JP6575348B2 - Gas-liquid contact method - Google Patents
Gas-liquid contact method Download PDFInfo
- Publication number
- JP6575348B2 JP6575348B2 JP2015250540A JP2015250540A JP6575348B2 JP 6575348 B2 JP6575348 B2 JP 6575348B2 JP 2015250540 A JP2015250540 A JP 2015250540A JP 2015250540 A JP2015250540 A JP 2015250540A JP 6575348 B2 JP6575348 B2 JP 6575348B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- liquid
- tower
- shelf
- acrylic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明は、気液接触方法に関する。具体的には、堰及び孔を有する棚板が多段数設置された棚段塔により、ガスと、液とを接触させる気液接触方法であって、各段において、該堰の高さが所定の値を満たす気液接触方法に関する。 The present invention relates to a gas-liquid contact method. Specifically, it is a gas-liquid contact method in which a gas and a liquid are brought into contact with each other by a shelf tower in which a plurality of shelf boards having weirs and holes are installed, and the height of the weir is predetermined in each stage. Relates to a gas-liquid contact method satisfying
蒸留塔内では、蒸留塔内を流れるガスと液の間で物質移動及び熱移動が行われる。該熱及び物質移動を促進する為、言い換えると蒸留効率を高める為、棚段や充填物等が塔内に設置される。該棚段や充填物の役割は、ガスと液が平衡状態により近づくよう、お互いが接触する機会を増やすことにある。 In the distillation column, mass transfer and heat transfer are performed between the gas and liquid flowing in the distillation column. In order to promote the heat and mass transfer, in other words, in order to increase the distillation efficiency, shelves, packings, etc. are installed in the tower. The role of the shelves and packing is to increase the chance of gas and liquid contact with each other so that the gas and liquid are closer to equilibrium.
蒸留塔内に設置される充填物の特徴は、単位容積当たりの表面積(比表面積)が大きいことである。広い充填物表面に供給液を拡散させることで、気液接触の機会を増やしている。比表面積の大きい充填物ほど高い蒸留効率が得られるが、単位表面積当たりの液流量は減少し、充填物表面の汚れによる液やガスの偏流と蒸留効率の低下を起こし易くなるため、採用が難しくなる。 The feature of the packing installed in the distillation column is that the surface area per unit volume (specific surface area) is large. Increasing the chance of gas-liquid contact is achieved by diffusing the supply liquid over a wide surface of the packing. Packing with a large specific surface area gives higher distillation efficiency, but the liquid flow rate per unit surface area decreases, making it difficult to adopt because liquid and gas drifts due to dirt on the surface of the packing and the distillation efficiency tends to decrease. Become.
棚段における一般的な気液接触の方法はバブリングである。多数の孔を有する棚板上に保持された液に対し、下方から上昇したガスが該孔を通過する際に棚板上の液を激しく撹拌し、同時に該ガスが小さな気泡に分割される事で、気液接触の機会を増やしている。該バブリングが激しいほど高い蒸留効率が得られるが、その原動力として上昇ガスの圧力が消費される為、運転時の塔内差圧も増大する。 A common gas-liquid contact method on the shelf is bubbling. For the liquid held on the shelf plate with a large number of holes, the gas rising from below passes through the holes and vigorously agitates the liquid on the shelf plate, and at the same time, the gas is divided into small bubbles. And increasing the chance of gas-liquid contact. The higher the bubbling, the higher the distillation efficiency, but the pressure of the rising gas is consumed as the driving force, and the differential pressure in the column during operation also increases.
棚板上に液を保持する方法は2つに分けられる。一つは、棚板上に堰を設けて一定範囲の液深を維持すると共に、堰を超えた液が下方に降下する為の専用流路であるダウンカマーを設置する方法である。堰により液深が一定範囲に定められている為、液やガス流量の異なる運転条件下でも、比較的安定に運転可能である。上昇するガスが少な過ぎると、棚板の孔から液が落下(ウィーピング)して蒸留効率は大幅に低下する。降下する液が多過ぎると、ダウンカマーを降下することが出来ず(ダウンカマー・フラッディング)、蒸留塔の運転が不可能となる。最も一般的な蒸留塔棚段の仕様であり、シープトレイと称されるが、他にバブリング用孔部が複雑化したものとして、バブルキャップトレイやバルブトレイなどがある。 There are two methods for holding the liquid on the shelf. One is a method in which a weir is provided on the shelf board to maintain a certain range of liquid depth, and a downcomer is installed as a dedicated channel for the liquid that has passed over the weir to descend downward. Since the liquid depth is determined within a certain range by the weir, it can be operated relatively stably even under operating conditions with different liquid and gas flow rates. If there is too little gas to rise, the liquid falls from the hole in the shelf (weeping) and the distillation efficiency is greatly reduced. If too much liquid falls, the downcomer cannot be lowered (downcommer flooding) and the operation of the distillation column becomes impossible. This is the most common specification of a distillation column shelf and is called a “sheet tray”. Other complicated bubble bubbling holes include a bubble cap tray and a valve tray.
棚板上に液を保持するもう一つの方法は、塔水平断面の全てを棚板とし、該棚板上に多数の孔のみを設ける方法である。液が該孔から落下すると同時に、該孔からガスも上昇する。ダウンカマーを有さないことで、塔断面積のほぼ全てをバブリング領域に割り当てることが出来、単純な構造故に堆積物等も生じにくい。但し、棚板上の液深は、落下する液と上昇するガスの微妙なバランスの上に成り立っている為、運転可能な液やガス流量の条件範囲は狭い。特に液深が浅い場合、ガスの上昇する孔と液の落下する孔が別々となる現象が発生し易く、蒸留効率は概して低い。平板上、等間隔に小孔の設けられたデュアルフロートレイが本形態では最も一般的であり、他に、波板上に小孔を設けたリップルトレイ、小孔ではなく多数のスリットを設けたターボグリッドトレイなどがある。 Another method for holding the liquid on the shelf board is to use all of the tower horizontal cross section as a shelf board and provide only a large number of holes on the shelf board. At the same time as the liquid falls from the hole, the gas also rises from the hole. By not having a downcomer, almost all of the tower cross-sectional area can be allocated to the bubbling region, and deposits and the like are less likely to occur due to its simple structure. However, since the liquid depth on the shelf board is based on a delicate balance between the falling liquid and the rising gas, the condition range of the operable liquid and gas flow rate is narrow. In particular, when the liquid depth is shallow, a phenomenon in which the gas rising hole and the liquid falling hole are likely to be separated, and the distillation efficiency is generally low. A dual flow tray with small holes provided at equal intervals on a flat plate is the most common in this embodiment. In addition, a ripple tray provided with small holes on a corrugated plate, a number of slits instead of small holes are provided. There is a turbo grid tray.
高粘性や発泡性、付着性固体含有等々の特徴を有する液の場合、液を少量ずつ広く拡散させる充填物や、棚板上でバブリングを行う棚段では、安定的に蒸留塔を運転することが難しく、故に、バブリングを行わない棚段が用いられる。蒸留塔の水平断面に対して半分程度を覆う邪魔板(バッフル)からなり、垂直方向に複数段設置される。上下で隣接する
バッフル同士は異なる位置に配置されている。ガスはバッフルの間を縫うようジグザグに上昇し、バッフルの縁から降下してくる液と気液接触する。一般にバッフルトレイと称されることが多いが、蒸留塔棚段の分類表には含まれないことも多い。特許文献1では円盤型及びドーナツ型のバッフルによる棚段を用いて、アクリル酸製造工程における副生物の加熱分解装置からの留出物を蒸留精製することで、該蒸留塔内の閉塞を回避する方法が示されている。
In the case of liquids with characteristics such as high viscosity, foaming property, adhesive solid content, etc., the distillation column should be operated stably on the packing that spreads the liquids little by little or on the shelves that bubbling on the shelf. Therefore, a shelf without bubbling is used. It consists of baffles that cover about half of the horizontal section of the distillation tower and is installed in multiple stages in the vertical direction. The baffles adjacent in the vertical direction are arranged at different positions. The gas rises in a zigzag manner to sew between the baffles and comes into gas-liquid contact with the liquid descending from the edge of the baffle. Generally referred to as a baffle tray, it is often not included in the classification table of the distillation column shelf. In
特許文献2では、弗化水素含有空気を水酸化カリウム水溶液で中和する際、堰を有する半円型の棚板を用い、棚段の上下で重なる部位に多数の孔を有することで気液接触の効率を高めると共に、サポートリングにも孔を開けることで、該棚段下面の腐食を防ぐ方法が示されている。
In
特許文献3では、堰を有さないバッフルによる棚段を用いて、メタクリル酸含有ガスを水で吸収する際、バッフルの縁から降下する水との気液接触に加え、バッフル全面に多数の孔を設けることで、該孔を通過するガスと水との気液接触を可能とし、更に蒸留塔内の重合物による閉塞を回避する方法が示されている。 In Patent Document 3, when a methacrylic acid-containing gas is absorbed with water using a baffle shelf without a weir, in addition to gas-liquid contact with water descending from the edge of the baffle, a large number of holes are formed on the entire surface of the baffle. It is shown that a gas-liquid contact between the gas passing through the hole and water is possible by providing the gas, and further, blockage by a polymer in the distillation column is avoided.
単純な構成により安定運転に効力を発揮する、バッフルによる棚段を含む棚段塔(例えば捕集塔)は、更に効率面でも改良が図られているが、棚段塔内の液やガス流量、液性状、等の変動や、汚れに伴う経時的な変化などに対する安定性という面では未だ不充分である。 A plate tower (eg, a collection tower) that has a baffle shelf that is effective for stable operation with a simple structure has been further improved in terms of efficiency, but the flow rate of liquid and gas in the plate tower However, it is still insufficient in terms of stability against fluctuations in liquid properties, etc., and changes with time due to contamination.
円盤とドーナツ型バッフルを用いた特許文献1の場合、仮にバッフル上に汚れが付着したとしても、液やガスの流れを妨げることはなく、運転継続を妨げるものでは無い。しかし、バッフル上を流れる液は、該付着物を避けるように流れる為、元々は均一に分散して流れていた液流に偏りが生じることとなる。液が降下する箇所ほど抵抗が大きく、これを避けるようにしてガスは上昇する為、蒸留効率は大幅に低下することとなる。
In the case of
特許文献2においてバッフルに開けられた孔からは、連続して柱状の液が落下し、これを横切るようにガスが流れる為、該部での気液接触は維持されるが、該孔から落下する液と堰を超えて降下する液の比率は運転条件に依存して変化し、一定しない。特に、液が発泡した場合、ガスの流路が狭まることで棚段の上下間における差圧が上昇し、該差圧上昇が該孔からの液落下を鈍らせ、堰を超えて降下する液の比率を高め、これがガスの流路を更に狭めて更に差圧を上昇させる、という悪循環を引き起こす。
In
特許文献3のように堰を有さないバッフルの全面に多数の孔を設けた場合、ごく限られた運転条件においてのみ、該孔でのバブリングが起こり得るが、堰を有さないバッフル上の液深は浅く、ガスが該孔を通過する際の抵抗も小さい為、ガスのみが上昇する孔、および液のみが落下する孔に分離してしまい、蒸留効率は極端に低下する。傾斜させて塔内に設置する棚段やそのサポートリングは楕円形を有するなど、機器の製作や据付における負荷も高く、採用は限定される。 When a large number of holes are provided on the entire surface of a baffle that does not have a weir as in Patent Document 3, bubbling in the hole can occur only under very limited operating conditions, but on a baffle that does not have a weir. Since the liquid depth is shallow and the resistance when the gas passes through the hole is small, it is separated into a hole where only the gas rises and a hole where only the liquid falls, and the distillation efficiency is extremely lowered. The shelves installed in the tower in an inclined manner and their support rings have an elliptical shape, and the load in manufacturing and installing the equipment is high, so the adoption is limited.
本発明は上記従来の問題点を解決し、運転条件が変動しても安定的に気液接触を行える気液接触方法の提供を目的とする。 An object of the present invention is to solve the above-mentioned conventional problems and to provide a gas-liquid contact method capable of stably making a gas-liquid contact even when operating conditions fluctuate.
本発明者は、上記課題を解決すべく検討を重ねた結果、棚板上に液を落下させる為の多数の孔と棚板上に液を保持する為の堰を有したバッフルトレイを用いた棚段塔の運転において、棚板上の孔から落下する液と、堰を超えて降下する液の比率が変わることで、該棚段における差圧の変動を引き起こすことに気付き、常に全ての液が堰を超えることなく棚板上の孔から落下する仕様とすることで、運転変動に由来する棚段塔内の差圧変動を起こさず、安定した気液接触を維持できることを見出した。 As a result of repeated studies to solve the above problems, the present inventor used a baffle tray having a large number of holes for dropping the liquid on the shelf and a weir for holding the liquid on the shelf. In the operation of a tray tower, it is noticed that the ratio of the liquid falling from the hole on the shelf and the liquid falling over the weir changes, causing a variation in the differential pressure in the shelf. It has been found that by adopting a specification that drops from a hole on the shelf without exceeding the weir, stable gas-liquid contact can be maintained without causing a differential pressure fluctuation in the shelf tower due to operational fluctuations.
本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。
[1] 堰及び孔を有する棚板が多段数設置された棚段塔により、ガスと、液とを接触させる気液接触方法であって、
各段において、該堰の高さ(h)が下記式(1)を満たす気液接触方法。
The present invention has been achieved based on such findings, and the gist thereof is as follows.
[1] A gas-liquid contact method in which a gas and a liquid are brought into contact with a shelf tower in which a plurality of shelf boards having weirs and holes are installed,
A gas-liquid contact method in which the height (h) of the weir satisfies the following formula (1) in each stage.
(式中、hは堰の高さ(m)、Vは塔内の液流量(m3/s)、Sは開孔部総面積(m2)、gは重力加速度(m/s2)を表す。)
[2] プロピレンを酸化し、アクリル酸を含む粗アクリル酸を得るアクリル酸生成工程を含むアクリル酸の製造方法において、
該生成工程が[1]に記載の気液接触方法を含むアクリル酸の製造方法。
(Where h is the height of the weir (m), V is the flow rate of liquid in the tower (m 3 / s), S is the total area of the aperture (m 2 ), and g is the acceleration of gravity (m / s 2 ) Represents.)
[2] In a method for producing acrylic acid, which includes an acrylic acid production step of oxidizing propylene to obtain crude acrylic acid containing acrylic acid,
A method for producing acrylic acid, wherein the production step comprises the gas-liquid contact method according to [1].
本発明によれば、運転変動によらず安定した気液接触を行う方法を提供出来る。 ADVANTAGE OF THE INVENTION According to this invention, the method of performing the stable gas-liquid contact irrespective of a driving | running | working fluctuation | variation can be provided.
以下、本発明の気液接触方法について、図面を参照に詳細に説明するが、本発明は何ら以下の説明内容に限定されるものではなく、本発明の要旨の範囲内で種々変更して実施することができる。 Hereinafter, the gas-liquid contact method of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and various modifications are made within the scope of the gist of the present invention. can do.
本発明は、堰及び孔を有する棚板が多段数設置された棚段塔により、ガスと、液とを接触させる気液接触方法であって、各段において、該堰の高さ(h)が下記式(1)を満た
す気液接触方法である。
The present invention relates to a gas-liquid contact method in which a gas and a liquid are brought into contact with each other by means of a shelf tower in which shelves having a weir and a hole are installed in multiple stages. In each stage, the height (h) of the weir Is a gas-liquid contact method satisfying the following formula (1).
(式中、hは堰の高さ(m)、Vは塔内の液流量(m3/s)、Sは開孔部総面積(m2)、gは重力加速度(m/s2)を表す。) (Where h is the height of the weir (m), V is the flow rate of liquid in the tower (m 3 / s), S is the total area of the aperture (m 2 ), and g is the acceleration of gravity (m / s 2 ) Represents.)
本発明の気液接触方法の棚段塔における棚板の段数は通常は多段であり、蒸留分離に必要な理論段数を得る観点から、通常3以上であり、好ましくは4以上であり、より好ましくは5以上である。一方で、棚段塔の塔高が過度に高くなることを防ぐ観点から、通常40以下であり、好ましくは30以下であり、より好ましくは25以下である。また、棚段塔の具体的態様は特に制限されず、例えば、後述するように、吸収塔や放散塔、捕集塔、蒸留塔などが挙げられる。 In the gas-liquid contact method of the present invention, the number of plates in the plate column is usually multistage, and is usually 3 or more, preferably 4 or more, more preferably from the viewpoint of obtaining the number of theoretical plates necessary for distillation separation. Is 5 or more. On the other hand, from the viewpoint of preventing the tower height of the plate tower from becoming excessively high, it is usually 40 or less, preferably 30 or less, and more preferably 25 or less. Moreover, the specific aspect of a plate tower is not specifically limited, For example, an absorption tower, a stripping tower, a collection tower, a distillation tower etc. are mentioned so that it may mention later.
本発明の気液接触方法の適用先は特に制限されず、排ガスからの脱硫、脱二酸化炭素、脱酸性ガスなどの有害な化学物質を含むガスを液に吸収させる場合など、その適用先は広い。例えば、吸収塔として棚段塔を用いる場合では、有害な化学物質を含むガスが液に吸収され、本発明の構成及び条件を満足することにより、差圧の上昇なく、気液接触が効率よく実施され長時間安定的に運転が行われる。また、放散塔として棚段塔を用いる場合では、ガス中の有用な化学物質を液に可能な限り吸収させた後に、残ガスを大気に放散する。これも、本発明の構成及び条件を満足することにより、差圧の上昇なく、気液接触が効率よく実施され長時間安定的に運転が行われる。 The application destination of the gas-liquid contact method of the present invention is not particularly limited, and the application destination is wide, for example, when a gas containing a harmful chemical substance such as desulfurization from exhaust gas, carbon dioxide removal, deacidification gas is absorbed in the liquid. . For example, in the case of using a plate tower as an absorption tower, gas containing harmful chemical substances is absorbed into the liquid, and by satisfying the configuration and conditions of the present invention, gas-liquid contact is efficiently performed without increasing the differential pressure. Implemented and operated stably for a long time. In the case where a plate tower is used as the stripping tower, a useful chemical substance in the gas is absorbed in the liquid as much as possible, and then the residual gas is stripped into the atmosphere. Also by satisfying the configuration and conditions of the present invention, the gas-liquid contact is efficiently performed and the operation is stably performed for a long time without increasing the differential pressure.
また、本発明の気液接触方法は、例えば、アクリル酸の製造やポリアルキレンエーテルグリコールジエステルの製造、ポリテトラメチレンエーテルグリコールジ酢酸エステルの製造などに適用できる。以下では、適用先をアクリル酸の製造方法、より具体的には該アクリル酸の製造方法における粗アクリル酸の生成工程として記載するが、本発明の気液接触方法の適用先がこれに限定されるわけではない。 Moreover, the gas-liquid contact method of this invention is applicable to manufacture of acrylic acid, manufacture of polyalkylene ether glycol diester, manufacture of polytetramethylene ether glycol diacetate, etc., for example. In the following, the application destination is described as a production method of acrylic acid, more specifically, as a production step of crude acrylic acid in the production method of acrylic acid, but the application destination of the gas-liquid contact method of the present invention is limited to this. I don't mean.
アクリル酸は、通常には、プロピレンを酸化し、アクリル酸を含む粗アクリル酸を得るアクリル酸生成工程を含む製造方法によって得られる。さらに、該粗アクリル酸を精製する精製工程を含んでもよい。具体的には、プロピレンを酸素含有ガスとの気相接触酸化反応により粗アクリル酸含有ガスとし、粗アクリル酸含有ガスを捕集塔にて水等の溶剤によりアクリル酸溶液とし、次いで、蒸留により捕集に用いた溶媒を分離して粗アクリル酸とし、更に蒸留及び/或いは晶析により不純物を分離することにより精製アクリル酸とする。
本発明の気液接触方法は、前記アクリル酸の製造方法における、アクリル酸含有液を得る生成工程において、棚段塔である捕集塔に好ましく適用される。
Acrylic acid is usually obtained by a production method including an acrylic acid production step in which propylene is oxidized to obtain crude acrylic acid containing acrylic acid. Further, a purification step for purifying the crude acrylic acid may be included. Specifically, propylene is made into a crude acrylic acid-containing gas by a gas phase catalytic oxidation reaction with an oxygen-containing gas, the crude acrylic acid-containing gas is made into an acrylic acid solution with a solvent such as water in a collection tower, and then distilled. The solvent used for collection is separated into crude acrylic acid, and further purified acrylic acid is obtained by separating impurities by distillation and / or crystallization.
The gas-liquid contact method of the present invention is preferably applied to a collection tower which is a plate tower in the production step of obtaining an acrylic acid-containing liquid in the acrylic acid production method.
図1は、本発明の気液接触方法の一実施態様における捕集塔内の模式図である。
1は捕集塔の塔壁、2は棚板であり、一段毎にその設置位置及び/或いは形状が異なり、隣接する上下2段の棚板により、捕集塔の断面が完全に覆われるように配置される。該上下2段の棚板の総断面積は、該捕集塔断面を完全に覆う為に捕集塔の断面積の1倍以上
が必須であるが、捕集塔内を降下する液が該棚板をすり抜けてしまわぬように、実質的には1.05倍以上が必要であり、1.1倍以上がより好ましい。該比率が大きくなるほど、ガスの流通路、つまり棚板で覆われない部分が狭まるので、1.5倍未満が好ましく、1.3倍未満がより好ましい。該上下2段の棚板の面積は等しい必要はないが、同様にガスの流通路を確保する観点から、その比率は0.9〜1.1の範囲内が好ましい。
FIG. 1 is a schematic view in a collection tower in one embodiment of the gas-liquid contact method of the present invention.
1 is a tower wall of the collection tower, 2 is a shelf board, and the installation position and / or shape is different for each stage so that the section of the collection tower is completely covered by the adjacent upper and lower shelf boards. Placed in. The total cross-sectional area of the two upper and lower shelf plates must be at least 1 times the cross-sectional area of the collection tower in order to completely cover the cross-section of the collection tower. In order not to slip through the shelf board, 1.05 times or more is required substantially, and 1.1 times or more is more preferable. The larger the ratio, the narrower the gas flow passage, that is, the portion not covered by the shelf board, so that it is preferably less than 1.5 times, more preferably less than 1.3 times. The areas of the two upper and lower shelves need not be equal, but the ratio is preferably in the range of 0.9 to 1.1 from the viewpoint of securing a gas flow path.
3は棚板上に設けられた孔であり、主に上下2段の棚板が重なり合った箇所に設けられる。当該箇所以外にも孔を設けることができるが、この場合、該孔から落下した液は、その下の棚板の脇をすり抜け、2段下の棚板に到達することになり、気液接触の点で不利である。故に、該重なり合わない箇所に設けられる孔数は、該重なり合う箇所に設けられる孔数に対して、半分以下とすることが好ましい。 3 is a hole provided on the shelf board, and is mainly provided at the place where the upper and lower shelf boards overlap. A hole can be provided in addition to the location, but in this case, the liquid that has fallen from the hole passes through the side of the shelf below it and reaches the shelf below the second level, and the gas-liquid contact This is disadvantageous. Therefore, it is preferable that the number of holes provided in the non-overlapping portions is half or less than the number of holes provided in the overlapping portions.
孔の大きさは、落下する液の偏りを無くす為、孔径を同一とし、対象性を高く配置することが好ましい。板厚に対して孔径が小さいと、液が通過する際の摩擦が大きく、液の落下を妨げる要因となるため、孔径は板厚に対して少なくとも3倍以上が好ましく、より好ましくは4倍以上である。また、液の表面張力による影響を小さくする為、孔径は少なくとも5mm以上が好ましく、より好ましくは8mm以上である。孔径が大きすぎると、孔数が減る為、孔を均一に配置するのが難しくなり、また孔から落下する液柱の形成する表面積も減少して気液接触の効率が低下するため、孔径は20mm以下が好ましく、より好ましくは15mm以下である。 In order to eliminate the unevenness of the falling liquid, it is preferable that the hole diameter is the same and the object is arranged with high objectivity. If the hole diameter is small with respect to the plate thickness, the friction when the liquid passes increases, which causes the liquid to be prevented from falling. Therefore, the hole diameter is preferably at least 3 times, more preferably 4 times or more the plate thickness. It is. Further, in order to reduce the influence of the surface tension of the liquid, the hole diameter is preferably at least 5 mm or more, more preferably 8 mm or more. If the hole diameter is too large, the number of holes will decrease, making it difficult to arrange the holes uniformly, and the surface area formed by the liquid column falling from the holes will also decrease, reducing the efficiency of gas-liquid contact. 20 mm or less is preferable, More preferably, it is 15 mm or less.
孔同士の間隔が狭いと、孔からの落下液により形成される液柱同士が合流し易くなるため、隣接する孔同士の中心間距離は、孔径の2倍以上が好ましい。中心間距離の上限に制約は無いが、該距離が長くなるほど、必要数の孔を棚板上に配置するのが難しくなる為、5倍未満が妥当である。 When the interval between the holes is narrow, the liquid columns formed by the liquid falling from the holes are likely to merge with each other. Therefore, the center-to-center distance between adjacent holes is preferably at least twice the hole diameter. Although there is no restriction on the upper limit of the center-to-center distance, the longer the distance is, the more difficult it is to arrange the necessary number of holes on the shelf board.
4は棚板の周囲で、塔内壁面に接していない箇所に設けられた堰である。棚板上に液深hL(m)で存在する液が該板上に設けられた孔から落下した場合、摩擦等を無視すれば、液の孔からの落下速度v(m/s)=(2ghL)1/2と表される。捕集塔運転時の塔内液流量をV(m3/s)、棚板上の開孔部総面積をS(m2)、重力加速度をg(m/s2)とすれば、hL=(V/S)2/2gとなるが、実際には摩擦等が生じる為hLはより大きくなる。一旦液が堰を超えて流れる状態が生じてしまうと、容易には元の状態に戻らないケースもある為、充分な堰高さが必要であり、少なくとも上記計算値の3.2倍以上、より好ましくは3.5倍以上が必要である。つまり、棚板に設けられた堰高さh(m)は8×(V/S)2/5gを満たす必要がある。但し各々の数値に関わらず、安定した液深を維持する目的から、hは20mm以上であることが好ましい。また、hが高いほど堰を超えて液が流れる可能性は低くなるが、ガスの流路を狭めることになるので、過度に高くすることは避けるべきであり、200mm未満が好ましく、より好ましくは150mm未満である。
図2は、本発明の気液接触方法の一実施態様における捕集塔内の模式図である。棚板の対象性を高めることで、液及びガスの流れがより均一化され、安定した気液接触を行うことが可能である。 FIG. 2 is a schematic view inside the collection tower in one embodiment of the gas-liquid contact method of the present invention. By increasing the target property of the shelf board, the flow of liquid and gas is made more uniform, and stable gas-liquid contact can be performed.
以下に実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
[比較例]
図3に示す装置を用い、プロピレンの接触気相酸化反応により得られたアクリル酸含有
ガスからのアクリル酸捕集を行った。21は捕集塔本体、22はアクリル酸含有ガスの供給ライン、23は塔底部に備えられた7段のバッフルトレイ、24は途中に冷却装置を備えた塔底循環ライン、25は捕集されたアクリル酸水溶液の抜出ライン、26はデュアルフロートレイ、27はバブルキャップトレイ、28は塔頂の排ガスライン、29は捕集用水の供給ライン、である。
[Comparative example]
Using the apparatus shown in FIG. 3, acrylic acid was collected from an acrylic acid-containing gas obtained by a catalytic gas phase oxidation reaction of propylene. 21 is a collection tower main body, 22 is a supply line for acrylic acid-containing gas, 23 is a seven-stage baffle tray provided at the bottom of the tower, 24 is a tower bottom circulation line equipped with a cooling device in the middle, and 25 is collected. An acrylic acid aqueous solution extraction line, 26 is a dual flow tray, 27 is a bubble cap tray, 28 is an exhaust gas line at the top of the column, and 29 is a supply line for water for collection.
バッフルトレイ部におけるガス流量は16〜20t/h、塔内の空塔速度1.2〜1.8m/s、該部における塔内液流量は160〜165m3/h、バッフルトレイの形状は7段全て同一で塔断面積に対する割合は約3/4であり、バッフルトレイ上の孔径は12mm、隣接する孔同士の間隔は30mm、換算される開孔部からの液の落下速度は、0.60〜0.62m/sであった。1年間の連続運転中に数回、該バッフルトレイ部の差圧上昇が起き、その都度消泡剤の投入と運転負荷の低減により該差圧上昇の緩和を行った。バッフルトレイの堰高さは39mmであり、(V/S)2/2gより算出される値の2〜2.2倍であった。 The gas flow rate in the baffle tray section is 16 to 20 t / h, the superficial velocity in the tower is 1.2 to 1.8 m / s, the liquid flow rate in the tower is 160 to 165 m 3 / h, and the shape of the baffle tray is 7 All the stages are the same, and the ratio to the cross-sectional area of the tower is about 3/4, the hole diameter on the baffle tray is 12 mm, the distance between adjacent holes is 30 mm, and the liquid falling rate from the aperture is 0. It was 60 to 0.62 m / s. During the continuous operation for one year, the differential pressure in the baffle tray increased several times, and the differential pressure increase was alleviated by introducing an antifoaming agent and reducing the operating load each time. Weir height of the baffle tray is 39 mm, was 2 to 2.2 times the value calculated from (V / S) 2 / 2g .
[実施例]
比較例と同様にして、但しバッフルトレイの堰高さを全て72mmに変更して運転を行った。3年間の運転期間中、バッフルトレイ部における差圧上昇は一度も確認されなかった。該堰高さは、(V/S)2/2gより算出される値に対して3.7〜3.9倍であった。また、運転停止時の塔内確認において、該堰の棚板側に面した側の上方と下方で汚れに有意差があり、運転期間中、塔内の液が該堰を超えて流れていなかった事が確認された。
[Example]
The operation was performed in the same manner as in the comparative example except that the height of the baffle tray was changed to 72 mm. During the operation period of 3 years, no increase in differential pressure in the baffle tray was confirmed. Weir height was 3.7 to 3.9 times the value calculated from (V / S) 2 / 2g . In addition, in the confirmation in the tower when the operation is stopped, there is a significant difference in dirt between the upper side and the lower side of the weir facing the shelf side, and the liquid in the tower does not flow over the weir during the operation period. It was confirmed that
1,11 捕集塔の塔壁
2,12 棚板
3,13 棚板上に設けられた孔
4,14 堰
21 捕集塔本体
22 アクリル酸含有ガスの供給ライン
23 バッフルトレイ
24 塔底循環ライン
25 アクリル酸水溶液の抜出ライン
26 デュアルフロートレイ
27 バブルキャップトレイ
28 塔頂の排ガスライン
29 捕集用水の供給ライン
DESCRIPTION OF
Claims (2)
各段において、該堰の高さ(h)が下記式(1)を満たし、
該孔の径が20mm以下である、気液接触方法。
A gas-liquid contact method in which a gas and a liquid are brought into contact with a shelf tower in which a multi-stage shelf board having a weir and a hole is installed,
In each stage, the height of the weir (h) is smaller than the formula (1),
A gas-liquid contact method, wherein the hole has a diameter of 20 mm or less .
該生成工程が請求項1に記載の気液接触方法を含むアクリル酸の製造方法。 In the method for producing acrylic acid, which includes an acrylic acid production step of oxidizing propylene and obtaining crude acrylic acid containing acrylic acid,
A method for producing acrylic acid, wherein the production step comprises the gas-liquid contact method according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015250540A JP6575348B2 (en) | 2015-12-22 | 2015-12-22 | Gas-liquid contact method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015250540A JP6575348B2 (en) | 2015-12-22 | 2015-12-22 | Gas-liquid contact method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017113688A JP2017113688A (en) | 2017-06-29 |
JP6575348B2 true JP6575348B2 (en) | 2019-09-18 |
Family
ID=59232891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015250540A Active JP6575348B2 (en) | 2015-12-22 | 2015-12-22 | Gas-liquid contact method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6575348B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108295497B (en) * | 2018-04-08 | 2023-12-15 | 合润科技有限公司 | Rectifying column tray for preparing poly alpha olefin |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5527045A (en) * | 1978-08-15 | 1980-02-26 | Mitsubishi Heavy Ind Ltd | Plate structure in gas liquid contact equipment |
JP4514901B2 (en) * | 1999-06-03 | 2010-07-28 | 株式会社日本触媒 | Purification method for (meth) acrylic acid, etc. |
JP4233007B2 (en) * | 2001-09-28 | 2009-03-04 | 株式会社日本触媒 | Refining equipment with low thermal conductivity material |
-
2015
- 2015-12-22 JP JP2015250540A patent/JP6575348B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017113688A (en) | 2017-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5410044B2 (en) | Contact tower and processing method | |
US9018416B2 (en) | Thermal separation process | |
KR101351697B1 (en) | Baffle assembly module for vertical staged polymerization reactors | |
KR101386106B1 (en) | Gas-liquid contact apparatus | |
JP4308372B2 (en) | Method and apparatus for absorbing (meth) acrylic acid and / or (meth) acrolein | |
EP2996785B1 (en) | A liquid mixing collector and a method for its use | |
US9958201B2 (en) | Column for thermal treatment of a fluid | |
US20170173492A1 (en) | Column for thermal treatment of fluid mixtures | |
MXPA02007937A (en) | Gas liquid contact tray. | |
JP6575348B2 (en) | Gas-liquid contact method | |
US8454731B2 (en) | Configuration of contacting zones in vapor-liquid contacting apparatuses | |
CN107073355B (en) | Tower with support structure between two substrates for thermally treating a fluid mixture | |
US6830607B2 (en) | Slurry tray and slurry tray assembly for use in fractionation towers | |
US10357740B2 (en) | Liquid redistributor | |
US9914090B2 (en) | Vapor-liquid contacting apparatuses and methods for removing contaminants from gas streams | |
CN103673683A (en) | Multi-shell-pass recycle gas condenser | |
JP6063269B2 (en) | Redisperser for packed tower, packed tower and distillation method of vinylidene chloride monomer | |
JP2013244464A (en) | Redispersion device for packed column, packed column, and vinylidene chloride monomer distilling method | |
CN212369604U (en) | Single overflow sieve plate tower | |
JP4514901B2 (en) | Purification method for (meth) acrylic acid, etc. | |
RU201962U1 (en) | Column for contacting gas with liquid | |
WO2005115963A1 (en) | Process for producing (meth)acrylic acid or (meth)acrylic ester | |
JP2000254402A (en) | Tray type gas-liquid contact device | |
CN111330303A (en) | Single overflow sieve plate tower | |
CN100387568C (en) | Thermal rectification method and rectifying column |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20170425 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180809 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190423 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190617 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190723 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190805 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6575348 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |