態で、アタッチメント操作用のペダル13を操作して流量制御弁2を操作した場合、アクチュエータライン21aが圧油供給側である場合は、パイロット回路15で発生した操作パイロット圧が圧力信号ライン15a、操作切換弁45b及び圧力信号ライン15bを介して絞り切換弁81aの受圧部83aに作用し、絞り切換弁81aは絞り位置Dに切り換わり、バイパス弁42aの受圧部71a,72aには絞り切換弁81aの前後差圧が作用する。バイパス弁42aは、絞り切換弁81aの前後差圧がバネ43の設定値以下のときはバネ43の力により閉位置に保持され、絞り切換弁81aの前後差圧がバネ43の設定値を超えると開いて圧油供給側である油路50の圧油の一部(余剰流量)を圧油排出側である油路51にバイパスさせる。このとき、パイロット回路16で操作パイロット圧は発生しないため、絞り切換弁81bは開位置Eに保持される。   When the flow control valve 2 is operated by operating the attachment pedal 13 in such a state, when the actuator line 21a is on the pressure oil supply side, the operating pilot pressure generated in the pilot circuit 15 is the pressure signal. Acting on the pressure receiving portion 83a of the throttle switching valve 81a via the line 15a, the operation switching valve 45b and the pressure signal line 15b, the throttle switching valve 81a switches to the throttle position D, and the pressure receiving portions 71a and 72a of the bypass valve 42a The differential pressure across the throttle switching valve 81a acts. The bypass valve 42a is held in the closed position by the force of the spring 43 when the differential pressure across the throttle switching valve 81a is less than or equal to the set value of the spring 43, and the differential pressure across the throttle switching valve 81a exceeds the preset value of the spring 43. Then, a part (excess flow rate) of the pressure oil in the oil passage 50 on the pressure oil supply side is bypassed to the oil passage 51 on the pressure oil discharge side. At this time, since the pilot pilot pressure is not generated in the pilot circuit 16, the throttle switching valve 81b is held at the open position E.

また、アクチュエータライン21bが圧油供給側である場合も同様であり、パイロット回路16で発生した操作パイロット圧が圧力信号ライン16a、操作切換弁45b及び圧力信号ライン16bを介して絞り切換弁81bの受圧部83bに作用し、絞り切換弁81bは絞り位置Fに切り換わり、バイパス弁42bの受圧部71b,72bには絞り切換弁81bの前後差圧が作用する。バイパス弁42bは、絞り切換弁81bの前後差圧がバネ44の設定値以下のときはバネ44の力により閉位置に保持され、絞り切換弁81bの前後差圧がバネ44の設定値を超えると開いて圧油供給側である油路51の圧油の一部(余剰流量)を圧油排出側である油路50にバイパスさせる。このとき、パイロット回路15で操作パイロット圧は発生しないため、絞り切換弁81aは開位置Cに保持される。   The same applies to the case where the actuator line 21b is on the pressure oil supply side, and the operation pilot pressure generated in the pilot circuit 16 is supplied to the throttle switching valve 81b via the pressure signal line 16a, the operation switching valve 45b and the pressure signal line 16b. Acting on the pressure receiving portion 83b, the throttle switching valve 81b is switched to the throttle position F, and the differential pressure across the throttle switching valve 81b acts on the pressure receiving portions 71b and 72b of the bypass valve 42b. The bypass valve 42b is held in the closed position by the force of the spring 44 when the differential pressure across the throttle switching valve 81b is less than or equal to the set value of the spring 44, and the differential pressure across the throttle switching valve 81b exceeds the set value of the spring 44. Then, a part (excess flow) of the pressure oil in the oil passage 51 on the pressure oil supply side is bypassed to the oil passage 50 on the pressure oil discharge side. At this time, since the operation pilot pressure is not generated in the pilot circuit 15, the throttle switching valve 81a is held at the open position C.

絞り切換弁81a,81bはそれぞれ絞り位置D,Fに切り換わることで絞りとなり、絞り切換弁81a,81bの開口面積をそれぞれAa、Abとし、絞り切換弁81a,81bの前後差圧をそれぞれΔPa,ΔPbとし、絞り切換弁81a,81bの通過流量をそれぞれQa,Qbとすると、
Qa=定数×Aa×√ΔPa
Qb=定数×Ab×√ΔPb
であることから、アクチュエータライン21a又は21b、油路50又は51、アクチュエータライン22a又は22bには流量Qa、Qb以上の流量は流れないことになる。つまり、主ポンプ1,5より吐出した流量は、流量Qa,Qbのみアクチュエータ61に供給される。
The throttle switching valves 81a and 81b become throttles by switching to the throttle positions D and F, respectively. The opening areas of the throttle switching valves 81a and 81b are Aa and Ab, respectively, and the differential pressure across the throttle switching valves 81a and 81b is ΔPa, respectively. , ΔPb, and passing flow rates of the throttle switching valves 81a, 81b as Qa, Qb, respectively,
Qa = constant × Aa × √ΔPa
Qb = constant × Ab × √ΔPb
Therefore, the flow rate of Qa or more than Qb does not flow through the actuator line 21a or 21b, the oil passage 50 or 51, and the actuator line 22a or 22b. That is, only the flow rates Qa and Qb are supplied to the actuator 61 from the main pumps 1 and 5.

本実施例によれば、以下の効果が得られる。   According to the present embodiment, the following effects can be obtained.

(1)同一の流量制御弁2で操作される、大流量を必要とするクラッシャ用のアクチュエータ60と小流量を必要とするブレーカ用のアクチュエータ61との交換に伴う流量切換は、操作装置である電気スイッチ54を操作することにより極めて簡単に行うことができる。   (1) The flow rate switching accompanying the replacement of the crusher actuator 60 that requires a large flow rate and the breaker actuator 61 that requires a small flow rate, which are operated by the same flow control valve 2, is an operating device. This can be done very easily by operating the electrical switch 54.

(2)最大流量カット弁装置40はアタッチメント用の流量制御弁2とアタッチメント用アクチュエータ60又は61との間に配置される構成であるため、配置構成が簡単で用着が容易であり、かつ後付けも容易であり汎用性に優れている。   (2) Since the maximum flow cut valve device 40 is arranged between the attachment flow control valve 2 and the attachment actuator 60 or 61, the arrangement configuration is simple and easy to wear, and retrofit Is easy and versatile.

(3)油圧回路構成が簡素化されるので、油圧回路の信頼性が高く、点検整備工数および製造原価が低減される。   (3) Since the hydraulic circuit configuration is simplified, the reliability of the hydraulic circuit is high, and inspection and maintenance man-hours and manufacturing costs are reduced.

(4)最大流量カット弁装置40はバイパス弁42a,42bを含む構成であるため、バネ43,44の強さを調整することにより任意に流量を調整することができる。   (4) Since the maximum flow cut valve device 40 includes the bypass valves 42a and 42b, the flow rate can be arbitrarily adjusted by adjusting the strength of the springs 43 and 44.

(5)流量調整は、最大流量カット弁装置40を機械に組み込む前(事前)に行うことができるため、流量調整作業が容易である。また、事前に流量の微調整が可能であるので、その点でも汎用性に優れている。   (5) Since the flow rate adjustment can be performed before (in advance) the maximum flow rate cut valve device 40 is incorporated in the machine, the flow rate adjustment operation is easy. Further, since the flow rate can be finely adjusted in advance, it is excellent in versatility.

(6)バイパス弁42a,42bによって大流量と小流量とに切り換わるので、機械的な接触摩耗による経年変化が少なく、設定流量の変化が生じにくい。   (6) Since the bypass valves 42a and 42b are switched between a large flow rate and a small flow rate, the secular change due to mechanical contact wear is small, and the set flow rate hardly changes.

(7)アタッチメント用の流量制御弁2とアタッチメント用アクチュエータ60又は61との間に最大流量カット弁装置40を配置する構成であるため、装着する油圧回路の種類を問わず対応可能であり、従来より建設機械の油圧回路として多く使用されているセンターバイパスタイプのコントロールバルブを用いたオープンセンタ油圧回路、圧力補償弁付きのコントロールバルブを用いるロードセンシング油圧回路のいずれにも対応可能であり、この点でも汎用性に優れている。   (7) Since the maximum flow cut valve device 40 is disposed between the attachment flow control valve 2 and the attachment actuator 60 or 61, it can be used regardless of the type of hydraulic circuit to be mounted. Both open center hydraulic circuits using center bypass type control valves, which are more commonly used as hydraulic circuits for construction machinery, and load sensing hydraulic circuits using control valves with pressure compensation valves can be used. But it is versatile.

(8)電気スイッチ54が大流量側に操作されたときは、絞り切換弁81a,81bが開位置C,Eに保持されることにより、油路50,51の両方が開放され、アタッチメント用の流量制御弁2と大流量を必要とするアタッチメント用アクチュエータ60とが絞りを介さずに接続されるため、アタッチメント用アクチュエータ60を駆動する際のエネルギー損失を低減することが可能となる。   (8) When the electric switch 54 is operated to the large flow rate side, the throttle switching valves 81a and 81b are held at the open positions C and E, whereby both the oil passages 50 and 51 are opened, and the attachment Since the flow rate control valve 2 and the attachment actuator 60 that requires a large flow rate are connected without a throttle, energy loss when driving the attachment actuator 60 can be reduced.

(9)電気スイッチ54が小流量側に操作されたときは、油路50,51のうち圧油排出側の油路が開放され、不要な背圧の発生が抑制されるため、小流量を要求するアタッチメント用アクチュエータ61を駆動する際のエネルギー損失を低減することが可能となる。   (9) When the electric switch 54 is operated to the small flow rate side, the oil passage on the pressure oil discharge side of the oil passages 50 and 51 is opened, and generation of unnecessary back pressure is suppressed. It is possible to reduce energy loss when driving the required actuator 61 for attachment.

図2は、本発明を油圧掘削機の油圧駆動装置に適用した第2の実施例を示す油圧回路図である。以下、第1の実施例(図1に示す)との相違点を説明する。   FIG. 2 is a hydraulic circuit diagram showing a second embodiment in which the present invention is applied to a hydraulic drive device of a hydraulic excavator. Differences from the first embodiment (shown in FIG. 1) will be described below.

図2において、本実施例における最大流量カット弁装置40Aは、油路50,51にそれぞれ配置された絞り切換弁81a,81bを有する絞り切換弁装置80に代えて、油路50,51に配置された絞り切換弁84を有する絞り切換弁装置80Aを備えている。このように絞り切換弁装置80Aを単一の絞り切換弁84で構成することにより、第1の実施例と比較して、最大流量カット弁装置40Aを簡素化することが可能となる。   In FIG. 2, the maximum flow cut valve device 40A in this embodiment is disposed in the oil passages 50 and 51 in place of the throttle switching valve device 80 having the throttle switching valves 81a and 81b disposed in the oil passages 50 and 51, respectively. A throttle switching valve device 80A having the throttle switching valve 84 is provided. Thus, by configuring the throttle switching valve device 80A with the single throttle switching valve 84, the maximum flow cut valve device 40A can be simplified as compared with the first embodiment.

絞り切換弁84は、開方向作動のバネ85を有し、油路50,51の両方を開放する開位置Iと油路50,51の両方を絞る図示右側の絞り位置Jとに切換可能である。また、絞り切換弁84に対してはソレノイド駆動部86が設けられており、電気スイッチ54がOFFのとき(大流量側に操作されたとき)にソレノイド駆動部86は非励磁であり、絞り切換弁84は開位置Iにあり、電気スイッチ54がONになる(小流量側に操作される)とソレノイド駆動部86が励磁され、絞り切換弁84は絞り位置Jに切り換えられる。   The throttle switching valve 84 has a spring 85 that operates in the opening direction, and can be switched between an open position I that opens both of the oil passages 50 and 51 and a throttle position J on the right side of the drawing that throttles both of the oil passages 50 and 51. is there. In addition, a solenoid driving unit 86 is provided for the throttle switching valve 84, and when the electric switch 54 is OFF (when operated to the large flow rate side), the solenoid driving unit 86 is not excited, and the throttle switching is performed. The valve 84 is in the open position I, and when the electric switch 54 is turned on (operated to the small flow rate side), the solenoid drive unit 86 is excited and the throttle switching valve 84 is switched to the throttle position J.

以上によりソレノイド駆動部86は、電気スイッチ54が大流量側に操作されたときは絞り切換弁84を開位置Iに保持し、電気スイッチ54が小流量側に操作されると絞り切換弁84の開位置Iの保持を解除する操作切換装置として機能する。   As described above, the solenoid drive unit 86 holds the throttle switching valve 84 at the open position I when the electric switch 54 is operated to the large flow rate side, and the throttle switching valve 84 of the throttle switching valve 84 when the electric switch 54 is operated to the small flow rate side. It functions as an operation switching device that releases the holding of the open position I.

バイパス弁42aの受圧部71aには圧力信号ライン46a,46bを介して油路50における絞り切換弁84の上流側の圧力が信号圧として導かれ、バイパス弁42aの受圧部72aには圧力信号ライン46cを介して油路50における絞り切換弁84の下流側の圧力が信号圧として導かれ、バイパス弁42bの受圧部71bには圧力信号ライン47a,47bを介して油路51における絞り切換弁84の上流側の圧力が信号圧として導かれ、バイパス弁42bの受圧部72bには圧力信号ライン47cを介して油路51における絞り切換弁84の下流側の圧力が信号圧として導かれている。   The pressure receiving portion 71a of the bypass valve 42a is guided to the pressure upstream of the throttle switching valve 84 in the oil passage 50 as a signal pressure via the pressure signal lines 46a and 46b. The pressure signal line is connected to the pressure receiving portion 72a of the bypass valve 42a. The pressure on the downstream side of the throttle switching valve 84 in the oil passage 50 is guided as a signal pressure through 46c, and the throttle switching valve 84 in the oil passage 51 is connected to the pressure receiving portion 71b of the bypass valve 42b via the pressure signal lines 47a and 47b. The pressure on the upstream side of the throttle valve 84 in the oil passage 51 is guided to the pressure receiving portion 72b of the bypass valve 42b as the signal pressure via the pressure signal line 47c.

操作切換弁45aは、油路50,51における絞り切換弁84の上流側の圧力を信号圧としてバイパス弁42a,42bの受圧部71a,71bにそれぞれ導く圧力信号ライン46a,46b及び47a,47bに配置されている。電気スイッチ54がONになる(小流量側に操作される)とソレノイド駆動部45cは励磁され、操作切換弁45aは開位置Bに切り換えられ、油路50,51における絞り切換弁84の上流側の圧力が受圧部71a,71bにそれぞれ作用する。   The operation switching valve 45a is connected to pressure signal lines 46a, 46b and 47a, 47b respectively leading to pressure receiving portions 71a, 71b of the bypass valves 42a, 42b using the pressure upstream of the throttle switching valve 84 in the oil passages 50, 51 as a signal pressure. Has been placed. When the electric switch 54 is turned on (operated to the small flow rate side), the solenoid drive unit 45c is excited, the operation switching valve 45a is switched to the open position B, and the upstream side of the throttle switching valve 84 in the oil passages 50 and 51. Acts on the pressure receiving portions 71a and 71b, respectively.

次に、本実施例における最大流量カット弁装置40Aを備えたアタッチメント用流量切換装置100Aの機能及び動作について第1の実施例との相違点を中心に説明する。   Next, the function and operation of the attachment flow switching device 100A provided with the maximum flow cut valve device 40A in the present embodiment will be described focusing on differences from the first embodiment.

第1の実施例では、電気スイッチ54が大流量側に操作されたときに、操作切換弁45bのソレノイド駆動部45dが非励磁となり、操作切換弁45bが閉位置Gに保持され、パイロット回路15,16で発生した操作パイロット圧が絞り切換弁81a,81bの受圧部83a,83bに作用せず、絞り切換弁81a,81bがそれぞれ開位置C,Eに保持されることにより、油路50,51の両方が開放される。   In the first embodiment, when the electric switch 54 is operated to the large flow rate side, the solenoid drive unit 45d of the operation switching valve 45b is de-energized, the operation switching valve 45b is held at the closed position G, and the pilot circuit 15 , 16 does not act on the pressure receiving portions 83a, 83b of the throttle switching valves 81a, 81b, and the throttle switching valves 81a, 81b are held at the open positions C, E, respectively. Both 51 are opened.

これに対して、本実施例では、電気スイッチ54が大流量側に操作されたときに、絞り切換弁84に対して設けられたソレノイド駆動部86が非励磁となり、絞り切換弁84が開位置Iに保持されることにより、油路50,51の両方が開放される。   On the other hand, in this embodiment, when the electric switch 54 is operated to the large flow rate side, the solenoid drive unit 86 provided for the throttle switching valve 84 is de-energized, and the throttle switching valve 84 is in the open position. By being held at I, both the oil passages 50 and 51 are opened.

また、第1の実施例では、電気スイッチ54が小流量側に操作されたときに、操作切換弁45bのソレノイド駆動部45dが励磁され、操作切換弁45bが開位置Hに切り換わり、パイロット回路15,16で発生した操作パイロット圧が絞り切換弁81a,81bの受圧部に83a,83bにそれぞれ作用し、圧油供給側となる油路50又は51に配置された絞り切換弁81a又は81bが絞り位置D又はFに切り換わる一方、圧油排出側となる油路50又は51に配置された絞り切換弁81a又は81bは開位置C又はEに保持されることにより、圧油供給側となる油路50又は51は絞られる一方、圧油排出側となる油路51又は50は開放される。   Further, in the first embodiment, when the electric switch 54 is operated to the small flow rate side, the solenoid drive unit 45d of the operation switching valve 45b is excited, the operation switching valve 45b is switched to the open position H, and the pilot circuit The operating pilot pressure generated at 15 and 16 acts on the pressure receiving portions of the throttle switching valves 81a and 81b on 83a and 83b, respectively, and the throttle switching valve 81a or 81b disposed in the oil passage 50 or 51 on the pressure oil supply side While switching to the throttle position D or F, the throttle switching valve 81a or 81b disposed in the oil passage 50 or 51 on the pressure oil discharge side is held at the open position C or E, so that it becomes the pressure oil supply side. The oil passage 50 or 51 is throttled, while the oil passage 51 or 50 on the pressure oil discharge side is opened.

これに対して、本実施例では、電気スイッチ54が小流量側に操作されたときに、絞り切換弁84に対して設けられたソレノイド駆動部86が励磁され、絞り切換弁84が絞り位置Jに切り換わることにより、圧油供給側となる油路50又は51と圧油排出側となる油路51又は50の両方が絞られる。   On the other hand, in this embodiment, when the electric switch 54 is operated to the small flow rate side, the solenoid drive unit 86 provided for the throttle switching valve 84 is excited, and the throttle switching valve 84 is set to the throttle position J. Is switched to both the oil passage 50 or 51 on the pressure oil supply side and the oil passage 51 or 50 on the pressure oil discharge side.

本実施例によれば、第1の実施例の効果(1)〜(7)が得られると共に、電気スイッチ54が大流量側に操作されたときは、絞り切換弁84が開位置Iに保持されることにより、油路50,51の両方が開放され、アタッチメント用の流量制御弁2と大流量を必要とするアタッチメント用アクチュエータ60とが絞りを介さずに接続されるため、アタッチメント用アクチュエータ60を駆動する際のエネルギー損失を低減することが可能となる。   According to this embodiment, the effects (1) to (7) of the first embodiment can be obtained, and the throttle switching valve 84 is held in the open position I when the electric switch 54 is operated to the large flow rate side. As a result, both of the oil passages 50 and 51 are opened, and the attachment flow control valve 2 and the attachment actuator 60 that requires a large flow rate are connected without passing through the throttle. It becomes possible to reduce the energy loss when driving.

以上、本発明の実施例について詳述したが、本発明は、上記した実施例に限定されるものではなく、様々な変形例が含まれる。   As mentioned above, although the Example of this invention was explained in full detail, this invention is not limited to an above-described Example, Various modifications are included.

例えば、上記した実施例では、2つの油圧ポンプ1,5の吐出油を合流して流量制御弁2に供給する構成を示したが、3つ以上の油圧ポンプの吐出油を合流して流量制御弁2に供給する構成としても良い。   For example, in the above-described embodiment, the configuration in which the discharge oils of the two hydraulic pumps 1 and 5 are merged and supplied to the flow control valve 2 is shown, but the flow control is performed by merging the discharge oils of three or more hydraulic pumps. It is good also as a structure supplied to the valve 2.

また、第2の実施例(図2に示す)では、絞り切換弁84にソレノイド駆動部86を設ける構成としたが、絞り切換弁84を油圧切換弁とし、この油圧切換弁の絞り方向作動の受圧部に電磁減圧弁を介してパイロットポンプ12の一次圧を導く構成としても良い。この場合の電磁切換弁のソレノイド駆動部は、絞り切換弁84に設けたソレノイド駆動部86と同様に、絞り切換弁84に対して設けられ、電気スイッチ54が大流量側に操作されたときは絞り切換弁84を開位置Iに保持し、電気スイッチ54が小流量側に操作されると絞り切換弁84の開位置Iの保持を解除する操作切換装置として機能する。   In the second embodiment (shown in FIG. 2), the throttle switching valve 84 is provided with the solenoid drive unit 86. However, the throttle switching valve 84 is a hydraulic switching valve, and the hydraulic switching valve operates in the throttle direction. It is good also as a structure which guide | induces the primary pressure of the pilot pump 12 to a pressure receiving part via an electromagnetic pressure reducing valve. In this case, the solenoid driving portion of the electromagnetic switching valve is provided for the throttle switching valve 84 in the same manner as the solenoid driving portion 86 provided for the throttle switching valve 84, and when the electric switch 54 is operated to the large flow rate side. When the throttle switching valve 84 is held in the open position I and the electric switch 54 is operated to the small flow rate side, it functions as an operation switching device that releases the holding of the open position I of the throttle switching valve 84.

また、上記した実施例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成に他の実施例の構成の一部を加えることも可能であり、ある実施例の構成の一部を削除し、あるいは、他の実施例の一部と置き換えることも可能である。   The above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. It is also possible to add a part of the configuration of another embodiment to the configuration of a certain embodiment, and delete a part of the configuration of a certain embodiment or replace it with a part of another embodiment. Is possible.

1,5…主ポンプ、2…流量制御弁(アタッチメント用制御弁)、3…流量制御弁、2a,2b,3a,3b…パイロット受圧部、9,10…主回路、11…合流回路、12…パイロットポンプ、13…ペダル、14…パイロット弁、15,16…パイロット回路、17…リリーフ弁、21a,21b,22a,22b…アクチュエータライン、40,40A…最大流量カット弁装置、41a,41b…絞り弁、42a,42b…バイパス弁、43,44…バネ、45a,45b…操作切換弁(操作切換装置)、45c,45d…ソレノイド駆動部、46a,46b,46c,47a,47b,47c…圧力信号ライン、50,51…油路、52,53…バイパスライン、54…電気スイッチ(操作装置)、60…クラッシャ用のアクチュエータ、61…ブレーカ用のアクチュエータ、62…アクチュエータ、71a,71b,72a,72b…受圧部、80,80A…絞り切換弁装置、81a,81b…絞り切換弁、82a,82b…バネ、83a,83b…受圧部、84…絞り切換弁、85…バネ、86…ソレノイド駆動部(操作切換装置)、100,100A…アタッチメント用流量切換装置。   DESCRIPTION OF SYMBOLS 1,5 ... Main pump, 2 ... Flow control valve (control valve for attachment), 3 ... Flow control valve, 2a, 2b, 3a, 3b ... Pilot pressure receiving part, 9, 10 ... Main circuit, 11 ... Merging circuit, 12 ... Pilot pump, 13 ... Pedal, 14 ... Pilot valve, 15, 16 ... Pilot circuit, 17 ... Relief valve, 21a, 21b, 22a, 22b ... Actuator line, 40, 40A ... Maximum flow cut valve device, 41a, 41b ... Throttle valve, 42a, 42b ... Bypass valve, 43, 44 ... Spring, 45a, 45b ... Operation switching valve (operation switching device), 45c, 45d ... Solenoid drive, 46a, 46b, 46c, 47a, 47b, 47c ... Pressure Signal line, 50, 51 ... Oil passage, 52, 53 ... Bypass line, 54 ... Electric switch (operating device), 60 ... Actuator for crusher 61 ... Actuator for breaker, 62 ... Actuator, 71a, 71b, 72a, 72b ... Pressure receiving part, 80, 80A ... Throttle switching valve device, 81a, 81b ... Throttle switching valve, 82a, 82b ... Spring, 83a, 83b DESCRIPTION OF SYMBOLS ... Pressure receiving part, 84 ... Restriction switching valve, 85 ... Spring, 86 ... Solenoid drive part (operation switching device), 100, 100A ... Flow rate switching device for attachment.

Claims (3)

油圧ポンプと、
前記油圧ポンプの吐出油が供給されるアタッチメント用制御弁と、
このアタッチメント用制御弁によって制御されるアタッチメント用アクチュエータと、
前記アタッチメント用アクチュエータが大流量を必要とする第1アクチュエータか小流量を必要とする第2アクチュエータかに応じて大流量側と小流量側のいずれかに操作される操作装置と、
前記アタッチメント用制御弁と前記アタッチメント用アクチュエータとを接続する第1及び第2アクチュエータラインに配置され、前記操作装置の操作により前記アタッチメント用アクチュエータに供給される圧油の流量を大流量と小流量とに切り換える最大流量カット弁装置とを備えた建設機械の油圧駆動装置において、
前記最大流量カット弁装置は、
前記第1及び第2アクチュエータラインにそれぞれ接続され、前記アタッチメント用制御弁の切換方向に応じて圧油供給側又は圧油排出側となる第1及び第2油路と、
前記第1及び第2油路に配置され、前記第1及び第2油路の両方を開放する開位置と前記第1及び第2油路のうち少なくとも圧油供給側となる油路を絞る絞り位置とに切換可能な絞り切換弁装置と、
閉方向作動の第1バネを有し、前記第1油路が圧油供給側であるときに前記絞り切換弁装置における前記第1油路側の前後差圧が前記第1バネの設定値以下のときは前記第1バネの力により閉位置に保持され、前記絞り切換弁装置における前記第1油路側の前後差圧が前記第1バネの設定値を超えると開いて前記第1油路の圧油の一部を前記第2油路にバイパスさせる第1バイパス弁と、
閉方向作動の第2バネを有し、前記第2油路が圧油供給側であるときに前記絞り切換弁装置における前記第2油路側の前後差圧が前記第2バネの設定値以下のときは前記第2バネの力により閉位置に保持され、前記絞り切換弁装置における前記第2油路側の前後差圧が前記第2バネの設定値を超えると開いて前記第2油路の圧油の一部を前記第1油路にバイパスさせる第2バイパス弁と、
前記操作装置が大流量側に操作されたときは前記絞り切換弁装置を開位置に、前記第1及び第2バイパス弁を閉位置に保持し、前記操作装置が小流量側に操作されたときは前記第1及び第2油路のうち少なくとも圧油供給側となる油路の前記絞り切換弁装置を絞り位置に保持し、前記第1及び第2バイパス弁の閉位置の保持を解除する操作切換装置とを備えることを特徴とする建設機械の油圧駆動装置。
A hydraulic pump;
An attachment control valve to which the oil discharged from the hydraulic pump is supplied;
An attachment actuator controlled by the attachment control valve;
An operating device operated on either the large flow rate side or the small flow rate side according to whether the attachment actuator is a first actuator requiring a large flow rate or a second actuator requiring a small flow rate;
Disposed in first and second actuator lines connecting the attachment control valve and the attachment actuator, the flow rate of the pressure oil supplied to the attachment actuator by operation of the operation device is a large flow rate and a small flow rate. In a hydraulic drive system for construction machinery with a maximum flow cut valve device that switches to
The maximum flow cut valve device is
First and second oil passages connected to the first and second actuator lines, respectively, on the pressure oil supply side or pressure oil discharge side according to the switching direction of the attachment control valve;
A throttle that is arranged in the first and second oil passages and that restricts an open position that opens both the first and second oil passages and an oil passage that is at least a pressure oil supply side of the first and second oil passages. A throttle switching valve device switchable to a position;
When the first oil passage is on the pressure oil supply side, the differential pressure on the first oil passage side in the throttle switching valve device is less than or equal to the set value of the first spring. Is held in the closed position by the force of the first spring, and opens when the front-rear differential pressure on the first oil passage side in the throttle switching valve device exceeds the set value of the first spring. A first bypass valve that bypasses part of the oil to the second oil passage;
When the second oil passage is on the pressure oil supply side, the differential pressure on the second oil passage side in the throttle switching valve device is less than or equal to the set value of the second spring. Is held in the closed position by the force of the second spring, and opens when the front-rear differential pressure on the second oil passage side in the throttle switching valve device exceeds the set value of the second spring. A second bypass valve that bypasses part of the oil to the first oil passage;
When the operating device is operated to the large flow rate side, the throttle switching valve device is held in the open position, the first and second bypass valves are held in the closed position, and the operating device is operated to the small flow rate side. Is an operation of holding the throttle switching valve device of the oil passage on the pressure oil supply side at least in the first and second oil passages in the throttle position and releasing the holding of the closed positions of the first and second bypass valves. A hydraulic drive device for a construction machine, comprising: a switching device.
請求項1に記載の建設機械の油圧駆動装置において、
前記絞り切換弁装置は、前記第1油路に配置され、開位置と絞り位置とに切換可能であり、絞り方向作動の第1受圧部と開方向作動の第3バネとを有する第1絞り切換弁と、前記第2油路に配置され、開位置と絞り位置とに切換可能であり、絞り方向作動の第2受圧部と開方向作動の第4バネとが設けられた第2絞り切換弁とを有し、
前記第1バイパス弁は、開方向作動の第3受圧部と閉方向作動の第4受圧部とを有し、かつ前記第4受圧部には前記第1絞り切換弁の下流側の圧力が信号圧として導かれており、
前記第2バイパス弁は、開方向作動の第5受圧部と閉方向作動の第6受圧部とを有し、かつ前記第6受圧部には前記第2絞り切換弁の下流側の圧力が信号圧として導かれており、
前記操作切換装置は、前記第1及び第2絞り切換弁の上流側の圧力を信号圧として前記第1及び第2バイパス弁の前記第3及び第5受圧部にそれぞれ導く第3及び第4油路に配置され、前記操作装置が大流量側に操作されたときは閉位置にあり、前記操作装置が小流量側に操作されたときは開位置に切り換わり、前記第1及び第2油路における前記第1及び第2絞り切換弁の上流側の圧力を前記第3及び第5受圧部にそれぞれ作用させる第1操作切換弁と、前記アタッチメント用制御弁を前記第1アクチュエータラインに圧油が供給されるように切り換える第1アタッチメント操作パイロット圧及び前記アタッチメント用制御弁を前記第2アクチュエータラインに圧油が供給されるように切り換える第2アタッチメント操作パイロット圧を前記第1絞り切換弁の第1受圧部及び第2絞り切換弁の第2受圧部にそれぞれ導く第5及び第6油路に配置され、前記操作装置が大流量に操作されたときは閉位置にあり、前記操作装置が小流量側に操作されたときは開位置に切り換わり、前記第1及び第2アタッチメント操作パイロット圧を前記第1及び第2受圧部にそれぞれ作用させる第2操作切換弁とを有することを特徴とする建設機械の油圧駆動装置。
The hydraulic drive device for a construction machine according to claim 1,
The throttle switching valve device is disposed in the first oil passage, and is switchable between an open position and a throttle position, and includes a first pressure receiving portion that operates in the throttle direction and a third spring that operates in the open direction. A second throttle switch disposed in the second oil passage, which is switchable between an open position and a throttle position, and which is provided with a second pressure receiving part that operates in the throttle direction and a fourth spring that operates in the open direction. And a valve
The first bypass valve has a third pressure receiving portion that operates in an opening direction and a fourth pressure receiving portion that operates in a closing direction, and a pressure downstream of the first throttle switching valve is a signal in the fourth pressure receiving portion. Led as pressure,
The second bypass valve has a fifth pressure receiving portion that operates in the opening direction and a sixth pressure receiving portion that operates in the closing direction, and the pressure on the downstream side of the second throttle switching valve is a signal in the sixth pressure receiving portion. Led as pressure,
The operation switching device includes third and fourth oils respectively leading to the third and fifth pressure receiving portions of the first and second bypass valves using the upstream pressure of the first and second throttle switching valves as a signal pressure. When the operating device is operated on the large flow rate side, it is in the closed position, and when the operating device is operated on the small flow rate side, it switches to the open position, and the first and second oil paths Pressure oil is applied to the first actuator line through the first operation switching valve that causes the pressure on the upstream side of the first and second throttle switching valves to act on the third and fifth pressure receiving portions, respectively, and the attachment control valve. The first attachment operation pilot pressure that switches to be supplied and the second attachment operation pilot pressure that switches the attachment control valve to supply pressure oil to the second actuator line Arranged in the fifth and sixth oil passages respectively leading to the first pressure receiving portion of the first throttle switching valve and the second pressure receiving portion of the second throttle switching valve, and when the operating device is operated at a large flow rate, it is in the closed position. And a second operation switching valve that switches to an open position when the operation device is operated to the small flow rate side and causes the first and second attachment operation pilot pressures to act on the first and second pressure receiving portions, respectively. A hydraulic drive device for a construction machine, comprising:
請求項1に記載の建設機械の油圧駆動装置において、
前記絞り切換弁装置は、前記第1及び第2油路に配置され、前記第1及び第2油路の両方を開放する開位置と前記第1及び第2油路の両方を絞る絞り位置とに切換可能であり、開方向作動の第5バネを有する第3絞り切換弁を有し、
前記第1バイパス弁は、開方向作動の第3受圧部と閉方向作動の第4受圧部とを有し、かつ前記第4受圧部には前記第1油路における前記第3絞り切換弁の下流側の圧力が信号圧として導かれており、
前記第2バイパス弁は、開方向作動の第5受圧部と閉方向作動の第6受圧部とを有し、かつ前記第6受圧部には前記第2油路における前記第3絞り切換弁の下流側の圧力が信号圧として導かれており、
前記操作切換装置は、前記第1及び第2油路における前記第3絞り切換弁の上流側の圧力を信号圧として前記第1及び第2バイパス弁の前記第3及び第5受圧部にそれぞれ導く第3及び第4油路に配置され、前記操作装置が大流量側に操作されたときは閉位置にあり、前記操作装置が小流量側に操作されたときは開位置に切り換わり、前記第1及び第2油路における前記第3絞り切換弁の上流側の圧力を前記第3及び第5受圧部にそれぞれ作用させる第1操作切換弁と、前記第3絞り切換弁に対して設けられ、前記操作装置が流量側に操作されたときに前記第3絞り切換弁を絞り位置に切り換えるソレノイド駆動部とを有することを特徴とする建設機械の油圧駆動装置。
The hydraulic drive device for a construction machine according to claim 1,
The throttle switching valve device is disposed in the first and second oil passages, and an open position for opening both the first and second oil passages and a throttle position for restricting both the first and second oil passages. And a third throttle switching valve having a fifth spring that operates in the opening direction,
The first bypass valve includes a third pressure receiving portion that operates in an opening direction and a fourth pressure receiving portion that operates in a closing direction, and the fourth pressure receiving portion includes a third pressure switching valve in the first oil passage. The downstream pressure is guided as signal pressure,
The second bypass valve includes a fifth pressure receiving portion that operates in an opening direction and a sixth pressure receiving portion that operates in a closing direction, and the sixth pressure receiving portion includes a third pressure-reducing valve in the second oil passage. The downstream pressure is guided as signal pressure,
The operation switching device guides the pressure on the upstream side of the third throttle switching valve in the first and second oil passages as a signal pressure to the third and fifth pressure receiving portions of the first and second bypass valves, respectively. Arranged in the third and fourth oil passages, when the operating device is operated to the large flow rate side, it is in the closed position, and when the operating device is operated to the small flow rate side, it switches to the open position, A first operation switching valve for causing the pressure on the upstream side of the third throttle switching valve in the first and second oil passages to act on the third and fifth pressure receiving portions, respectively, and the third throttle switching valve; A hydraulic drive device for a construction machine, comprising: a solenoid drive unit that switches the third throttle switching valve to a throttle position when the operation device is operated to a small flow rate side.
JP2016178616A 2016-09-13 2016-09-13 Hydraulic drive unit for construction machinery Active JP6577431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016178616A JP6577431B2 (en) 2016-09-13 2016-09-13 Hydraulic drive unit for construction machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016178616A JP6577431B2 (en) 2016-09-13 2016-09-13 Hydraulic drive unit for construction machinery

Publications (2)

Publication Number Publication Date
JP2018044326A JP2018044326A (en) 2018-03-22
JP6577431B2 true JP6577431B2 (en) 2019-09-18

Family

ID=61694504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016178616A Active JP6577431B2 (en) 2016-09-13 2016-09-13 Hydraulic drive unit for construction machinery

Country Status (1)

Country Link
JP (1) JP6577431B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109947001B (en) * 2019-03-13 2020-11-10 北京宇航系统工程研究所 Energy-saving control circuit of electromagnetic valve

Also Published As

Publication number Publication date
JP2018044326A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
EP1584822B1 (en) Hydraulic control system and construction machine
JP5461234B2 (en) Construction machine control equipment
KR101820324B1 (en) Hydraulic circuit for pipe layer
EP1760326B1 (en) Hydraulic controller for working machine
EP2863065B1 (en) Construction-machinery hydraulic circuit, and control device therefor
JP4541209B2 (en) Hydraulic circuit
WO2014135284A1 (en) Merging circuit of hydraulic apparatus
JP6717541B2 (en) Valve device and fluid pressure system including the same
US20150330416A1 (en) Fluid pressure control device for power shovel
WO2018021288A1 (en) Excavator, and control valve for excavator
US5493950A (en) Variable priority device for swing motor in heavy construction equipment
JP4100690B2 (en) Hydraulic circuit for optional equipment for heavy equipment using spool for boom merging
JP6577431B2 (en) Hydraulic drive unit for construction machinery
JP4668445B2 (en) Hydraulic control equipment, construction machinery and hydraulic excavators
US20170009430A1 (en) Working machine control system
WO2015040800A1 (en) Fluid-pressure drive device
KR102642076B1 (en) Hydraulic circuit of work vehicle
JP4859786B2 (en) Control device
US10208457B2 (en) Working machine control system
JP2018054031A (en) Hydraulic control device for work vehicle
JP3898167B2 (en) Hydraulic circuit for construction machinery
JP5602034B2 (en) Driving circuit device for wheeled traveling vehicle
US11078932B2 (en) Hydraulic machine
JP4926627B2 (en) Electric oil system
JP2010065413A (en) Hydraulic control circuit of working machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190822

R150 Certificate of patent or registration of utility model

Ref document number: 6577431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150