JP6574360B2 - Determination of crocetin - Google Patents

Determination of crocetin Download PDF

Info

Publication number
JP6574360B2
JP6574360B2 JP2015173264A JP2015173264A JP6574360B2 JP 6574360 B2 JP6574360 B2 JP 6574360B2 JP 2015173264 A JP2015173264 A JP 2015173264A JP 2015173264 A JP2015173264 A JP 2015173264A JP 6574360 B2 JP6574360 B2 JP 6574360B2
Authority
JP
Japan
Prior art keywords
crocetin
aqueous solution
exchange resin
solution
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015173264A
Other languages
Japanese (ja)
Other versions
JP2017049149A (en
Inventor
桂 村上
桂 村上
佳恵 杉本
佳恵 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Vitamin Co Ltd
Original Assignee
Riken Vitamin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Vitamin Co Ltd filed Critical Riken Vitamin Co Ltd
Priority to JP2015173264A priority Critical patent/JP6574360B2/en
Publication of JP2017049149A publication Critical patent/JP2017049149A/en
Application granted granted Critical
Publication of JP6574360B2 publication Critical patent/JP6574360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、クロセチンの定量方法に関する。   The present invention relates to a method for quantifying crocetin.

カロテノイドの一種であるクロセチンは、抗酸化作用、眼精疲労、睡眠障害の改善等の様々な生理機能を有するため、健康食品やサプリメント等の素材として使用されている他、ドリンクやゼリー等の飲食品にも配合されている。そこで、クロセチンを含有する製品の品質管理のため、クロセチンの含有量を定量する必要がある。   Crocetin, a kind of carotenoid, has various physiological functions such as antioxidant action, eye strain, and improvement of sleep disorders, so it is used as a material for health foods and supplements, as well as food and drink such as drinks and jellies. Also included in the product. Therefore, it is necessary to quantify the content of crocetin for quality control of products containing crocetin.

カロテノイドの定量方法としては、高速液体クロマトグラフィー(HPLC)により分析する直接定量法が行われている(特許文献1参照)。しかし、この方法は、標準品として市販されている高純度のカロテノイドが入手できなければ正確な定量が行えず、また専用の分析機器を必要とするため、利便性に問題を抱えていた。   As a method for quantifying carotenoids, a direct quantification method for analysis by high performance liquid chromatography (HPLC) has been performed (see Patent Document 1). However, this method has a problem in convenience because accurate quantification cannot be performed unless a high-purity carotenoid commercially available as a standard product is available, and a dedicated analytical instrument is required.

他方、カロテノイドを含有する試料について分光光度計を用いて吸光度を測定し、文献に報告されているカロテノイドの吸光係数から該試料のカロテノイド含有量を算出する間接定量法も行われている(特許文献2参照)。しかし、この方法は、試料に含まれるカロテノイド以外の物質による光の吸収のため、実際のカロテノイドの含有量よりも高い数値が求められる傾向があり、正確な定量が比較的困難である。   On the other hand, an indirect quantification method is also performed in which the absorbance of a carotenoid-containing sample is measured using a spectrophotometer and the carotenoid content of the sample is calculated from the absorbance coefficient of the carotenoid reported in the literature (Patent Literature). 2). However, this method tends to require a numerical value higher than the actual carotenoid content due to light absorption by substances other than carotenoids contained in the sample, and accurate quantification is relatively difficult.

そして、上記直接定量法及び間接定量法における問題は、カロテノイドの中でも特にクロセチンの定量において強く解決が望まれていた。   The problems in the direct quantification method and indirect quantification method are strongly desired to be solved particularly in the quantification of crocetin among carotenoids.

特開2011−127905号公報(請求項1)JP 2011-127905 A (Claim 1) 特開2014−110765号公報(明細書段落0058〜0059)JP 2014-110765 A (paragraph paragraphs 0058 to 0059)

本発明は、クロセチンの標準品を用いることなく簡便に正確な定量が可能なクロセチンの定量方法を提供することを目的とする。   An object of the present invention is to provide a method for quantifying crocetin that allows simple and accurate quantification without using a standard crocetin.

本発明者等は、上記課題に対して鋭意検討を行った結果、クロセチンを含有する組成物をアルカリ性水溶液に溶解して不溶物を除去した後、これを陰イオン交換樹脂及び陽イオン交換樹脂等を用いて処理することにより、吸光度測定によるクロセチンの定量精度が向上することを見出し、この知見に基づいて本発明をなすに至った。   As a result of diligent studies on the above problems, the present inventors have dissolved a composition containing crocetin in an alkaline aqueous solution to remove insoluble matters, and then used the anion exchange resin and the cation exchange resin. It was found that the accuracy of quantification of crocetin by absorbance measurement is improved by processing with the use of this, and the present invention has been made based on this finding.

すなわち、本発明は、下記の(1)〜(6)からなっている。
(1)以下の工程(A)〜(H)を順次行うことを特徴とするクロセチンの定量方法。
(A):クロセチンを含有する組成物をアルカリ性水溶液に溶解する工程
(B):工程(A)で得られた溶解液に含まれる不溶物を除去する工程
(C):工程(B)で不溶物が除去された溶解液を陰イオン交換樹脂に接触させる工程
(D):工程(C)後の陰イオン交換樹脂をアルカリ性水溶液で洗浄する工程
(E):工程(D)後の陰イオン交換樹脂を有機溶媒で洗浄する工程
(F):工程(E)後の陰イオン交換樹脂に吸着している成分を、酸剤を含有する高極性有機溶媒で溶出させ、溶出液を回収する工程
(G):工程(F)で回収した溶出液を陽イオン交換樹脂に接触させ、その非吸着画分を回収する工程
(H):工程(G)で得られた非吸着画分の回収液について、クロセチンに由来する吸光度を測定する工程
(2)アルカリ性水溶液が、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化カルシウム水溶液、炭酸ナトリウム水溶液、炭酸水素ナトリウム水溶液、四ホウ酸ナトリウム水溶液及びアンモニア水溶液から選ばれる1種以上であることを特徴とする前記(1)に記載のクロセチンの定量方法。
(3)酸剤が、ギ酸、リン酸、塩酸、酢酸、トリフルオロ酢酸及びクエン酸から選ばれる1種以上であることを特徴とする前記(1)に記載のクロセチンの定量方法。
(4)有機溶媒が、メタノール、エタノール、プロパノール、ブタノール、アセトン、ピリジン、ジメチルスルホキシド及びジメチルホルムアミドから選ばれる1種以上であることを特徴とする前記(1)に記載のクロセチンの定量方法。
(5)高極性有機溶媒が、メタノール、エタノール、イソプロパノール、ジメチルスルホキシド、ジメチルホルムアミド、ピリジン及びアセトンから選ばれる1種以上であることを特徴とする前記(1)に記載のクロセチンの定量方法。
(6)クロセチンを含有する組成物が、飲食品又は医薬品である前記(1)〜(5)のいずれかに記載のクロセチンの定量方法。
That is, this invention consists of following (1)-(6).
(1) A method for quantitatively determining crocetin, comprising sequentially performing the following steps (A) to (H).
(A): Step of dissolving crocetin-containing composition in alkaline aqueous solution (B): Step of removing insoluble matter contained in solution obtained in step (A) (C): Insoluble in step (B) Step (D) in which the dissolved solution from which substances have been removed is brought into contact with an anion exchange resin: Step (E) in which the anion exchange resin after step (C) is washed with an alkaline aqueous solution Step (F) of washing the resin with an organic solvent: A step of eluting the components adsorbed on the anion exchange resin after the step (E) with a highly polar organic solvent containing an acid agent and collecting the eluate ( G): The eluate recovered in step (F) is brought into contact with a cation exchange resin, and the non-adsorbed fraction is recovered (H): the recovered liquid of the non-adsorbed fraction obtained in step (G) Step of measuring absorbance derived from crocetin (2) alkaline water The liquid is one or more selected from a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, a calcium hydroxide aqueous solution, a sodium carbonate aqueous solution, a sodium hydrogen carbonate aqueous solution, a sodium tetraborate aqueous solution, and an ammonia aqueous solution. The method for quantifying crocetin according to 1).
(3) The method for quantifying crocetin according to (1) above, wherein the acid agent is at least one selected from formic acid, phosphoric acid, hydrochloric acid, acetic acid, trifluoroacetic acid and citric acid.
(4) The method for quantifying crocetin according to (1) above, wherein the organic solvent is at least one selected from methanol, ethanol, propanol, butanol, acetone, pyridine, dimethylsulfoxide and dimethylformamide.
(5) The crocetin quantification method according to (1) above, wherein the highly polar organic solvent is at least one selected from methanol, ethanol, isopropanol, dimethyl sulfoxide, dimethylformamide, pyridine and acetone.
(6) The method for quantifying crocetin according to any one of (1) to (5), wherein the composition containing crocetin is a food or drink or a pharmaceutical product.

本発明の定量方法によれば、クロセチンの標準品を用いることなく簡便に正確なクロセチンの定量が可能である。   According to the quantification method of the present invention, accurate and accurate quantification of crocetin is possible without using a standard crocetin standard.

本発明で言うところのクロセチンとは、式   In the present invention, crocetin refers to a formula

Figure 0006574360
で表される化合物である。このクロセチンは、通常、カロテノイド系の黄色色素であるクロシン(クロセチンのジゲンチオビオースエステル)を加水分解することにより得られる。クロシンは、アカネ科クチナシ(Gardenia augusta MERRIL var.grandiflora HORT.,Gardenia jasminoides ELLIS)の果実、サフランの柱頭の乾燥物等に含まれるが、クロシンを得るための工業的原料としてはクチナシの果実が好ましく用いられる。
Figure 0006574360
It is a compound represented by these. This crocetin is usually obtained by hydrolyzing crocin (a digentiobiose ester of crocetin), which is a carotenoid yellow pigment. Crocin is contained in the fruits of Rubiaceae gardenia (Gardenia augusta MERRIL var.grandiflora HORT., Gardenia jasminoides ELLIS), dried saffron stigma, etc., but as an industrial raw material for obtaining crocin, gardenia Used.

本発明のクロセチンの定量方法は、クロセチンを含有する組成物について次の工程(A)〜(F)を順次実施することを特徴とする。以下、各工程について説明する。   The method for quantifying crocetin according to the present invention is characterized in that the following steps (A) to (F) are sequentially performed on a composition containing crocetin. Hereinafter, each step will be described.

[工程(A)]
工程(A)は、クロセチンを含有する組成物(以下、単に「試料」ともいう)をアルカリ性水溶液に溶解する工程である。アルカリ性水溶液としては、pH8.0以上の溶液であれば特に制限はないが、例えば、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化カルシウム水溶液、炭酸ナトリウム水溶液、炭酸水素ナトリウム水溶液、四ホウ酸ナトリウム水溶液及びアンモニア水溶液から選ばれる1種以上が挙げられる。溶解方法に特に制限はなく、例えば、攪拌による溶解、超音波照射による溶解、振とうによる溶解等種々の方法が使用可能であるが、超音波照射による溶解が好ましく使用される。尚、常温で固体の試料であって加熱により流動性を生じるもの(例えば、ゼリー等)の場合、溶解性を高めるため、予め該試料を適宜加熱しても良い。アルカリ性水溶液の濃度は、通常0.001〜2M、好ましくは0.05M〜1Mである。アルカリ性水溶液の使用量に特に制限はないが、試料100質量部に対し、通常200〜100000質量部、好ましくは500〜20000質量部である。また、溶解温度に特に制限はないが、通常10〜90℃、好ましくは20〜80℃である。
[Step (A)]
Step (A) is a step of dissolving a composition containing crocetin (hereinafter also simply referred to as “sample”) in an alkaline aqueous solution. The alkaline aqueous solution is not particularly limited as long as it is a pH 8.0 or higher solution. For example, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, calcium hydroxide aqueous solution, sodium carbonate aqueous solution, sodium hydrogen carbonate aqueous solution, sodium tetraborate 1 or more types chosen from aqueous solution and aqueous ammonia solution are mentioned. There are no particular limitations on the dissolution method, and various methods such as dissolution by stirring, dissolution by ultrasonic irradiation, and dissolution by shaking can be used, but dissolution by ultrasonic irradiation is preferably used. In addition, in the case of a sample that is solid at room temperature and generates fluidity by heating (for example, jelly), the sample may be appropriately heated in advance in order to increase the solubility. The density | concentration of alkaline aqueous solution is 0.001-2M normally, Preferably it is 0.05M-1M. Although there is no restriction | limiting in particular in the usage-amount of alkaline aqueous solution, It is 200-100000 mass parts normally with respect to 100 mass parts of samples, Preferably it is 500-20000 mass parts. Moreover, although there is no restriction | limiting in particular in dissolution temperature, Usually, 10-90 degreeC, Preferably it is 20-80 degreeC.

[工程(B)]
工程(B)は、工程(A)で得られた溶解液に含まれる不溶物〔即ち、試料中のクロセチン以外の成分(夾雑成分)であってアルカリ性水溶液に溶解しないもの〕を除去する工程である。該不溶物の除去方法に特に制限はなく、例えば、遠心分離、ろ過等、自体公知の固液分離方法が使用可能であるが、ろ過が好ましく使用される。ろ過方法に特に制限はないが、例えば、フィルターと慣用の装置とを用いて、常法によりろ過することができる。フィルターとしては、例えばシリンジフィルターを使用することが好ましく、より具体的には、Polyvinylidenedifluoride(PVDF)製やCellulose Acetate製等の親水性シリンジフィルターを用いることが好ましい。また、シリンジフィルターは、不溶物による目詰まり防止のため、二層構造からなるものの使用が好ましい。工程(B)で除去される不溶物は、試料の配合組成等により異なり一様ではないが、例えば、β−カロチン、リコピン、アスタキサンチン、ルテイン、β−クリプトキサンチン、ゼアキサンチン、カプサンチン等のカロテノイド類とそのエステル体、ユビキノン等が挙げられる。
[Step (B)]
Step (B) is a step of removing insoluble matters (that is, components other than crocetin (contaminating components) in the sample and not dissolved in the alkaline aqueous solution) contained in the solution obtained in step (A). is there. The method for removing the insoluble matter is not particularly limited, and for example, a solid-liquid separation method known per se such as centrifugation or filtration can be used, but filtration is preferably used. Although there is no restriction | limiting in particular in the filtration method, For example, it can filter by a conventional method using a filter and a conventional apparatus. As the filter, for example, a syringe filter is preferably used, and more specifically, a hydrophilic syringe filter such as Polyvinylidene difluoride (PVDF) or Cellulose Acetate is preferably used. In addition, it is preferable to use a syringe filter having a two-layer structure in order to prevent clogging due to insoluble matter. The insoluble matter to be removed in the step (B) varies depending on the composition of the sample and the like, and is not uniform. For example, carotenoids such as β-carotene, lycopene, astaxanthin, lutein, β-cryptoxanthin, zeaxanthin, capsanthin and the like The ester body, ubiquinone, etc. are mentioned.

[工程(C)]
工程(C)は、工程(B)で不溶物が除去された溶解液を陰イオン交換樹脂に接触させる工程である。工程(C)により、工程(B)で不溶物が除去された溶解液中に存在するクロセチンが陰イオン交換樹脂に吸着し、該溶解液からクロセチンが分離される。接触方法としては、工程(B)で不溶物が除去された溶解液中に存在するクロセチンを陰イオン交換樹脂に吸着させることができる方法であれば特に制限はなく、例えば、バッチ方式、カラム充填方式等が挙げられ、好ましくは、該溶解液を、陰イオン交換樹脂を充填した固相抽出カラムに通液し、該溶解液中のクロセチンを固相に吸着させる方法である。尚、この方法において、通液方法に特に制限はなく、自然落下法、加圧法、減圧法等の自体公知の通液手段を用いることができる。また、この方法において、工程(B)で不溶物が除去された溶解液を通液する前に、予め、陰イオン交換樹脂を充填したカラムに対し、メタノール及びアルカリ性水溶液の順に通液すること等によりコンディショニングをしておくのが好ましい。該コンディショニングに用いられるアルカリ水溶液としては、工程(A)に使用可能なアルカリ水溶液であればいずれも好ましく用いることができる。
[Step (C)]
Step (C) is a step of bringing the solution from which insolubles have been removed in step (B) into contact with the anion exchange resin. In step (C), crocetin present in the solution from which insolubles have been removed in step (B) is adsorbed to the anion exchange resin, and crocetin is separated from the solution. The contacting method is not particularly limited as long as it can adsorb crocetin present in the solution from which insoluble matters have been removed in step (B) to the anion exchange resin. For example, batch method, column packing The method is preferably a method in which the solution is passed through a solid phase extraction column filled with an anion exchange resin, and crocetin in the solution is adsorbed on the solid phase. In addition, in this method, there is no restriction | limiting in particular in a liquid flow method, per se well-known liquid flow means, such as a natural fall method, a pressurization method, and a pressure reduction method, can be used. Further, in this method, before passing the solution from which insoluble matters have been removed in step (B), methanol and an alkaline aqueous solution are passed through a column filled with an anion exchange resin in advance. Is preferably conditioned. As the alkaline aqueous solution used for conditioning, any alkaline aqueous solution that can be used in the step (A) can be preferably used.

工程(C)で用いられる陰イオン交換樹脂としては、クロセチンを吸着可能なものであれば特に制限はなく、例えばカルボキシル基を有する化合物を吸着可能なものを用いることができる。そのような陰イオン交換樹脂として、例えばOasis MAX(商品名:日本ウォーターズ社製)等が商業的に製造及び販売されており、本発明ではこれを用いることができる。工程(C)における陰イオン交換樹脂の使用量は、工程(B)で不溶物が除去された溶解液100体積部に対して、通常5〜200体積部、より好ましくは、10〜40体積部であることが好ましい。   The anion exchange resin used in the step (C) is not particularly limited as long as it can adsorb crocetin. For example, a resin capable of adsorbing a compound having a carboxyl group can be used. As such an anion exchange resin, for example, Oasis MAX (trade name: manufactured by Nippon Waters Co., Ltd.) and the like are commercially produced and sold, and can be used in the present invention. The amount of the anion exchange resin used in the step (C) is usually 5 to 200 parts by volume, more preferably 10 to 40 parts by volume with respect to 100 parts by volume of the solution from which insolubles have been removed in the step (B). It is preferable that

[工程(D)]
工程(D)は、工程(C)後の陰イオン交換樹脂をアルカリ性水溶液で洗浄する工程である。工程(D)により、工程(C)において陰イオン交換樹脂に吸着した塩基性の高極性成分が主に除去される。洗浄方法としては、このような成分を除去できる方法であれば特に制限はなく、例えば、工程(C)後の陰イオン交換樹脂が充填された固相抽出カラムに対し、自然落下法、加圧法、減圧法等の自体公知の通液手段を用いてアルカリ性水溶液を通液し、通過液を廃棄する方法が挙げられる。
[Step (D)]
Step (D) is a step of washing the anion exchange resin after step (C) with an alkaline aqueous solution. By the step (D), the basic highly polar component adsorbed on the anion exchange resin in the step (C) is mainly removed. The washing method is not particularly limited as long as such a component can be removed. For example, a natural drop method or a pressure method is applied to a solid phase extraction column filled with an anion exchange resin after step (C). Examples thereof include a method in which an alkaline aqueous solution is passed using a known permeation means such as a decompression method and the passing solution is discarded.

工程(D)で用いられるアルカリ性水溶液としては、pH8.0以上の溶液であれば特に制限はないが、例えば、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化カルシウム水溶液、炭酸ナトリウム水溶液、炭酸水素ナトリウム水溶液、四ホウ酸ナトリウム水溶液及びアンモニア水溶液等が挙げられる。アルカリ性水溶液の濃度は、通常0.001〜2M、好ましくは0.05〜1Mである。アルカリ性水溶液の使用量に特に制限はないが、工程(C)後の陰イオン交換樹脂100体積部に対して、通常200〜2000体積部、好ましくは500〜1500体積部である。尚、工程(D)で除去される成分は、試料の配合組成等により異なり一様ではないが、例えば、アントシアニン類やポリフェノール類等が挙げられる。   The alkaline aqueous solution used in the step (D) is not particularly limited as long as it is a pH 8.0 or higher solution. For example, a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, a calcium hydroxide aqueous solution, a sodium carbonate aqueous solution, a hydrogen carbonate Examples thereof include an aqueous sodium solution, an aqueous sodium tetraborate solution, and an aqueous ammonia solution. The density | concentration of alkaline aqueous solution is 0.001-2M normally, Preferably it is 0.05-1M. Although there is no restriction | limiting in particular in the usage-amount of alkaline aqueous solution, It is 200-2000 volume parts normally with respect to 100 volume parts of anion exchange resin after a process (C), Preferably it is 500-1500 volume parts. In addition, although the component removed by process (D) changes with the compounding composition of a sample, etc., it is not uniform, For example, anthocyanins, polyphenols, etc. are mentioned.

[工程(E)]
工程(E)は、工程(D)後の陰イオン交換樹脂を有機溶媒で洗浄する工程である。工程(E)により、工程(B)において十分に除去できなかった夾雑成分が除去される。洗浄方法としては、このような夾雑成分を除去できる方法であれば特に制限はなく、例えば、工程(D)後の陰イオン交換樹脂が充填された固相抽出カラムに有機溶媒を通液し、通過液を廃棄する方法が挙げられる。この方法において、通液方法に特に制限はなく、自然落下法、加圧法、減圧法等の自体公知の通液手段を用いることができる。
[Step (E)]
Step (E) is a step of washing the anion exchange resin after step (D) with an organic solvent. By the step (E), contaminant components that could not be sufficiently removed in the step (B) are removed. The washing method is not particularly limited as long as it is a method capable of removing such contaminant components. For example, an organic solvent is passed through a solid phase extraction column filled with an anion exchange resin after step (D), There is a method of discarding the passing liquid. In this method, the liquid passing method is not particularly limited, and per se known liquid passing means such as a natural dropping method, a pressurizing method, and a depressurizing method can be used.

工程(E)で用いられる有機溶媒としては、特に制限はないが、例えば、水及びメタノールのいずれにも混和し、且つ脂溶性物質を溶解し得るものが好ましく、そのような有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール、アセトン、ピリジン、ジメチルスルホキシド及びジメチルホルムアミドから選ばれる1種以上が挙げられる。有機溶媒の使用量に特に制限はないが、工程(C)後の陰イオン交換樹脂100体積部に対して、通常200〜10000体積部、好ましくは500〜2000体積部である。尚、工程(E)で除去される成分は、試料の配合組成等により異なり一様ではないが、例えば、β−カロチン、リコピン、アスタキサンチン、ルテイン、β−クリプトキサンチン、ゼアキサンチン、カプサンチン等のカロテノイド類とそのエステル体、ユビキノン等が挙げられる。   The organic solvent used in the step (E) is not particularly limited, but for example, an organic solvent that is miscible with both water and methanol and can dissolve a fat-soluble substance is preferable. Examples thereof include one or more selected from methanol, ethanol, propanol, butanol, acetone, pyridine, dimethyl sulfoxide, and dimethylformamide. Although there is no restriction | limiting in particular in the usage-amount of an organic solvent, It is 200-10000 volume parts normally with respect to 100 volume parts of anion exchange resins after a process (C), Preferably it is 500-2000 volume parts. The components to be removed in step (E) vary depending on the composition of the sample, etc., and are not uniform. For example, carotenoids such as β-carotene, lycopene, astaxanthin, lutein, β-cryptoxanthin, zeaxanthin, capsanthin, etc. And its ester, ubiquinone and the like.

[工程(F)]
工程(F)は、工程(E)後の陰イオン交換樹脂に吸着している成分を、酸剤を含有する高極性有機溶媒で溶出させ、溶出液を回収する工程である。工程(F)により、陰イオン交換樹脂に吸着したクロセチンを溶出させ、回収することができる。溶出方法としては、陰イオン交換樹脂に吸着したクロセチンを溶出できる方法であれば特に制限はなく、例えば、工程(E)後の陰イオン交換樹脂が充填された固相抽出カラムに酸剤を含有する高極性有機溶媒を通液し、通過液を回収する方法が挙げられる。この方法において、通液方法に特に制限はなく、自然落下法、加圧法、減圧法等の自体公知の通液手段を用いることができる。
[Step (F)]
Step (F) is a step of eluting the component adsorbed on the anion exchange resin after step (E) with a highly polar organic solvent containing an acid agent, and collecting the eluate. By the step (F), crocetin adsorbed on the anion exchange resin can be eluted and recovered. The elution method is not particularly limited as long as it can elute crocetin adsorbed on the anion exchange resin. For example, the solid phase extraction column packed with the anion exchange resin after step (E) contains an acid agent. And a method of passing the highly polar organic solvent and recovering the passing solution. In this method, the liquid passing method is not particularly limited, and per se known liquid passing means such as a natural dropping method, a pressurizing method, and a depressurizing method can be used.

工程(F)の高極性有機溶媒に含有される酸剤は、20℃のイオン交換水1Lに1g以上溶解し、且つ1g/1Lの濃度の20℃におけるpHが5以下の物質であって、高極性有機溶媒に可溶なものである。このような酸剤としては、例えば、ギ酸、リン酸、塩酸、酢酸、トリフルオロ酢酸及びクエン酸から選ばれる1種以上が挙げられ、中でも、定量精度の観点からギ酸又はリン酸が好ましく用いられる。   The acid agent contained in the highly polar organic solvent in the step (F) is a substance having 1 g or more dissolved in 1 L of ion-exchanged water at 20 ° C. and a pH of 5 or less at 20 ° C. at a concentration of 1 g / 1 L, It is soluble in highly polar organic solvents. Examples of such an acid agent include one or more selected from formic acid, phosphoric acid, hydrochloric acid, acetic acid, trifluoroacetic acid, and citric acid. Among these, formic acid or phosphoric acid is preferably used from the viewpoint of quantitative accuracy. .

工程(F)で用いられる高極性有機溶媒としては、比較的極性の高い有機溶媒であって、前記酸剤を可溶なものであれば特に制限はないが、例えば、メタノール、エタノール、イソプロパノール、ジメチルスルホキシド、ジメチルホルムアミド、ピリジン及びアセトンから選ばれる1種以上が挙げられ、中でも、定量精度の観点からメタノール、エタノール又はアセトンが好ましく用いられる。高極性有機溶媒に含有される酸剤の濃度は、通常0.05〜5%(w/v)、好ましくは0.1〜4%(w/v)である。   The highly polar organic solvent used in the step (F) is not particularly limited as long as it is a relatively highly polar organic solvent and can dissolve the acid agent. For example, methanol, ethanol, isopropanol, One or more selected from dimethyl sulfoxide, dimethylformamide, pyridine and acetone can be used, and among them, methanol, ethanol or acetone is preferably used from the viewpoint of quantitative accuracy. The concentration of the acid agent contained in the highly polar organic solvent is usually 0.05 to 5% (w / v), preferably 0.1 to 4% (w / v).

工程(F)において、酸剤を含有する高極性有機溶媒の使用量に特に制限はないが、工程(E)後の陰イオン交換樹脂100体積部に対して、通常200〜2000体積部、好ましくは500〜1500体積部である。   Although there is no restriction | limiting in particular in the usage-amount of the highly polar organic solvent containing an acid agent in a process (F), Usually, 200-2000 volume parts with respect to 100 volume parts of anion exchange resins after a process (E), Preferably Is 500-1500 parts by volume.

[工程(G)]
工程(G)は、工程(F)で回収した溶出液を陽イオン交換樹脂に接触させ、その非吸着画分を回収する工程である。工程(G)により、工程(D)において十分に除去されなかった成分(例えば、アントシアニン類やポリフェノール類等)は、陽イオン交換樹脂に吸着され、除去される。工程(F)で回収した溶出液を陽イオン交換樹脂に接触させ、その非吸着画分を回収する方法としては、工程(D)において十分に除去されなかった成分を除去できる方法であれば特に制限はないが、例えば、バッチ方式、カラム充填方式等が挙げられ、好ましくは、該溶出液を、陽イオン交換樹脂が充填された固相抽出カラムに通液し、通過液を回収する方法が挙げられる。この方法において、通液方法に特に制限はなく、自然落下法、加圧法、減圧法等の自体公知の通液手段を用いることができる。尚、この方法において、陽イオン交換樹脂が充填された固相抽出カラムに工程(F)で回収した溶出液を通液する前に、予め、該カラムに対し、工程(F)で用いられる「酸剤を含有する高極性有機溶媒」を通液すること等によりコンディショニングをしておくのが好ましい。また、この方法において、陽イオン交換樹脂が充填された固相抽出カラムに工程(F)で回収した溶出液を通液した後に、工程(F)で用いられる「酸剤を含有する高極性有機溶媒」を適量通液し、通過液を非吸着画分として更に回収することがクロセチンの回収率を高め、定量精度を高める観点から好ましい。
[Step (G)]
Step (G) is a step of bringing the eluate collected in step (F) into contact with a cation exchange resin and collecting the non-adsorbed fraction. By the step (G), components that are not sufficiently removed in the step (D) (for example, anthocyanins and polyphenols) are adsorbed on the cation exchange resin and removed. As a method for bringing the eluate collected in the step (F) into contact with a cation exchange resin and collecting the non-adsorbed fraction, a method that can remove components that have not been sufficiently removed in the step (D) is particularly useful. Although there is no limitation, for example, a batch method, a column packing method and the like can be mentioned. Preferably, there is a method in which the eluate is passed through a solid phase extraction column packed with a cation exchange resin and the passing solution is recovered. Can be mentioned. In this method, the liquid passing method is not particularly limited, and per se known liquid passing means such as a natural dropping method, a pressurizing method, and a depressurizing method can be used. In this method, before the eluate collected in step (F) is passed through a solid phase extraction column packed with a cation exchange resin, the column is used in advance in step (F). It is preferable to perform conditioning by passing a “high polarity organic solvent containing an acid agent” or the like. In this method, after passing the eluate collected in the step (F) through a solid phase extraction column packed with a cation exchange resin, the “highly polar organic acid containing acid agent” used in the step (F) is used. It is preferable from the viewpoint of increasing the recovery rate of crocetin and increasing the accuracy of quantification, by passing an appropriate amount of “solvent” and further recovering the passing solution as a non-adsorbed fraction.

工程(G)で用いられる陽イオン交換樹脂としては、工程(D)において十分に除去されなかった成分を吸着可能なものであれば特に制限はないが、例えばOasis MCX(商品名:日本ウォーターズ社製)等が市販されており、本発明ではこれを好ましく用いることができる。工程(G)における陽イオン交換樹脂の使用量に特に制限はないが、工程(F)で回収した溶出液100体積部に対して、通常5〜50体積部、好ましくは5〜20体積部、より好ましくは5〜10体積部である。   The cation exchange resin used in step (G) is not particularly limited as long as it can adsorb components that have not been sufficiently removed in step (D). For example, Oasis MCX (trade name: Nippon Waters Co., Ltd.) Etc.) are commercially available and can be preferably used in the present invention. Although there is no restriction | limiting in particular in the usage-amount of the cation exchange resin in a process (G), 5-50 volume parts normally with respect to 100 volume parts of eluates collect | recovered at the process (F), Preferably 5-20 volume parts, More preferably, it is 5-10 volume parts.

[工程(H)]
工程(H)は、工程(G)で得られた非吸着画分の回収液について、クロセチンに由来する吸光度を測定する工程である。具体的には、例えば、紫外・可視分光光度計等の自体公知の吸光度測定手段を用いることにより、クロセチンに由来する吸光度(例えば、波長410〜430nmにおける吸光度、好ましくは波長420nmにおける吸光度)を測定することができる。尚、工程(H)では、吸光度の測定前に、予めアルカリ性水溶液を用いて、工程(G)で得られた非吸着画分の回収液を一定の容量に適宜調整することが好ましい。このような調整により、後述のクロセチン含有率の算出に用いられる測定吸光度を0.1〜1.0の範囲に入るように調整することができる。該アルカリ性水溶液としては、例えば、pH8以上のアルカリ性緩衝液を使用することが好ましく、中でもクロセチンのモル吸光係数及びクロセチン純品の色価が明らかとなっているKolthoff氏緩衝液(50mM NaCO−50mM Na;pH10.0)の使用がより好ましい。
[Step (H)]
Step (H) is a step of measuring the absorbance derived from crocetin for the recovered liquid of the non-adsorbed fraction obtained in step (G). Specifically, the absorbance derived from crocetin (for example, absorbance at a wavelength of 410 to 430 nm, preferably absorbance at a wavelength of 420 nm) is measured by using a known absorbance measuring means such as an ultraviolet / visible spectrophotometer. can do. In step (H), it is preferable to appropriately adjust the recovered liquid of the non-adsorbed fraction obtained in step (G) to a certain volume using an alkaline aqueous solution in advance before measuring the absorbance. By such adjustment, it is possible to adjust the measured absorbance used for the calculation of the crocetin content described later to be in the range of 0.1 to 1.0. As the alkaline aqueous solution, for example, an alkaline buffer solution having a pH of 8 or more is preferably used. Among them, Kolthoff's buffer solution (50 mM Na 2 CO 3) in which the molar extinction coefficient of crocetin and the color value of pure crocetin are known. The use of −50 mM Na 2 B 4 O 7 ; pH 10.0) is more preferred.

次いで、工程(H)で測定された吸光度に基づき、自体公知の方法に従い、試料のクロセチン含有量を求めることができる。例えば、試料中のクロセチンは工程(G)で得られる回収液に移行しているため、上記吸光度とクロセチンのモル吸光係数〔例えば、120500mol−1・L−1・cm(溶媒:Kolthoff氏緩衝液)〕又はクロセチン純品の色価〔例えば、E10% 1cm=36700(溶媒:Kolthoff氏緩衝液)〕等とに基づき、試料のクロセチン含有量又は含有率を求めることができる。より具体的には、例えば、工程(H)で測定されたクロセチンに由来する吸光度及びクロセチン純品の色価〔E10% 1cm=36700(溶媒:Kolthoff氏緩衝液)〕に基づき、下式により、試料のクロセチン含有率を算出することができる。
クロセチン含有率(質量%)=CV/36700×100
CV:試料の色価(E10% 1cm)=(10×A×F)/試料の採取量(g)
A:クロセチンに由来する吸光度
F:測定吸光度が0.1〜1.0の範囲に入るように調整するための希釈倍率
Next, based on the absorbance measured in the step (H), the crocetin content of the sample can be determined according to a method known per se. For example, since the crocetin in a sample are shifted to the recovered liquid obtained in the step (G), the molar extinction coefficient of the absorbance and crocetin [e.g., 120500mol -1 · L -1 · cm ( solvent: Kolthoff said buffer )] Or the color value of crocetin pure product [e.g., E 10% 1 cm = 36700 (solvent: Mr. Kolthoff's buffer)] etc., the crocetin content or content of the sample can be determined. More specifically, for example, based on the absorbance derived from crocetin measured in step (H) and the color value of crocetin pure product [E 10% 1 cm = 36700 (solvent: Mr. Kolthoff's buffer)], The crocetin content of the sample can be calculated.
Crocetin content (% by mass) = CV / 36700 × 100
CV: Color value of sample (E 10% 1 cm ) = (10 × A × F) / sample collection amount (g)
A: Absorbance derived from crocetin F: Dilution factor for adjusting the measured absorbance to fall within the range of 0.1 to 1.0

ここで、上記式におけるCV(試料の色価)は、「第8版 食品添加物公定書」(日本食品添加物協会)に記載された「色価測定法」に準じて測定される。但し、該「色価測定法」においては、「通例、色価は、着色料溶液の可視部での極大吸収波長における吸光度を測定し、10w/v%溶液の吸光度に換算した数値(E10% 1cm)で表す」と定められている。しかし、本発明においては、「可視部での極大吸収波長における吸光度」ではなく、クロセチンに由来する吸光度(例えば、波長410〜430nmにおける吸光度、好ましくは波長420nmにおける吸光度)を用いて色価を求める点において、その定めとは異なる。 Here, the CV (color value of the sample) in the above formula is measured according to the “color value measurement method” described in “8th Edition Food Additives Official Document” (Japan Food Additives Association). However, in the “color value measurement method”, “usually, the color value is a numerical value (E 10) measured by measuring the absorbance at the maximum absorption wavelength in the visible part of the colorant solution and converting it to the absorbance of a 10 w / v% solution. % 1 cm ) ”. However, in the present invention, the color value is determined using not the “absorbance at the maximum absorption wavelength in the visible region” but the absorbance derived from crocetin (for example, absorbance at a wavelength of 410 to 430 nm, preferably absorbance at a wavelength of 420 nm). In that respect, it is different from the definition.

また、上記式における「F:測定吸光度が0.1〜1.0の範囲に入るように調整するための希釈倍率」は、上記「色価測定法」に示される希釈方法に従い決定する。例えば、試料を溶媒等に加えて100mLとすることにより、吸光度が0.1〜1.0の範囲内の検液を調製した場合、希釈倍率は「1」である。また、試料に溶媒等を加えて100mLとし、そのうち2mLを取り、これに溶媒等を加えて希釈して50mLとすることにより、吸光度が0.1〜1.0の範囲内の検液を調製した場合、希釈倍率は「25」である。   Further, “F: dilution ratio for adjusting the measured absorbance to fall within the range of 0.1 to 1.0” in the above formula is determined according to the dilution method shown in the “color value measuring method”. For example, when a test solution having an absorbance in the range of 0.1 to 1.0 is prepared by adding a sample to a solvent or the like to 100 mL, the dilution factor is “1”. Also, add a solvent or the like to the sample to make 100 mL, take 2 mL of that, dilute it by adding a solvent or the like to make 50 mL, and prepare a test solution with an absorbance in the range of 0.1 to 1.0. In this case, the dilution factor is “25”.

一方、試料の形態が常温で液状のもの(例えば、飲料等)の場合又は加熱等により液状になるもの(例えば、ゼリー等)の場合には、下式により、試料のクロセチン含有率を算出するのがより簡便である。
クロセチン含有率(質量%)=10×A×F/36700
A:クロセチンに由来する吸光度
F:測定吸光度が0.1〜1.0の範囲に入るように調整するための希釈倍率
On the other hand, when the form of the sample is liquid at normal temperature (for example, a beverage) or is liquid (for example, jelly) by heating or the like, the crocetin content of the sample is calculated by the following formula. Is more convenient.
Crocetin content (mass%) = 10 × A × F / 36700
A: Absorbance derived from crocetin F: Dilution factor for adjusting the measured absorbance to fall within the range of 0.1 to 1.0

本発明の定量方法の実施対象であるクロセチンを含有する組成物に特に制限はなく、例えばクロセチンを含有する飲食品、飲食品材料、医薬部外品、医薬品、医薬品材料、医薬部外品材料であってもよい。該組成物に含有されるクロセチン以外の成分に特に制限はないが、例えば、アントシアニン類、ポリフェノール類、水溶性ビタミン類等の比較的極性の高い成分や、β−カロチン、リコピン、アスタキサンチン、ルテイン、β−クリプトキサンチン、ゼアキサンチン、カプサンチン等のカロテノイド類とそのエステル体、ユビキノン等の比較的極性の低い成分が挙げられる他、薬学的若しくは食品衛生上許容される各種の担体、例えば賦形剤、滑沢剤、安定剤、分散剤、結合剤、希釈剤、香味料、甘味料、風味剤、着色剤等を例示することができる。   There is no particular limitation on the composition containing crocetin, which is the subject of the quantitative method of the present invention. For example, foods and drinks, food and drink materials, quasi drugs, pharmaceuticals, pharmaceutical materials, and quasi drugs containing crocetin. There may be. There are no particular restrictions on components other than crocetin contained in the composition, for example, relatively polar components such as anthocyanins, polyphenols, water-soluble vitamins, β-carotene, lycopene, astaxanthin, lutein, In addition to carotenoids such as β-cryptoxanthin, zeaxanthin and capsanthin and their relatively low polarity components such as ubiquinone, various carriers acceptable for pharmacological or food hygiene such as excipients, Examples of the additives include stabilizers, stabilizers, dispersants, binders, diluents, flavoring agents, sweeteners, flavoring agents, and coloring agents.

上記組成物の形態は、本発明の効果を奏するものである限り特に制限されず、例えば、錠剤、丸剤、顆粒剤、細粒剤、咀嚼剤、液剤、カプセル剤(ハードカプセル、ソフトカプセル等に充填されたもの)、チュアブル剤等が挙げられる。   The form of the composition is not particularly limited as long as the effect of the present invention is achieved. For example, tablets, pills, granules, fine granules, chewing agents, liquids, capsules (hard capsules, soft capsules, etc. are filled) And chewable agents.

以下、実施例をもって本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

[錠剤についてのクロセチンの定量]
(1)クロセチン含有錠剤の製造
L−アスコルビン酸(エーザイフード・ケミカル社製)1000g、L−アスコルビン酸ナトリウム(扶桑化学工業社製)200g、グレープフルーツ粉末果汁(小川香料社製)193g、粉末還元麦芽糖水あめ(商品名:アマルティMR−50;東和化成工業社製)4030g、クロセチン製剤(商品名:クロビットP;クロセチン含有量76.5質量%;理研ビタミン社製)37gを混合し、得られた混合物を40メッシュの篩を通した後、水をバインダーとして流動層造粒機にて造粒を行った。造粒条件は、ポンプ280g/分、乾燥10分、吸気温75℃、排気温40℃、冷却3分、流動時間50分とした。
得られた造粒物を、20メッシュ以下の粒子を除去してからポリエチレン製の袋に入れ、これにグリセリン脂肪酸エステル(商品名:ポエムTR−FB;理研ビタミン社製)240g、β−カロテン含有組成物(商品名:リケビーズβ−カロテン6CS;理研ビタミン社製)300gを加え、予備混合を行った。
その後、得られた混合物から30メッシュ以下の粒子を除去した後、ロッキングミキサーにて10分間混合した。混合物をロータリー打錠機を用いて打錠し、クロセチン含有錠剤を得た。打錠条件は、臼杵直径12mm、臼杵本数3本立て、回転速度20rpm、打錠圧0.7〜0.9kNとした。得られた錠剤は、重量が600.0mg/錠であり、クロセチン含有量の理論値が2.83mg/錠となった。
[Quantification of crocetin in tablets]
(1) Production of crocetin-containing tablets 1000 g of L-ascorbic acid (manufactured by Eisai Food Chemical Co., Ltd.), 200 g of sodium L-ascorbate (manufactured by Fuso Chemical Industry Co., Ltd.), 193 g of grapefruit powder juice (manufactured by Ogawa Fragrance Co., Ltd.), powdered reduced maltose 4030 g of water candy (trade name: Amarty MR-50; manufactured by Towa Kasei Kogyo Co., Ltd.) and 37 g of crocetin preparation (trade name: clobit P; crocetin content 76.5% by mass; manufactured by Riken Vitamin Co., Ltd.) were mixed. Was passed through a 40-mesh sieve and granulated with a fluid bed granulator using water as a binder. The granulation conditions were as follows: pump 280 g / min, drying 10 minutes, intake air temperature 75 ° C., exhaust gas temperature 40 ° C., cooling 3 minutes, and flow time 50 minutes.
The obtained granulated product was put into a polyethylene bag after removing particles of 20 mesh or less, and glycerin fatty acid ester (trade name: Poem TR-FB; manufactured by Riken Vitamin Co., Ltd.) 240 g, containing β-carotene 300 g of the composition (trade name: Riquetads β-carotene 6CS; manufactured by Riken Vitamin Co., Ltd.) was added and premixed.
Then, after removing particles of 30 mesh or less from the obtained mixture, the mixture was mixed for 10 minutes with a rocking mixer. The mixture was tableted using a rotary tableting machine to obtain crocetin-containing tablets. The tableting conditions were a mortar diameter of 12 mm, three mortars, a rotational speed of 20 rpm, and a tableting pressure of 0.7 to 0.9 kN. The obtained tablet had a weight of 600.0 mg / tablet and a theoretical value of crocetin content of 2.83 mg / tablet.

(2)クロセチンの定量(実施例1〜4)
(1)で得たクロセチン含有錠剤1錠を100mL容メスフラスコに入れ、これに表1に記載のアルカリ性水溶液を約80mL加えた。これを45℃で加温しながら超音波処理を行って該錠剤を溶解させ、室温まで冷却した後、これに表1に記載のアルカリ性水溶液を加えて100mLに定容した。得られた溶解液を撹拌した後、該溶解液約10mLをPVDF製の親水性シリンジフィルター〔製品名:25mmGD/Xフィルター(PVDF0.45μm);GEヘルスケア・ジャパン社製〕にてろ過し、該溶解液に含まれる不溶物を除去した。ここで、ろ過初期に流出した約5mLのろ液は廃棄し、その後流出した約5mLのろ液を試験管に回収した。
一方、陰イオン交換樹脂が充填された固相抽出カラム(商品名:Oasis MAX 3cc/60mg;日本ウォーターズ製社製)に対しメタノール1mL及び表1に記載のアルカリ性水溶液1mLの順に通液してコンディショニングした後、該固相抽出カラムに、試験管に回収した前記ろ液のうち2mLを通液した。尚、固相抽出カラム(後述の陽イオン交換樹脂が充填された固相抽出カラムを含む)に対する通液速度は、以下の工程を含み、全て1秒間に1〜2滴滴下する速度で行った。
次いで、上記陰イオン交換樹脂が充填された固相抽出カラムに対し表1に記載のアルカリ性水溶液2mL及びメタノール2mLの順で通液し、該カラムの固相を洗浄した後、これに表1に記載の酸剤を含有する高極性有機溶媒2.5mLを通液してクロセチンを溶出させた。得られた全ての溶出液は、陽イオン交換樹脂が充填された固相抽出カラム(商品名:Oasis MCX 3cc/60mg;日本ウォーターズ製社製)に直接通液した。尚、該陽イオン交換樹脂が充填された固相抽出カラムは、使用前に予め表1に記載の酸剤を含有する高極性有機溶媒1mLを通液してコンディショニングした。
続いて、前記陽イオン交換樹脂が充填された固相抽出カラムに対し表1に記載の酸剤を含有する高極性有機溶媒1mLを通液した。該固相抽出カラムの通過液(約3.5mL)は、全量50mL容のメスフラスコに回収した。これにKolthoff氏緩衝液(50mM NaCO−50mM Na;pH10.0)を加えて50mLに定容した。得られた溶液を撹拌した後、該溶液について波長420nmにおける吸光度を紫外・可視分光光度計にて測定し、次式により錠剤1錠当りのクロセチン含有量(mg/錠)を求めた。
クロセチン含有量(mg/錠)=600×クロセチン含有率(質量%)/100
クロセチン含有率(質量%)=錠剤の色価(E10% 1cm)/36700×100
錠剤の色価(E10% 1cm)=10×吸光度×25/600×1000
(2) Determination of crocetin (Examples 1 to 4)
One crocetin-containing tablet obtained in (1) was placed in a 100 mL volumetric flask, and about 80 mL of the alkaline aqueous solution described in Table 1 was added thereto. The tablet was dissolved by sonication while heating at 45 ° C. and cooled to room temperature, and then the alkaline aqueous solution shown in Table 1 was added thereto to make up a volume of 100 mL. After stirring the resulting solution, about 10 mL of the solution was filtered with a PVDF hydrophilic syringe filter [product name: 25 mm GD / X filter (PVDF 0.45 μm); manufactured by GE Healthcare Japan, Ltd.]. Insoluble matters contained in the solution were removed. Here, about 5 mL of filtrate that flowed out at the beginning of filtration was discarded, and then about 5 mL of filtrate that flowed out was collected in a test tube.
On the other hand, 1 mL of methanol and 1 mL of alkaline aqueous solution described in Table 1 were passed in order through a solid phase extraction column (trade name: Oasis MAX 3 cc / 60 mg; manufactured by Nihon Waters) filled with an anion exchange resin. After that, 2 mL of the filtrate collected in the test tube was passed through the solid phase extraction column. In addition, the liquid flow rate with respect to the solid phase extraction column (including a solid phase extraction column filled with a cation exchange resin described later) includes the following steps, and was performed at a rate of dropping 1 to 2 drops per second. .
Next, 2 mL of the alkaline aqueous solution described in Table 1 and 2 mL of methanol were passed through the solid phase extraction column filled with the anion exchange resin in this order, and the solid phase of the column was washed. Crocetin was eluted by passing 2.5 mL of a highly polar organic solvent containing the described acid agent. All the eluates obtained were directly passed through a solid phase extraction column (trade name: Oasis MCX 3cc / 60 mg; manufactured by Nihon Waters Co., Ltd.) packed with a cation exchange resin. The solid phase extraction column packed with the cation exchange resin was conditioned by passing 1 mL of a highly polar organic solvent containing the acid agent shown in Table 1 in advance before use.
Subsequently, 1 mL of a highly polar organic solvent containing the acid agent described in Table 1 was passed through the solid phase extraction column packed with the cation exchange resin. The passing liquid (about 3.5 mL) of the solid phase extraction column was collected in a volumetric flask having a total volume of 50 mL. This Kolthoff said buffer; added (50mM Na 2 CO 3 -50mM Na 2 B 4 O 7 pH10.0) was constant volume of 50 mL. After stirring the obtained solution, the absorbance at a wavelength of 420 nm of the solution was measured with an ultraviolet / visible spectrophotometer, and the content of crocetin per tablet (mg / tablet) was determined by the following formula.
Crocetin content (mg / tablet) = 600 × crocetin content (mass%) / 100
Crocetin content (mass%) = tablet color value (E 10% 1 cm ) / 36700 × 100
Tablet color value (E 10% 1 cm ) = 10 × absorbance × 25/600 × 1000

尚、上記式中、「600」は、錠剤1錠当りの重量(mg)であり、「36700」は、クロセチン純品の色価(E10% 1cm=36700)であり、「25」は、測定吸光度が0.1〜1.0の範囲に入るように調整された希釈倍率であり、「1000」は、質量単位を「g」から「mg」に換算するための換算値である。 In the above formula, “600” is the weight (mg) per tablet, “36700” is the color value of pure crocetin (E 10% 1 cm = 36700), and “25” is The dilution rate is adjusted so that the measured absorbance falls within the range of 0.1 to 1.0, and “1000” is a conversion value for converting the mass unit from “g” to “mg”.

Figure 0006574360
Figure 0006574360

(3)クロセチンの定量(比較例1)
(1)で得たクロセチン含有錠剤1錠を100mL容メスフラスコに入れ、これにKolthoff氏緩衝液(50mM NaCO−50mM Na;pH10.0)を約80mL加えた。これを45℃で加温しながら超音波処理を行って錠剤を溶解させ、室温まで冷却した後、これに同Kolthoff氏緩衝液を加えて100mLに定容した。得られた溶解液を撹拌した後、該溶解液2mLを50mL容メスフラスコに分取し、これに同Kolthoff氏緩衝液を加えて50mLに定容した。得られた溶解液を撹拌した後、該溶解液について波長420nmにおける吸光度を紫外・可視分光光度計にて測定し、実施例1〜4で用いた上記式により錠剤1錠当りのクロセチン含有量(mg/錠)を求めた。
(3) Determination of crocetin (Comparative Example 1)
One crocetin-containing tablet obtained in (1) was placed in a 100 mL volumetric flask, and about 80 mL of Kolthoff buffer solution (50 mM Na 2 CO 3 -50 mM Na 2 B 4 O 7 ; pH 10.0) was added thereto. This was sonicated while heating at 45 ° C. to dissolve the tablet, cooled to room temperature, and then the same Kolthoff buffer solution was added thereto to make a constant volume of 100 mL. After stirring the obtained lysate, 2 mL of the lysate was dispensed into a 50 mL volumetric flask, and the same Kolthoff buffer solution was added thereto to make a constant volume of 50 mL. After stirring the obtained solution, the absorbance at a wavelength of 420 nm of the solution was measured with an ultraviolet / visible spectrophotometer, and the content of crocetin per tablet according to the above formula used in Examples 1 to 4 ( mg / tablet).

(4)結果
上記実施例1〜4及び比較例1により求められたクロセチン含有量(mg/錠)及び該含有量についてのクロセチンの理論含有量(2.83mg/錠)を基準とするクロセチン回収率(%)を表2に示す。
(4) Results Crocetin content (mg / tablet) determined by Examples 1-4 and Comparative Example 1 and crocetin recovery based on the theoretical content of crocetin (2.83 mg / tablet) for the content The rate (%) is shown in Table 2.

Figure 0006574360
Figure 0006574360

表2の結果から明らかなように、本発明の定量方法(実施例1〜4)によれば、比較例1の定量方法に比べ、100%に近い回収率でクロセチンを定量できた。   As is clear from the results in Table 2, according to the quantification method of the present invention (Examples 1 to 4), crocetin could be quantified with a recovery rate close to 100% compared to the quantification method of Comparative Example 1.

[飲料についてのクロセチンの定量]
(1)クロセチン含有飲料の製造
クロセチン製剤(商品名:クロビット2.5WD;クロセチン含有量2.65質量%;理研ビタミン社製)33g、ビルベリーエキス(商品名:ビルベリーカンソウエキス;インデナジャパン社製)20g、ビタミンE(商品名:ビタミンE−α−50(A);理研ビタミン社製)20g、L−アスコルビン酸(エーザイフード・ケミカル社製)10g、ビタミン混合粉末(商品名:ビタミンエースミックスDR−300;理研ビタミン社製)3g、エリスリトール(三菱化学フーズ社製)300g、アセスルファムカリウム(商品名:サネット;MCフードスペシャリティーズ社製)0.5g、スクラロース(商品名:サンスイートSU−200;三栄源エフ・エフ・アイ社製)0.5g、精製無水クエン酸(扶桑化学工業社製)10g、精製クエン酸ナトリウム(扶桑化学工業社製)7g及びグレープフルーツ香料(商品名:グレープフルーツミクロンZD−4346;高砂香料社製)5gに水を加えて撹拌及び溶解し、全量5Lの溶解液とした。該溶解液を褐色瓶に充填し、80℃にて10分間の殺菌を行い、クロセチン含有飲料(内容量50mL/本)を作製した。得られた飲料は、クロセチン含有量の理論値が8.75mg/本となった。
[Quantification of crocetin in beverages]
(1) Production of crocetin-containing beverage Crocetin preparation (trade name: clobit 2.5WD; crocetin content 2.65% by mass; manufactured by Riken Vitamin Co., Ltd.) 33 g, bilberry extract (trade name: bilberry licorice extract; manufactured by Indena Japan) ) 20 g, vitamin E (trade name: Vitamin E-α-50 (A); manufactured by Riken Vitamin Co., Ltd.) 20 g, L-ascorbic acid (manufactured by Eisai Food Chemical Co., Ltd.) 10 g, vitamin mixed powder (trade name: Vitamin Ace Mix) DR-300; manufactured by Riken Vitamin Co., Ltd. 3 g, erythritol (produced by Mitsubishi Chemical Foods Co., Ltd.) 300 g, acesulfame potassium (trade name: Sannet; manufactured by MC Food Specialties Co., Ltd.) 0.5 g, sucralose (trade name: Sun Sweet SU-200 ; Saneigen FFI Co., Ltd.) 0.5g, purified anhydrous citrus 10 g (manufactured by Fuso Chemical Industry Co., Ltd.), 7 g of purified sodium citrate (manufactured by Fuso Chemical Industry Co., Ltd.) and 5 g of grapefruit fragrance (trade name: Grapefruit Micron ZD-4346; manufactured by Takasago Fragrance Co., Ltd.) were stirred and dissolved by adding water. A total amount of 5 L of lysate was obtained. The solution was filled in a brown bottle and sterilized at 80 ° C. for 10 minutes to prepare a crocetin-containing beverage (content 50 mL / book). The obtained beverage had a theoretical value of crocetin content of 8.75 mg / tube.

(2)クロセチンの定量(実施例5〜8)
(1)で得たクロセチン含有飲料5mLを25mL容メスフラスコに採取し、これに1M水酸化ナトリウム水溶液を加えて25mLに定容した。得られた溶液を撹拌した後、該溶液約10mLをPVDF製の親水性シリンジフィルター(製品名:25mmGD/Xフィルター(PVDF0.45μm);GEヘルスケア・ジャパン社製)にてろ過し、該溶液に含まれる不溶物を除去した。ここで、ろ過初期に流出した約5mLのろ液は廃棄し、その後流出した約5mLのろ液を試験管に回収した。
一方、陰イオン交換樹脂が充填された固相抽出カラム(商品名:Oasis MAX 3cc/60mg;日本ウォーターズ製社製)に対しメタノール1mL及び表2に記載のアルカリ性水溶液1mLの順に通液してコンディショニングした後、該固相抽出カラムに、試験管に回収した前記ろ液のうち1mLを通液した。尚、固相抽出カラム(後述の陽イオン交換樹脂が充填された固相抽出カラムを含む)に対する通液速度は、以下の工程を含み、全て1秒間に1〜2滴滴下する速度で行った。
次いで、上記陰イオン交換樹脂が充填された固相抽出カラムに対し表2に記載のアルカリ性水溶液1mL及びメタノール1mLの順で通液し、該カラムの固相を洗浄した後、これに表2に記載の酸剤を含有する高極性有機溶媒2.5mLを通液してクロセチンを溶出させた。得られた全ての溶出液は、陽イオン交換樹脂が充填された固相抽出カラム(商品名:Oasis MCX 3cc/60mg;日本ウォーターズ製社製)に直接通液した。尚、該陽イオン交換樹脂が充填された固相抽出カラムは、使用前に予め表2に記載の酸剤を含有する高極性有機溶媒1mLを通液してコンディショニングした。
続いて、前記陽イオン交換樹脂が充填された固相抽出カラムに対し表2に記載の酸剤を含有する高極性有機溶媒1mLを通液した。該固相抽出カラムの通過液(約3.5mL)は、全量50mL容のメスフラスコに回収した。これにKolthoff氏緩衝液(50mM NaCO−50mM Na;pH10.0)を加えて50mLに定容した。得られた溶液を撹拌した後、該溶液について波長420nmにおける吸光度を紫外・可視分光光度計にて測定し、次式により飲料1本当りのクロセチン含有量(mg/本)を求めた。
クロセチン含有量(mg/本)=クロセチン含有率(質量%)×1000×内容量(mL/本)/100
クロセチン含有率(質量%)=10×吸光度×250/36700
(2) Determination of crocetin (Examples 5 to 8)
5 mL of the crocetin-containing beverage obtained in (1) was collected in a 25 mL volumetric flask, and 1 M aqueous sodium hydroxide solution was added thereto to make a constant volume of 25 mL. After stirring the obtained solution, about 10 mL of the solution was filtered with a PVDF hydrophilic syringe filter (product name: 25 mm GD / X filter (PVDF 0.45 μm); manufactured by GE Healthcare Japan), and the solution The insoluble matter contained in was removed. Here, about 5 mL of filtrate that flowed out at the beginning of filtration was discarded, and then about 5 mL of filtrate that flowed out was collected in a test tube.
On the other hand, 1 mL of methanol and 1 mL of alkaline aqueous solution described in Table 2 were passed in order through a solid phase extraction column (trade name: Oasis MAX 3 cc / 60 mg; manufactured by Nihon Waters Co., Ltd.) packed with an anion exchange resin. After that, 1 mL of the filtrate collected in the test tube was passed through the solid phase extraction column. In addition, the liquid flow rate with respect to the solid phase extraction column (including a solid phase extraction column filled with a cation exchange resin described later) includes the following steps, and was performed at a rate of dropping 1 to 2 drops per second. .
Next, 1 mL of the alkaline aqueous solution described in Table 2 and 1 mL of methanol were passed through the solid phase extraction column packed with the anion exchange resin in this order, and the solid phase of the column was washed. Crocetin was eluted by passing 2.5 mL of a highly polar organic solvent containing the described acid agent. All the eluates obtained were directly passed through a solid phase extraction column (trade name: Oasis MCX 3cc / 60 mg; manufactured by Nihon Waters Co., Ltd.) packed with a cation exchange resin. The solid phase extraction column packed with the cation exchange resin was conditioned by passing 1 mL of a highly polar organic solvent containing the acid agent shown in Table 2 in advance before use.
Subsequently, 1 mL of a highly polar organic solvent containing an acid agent shown in Table 2 was passed through the solid phase extraction column packed with the cation exchange resin. The passing liquid (about 3.5 mL) of the solid phase extraction column was collected in a volumetric flask having a total volume of 50 mL. This Kolthoff said buffer; added (50mM Na 2 CO 3 -50mM Na 2 B 4 O 7 pH10.0) was constant volume of 50 mL. After stirring the obtained solution, the absorbance at a wavelength of 420 nm of the solution was measured with an ultraviolet / visible spectrophotometer, and the crocetin content (mg / piece) per beverage was determined by the following formula.
Crocetin content (mg / line) = crocetin content (% by mass) × 1000 × content (mL / line) / 100
Crocetin content (mass%) = 10 × absorbance × 250/36700

尚、上記式中、「1000」は、質量単位を「g」から「mg」に換算するための換算値であり、「36700」は、クロセチン純品の色価(E10% 1cm=36700)であり、「250」は、測定吸光度が0.1〜1.0の範囲に入るように調整された希釈倍率である。 In the above formula, “1000” is a conversion value for converting the mass unit from “g” to “mg”, and “36700” is the color value of crocetin pure product (E 10% 1 cm = 36700). “250” is a dilution ratio adjusted so that the measured absorbance falls within the range of 0.1 to 1.0.

Figure 0006574360
Figure 0006574360

(3)クロセチンの定量(比較例2)
(1)で得たクロセチン含有飲料5mLを25mL容メスフラスコに入れ、これにKolthoff氏緩衝液(50mM NaCO−50mM Na;pH10.0)を加えて25mLに定容した。得られた溶液を撹拌した後、該溶液1mLを50mL容メスフラスコに分取し、これに同Kolthoff氏緩衝液を加えて50mLに定容した。得られた溶解液を撹拌した後、該溶解液について波長420nmにおける吸光度を紫外・可視分光光度計にて測定し、実施例5〜8で用いた上記式により飲料1本当りのクロセチン含有量(mg/本)を求めた。
(3) Determination of crocetin (Comparative Example 2)
5 mL of the crocetin-containing beverage obtained in (1) is placed in a 25 mL volumetric flask, and Kolthoff's buffer solution (50 mM Na 2 CO 3 -50 mM Na 2 B 4 O 7 ; pH 10.0) is added thereto to a constant volume of 25 mL. did. After stirring the obtained solution, 1 mL of the solution was taken into a 50 mL volumetric flask, and the same Kolthoff buffer solution was added thereto to make a constant volume of 50 mL. After stirring the obtained solution, the absorbance at a wavelength of 420 nm of the solution was measured with an ultraviolet / visible spectrophotometer, and the crocetin content per beverage according to the above formulas used in Examples 5 to 8 ( mg / tube).

(4)結果
上記実施例5〜8及び比較例2により求められたクロセチン含有量(mg/本)及び該含有量についてのクロセチンの理論含有量(8.75mg/本)を基準とするクロセチン回収率(%)を表4に示す。
(4) Results Crocetin content obtained in Examples 5 to 8 and Comparative Example 2 (mg / piece) and crocetin recovery based on the theoretical content of crocetin (8.75 mg / piece) for the content. The rate (%) is shown in Table 4.

Figure 0006574360
Figure 0006574360

表4の結果から明らかなように、本発明の定量方法(実施例5〜8)によれば、比較例2の定量方法に比べ、100%に近い回収率でクロセチンを定量できた。   As is clear from the results in Table 4, according to the quantification method of the present invention (Examples 5 to 8), crocetin could be quantified with a recovery rate close to 100% compared to the quantification method of Comparative Example 2.

Claims (6)

以下の工程(A)〜(H)を順次行うことを特徴とするクロセチンの定量方法。
(A):クロセチンを含有する組成物をアルカリ性水溶液に溶解する工程
(B):工程(A)で得られた溶解液に含まれる不溶物を除去する工程
(C):工程(B)で不溶物が除去された溶解液を陰イオン交換樹脂に接触させる工程
(D):工程(C)後の陰イオン交換樹脂をアルカリ性水溶液で洗浄する工程
(E):工程(D)後の陰イオン交換樹脂を有機溶媒で洗浄する工程
(F):工程(E)後の陰イオン交換樹脂に吸着している成分を、酸剤を含有する高極性有機溶媒で溶出させ、溶出液を回収する工程
(G):工程(F)で回収した溶出液を陽イオン交換樹脂に接触させ、その非吸着画分を回収する工程
(H):工程(G)で得られた非吸着画分の回収液について、クロセチンに由来する吸光度を測定する工程
A method for quantifying crocetin, comprising sequentially performing the following steps (A) to (H).
(A): Step of dissolving crocetin-containing composition in alkaline aqueous solution (B): Step of removing insoluble matter contained in solution obtained in step (A) (C): Insoluble in step (B) Step (D) in which the dissolved solution from which substances have been removed is brought into contact with an anion exchange resin: Step (E) in which the anion exchange resin after step (C) is washed with an alkaline aqueous solution Step (F) of washing the resin with an organic solvent: A step of eluting the components adsorbed on the anion exchange resin after the step (E) with a highly polar organic solvent containing an acid agent and collecting the eluate ( G): The eluate recovered in step (F) is brought into contact with a cation exchange resin, and the non-adsorbed fraction is recovered (H): the recovered liquid of the non-adsorbed fraction obtained in step (G) , The step of measuring the absorbance derived from crocetin
アルカリ性水溶液が、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化カルシウム水溶液、炭酸ナトリウム水溶液、炭酸水素ナトリウム水溶液、四ホウ酸ナトリウム水溶液及びアンモニア水溶液から選ばれる1種以上であることを特徴とする請求項1に記載のクロセチンの定量方法。   The alkaline aqueous solution is at least one selected from a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, a calcium hydroxide aqueous solution, a sodium carbonate aqueous solution, a sodium hydrogen carbonate aqueous solution, a sodium tetraborate aqueous solution, and an ammonia aqueous solution. Item 2. A method for quantifying crocetin according to Item 1. 酸剤が、ギ酸、リン酸、塩酸、酢酸、トリフルオロ酢酸及びクエン酸から選ばれる1種以上であることを特徴とする請求項1に記載のクロセチンの定量方法。   The method for quantifying crocetin according to claim 1, wherein the acid agent is at least one selected from formic acid, phosphoric acid, hydrochloric acid, acetic acid, trifluoroacetic acid and citric acid. 有機溶媒が、メタノール、エタノール、プロパノール、ブタノール、アセトン、ピリジン、ジメチルスルホキシド及びジメチルホルムアミドから選ばれる1種以上であることを特徴とする請求項1に記載のクロセチンの定量方法。   The method for quantifying crocetin according to claim 1, wherein the organic solvent is at least one selected from methanol, ethanol, propanol, butanol, acetone, pyridine, dimethylsulfoxide and dimethylformamide. 高極性有機溶媒が、メタノール、エタノール、イソプロパノール、ジメチルスルホキシド、ジメチルホルムアミド、ピリジン及びアセトンから選ばれる1種以上であることを特徴とする請求項1に記載のクロセチンの定量方法。   The method for quantifying crocetin according to claim 1, wherein the highly polar organic solvent is at least one selected from methanol, ethanol, isopropanol, dimethyl sulfoxide, dimethylformamide, pyridine and acetone. クロセチンを含有する組成物が、飲食品又は医薬品である請求項1〜5のいずれかに記載のクロセチンの定量方法。   The method for quantifying crocetin according to any one of claims 1 to 5, wherein the composition containing crocetin is a food or drink or a medicine.
JP2015173264A 2015-09-02 2015-09-02 Determination of crocetin Active JP6574360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015173264A JP6574360B2 (en) 2015-09-02 2015-09-02 Determination of crocetin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015173264A JP6574360B2 (en) 2015-09-02 2015-09-02 Determination of crocetin

Publications (2)

Publication Number Publication Date
JP2017049149A JP2017049149A (en) 2017-03-09
JP6574360B2 true JP6574360B2 (en) 2019-09-11

Family

ID=58278812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015173264A Active JP6574360B2 (en) 2015-09-02 2015-09-02 Determination of crocetin

Country Status (1)

Country Link
JP (1) JP6574360B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7277081B2 (en) * 2017-05-15 2023-05-18 ロート製薬株式会社 Oral Composition, Method for Improving Aftertaste of Sweetness, and Method for Suppressing Discoloration
JP7305988B2 (en) * 2019-03-09 2023-07-11 株式会社島津製作所 Device for particle manipulation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014044B2 (en) * 1981-08-11 1985-04-11 株式会社鹿光本社 Purification method of gardenia yellow pigment
JP2004269663A (en) * 2003-03-07 2004-09-30 Riken Vitamin Co Ltd Method for purifying crocetin
JP5968707B2 (en) * 2012-07-24 2016-08-10 理研ビタミン株式会社 Oral skin color improver
US9211298B2 (en) * 2012-11-16 2015-12-15 Song Gao Compositions containing enriched natural crocin and/or crocetin, and their therapeutic or nutraceutical uses

Also Published As

Publication number Publication date
JP2017049149A (en) 2017-03-09

Similar Documents

Publication Publication Date Title
CN101062077B (en) Method for preparing stevia whole stevioside and stevia whole flavone at the same time
CN103271891B (en) Ginsenoside nano-micelle and preparation method thereof, application and pharmaceutical composition
Wang et al. Enhanced dissolution rate and oral bioavailability of Ginkgo biloba extract by preparing solid dispersion via hot-melt extrusion
Aguiar et al. Micronization of trans-resveratrol by supercritical fluid: Dissolution, solubility and in vitro antioxidant activity
JPWO2009044854A1 (en) Granules, tablets and methods for producing them
CN101084989A (en) Method for preparing general flavone and total alkaloid of sophora flavescens simultaneously
JP6574360B2 (en) Determination of crocetin
JP6995918B2 (en) How to get rid of geniposide, genipin, or both
JP7444995B2 (en) Ultrafine compounds and their production
JP2008180539A (en) Confirmation method of gincenoside in medicine preparation
Liao et al. A greener and sustainable route for medicinal plant analysis: Recycle utilization of hydrophobic deep eutectic solvent
JP5602936B2 (en) Spray-dried crystalline active ingredient
JP4837816B2 (en) Free radical scavenger
JP6482956B2 (en) Determination of crocetin
JP7450860B2 (en) Pyrroloquinoline quinone analysis method
JP2004210682A (en) Method for producing composition highly containing functional component of citrus
JP4677393B2 (en) Purified gardenia extract
EP2981557B1 (en) Glycogen-based water solubility enhancers
JP6381882B2 (en) Water-soluble preparation of resveratrol and production method thereof
JP5476071B2 (en) Pharmaceutical composition
JP2023552261A (en) Method for preparing iron complexes
JP2010105972A (en) Water-soluble carotenoid composition
JP2010235574A (en) Fucoxanthin clathrate
CN112505172B (en) Method for measuring synephrine content in gallbladder warming tablets
WO2021040027A1 (en) Solid composition containing amorphous, poorly water-soluble material, and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190816

R150 Certificate of patent or registration of utility model

Ref document number: 6574360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250