JP6572307B2 - Cross-linked polyolefin resin foam sheet and method for producing the same - Google Patents

Cross-linked polyolefin resin foam sheet and method for producing the same Download PDF

Info

Publication number
JP6572307B2
JP6572307B2 JP2017520992A JP2017520992A JP6572307B2 JP 6572307 B2 JP6572307 B2 JP 6572307B2 JP 2017520992 A JP2017520992 A JP 2017520992A JP 2017520992 A JP2017520992 A JP 2017520992A JP 6572307 B2 JP6572307 B2 JP 6572307B2
Authority
JP
Japan
Prior art keywords
polyolefin resin
sheet
foam sheet
crosslinked polyolefin
resin foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017520992A
Other languages
Japanese (ja)
Other versions
JPWO2017171068A1 (en
Inventor
麻美 永井
麻美 永井
健人 永井
健人 永井
和幸 矢原
和幸 矢原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JPWO2017171068A1 publication Critical patent/JPWO2017171068A1/en
Application granted granted Critical
Publication of JP6572307B2 publication Critical patent/JP6572307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/56After-treatment of articles, e.g. for altering the shape
    • B29C44/5627After-treatment of articles, e.g. for altering the shape by mechanical deformation, e.g. crushing, embossing, stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts

Description

本発明は、架橋ポリオレフィン樹脂発泡シート及びその製造方法に関する。   The present invention relates to a crosslinked polyolefin resin foam sheet and a method for producing the same.

小型電子機器(携帯電話、カメラ、ゲーム、電子手帳等)の画面は、筐体の表示部(LTD等)の上に表示部保護パネルを設置した構造を有し、この表示部保護パネルを、画面外側の額縁部分と貼り合わせるために、粘着テープが使用されている。   The screen of a small electronic device (mobile phone, camera, game, electronic notebook, etc.) has a structure in which a display unit protection panel is installed on the display unit (LTD, etc.) of the housing. Adhesive tape is used to attach the frame part to the outside of the screen.

小型電子機器への適用が好適な粘着テープとして、例えば、特許文献1には、熱分解型発泡剤を含む発泡性ポリオレフィン系樹脂シートを発泡、架橋させて得られた、厚みが0.05〜2mmの架橋ポリオレフィン樹脂発泡シートを用いた粘着テープが開示されている。   As a pressure-sensitive adhesive tape suitable for application to a small electronic device, for example, Patent Document 1 discloses that a foamed polyolefin resin sheet containing a pyrolytic foaming agent is foamed and crosslinked, and has a thickness of 0.05 to An adhesive tape using a 2 mm cross-linked polyolefin resin foam sheet is disclosed.

国際公開2005/007731号公報International Publication No. 2005/007731

ところで、昨今、小型電子機器の画面大型化と意匠性向上のために画面外側の額縁部分が狭くなる傾向にあり、この額縁部分に使用される粘着テープのテープ幅も狭くなる傾向がある。
しかし、従来の架橋ポリオレフィン樹脂発泡シートを用いた粘着テープでは、例えば、テープ幅を0.7mm以下にまで幅狭加工した場合、落下等の衝撃に耐えうる十分な強度を備えることができず、テープを構成する基材であるシートが材破しやすいという欠点があった。
Nowadays, in order to increase the screen size and design of small electronic devices, the frame portion on the outside of the screen tends to be narrowed, and the tape width of the adhesive tape used for the frame portion also tends to be narrowed.
However, with a pressure-sensitive adhesive tape using a conventional crosslinked polyolefin resin foam sheet, for example, when the tape width is narrowed to 0.7 mm or less, it cannot be provided with sufficient strength to withstand impacts such as dropping, There was the fault that the sheet which is a substrate which constitutes a tape is easy to break.

本発明は、以上の事情に鑑みてなされたものであり、本発明の課題は、例えば、テープ幅を0.7mm以下にまで幅狭加工した場合でも、落下等の衝撃に耐えうる十分な強度を有する粘着テープを実現できる架橋ポリオレフィン樹脂発泡シートを提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is, for example, sufficient strength to withstand an impact such as dropping even when the tape width is narrowed to 0.7 mm or less. It is providing the crosslinked polyolefin resin foam sheet which can implement | achieve the adhesive tape which has this.

本発明者らは、前記目的を達成するために鋭意検討を重ねた結果、架橋度および結晶化度がそれぞれ特定の範囲にある架橋ポリオレフィン樹脂発泡シートにより、その目的を達成しうることを見出した。本発明はかかる知見に基づいて完成したものである。   As a result of intensive studies to achieve the above object, the present inventors have found that the object can be achieved by a crosslinked polyolefin resin foamed sheet having a specific degree of crosslinking and a degree of crystallization. . The present invention has been completed based on such findings.

すなわち、本発明は、次の[1]〜[7]を提供するものである。
[1]独立気泡が形成された架橋ポリオレフィン樹脂発泡シートであって、MD方向およびTD方向における結晶化度が、共に、25%以下である、架橋ポリオレフィン樹脂発泡シート。
[2]前記独立気泡のMDおよびTDの平均気泡径が120μm以下、ZDの平均気泡径が80μm以下である、[1]の架橋ポリオレフィン樹脂発泡シート。
[3]層間強度が4.3MPa以上、25%圧縮強度が400〜2000kPaである、[1]又は[2]の架橋ポリオレフィン樹脂発泡シート。
[4]架橋ポリオレフィン樹脂発泡シートの厚みが、0.10mm〜0.20mmである、[1]〜[3]のいずれかの架橋ポリオレフィン樹脂発泡シート。
[5]前記ポリオレフィン樹脂が、メタロセン化合物の重合触媒から得られる直鎖状低密度ポリエチレンを備える[1]〜[4]のいずれかの架橋ポリオレフィン樹脂発泡シート。
[6]ポリオレフィン樹脂および熱分解型発泡剤を含む添加剤を押出機に供給して溶融混練し、押出機からシート状に押出すことによってポリオレフィン樹脂シートを製造する工程と、ポリオレフィン樹脂シートに電離性放射線を照射して発泡性ポリオレフィン樹脂シートを5質量%以上の架橋度に架橋させる工程と、架橋させたポリオレフィン樹脂シートを加熱し、熱分解型発泡剤を発泡させて、マイクロセルを形成する工程を有する、架橋ポリオレフィン樹脂発泡シートの製造方法。
[7]マイクロセルを形成後に、MD方向又はTD方向のいずれか一方又は双方の方向に延伸して、マイクロセルを延伸する工程を有する、[6]の架橋ポリオレフィン樹脂発泡シートの製造方法。
That is, the present invention provides the following [1] to [7].
[1] A crosslinked polyolefin resin foamed sheet in which closed cells are formed, wherein the crystallinity in both the MD direction and the TD direction is 25% or less.
[2] The crosslinked polyolefin resin foamed sheet according to [1], wherein the average cell diameter of MD and TD of the closed cells is 120 μm or less, and the average cell diameter of ZD is 80 μm or less.
[3] The cross-linked polyolefin resin foam sheet according to [1] or [2], having an interlayer strength of 4.3 MPa or more and a 25% compressive strength of 400 to 2000 kPa.
[4] The crosslinked polyolefin resin foam sheet according to any one of [1] to [3], wherein the thickness of the crosslinked polyolefin resin foam sheet is 0.10 mm to 0.20 mm.
[5] The crosslinked polyolefin resin foamed sheet according to any one of [1] to [4], wherein the polyolefin resin comprises linear low density polyethylene obtained from a polymerization catalyst of a metallocene compound.
[6] A process for producing a polyolefin resin sheet by supplying an additive containing a polyolefin resin and a pyrolyzable foaming agent to an extruder, melt-kneading, and extruding it into a sheet form from the extruder, and ionizing the polyolefin resin sheet A foaming polyolefin resin sheet by irradiating with actinic radiation to crosslink to a degree of cross-linking of 5% by mass or more, and heating the cross-linked polyolefin resin sheet to foam a pyrolytic foaming agent to form a microcell. A method for producing a crosslinked polyolefin resin foam sheet, comprising a step.
[7] The method for producing a crosslinked polyolefin resin foamed sheet according to [6], which includes a step of stretching the microcell by forming the microcell and then stretching the microcell in one or both of the MD direction and the TD direction.

本発明によれば、例えば、テープ幅を0.7mm以下にまで幅狭加工した場合でも、落下等の衝撃に耐えうる十分な強度を有する粘着テープを実現できる架橋ポリオレフィン樹脂発泡シートを提供することができる。   According to the present invention, for example, it is possible to provide a crosslinked polyolefin resin foamed sheet capable of realizing an adhesive tape having sufficient strength to withstand an impact such as dropping even when the tape width is narrowed to 0.7 mm or less. Can do.

耐衝撃性試験装置の模式図である。It is a schematic diagram of an impact resistance test apparatus. 層間強度測定方法の説明図である。It is explanatory drawing of the interlayer intensity | strength measuring method.

[架橋ポリオレフィン樹脂発泡シート]
本発明に係る架橋ポリオレフィン樹脂発泡シートは、シート状に加工されたポリオレフィン樹脂に架橋処理及び発泡処理が施されてなる架橋ポリオレフィン樹脂発泡シートであって、該架橋ポリオレフィン樹脂発泡シートに形成された気泡が独立気泡であり、MD方向(架橋ポリオレフィン樹脂発泡シートの押出方向)およびTD方向(MDに対して直交し且つ架橋ポリオレフィン樹脂発泡シートの表面に沿った方向)における結晶化度が、共に、25%以下であるものである。
[Crosslinked polyolefin resin foam sheet]
A cross-linked polyolefin resin foam sheet according to the present invention is a cross-linked polyolefin resin foam sheet obtained by subjecting a polyolefin resin processed into a sheet shape to a cross-linking treatment and a foaming treatment, and the cells formed in the cross-linked polyolefin resin foam sheet Is a closed cell, and the crystallinity in the MD direction (extrusion direction of the crosslinked polyolefin resin foamed sheet) and the TD direction (direction orthogonal to the MD and along the surface of the crosslinked polyolefin resin foamed sheet) is 25. % Or less.

<独立気泡>
架橋ポリオレフィン樹脂発泡シートの独立気泡は、MDおよびTDの平均気泡径が120μm以下、好ましくは100μm以下、より好ましくは80μm以下、ZDの平均気泡径が80μm以下、好ましくは50m以下、より好ましくは40μm以下の、所謂「マイクロセル」である。また、平均気泡径の下限値は特に限定されないが、MDおよびTDの平均気泡径は、例えば、10μm以上、好ましくは20μm以上である。さらに、ZDの平均気泡径は、例えば、5μm以上、好ましくは10μm以上である。
平均気泡径は下記の要領で測定したものをいう。
測定用の発泡シートを50mm四方にカットしたものを測定用の発泡体サンプルとして用意した。これを液体窒素に1分間浸した後にカミソリ刃でMD方向、TD方向及びZD方向に沿ってそれぞれ厚さ方向に切断した。この断面をデジタルマイクロスコープ(株式会社キーエンス製「VHX−900」)を用いて200倍の拡大写真を撮り、MD方向、TD方向及びZD方向のそれぞれにおける長さ2mm分の切断面に存在する全ての独立気泡について気泡径を測定し、その操作を5回繰り返した。そして、全ての気泡の平均値をMD方向、TD方向及びZD方向の平均気泡径とした。
また、測定した気泡径のうち、最も大きい気泡の長さを最大気泡径とした。
独立気泡率は、JIS K7138(2006)やASTM D2856(1998)に準拠して求めることができる。市販の測定器では、乾式自動密度計アキュピック1330などが挙げられる。
独立気泡率は、例えば、下記の要領で測定される。架橋ポリオレフィン樹脂発泡シートから一辺が5cmの平面正方形状で、且つ一定厚みの試験片を切り出す。試験片の厚みを測定し、試験片の見掛け体積Vを算出するとともに試験片の重量Wを測定する。次に、気泡の占める見掛け体積Vを下記式に基づいて算出する。なお、試験片を構成している樹脂の密度は、1g/cmとする。
気泡の占める見掛け体積V=V−W
続いて、試験片を23℃の蒸留水中に水面から100mmの深さに沈めて、試験片に15kPaの圧力を3分間に亘って加える。水中で圧力を解放後、試験片を水中から取り出して試験片の表面に付着した水分を除去し、試験片の重量Wを測定し、下記式に基づいて連続気泡率F及び独立気泡率Fを算出する。
連続気泡率F(%)=100×(W−W)/V
独立気泡率F(%)=100−F
<Independent bubbles>
The closed cell of the crosslinked polyolefin resin foam sheet has an average cell diameter of MD and TD of 120 μm or less, preferably 100 μm or less, more preferably 80 μm or less, and an average cell diameter of ZD of 80 μm or less, preferably 50 m or less, more preferably 40 μm. This is a so-called “microcell”. Further, the lower limit value of the average bubble diameter is not particularly limited, but the average bubble diameter of MD and TD is, for example, 10 μm or more, preferably 20 μm or more. Furthermore, the average bubble diameter of ZD is, for example, 5 μm or more, preferably 10 μm or more.
The average bubble diameter is measured in the following manner.
What measured the foam sheet for a measurement in 50 mm square was prepared as the foam sample for a measurement. This was immersed in liquid nitrogen for 1 minute, and then cut with a razor blade in the thickness direction along the MD, TD, and ZD directions. This cross section is taken with a digital microscope (Keyence Co., Ltd. “VHX-900”), and a 200 times magnified photograph is taken. All of the cross sections present in a length of 2 mm in each of the MD, TD, and ZD directions. The cell diameter of each closed cell was measured, and the operation was repeated 5 times. And the average value of all the bubbles was made into the average bubble diameter of MD direction, TD direction, and ZD direction.
Moreover, the largest bubble length was made into the largest bubble diameter among the measured bubble diameters.
The closed cell ratio can be determined based on JIS K7138 (2006) and ASTM D2856 (1998). Commercially available measuring instruments include a dry automatic densitometer Accupic 1330 and the like.
The closed cell ratio is measured, for example, in the following manner. A test piece having a flat square shape with a side of 5 cm and a constant thickness is cut out from the crosslinked polyolefin resin foam sheet. The thickness of the test piece is measured, the apparent volume V 1 of the test piece is calculated, and the weight W 1 of the test piece is measured. Next, the apparent volume V 2 occupied by the bubbles is calculated based on the following formula. The density of the resin constituting the test piece is 1 g / cm 3 .
Apparent volume occupied by bubbles V 2 = V 1 −W 1
Subsequently, the test piece is submerged in distilled water at 23 ° C. to a depth of 100 mm from the water surface, and a pressure of 15 kPa is applied to the test piece over 3 minutes. After releasing the pressure in water, the test piece is taken out of the water to remove the water adhering to the surface of the test piece, the weight W 2 of the test piece is measured, and the open cell rate F 1 and the closed cell rate are calculated based on the following formulas: F 2 is calculated.
Open cell ratio F 1 (%) = 100 × (W 2 −W 1 ) / V 2
Closed cell ratio F 2 (%) = 100−F 1

<架橋度>
架橋ポリオレフィン樹脂発泡シートの架橋度は、5〜80質量%であることが好ましく、15〜75質量%であることがより好ましい。また、架橋度は、35〜65質量%であることがさらに好ましい。
架橋度を5質量%以上とすることにより、樹脂が結晶を形成しにくくなり、下記の結晶化度を実現することができる。一方、架橋度が5質量%未満であると、発泡シート内の結晶成分が増加し、テープとしての耐衝撃性が低下する。このような観点から、架橋度は上記範囲内とすることが好ましい。
なお、架橋度は、実施例欄で後述する測定方法によって測定されるものである。
<Degree of crosslinking>
The crosslinking degree of the crosslinked polyolefin resin foamed sheet is preferably 5 to 80% by mass, and more preferably 15 to 75% by mass. The degree of crosslinking is more preferably 35 to 65% by mass.
By setting the degree of crosslinking to 5% by mass or more, it becomes difficult for the resin to form crystals, and the following degree of crystallization can be realized. On the other hand, when the degree of cross-linking is less than 5% by mass, the crystal component in the foamed sheet increases and the impact resistance as a tape decreases. From such a viewpoint, the degree of crosslinking is preferably within the above range.
In addition, a crosslinking degree is measured by the measuring method mentioned later in the Example column.

<結晶化度>
架橋ポリオレフィン樹脂発泡シートの結晶化度は、MD方向およびTD方向における結晶化度が、共に、25%以下、好ましくは5〜24%、より好ましくは10〜23%である。結晶化度をこの範囲とすることにより、耐衝撃性や層間強度に優れ、十分な機械的強度を備える架橋ポリオレフィン樹脂発泡シートを実現できる。
架橋ポリオレフィン樹脂発泡シートの材破は、衝撃を加えた際に結晶部分に応力が集中し、そこを起点として生じる現象である。背景技術欄に記載のように、テープ幅を0.7mm以下にまで幅狭化した場合、落下の衝撃等の際に、テープの単位面積あたりにかかる力が大きくなるため、材破のリスクが高まるが、本発明では、結晶化度を25%以下まで低減させて、結晶成分の割合を低下させ、材破の起点となる箇所を減らすることで、テープ幅の幅狭化に伴う材破のリスクを低減し、上記の効果を実現している。なお、結晶化度が低くなりすぎると、耐熱性が低下し高温で使用する際の耐衝撃性が低下する可能性があるが、結晶化度を5%以上とすることにより、この問題も確実に回避することができる。
なお、結晶化度は、実施例欄で後述する測定方法によって測定されるものである。
<Crystallinity>
The crystallinity of the crosslinked polyolefin resin foamed sheet is 25% or less, preferably 5 to 24%, more preferably 10 to 23%, both in the MD direction and the TD direction. By setting the crystallinity within this range, it is possible to realize a crosslinked polyolefin resin foamed sheet having excellent impact resistance and interlayer strength and sufficient mechanical strength.
The material breakage of the crosslinked polyolefin resin foamed sheet is a phenomenon that occurs when stress is concentrated on the crystal portion when an impact is applied, and that is the starting point. As described in the background art column, when the tape width is narrowed to 0.7 mm or less, the force applied per unit area of the tape increases in the event of a drop impact, etc. However, in the present invention, the degree of crystallinity is reduced to 25% or less, the ratio of the crystal component is reduced, and the number of starting points of the material breakage is reduced, so that the material breakage accompanying the narrowing of the tape width. The risk is reduced and the above effects are realized. Note that if the crystallinity is too low, the heat resistance may decrease and the impact resistance when used at high temperatures may decrease. However, this problem can be reliably prevented by setting the crystallinity to 5% or more. Can be avoided.
The crystallinity is measured by the measurement method described later in the example column.

<架橋ポリオレフィン樹脂発泡シートの厚み>
架橋ポリオレフィン樹脂発泡シートの厚みは、50〜300μmであることが好ましく、70〜150μmであることがより好ましい。
厚みを50μm以上とすると、架橋ポリオレフィン樹脂発泡シートの機械的強度や柔軟性の確保が容易になる。また、厚みを300μm以下とすると、薄膜化が可能になり、小型化した電子機器に好適に使用できる。
<Thickness of crosslinked polyolefin resin foam sheet>
The thickness of the crosslinked polyolefin resin foamed sheet is preferably 50 to 300 μm, and more preferably 70 to 150 μm.
When the thickness is 50 μm or more, it is easy to ensure the mechanical strength and flexibility of the crosslinked polyolefin resin foam sheet. Further, when the thickness is 300 μm or less, it is possible to reduce the film thickness, and it can be suitably used for a miniaturized electronic device.

<発泡倍率>
本発明において、架橋ポリオレフィン樹脂発泡シートの発泡倍率は、1.3〜2.3cm/gである。発泡倍率が、1.3cm/g超とすることにより、柔軟性、衝撃吸収性等が向上し、架橋ポリオレフィン樹脂発泡シートが、シール材、衝撃材としての機能を十分に発揮できる。一方、2.3cm/g以下とすることにより、架橋ポリオレフィン樹脂発泡シートの機械的強度を良好に維持することができる。架橋ポリオレフィン樹脂発泡シートの衝撃吸収性や機械的強度をより良好にするためには、発泡倍率は、1.5〜2.0cm/gが好ましい。なお、本発明では、JIS K7222に従い発泡シートの密度を求め、その逆数を発泡倍率とする。
<Foaming ratio>
In the present invention, the expansion ratio of the crosslinked polyolefin resin foamed sheet is 1.3 to 2.3 cm 3 / g. When the expansion ratio is more than 1.3 cm 3 / g, flexibility, impact absorbability and the like are improved, and the crosslinked polyolefin resin foam sheet can sufficiently exhibit the functions as a sealing material and an impact material. On the other hand, the mechanical strength of a crosslinked polyolefin resin foamed sheet can be maintained satisfactorily by setting it to 2.3 cm 3 / g or less. In order to make the impact-absorbing property and mechanical strength of the crosslinked polyolefin resin foamed sheet better, the expansion ratio is preferably 1.5 to 2.0 cm 3 / g. In the present invention, the density of the foamed sheet is obtained according to JIS K7222, and the reciprocal thereof is taken as the foaming ratio.

<25%圧縮強度>
架橋ポリオレフィン樹脂発泡シートの25%圧縮強度は、400〜2000kPaであることが好ましく、600〜1800kPaが更に好ましい。
25%圧縮強度を2000kPa以下とすることで、架橋ポリオレフィン樹脂発泡シートに衝撃吸収性能を持たせ、緩衝材やシール材として使用可能になる。なお、25%圧縮強度は、架橋ポリオレフィン樹脂発泡シートをJIS K6767に準拠して測定したものをいう。
<25% compressive strength>
The 25% compressive strength of the crosslinked polyolefin resin foamed sheet is preferably 400 to 2000 kPa, and more preferably 600 to 1800 kPa.
By setting the 25% compressive strength to 2000 kPa or less, the cross-linked polyolefin resin foam sheet has shock absorbing performance and can be used as a cushioning material or a sealing material. In addition, 25% compressive strength means what measured the crosslinked polyolefin resin foam sheet based on JISK6767.

<機械的強度>
架橋ポリオレフィン樹脂発泡シートが、層間強度4.3MPa以上、25%圧縮強度400〜2000kPaの機械的強度を有する場合、テープ幅を、例えば0.7mm以下にまで幅狭加工した場合でも、落下等の衝撃に耐えうる特性を備えることができる。なお、層間強度および25%圧縮強度は、それぞれ、実施例欄で後述する測定方法により測定されたものである。
<Mechanical strength>
When the cross-linked polyolefin resin foam sheet has an interlayer strength of 4.3 MPa or more and a mechanical strength of 25% compressive strength of 400 to 2000 kPa, even when the tape width is narrowed down to, for example, 0.7 mm or less, such as dropping It can be provided with characteristics that can withstand impacts. The interlaminar strength and 25% compressive strength were each measured by the measurement method described later in the Example column.

[ポリオレフィン樹脂]
上述した架橋ポリオレフィン樹脂発泡シートの形成に用いられるポリオレフィン樹脂としては、チーグラー・ナッタ化合物、メタロセン化合物、酸化クロム化合物等の重合触媒で重合されたポリエチレン系樹脂が挙げられ、好ましくは、メタロセン化合物の重合触媒で重合されたポリエチレン系樹脂が用いられる。本発明の架橋ポリオレフィン樹脂発泡シートの形成に用いられるポリエチレン系樹脂としては、メタロセン化合物等の重合触媒を用いて、エチレンと必要に応じて少量のα−オレフィンとを共重合することにより得られる直鎖状低密度ポリエチレンが好ましい。直鎖状低密度ポリエチレンを用いることにより、得られる架橋ポリオレフィン樹脂発泡シートに高い柔軟性が得られるとともに、架橋ポリオレフィン樹脂発泡シートの薄肉化が可能になる。
α−オレフィンとして、具体的には、プロピレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、1−ヘキセン、1−ヘプテン、及び1−オクテン等が挙げられる。なかでも、炭素数4〜10のα−オレフィンが好ましい。
[Polyolefin resin]
Examples of the polyolefin resin used for forming the above-mentioned crosslinked polyolefin resin foam sheet include polyethylene resins polymerized with a polymerization catalyst such as a Ziegler-Natta compound, a metallocene compound, and a chromium oxide compound, preferably a polymerization of a metallocene compound. A polyethylene resin polymerized with a catalyst is used. The polyethylene-based resin used for the formation of the crosslinked polyolefin resin foamed sheet of the present invention is a resin obtained by copolymerizing ethylene and a small amount of α-olefin as required using a polymerization catalyst such as a metallocene compound. A chain low density polyethylene is preferred. By using linear low-density polyethylene, high flexibility is obtained in the obtained crosslinked polyolefin resin foamed sheet, and the crosslinked polyolefin resin foamed sheet can be made thinner.
Specific examples of the α-olefin include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, and 1-octene. Especially, a C4-C10 alpha olefin is preferable.

ポリエチレン系樹脂の密度は、製造される架橋ポリオレフィン樹脂発泡シートに高い柔軟性が得られる観点から、0.870〜0.910g/cmが好ましく、0.875〜0.907g/cmがより好ましく、0.880〜0.905g/cmが更に好ましい。ポリエチレン系樹脂としては、複数のポリエチレン系樹脂を用いることもでき、また、上記した密度範囲以外のポリエチレン系樹脂を加えてもよい。
以上のような直鎖状低密度ポリエチレンを使用することで、結晶化度を上記範囲内としやすくなる。
The density of the polyethylene resin is preferably 0.870 to 0.910 g / cm 3 and more preferably 0.875 to 0.907 g / cm 3 from the viewpoint of obtaining high flexibility in the produced crosslinked polyolefin resin foam sheet. 0.880 to 0.905 g / cm 3 is more preferable. As the polyethylene resin, a plurality of polyethylene resins can be used, and a polyethylene resin outside the above density range may be added.
By using the linear low-density polyethylene as described above, the crystallinity can be easily within the above range.

<メタロセン化合物>
本発明において好適なメタロセン化合物としては、遷移金属をπ電子系の不飽和化合物で挟んだ構造を有するビス(シクロペンタジエニル)金属錯体等の化合物を挙げることができる。より具体的には、チタン、ジルコニウム、ニッケル、パラジウム、ハフニウム、及び白金等の四価の遷移金属に、1又は2以上のシクロペンタジエニル環又はその類縁体がリガンド(配位子)として存在する化合物を挙げることができる。
このようなメタロセン化合物は、活性点の性質が均一であり各活性点が同じ活性度を備えている。メタロセン化合物を用いて合成した重合体は、分子量、分子量分布、組成、組成分布等の均一性が高いため、メタロセン化合物を用いて合成した重合体を含むシートを架橋した場合には、架橋が均一に進行する。均一に架橋されたシートは、均一に延伸できるため、架橋ポリオレフィン樹脂発泡シートの厚みを均一にできる。
<Metalocene compounds>
Suitable metallocene compounds in the present invention include compounds such as bis (cyclopentadienyl) metal complexes having a structure in which a transition metal is sandwiched between π-electron unsaturated compounds. More specifically, tetravalent transition metals such as titanium, zirconium, nickel, palladium, hafnium, and platinum have one or more cyclopentadienyl rings or their analogs as ligands (ligands). Can be mentioned.
Such metallocene compounds have uniform active site properties and each active site has the same activity. A polymer synthesized using a metallocene compound has high uniformity in molecular weight, molecular weight distribution, composition, composition distribution, etc., so when a sheet containing a polymer synthesized using a metallocene compound is crosslinked, the crosslinking is uniform. Proceed to. Since the uniformly crosslinked sheet can be stretched uniformly, the thickness of the crosslinked polyolefin resin foamed sheet can be made uniform.

リガンドとしては、例えば、シクロペンタジエニル環、インデニル環等を挙げることができる。これらの環式化合物は、炭化水素基、置換炭化水素基又は炭化水素−置換メタロイド基により置換されていてもよい。炭化水素基としては、例えば、メチル基、エチル基、各種プロピル基、各種ブチル基、各種アミル基、各種ヘキシル基、2−エチルヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、各種セチル基、フェニル基等が挙げられる。なお、「各種」とは、n−、sec−、tert−、iso−を含む各種異性体を意味する。
また、環式化合物をオリゴマーとして重合したものをリガンドとして用いてもよい。
更に、π電子系の不飽和化合物以外にも、塩素や臭素等の一価のアニオンリガンド又は二価のアニオンキレートリガンド、炭化水素、アルコキシド、アリールアミド、アリールオキシド、アミド、アリールアミド、ホスフィド、アリールホスフィド等を用いてもよい。
Examples of the ligand include a cyclopentadienyl ring and an indenyl ring. These cyclic compounds may be substituted with a hydrocarbon group, a substituted hydrocarbon group or a hydrocarbon-substituted metalloid group. Examples of the hydrocarbon group include a methyl group, an ethyl group, various propyl groups, various butyl groups, various amyl groups, various hexyl groups, 2-ethylhexyl groups, various heptyl groups, various octyl groups, various nonyl groups, and various decyl groups. , Various cetyl groups, phenyl groups and the like. The “various” means various isomers including n-, sec-, tert-, and iso-.
Moreover, what polymerized the cyclic compound as an oligomer may be used as a ligand.
In addition to π-electron unsaturated compounds, monovalent anion ligands such as chlorine and bromine or divalent anion chelate ligands, hydrocarbons, alkoxides, arylamides, aryloxides, amides, arylamides, phosphides, aryls Phosphide or the like may be used.

四価の遷移金属やリガンドを含むメタロセン化合物としては、例えば、シクロペンタジエニルチタニウムトリス(ジメチルアミド)、メチルシクロペンタジエニルチタニウムトリス(ジメチルアミド)、ビス(シクロペンタジエニル)チタニウムジクロリド、ジメチルシリルテトラメチルシクロペンタジエニル−t−ブチルアミドジルコニウムジクロリド、等が挙げられる。
メタロセン化合物は、特定の共触媒(助触媒)と組み合わせることにより、各種オレフィンの重合の際に触媒としての作用を発揮する。具体的な共触媒としては、メチルアルミノキサン(MAO)、ホウ素系化合物等が挙げられる。なお、メタロセン化合物に対する共触媒の使用割合は、10〜100万モル倍が好ましく、50〜5,000モル倍がより好ましい。
Examples of metallocene compounds containing tetravalent transition metals and ligands include, for example, cyclopentadienyl titanium tris (dimethylamide), methylcyclopentadienyl titanium tris (dimethylamide), bis (cyclopentadienyl) titanium dichloride, dimethyl And silyltetramethylcyclopentadienyl-t-butylamidozirconium dichloride.
The metallocene compound exhibits an action as a catalyst in the polymerization of various olefins by combining with a specific cocatalyst (co-catalyst). Specific examples of the cocatalyst include methylaluminoxane (MAO) and boron compounds. In addition, the usage-amount of the cocatalyst with respect to a metallocene compound has preferable 10-1 million mol times, and 50-5,000 mol times is more preferable.

<チーグラー・ナッタ化合物>
チーグラー・ナッタ化合物は、トリエチルアルミニウム−四塩化チタン固体複合物であって、四塩化チタンを有機アルミニウム化合物で還元し、更に各種の電子供与体及び電子受容体で処理して得られた三塩化チタン組成物と、有機アルミニウム化合物と、芳香族カルボン酸エステルとを組み合わせる方法(特開昭56−100806号、特開昭56−120712号、特開昭58−104907号の各公報参照)、及びハロゲン化マグネシウムに四塩化チタンと各種の電子供与体を接触させる担持型触媒の方法(特開昭57−63310号、特開昭63−43915号、特開昭63−83116号の各公報参照)等で製造されたものが好ましい。
<Ziegler-Natta compound>
The Ziegler-Natta compound is a triethylaluminum-titanium tetrachloride solid composite, which is obtained by reducing titanium tetrachloride with an organoaluminum compound and then treating with various electron donors and electron acceptors. A method of combining a composition, an organoaluminum compound and an aromatic carboxylic acid ester (see JP-A 56-1000080, JP-A 56-120712, JP-A 58-104907), halogens Method of supported catalyst in which titanium tetrachloride and various electron donors are brought into contact with magnesium fluoride (see JP-A-57-63310, JP-A-63-43915, JP-A-63-83116), etc. What was manufactured by is preferable.

<その他のポリオレフィン樹脂>
ポリオレフィン樹脂シートを構成するポリオレフィン系樹脂は、上記した直鎖状低密度ポリエチレンを使用する場合、上記の直鎖状低密度ポリエチレンを単独で使用してもよいが、他のポリオレフィン樹脂を含んでいてもよい。
他のポリオレフィン樹脂としては、例えば、エチレンを50質量%以上含有するエチレン−酢酸ビニル共重合体等の他のポリエチレン系樹脂、ポリプロピレン系樹脂等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
<Other polyolefin resins>
When the above-mentioned linear low density polyethylene is used as the polyolefin resin constituting the polyolefin resin sheet, the above linear low density polyethylene may be used alone, but other polyolefin resins are included. Also good.
Examples of other polyolefin resins include other polyethylene resins such as an ethylene-vinyl acetate copolymer containing 50% by mass or more of ethylene, and polypropylene resins. These may be used alone or in combination of two or more.

ポリプロピレン系樹脂としては、例えば、ポリプロピレン、プロピレンを50質量%以上含有するプロピレン−α−オレフィン共重合体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
プロピレン−α−オレフィン共重合体を構成するα−オレフィンとしては、具体的には、エチレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン等が挙げることができ、これらの中では、炭素数6〜12のα−オレフィンが好ましい。他のポリオレフィン樹脂を含有する場合、直鎖状低密度ポリエチレンに対する他のポリオレフィン樹脂の割合は、40質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下が更に好ましい。
Examples of the polypropylene resin include polypropylene and a propylene-α-olefin copolymer containing 50% by mass or more of propylene. These may be used alone or in combination of two or more.
Specific examples of the α-olefin constituting the propylene-α-olefin copolymer include ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1- Octene etc. can be mentioned, Among these, C6-C12 alpha olefin is preferable. When other polyolefin resin is contained, the ratio of the other polyolefin resin to the linear low-density polyethylene is preferably 40% by mass or less, more preferably 30% by mass or less, and still more preferably 20% by mass or less.

[架橋ポリオレフィン樹脂発泡シートの製造方法]
架橋ポリオレフィン樹脂発泡シートの製造方法に、特に制限はなく、例えば、以下の工程(1)〜(4)を含む製造方法により製造できる。
・工程(1)
ポリオレフィン樹脂および熱分解型発泡剤を含む添加剤を押出機に供給して溶融混練し、押出機からシート状に押出すことによってポリオレフィン樹脂シートを製造する工程
・工程(2)
ポリオレフィン樹脂シートに電離性放射線を照射して発泡性ポリオレフィン樹脂シートを5質量%以上の架橋度に架橋させる工程
・工程(3)
架橋させたポリオレフィン樹脂シートを加熱し、熱分解型発泡剤を発泡させてマイクロセルを形成する工程
・工程(4)
マイクロセルを形成後に、MD方向又はTD方向のいずれか一方又は双方の方向に延伸して、マイクロセルを延伸し、架橋ポリオレフィン樹脂発泡シートを得る工程
なお、架橋ポリオレフィン樹脂発泡シートの製造方法としては、この方法のほかに、WO2005/007731に記載された方法により製造することができる。
[Method for producing crosslinked polyolefin resin foam sheet]
There is no restriction | limiting in particular in the manufacturing method of a crosslinked polyolefin resin foam sheet, For example, it can manufacture with the manufacturing method containing the following processes (1)-(4).
・ Process (1)
Process (2) for producing a polyolefin resin sheet by supplying an additive containing a polyolefin resin and a pyrolytic foaming agent to an extruder, melt-kneading, and extruding it into a sheet form from the extruder
Steps (3) of irradiating the polyolefin resin sheet with ionizing radiation to crosslink the foamable polyolefin resin sheet to a degree of crosslinking of 5% by mass or more
Steps (4) for forming microcells by heating a crosslinked polyolefin resin sheet and foaming a pyrolytic foaming agent
After forming the microcell, a process of stretching the microcell and obtaining a crosslinked polyolefin resin foamed sheet by stretching in one or both of the MD direction and the TD direction. As a method for producing a crosslinked polyolefin resin foamed sheet, In addition to this method, it can be produced by the method described in WO2005 / 007731.

熱分解型発泡剤としては、特に制限はなく、例えば、アゾジカルボンアミド、N,N’−ジニトロソペンタメチレンテトラミン、p−トルエンスルホニルセミカルバジド等が挙げられる。これらの中では、アゾジカルボンアミドが好ましい。なお、熱分解型発泡剤は、1種を単独で用いてもよく、2種以上を併用してもよい。   The pyrolytic foaming agent is not particularly limited, and examples thereof include azodicarbonamide, N, N'-dinitrosopentamethylenetetramine, p-toluenesulfonyl semicarbazide and the like. Of these, azodicarbonamide is preferred. In addition, a thermal decomposition type foaming agent may be used individually by 1 type, and may use 2 or more types together.

発泡性ポリオレフィン樹脂組成物中における熱分解型発泡剤の添加量は、ポリオレフィン樹脂100質量部に対して1〜8質量部が好ましく、2〜6質量部がより好ましい。熱分解型発泡剤の添加量がこの範囲内であると、発泡性ポリオレフィン樹脂シートの発泡性が向上し、所望する発泡倍率を有する架橋ポリオレフィン樹脂発泡シートを得ることができる。また、2質量部以上とすることで、気泡が大きくなり、平均気泡径を大きくしつつ、平均セル壁の厚みを狙い通りの範囲に設定することが可能になる。
なお、発泡方法としては、上記に限定されず、ブタンガス等による物理発泡を用いてもよい。
発泡性ポリオレフィン樹脂組成物には、必要に応じて、2,6−ジ−t−ブチル−p−クレゾール等の酸化防止剤、酸化亜鉛等の発泡助剤、気泡核調整材、熱安定剤、着色剤、難燃剤、帯電防止剤、充填材等が、架橋ポリオレフィン樹脂発泡シートの物性を損なわない範囲で添加されていてもよい。例えば気泡核調整材より気泡径の大きさが調整できる。
1-8 mass parts is preferable with respect to 100 mass parts of polyolefin resins, and, as for the addition amount of the thermal decomposition type foaming agent in a foamable polyolefin resin composition, 2-6 mass parts is more preferable. When the amount of the pyrolytic foaming agent is within this range, the foamability of the expandable polyolefin resin sheet is improved, and a crosslinked polyolefin resin foam sheet having a desired expansion ratio can be obtained. Moreover, by setting it as 2 mass parts or more, a bubble becomes large and it becomes possible to set the thickness of an average cell wall to the target range, enlarging an average bubble diameter.
The foaming method is not limited to the above, and physical foaming with butane gas or the like may be used.
In the foamable polyolefin resin composition, if necessary, an antioxidant such as 2,6-di-t-butyl-p-cresol, a foaming aid such as zinc oxide, a cell core modifier, a heat stabilizer, Colorants, flame retardants, antistatic agents, fillers, and the like may be added within a range that does not impair the physical properties of the crosslinked polyolefin resin foam sheet. For example, the size of the bubble diameter can be adjusted by the bubble nucleus adjusting material.

発泡性ポリオレフィン樹脂組成物を架橋する方法としては、発泡性ポリオレフィン樹脂シートに電子線、α線、β線、γ線等の電離性放射線を照射する方法を用いる。
上記電離放射線の照射量は、架橋度を5〜80質量%に調整できるように、例えば2〜75Mradから適宜選択すればよく、15〜75Mradであることが好ましく、30〜70Mradであることがより好ましい。また、場合によっては、5〜15Mradであってもよく、6〜12Mradであってもよい。
As a method of crosslinking the expandable polyolefin resin composition, a method of irradiating the expandable polyolefin resin sheet with ionizing radiation such as electron beam, α ray, β ray, γ ray and the like is used.
The ionizing radiation dose may be appropriately selected from, for example, 2 to 75 Mrad so that the degree of crosslinking can be adjusted to 5 to 80% by mass, preferably 15 to 75 Mrad, and more preferably 30 to 70 Mrad. preferable. Moreover, depending on the case, 5-15 Mrad may be sufficient and 6-12 Mrad may be sufficient.

発泡シートの延伸は、発泡性ポリオレフィン樹脂シートを発泡させて発泡シートを得た後に行ってもよいし、発泡性ポリオレフィン樹脂シートを発泡させつつ行ってもよい。なお、発泡性ポリオレフィン樹脂シートを発泡させて発泡シートを得た後、発泡シートを延伸する場合には、発泡シートを冷却することなく発泡時の溶融状態を維持したまま続けて発泡シートを延伸してもよく、発泡シートを冷却した後、再度、発泡シートを加熱して溶融又は軟化状態とした上で発泡シートを延伸してもよい。   The expansion of the foam sheet may be performed after the foamable polyolefin resin sheet is foamed to obtain the foam sheet, or may be performed while foaming the foamable polyolefin resin sheet. In addition, after foaming the foamable polyolefin resin sheet to obtain a foamed sheet, when the foamed sheet is stretched, the foamed sheet is continuously stretched while maintaining the molten state during foaming without cooling the foamed sheet. Alternatively, after cooling the foamed sheet, the foamed sheet may be heated again to be in a molten or softened state and then stretched.

工程(4)において、架橋ポリオレフィン樹脂発泡シートのMD方向における延伸倍率は、1.1〜2.0倍が好ましく、1.2〜1.8倍がより好ましい。
架橋ポリオレフィン樹脂発泡シートのMD方向における延伸倍率を上記下限値以上とすると、架橋ポリオレフィン樹脂発泡シートの柔軟性及び引張強度が良好になりやすくなる。一方、上限値以下とすると、発泡シートが延伸中に破断したり、発泡中の発泡シートから発泡ガスが抜けて発泡倍率が著しく低下したりすることが防止され、架橋ポリオレフィン樹脂発泡シートの柔軟性や引張強度が良好になり、品質も均一なものとしやすくなる。
In the step (4), the draw ratio in the MD direction of the crosslinked polyolefin resin foam sheet is preferably 1.1 to 2.0 times, and more preferably 1.2 to 1.8 times.
When the draw ratio in the MD direction of the crosslinked polyolefin resin foamed sheet is set to the above lower limit value or more, the flexibility and tensile strength of the crosslinked polyolefin resin foamed sheet are likely to be good. On the other hand, if it is less than the upper limit value, the foamed sheet is prevented from breaking during stretching, or the foaming gas escapes from the foamed sheet being foamed and the foaming ratio is significantly reduced. And tensile strength is improved, and the quality is easily uniform.

[粘着テープ]
本発明に係る架橋ポリオレフィン樹脂発泡シートを基材として用いて、架橋ポリオレフィン樹脂発泡シートの少なくとも一方の面に粘着剤層を設けて、粘着テープを得ることができる。
粘着テープを構成する粘着剤層の厚みは、5〜200μmであることが好ましい。粘着剤層の厚みは、より好ましくは7〜150μmであり、更に好ましくは10〜100μmである。粘着テープを構成する粘着剤層の厚みが5〜200μmの範囲であると、粘着テープを用いて固定した構成体の厚みを薄くできる。
[Adhesive tape]
Using the crosslinked polyolefin resin foamed sheet according to the present invention as a base material, an adhesive layer can be provided on at least one surface of the crosslinked polyolefin resin foamed sheet to obtain an adhesive tape.
The thickness of the pressure-sensitive adhesive layer constituting the pressure-sensitive adhesive tape is preferably 5 to 200 μm. The thickness of the pressure-sensitive adhesive layer is more preferably 7 to 150 μm, and further preferably 10 to 100 μm. The thickness of the structure fixed using the adhesive tape can be made thin as the thickness of the adhesive layer which comprises an adhesive tape is the range of 5-200 micrometers.

架橋ポリオレフィン樹脂発泡シートの一面又は両面に積層一体化される粘着剤層を構成する粘着剤としては、特に制限はなく、例えば、アクリル系粘着剤、ウレタン系粘着剤、ゴム系粘着剤等を用いることができる。
架橋ポリオレフィン樹脂発泡シートの少なくとも一面に粘着剤を塗布して粘着剤層を積層一体化させる方法としては、例えば、架橋ポリオレフィン樹脂発泡シートの少なくとも一面にコーター等の塗工機を用いて粘着剤を塗布する方法、架橋ポリオレフィン樹脂発泡シートの少なくとも一面にスプレーを用いて粘着剤を噴霧、塗布する方法、架橋ポリオレフィン樹脂発泡シートの少なくとも一面に刷毛を用いて粘着剤を塗布する方法等が挙げられる。
There is no restriction | limiting in particular as an adhesive which comprises the adhesive layer laminated | stacked and integrated on the one or both surfaces of a crosslinked polyolefin resin foam sheet, For example, an acrylic adhesive, a urethane adhesive, a rubber adhesive, etc. are used. be able to.
As a method of applying a pressure-sensitive adhesive to at least one surface of the crosslinked polyolefin resin foam sheet and laminating and integrating the pressure-sensitive adhesive layer, for example, the pressure-sensitive adhesive is applied to at least one surface of the cross-linked polyolefin resin foam sheet using a coater or the like. Examples thereof include a method of applying, a method of spraying and applying a pressure-sensitive adhesive using at least one surface of a cross-linked polyolefin resin foam sheet, a method of applying a pressure-sensitive adhesive using a brush on at least one surface of the cross-linked polyolefin resin foam sheet, and the like.

本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。   Examples The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

[測定方法]
本明細書における各物性の測定方法は、次の通りである。
[Measuring method]
The measuring method of each physical property in this specification is as follows.

<発泡倍率>
架橋ポリオレフィン樹脂発泡シートについてJIS K7222に準拠して密度を測定し、その逆数を発泡倍率とした。
<Foaming ratio>
The density of the cross-linked polyolefin resin foamed sheet was measured in accordance with JIS K7222, and the reciprocal number was taken as the expansion ratio.

<密度>
架橋ポリオレフィン樹脂発泡シートから10×10cmの測定サンプルを幅方向に3枚切出し、それぞれのサンプルの厚みと重量を測定して、各サンプルの重量と体積から算出した密度の算術平均値を密度とした。
<Density>
Three 10 × 10 cm measurement samples were cut out from the cross-linked polyolefin resin foam sheet in the width direction, the thickness and weight of each sample were measured, and the arithmetic average value of the density calculated from the weight and volume of each sample was taken as the density. .

<架橋度>
架橋ポリオレフィン樹脂発泡シートから約100mgの試験片を採取し、試験片の重量A(mg)を精秤する。次に、この試験片を120℃のキシレン30cm中に浸漬して24時間放置した後、200メッシュの金網で濾過して金網上の不溶解分を採取、真空乾燥し、不溶解分の重量B(mg)を精秤する。得られた値から、下記式により架橋度(質量%)を算出した。
架橋度(質量%)=100×(B/A)
<Degree of crosslinking>
About 100 mg of a test piece is taken from the crosslinked polyolefin resin foamed sheet, and the weight A (mg) of the test piece is precisely weighed. Next, this test piece was immersed in 30 cm 3 of xylene at 120 ° C. and allowed to stand for 24 hours, then filtered through a 200-mesh wire mesh to collect the insoluble matter on the wire mesh, vacuum dried, and the weight of the insoluble matter. Weigh B (mg) precisely. From the obtained value, the degree of crosslinking (% by mass) was calculated by the following formula.
Crosslinking degree (% by mass) = 100 × (B / A)

<結晶化度>
結晶化度の測定には、リガク社製X線回折装置SmartLabを使用した。平行ビーム光学配置を用い、光源にはCuKα線(波長:1.54Å)を45kV、200mAのパワーで用いた。入射側スリットにはソーラスリット5.0°、受光側スリットにはパラレルスリットアナライザー(PSA)0.114°を用いた。5〜40°のスキャン範囲において、0.02°のステップで測定を行った、計数時間は4°/分とした。
得られたデータをWaveMetrics社数値解析ソフト『IGORPro』で、結晶成分、非晶成分の波形分離を行い、次式に従い結晶化度を求めた。『IGORPro』の波形分離は、ガウシアン関数でフィッティングを行った。
結晶化度(%)=結晶成分面積/(結晶成分面積+非晶成分面積)×100
なお、MD,TD方向の結晶化度は、それぞれ、発泡シートのMD方向、TD方向に光線を照射して得られた値である。
<Crystallinity>
For measurement of crystallinity, an X-ray diffractometer SmartLab manufactured by Rigaku Corporation was used. A parallel beam optical arrangement was used, and a CuKα ray (wavelength: 1.54 mm) was used as a light source at a power of 45 kV and 200 mA. A solar slit of 5.0 ° was used for the incident side slit, and a parallel slit analyzer (PSA) of 0.114 ° was used for the light receiving side slit. The measurement was performed in steps of 0.02 ° in the scan range of 5-40 °, and the counting time was 4 ° / min.
The obtained data was subjected to waveform separation of the crystalline component and the amorphous component using Wavemetrics numerical analysis software “IGORPro”, and the crystallinity was determined according to the following equation. The waveform separation of “IGORPro” was performed by fitting with a Gaussian function.
Crystallinity (%) = Crystal component area / (Crystal component area + Amorphous component area) × 100
The crystallinity in the MD and TD directions are values obtained by irradiating light in the MD and TD directions of the foamed sheet, respectively.

<25%圧縮強度>
架橋ポリオレフィン樹脂発泡シートについてJIS K6767に準拠して測定した。
<25% compressive strength>
The cross-linked polyolefin resin foamed sheet was measured according to JIS K6767.

<耐衝撃性>
(耐衝撃性評価サンプルの調整)
実施例、比較例で得られた架橋ポリオレフィン樹脂発泡シートの両面に下記方法により得られた粘着シートを積層し、架橋ポリオレフィン樹脂発泡シート基材の両面粘着テープを作成した。
(両面粘着テープの作製方法)
温度計、攪拌機、冷却管を備えた反応器にブチルアクリレート75質量部、2−エチルヘキシルアクリレート22質量部、アクリル酸3質量部、2−ヒドロキシエチルアクリレート0.2質量部、及び酢酸エチル80質量部を加え、窒素置換した後、反応器を加熱して還流を開始した。続いて、上記反応器内に、重合開始剤としてアゾビスイソブチロニトリル0.1質量部を添加した。5時間還流させて、アクリル共重合体(z)の溶液を得た。得られたアクリル共重合体(z)について、カラムとしてWater社製「2690 Separations Model」を用いてGPC法により重量平均分子量を測定したところ、60万であった。
得られたアクリル共重合体(z)の溶液に含まれるアクリル共重合体(z)の固形分100質量部に対して、軟化点135℃の重合ロジンエステル15質量部、酢酸エチル(不二化学薬品株式会社製)125質量部、イソシアネート系架橋剤(東ソー株式会社製、コロネートL45)2質量部を添加し、攪拌することにより粘着剤(Z)を得た。なお、アクリル系粘着剤の架橋度は33質量%であった。
厚み150μmの離型紙を用意し、この離型紙の離型処理面に粘着剤(Z)を塗布し、100℃で5分間乾燥させることにより、厚み50μmのアクリル粘着剤層を形成した。このアクリル粘着剤層を、架橋ポリオレフィン樹脂発泡シート基材の表面と貼り合わせた。次いで、同様の要領で、このポリオレフィン発泡体からなる基材の反対の表面にも上記と同じアクリル粘着剤層を貼り合わせた。これにより、厚み150μmの離型紙で覆われた両面粘着テープを得た。
(耐衝撃性試験装置の作製)
図1に、耐衝撃性試験装置の模式図を示す。
耐衝撃性試験装置は、以下の手順で作製した。
まず、上記で得られた両面粘着テープを外径が幅15.0mm、長さ15.0mm、内径が幅14.3mm、長さ14.3mmになるように打ち抜き、幅0.7mmの枠状の試験片1を作製した。
次いで、図1(a)に示すように、中央に方形の孔2を設けたマグネシウム製被着板3を用意し、離型紙を剥がした試験片1を、マグネシウム製被着板3の上表面で、この孔2の外周側全周に亘って貼り付けた。
次いで、前記の孔2を被覆するサイズのガラス製被着板4を、試験片1の上に重ねて貼り付け、前記の孔2を被覆して耐衝撃性試験装置を組み立てた。
その後、耐衝撃性試験装置を上下反転して、マグネシウム製被着板3を上面にした状態で、マグネシウム製被着板3側から5kgfの圧力を5秒間加えて、上下に位置するマグネシウム製被着板3と試験片とを圧着し、常温で36時間放置した。
(耐衝撃性の判定)
図1(b)に示すように、作製した耐衝撃性試験装置を支持台5に固定し、マグネシウム製被着板3に形成された孔2を通過する大きさの50gの重さの鉄球6を、孔2を通過するように落とした。鉄球を落とす高さを徐々に高くしていき、鉄球の落下により加わった衝撃により試験片と被着板が剥がれた時の鉄球を落した高さを計測し、「0.7mm幅での耐衝撃性[cm]」の結果を得た。耐衝撃性が23cm以上の場合を「合格:○」とし、23cm未満の場合を「不合格:×」とした。
<Impact resistance>
(Adjustment of impact resistance evaluation sample)
The adhesive sheet obtained by the following method was laminated | stacked on both surfaces of the crosslinked polyolefin resin foam sheet obtained by the Example and the comparative example, and the double-sided adhesive tape of the crosslinked polyolefin resin foam sheet base material was created.
(Production method of double-sided adhesive tape)
In a reactor equipped with a thermometer, a stirrer, and a condenser tube, 75 parts by weight of butyl acrylate, 22 parts by weight of 2-ethylhexyl acrylate, 3 parts by weight of acrylic acid, 0.2 parts by weight of 2-hydroxyethyl acrylate, and 80 parts by weight of ethyl acetate Was added and the atmosphere was replaced with nitrogen, and then the reactor was heated to start refluxing. Subsequently, 0.1 part by mass of azobisisobutyronitrile was added as a polymerization initiator in the reactor. The solution was refluxed for 5 hours to obtain a solution of the acrylic copolymer (z). With respect to the obtained acrylic copolymer (z), the weight average molecular weight was measured by a GPC method using “2690 Separations Model” manufactured by Water Co. as a column, which was 600,000.
15 parts by mass of polymerized rosin ester having a softening point of 135 ° C., ethyl acetate (Fuji Kagaku) with respect to 100 parts by mass of the solid content of the acrylic copolymer (z) contained in the solution of the obtained acrylic copolymer (z) 125 parts by mass of Yakuhin Co., Ltd. and 2 parts by mass of an isocyanate-based cross-linking agent (manufactured by Tosoh Corporation, Coronate L45) were added and stirred to obtain a pressure-sensitive adhesive (Z). The degree of crosslinking of the acrylic pressure-sensitive adhesive was 33% by mass.
A release paper having a thickness of 150 μm was prepared, an adhesive (Z) was applied to the release-treated surface of the release paper, and dried at 100 ° C. for 5 minutes to form an acrylic adhesive layer having a thickness of 50 μm. This acrylic pressure-sensitive adhesive layer was bonded to the surface of a cross-linked polyolefin resin foam sheet substrate. Next, in the same manner, the same acrylic pressure-sensitive adhesive layer as described above was bonded to the opposite surface of the substrate made of the polyolefin foam. This obtained the double-sided adhesive tape covered with the 150-micrometer-thick release paper.
(Production of impact resistance test equipment)
FIG. 1 shows a schematic diagram of an impact resistance test apparatus.
The impact resistance test apparatus was produced by the following procedure.
First, the double-sided pressure-sensitive adhesive tape obtained above was punched out so that the outer diameter was 15.0 mm, the length was 15.0 mm, the inner diameter was 14.3 mm, and the length was 14.3 mm. Test piece 1 was prepared.
Next, as shown in FIG. 1A, a magnesium adherend plate 3 having a square hole 2 in the center is prepared, and the test piece 1 from which the release paper has been peeled off is used as the upper surface of the magnesium adherend plate 3. Then, it was pasted over the entire outer periphery of the hole 2.
Next, a glass adherend 4 having a size covering the hole 2 was stacked on the test piece 1 and attached, and the hole 2 was covered to assemble an impact resistance test apparatus.
Thereafter, the impact resistance test apparatus is turned upside down so that the magnesium adherend plate 3 is placed on the upper surface, and a pressure of 5 kgf is applied from the magnesium adherend plate 3 side for 5 seconds to position the magnesium adherend located above and below. The platen 3 and the test piece were pressure-bonded and left at room temperature for 36 hours.
(Judgment of impact resistance)
As shown in FIG. 1 (b), the manufactured impact resistance test apparatus is fixed to a support base 5, and an iron ball having a weight of 50 g passing through a hole 2 formed in a magnesium adherend plate 3. 6 was dropped to pass through hole 2. Gradually increase the height at which the iron ball is dropped, measure the height at which the iron ball was dropped when the test piece and the adherend peeled off due to the impact applied by the falling iron ball, Impact resistance [cm] "was obtained. The case where the impact resistance was 23 cm or more was determined as “Pass: ○”, and the case where the impact resistance was less than 23 cm was determined as “Fail: X”.

<層間強度>
(層間強度測定用サンプルの作製)
図2に示すように、発泡シート7の25mm角範囲にプライマー(セメダイン株式会社製「PPXプライマー」)を塗布した後、塗布部分の中央に直径5mm分の接着剤8(セメダイン株式会社製「PPX」)を滴下した。その後直ちに、接着剤滴下部分に25mm角のアルミ製の治具9を置き、発泡シート7と治具9とを圧着した。その後、治具9の大きさに沿って発泡シートをカットした。カットした発泡シート7の治具9を接着していない面にプライマーを塗布し、塗布部分の中央に直径5mm分の接着剤10を滴下した。その後直ちに、接着剤滴下部分に10mm角のアルミ製の治具11を置き、発泡シート7と治具11とを圧着した。治具11の周辺にはみ出した接着剤をふき取った後、治具11の大きさに沿って発泡シートに切り込み12を入れた。これを室温で30分間放置することで接着剤を養生し、層間強度測定用サンプルとした。
(層間強度の判定)
続いて、1kNのロードセルを設置した試験機(株式会社エー・アンド・デイ製「テンシロン万能材料試験機」)に、発泡シートのシート面が引張方向に対して垂直になるように層間強度測定用サンプルを取り付けた。治具9を速度100mm/分で垂直上向きに引っ張り、発泡シートの1cm角の範囲のみを層間剥離させた。このときの最大荷重を測定し、1回目の測定結果とした。同様の操作を3回繰り返し、その平均値を層間強度とした。層間強度が4.3MPa以上の場合を「合格:○」とし、4.3MPa未満の場合を「不合格:×」とした。
<Interlayer strength>
(Preparation of interlayer strength measurement sample)
As shown in FIG. 2, after applying a primer (“PPX primer” manufactured by Cemedine Co., Ltd.) to the 25 mm square range of the foam sheet 7, an adhesive 8 (diameter “PPX” manufactured by Cemedine Co., Ltd.) having a diameter of 5 mm is applied to the center of the applied portion. )) Was added dropwise. Immediately thereafter, a 25 mm square aluminum jig 9 was placed on the adhesive dripping portion, and the foamed sheet 7 and the jig 9 were pressure bonded. Thereafter, the foam sheet was cut along the size of the jig 9. A primer was applied to the surface of the cut foam sheet 7 to which the jig 9 was not adhered, and an adhesive 10 having a diameter of 5 mm was dropped onto the center of the applied portion. Immediately thereafter, a 10 mm square aluminum jig 11 was placed on the adhesive dripping portion, and the foamed sheet 7 and the jig 11 were pressure bonded. After the adhesive that protruded around the jig 11 was wiped off, cuts 12 were made in the foamed sheet along the size of the jig 11. The adhesive was cured by allowing it to stand at room temperature for 30 minutes to obtain a sample for measuring interlayer strength.
(Determination of interlayer strength)
Next, for the interlaminar strength measurement so that the sheet surface of the foam sheet is perpendicular to the tensile direction on a testing machine (“Tensilon Universal Material Testing Machine” manufactured by A & D Co., Ltd.) equipped with a 1 kN load cell. A sample was attached. The jig 9 was pulled vertically upward at a speed of 100 mm / min, and only the 1 cm square area of the foamed sheet was delaminated. The maximum load at this time was measured and used as the first measurement result. The same operation was repeated three times, and the average value was defined as the interlayer strength. The case where the interlaminar strength was 4.3 MPa or higher was determined to be “Pass”, and the case where it was less than 4.3 MPa was determined to be “Fail: x”.

[実施例1]
メタロセン化合物の重合触媒によって得られた直鎖状低密度ポリエチレン系樹脂(ダウケミカル社製、商品名「アフィニティーPL1850」、密度:0.902g/cm)100質量部と、熱分解型発泡剤としてのアゾジカルボンアミド2.1質量部(大塚化学株式会社製、商品名「SO−G3」)と、酸化防止剤0.5質量部と気泡核調整材1.0質量部で構成される発泡性ポリオレフィン樹脂組成物を押出機に供給して130℃で溶融混練し、厚みが290μmの長尺状のポリオレフィン樹脂シートに押出した。
次に、上記長尺状のポリオレフィン樹脂シートの両面に加速電圧500kVの電子線を7.4Mrad照射して発泡性ポリオレフィン樹脂シートを架橋(架橋度41.4%)した後、この発泡性ポリオレフィン樹脂シートを熱風及び赤外線ヒーターにより250℃に保持された発泡炉内に連続的に送り込んで加熱して、厚み300μmの発泡シートを得た。
次いで、得られた発泡シートを発泡炉から連続的に送り出した後、この発泡シートをその両面の温度が200〜250℃となるように維持した状態で、発泡シートをそのTD方向に1.5倍の延伸比で延伸させると共に、発泡性ポリオレフィン樹脂シートの発泡炉への送り込み速度(供給速度)よりも速い巻取速度でもって発泡シートを巻き取ることによって発泡シートをMD方向に延伸させて、発泡シートの気泡をTD方向及びMD方向に延伸して変形させ架橋ポリオレフィン樹脂発泡シートを得た。なお、上記発泡シートの巻取速度は、発泡性ポリオレフィン樹脂シート自身の発泡によるMD方向への膨張分を考慮しつつ調整した。得られた架橋ポリオレフィン樹脂発泡シートを上記評価方法に従って評価し、その結果を表1に示す。
[Example 1]
100 parts by mass of a linear low-density polyethylene resin (trade name “Affinity PL1850”, density: 0.902 g / cm 3 , manufactured by Dow Chemical Co., Ltd.) obtained by a polymerization catalyst of a metallocene compound, and a pyrolytic foaming agent Foamability composed of 2.1 parts by mass of azodicarbonamide (trade name “SO-G3” manufactured by Otsuka Chemical Co., Ltd.), 0.5 parts by mass of an antioxidant and 1.0 part by mass of a cell core modifier. The polyolefin resin composition was supplied to an extruder, melted and kneaded at 130 ° C., and extruded into a long polyolefin resin sheet having a thickness of 290 μm.
Next, both sides of the long polyolefin resin sheet are irradiated with 7.4 Mrad of an electron beam with an acceleration voltage of 500 kV to crosslink the foamable polyolefin resin sheet (crosslinking degree: 41.4%), and then the foamable polyolefin resin. The sheet was continuously fed into a foaming furnace maintained at 250 ° C. with hot air and an infrared heater and heated to obtain a foamed sheet having a thickness of 300 μm.
Next, after the obtained foamed sheet was continuously fed out from the foaming furnace, the foamed sheet was maintained in the TD direction with 1.5% in the TD direction in a state where the temperature of both surfaces thereof was maintained at 200 to 250 ° C. Stretching the foamed sheet in the MD direction by winding the foamed sheet at a winding speed faster than the feeding speed (feeding speed) of the foamable polyolefin resin sheet to the foaming furnace while stretching at a stretch ratio of 2 times, The foamed foam sheet was stretched and deformed in the TD direction and MD direction to obtain a crosslinked polyolefin resin foam sheet. The winding speed of the foamed sheet was adjusted in consideration of the expansion in the MD direction due to foaming of the foamable polyolefin resin sheet itself. The obtained crosslinked polyolefin resin foamed sheet was evaluated according to the above evaluation method, and the results are shown in Table 1.

[実施例2]
電子線照射量を6.8Mradとして、架橋度を45.4%とした点を除いて実施例1と同様に実施した。得られた架橋ポリオレフィン樹脂発泡シートの評価結果を表1に示す。
[Example 2]
The same procedure as in Example 1 was performed except that the electron beam irradiation amount was 6.8 Mrad, and the degree of crosslinking was 45.4%. The evaluation results of the obtained crosslinked polyolefin resin foam sheet are shown in Table 1.

[実施例3]
電子線照射量を7.0Mradとして、架橋度を40.4%とした点を除いて実施例1と同様に実施した。得られた架橋ポリオレフィン樹脂発泡シートの評価結果を表1に示す。
[Example 3]
The same procedure as in Example 1 was performed except that the electron beam irradiation amount was 7.0 Mrad and the degree of crosslinking was 40.4%. The evaluation results of the obtained crosslinked polyolefin resin foam sheet are shown in Table 1.

[比較例1]
発泡性ポリオレフィン樹脂組成物におけるアゾジカルボンアミドの配合量を1.6質量部とするとともに、電子線照射量を4.7Mradとして、架橋度を16.2%とした点を除いて実施例1と同様に実施した。得られた架橋ポリオレフィン樹脂発泡シートの評価結果を表1に示す。
[Comparative Example 1]
Example 1 except that the blending amount of azodicarbonamide in the foamable polyolefin resin composition is 1.6 parts by mass, the electron beam irradiation amount is 4.7 Mrad, and the crosslinking degree is 16.2%. It carried out similarly. The evaluation results of the obtained crosslinked polyolefin resin foam sheet are shown in Table 1.

[比較例2]
発泡性ポリオレフィン樹脂組成物におけるアゾジカルボンアミドの配合量を1.6質量部とするとともに、電子線照射量を4.6Mradとして、架橋度を15.8%とした点を除いて実施例1と同様に実施した。得られた架橋ポリオレフィン樹脂発泡シートの評価結果を表1に示す。
[Comparative Example 2]
Example 1 except that the blending amount of azodicarbonamide in the foamable polyolefin resin composition is 1.6 parts by mass, the electron beam irradiation amount is 4.6 Mrad, and the crosslinking degree is 15.8%. It carried out similarly. The evaluation results of the obtained crosslinked polyolefin resin foam sheet are shown in Table 1.

Figure 0006572307
Figure 0006572307

表1に示すように、MD方向およびTD方向における結晶化度を、共に、25%以下とした実施例1〜3は、結晶化度が25%超の比較例1、2に比べて、耐衝撃性や層間強度に優れることが確認された。   As shown in Table 1, Examples 1 to 3 in which the crystallinity in the MD direction and the TD direction are both 25% or less are more resistant to Comparative Examples 1 and 2 in which the crystallinity exceeds 25%. It was confirmed that it was excellent in impact properties and interlayer strength.

1 試験片
2 孔
3 マグネシウム製被着板
4 ガラス製被着板
5 支持台
6 鉄球
7 発泡シート
8 接着剤
9 治具
10 接着剤
11 治具
12 切り込み
DESCRIPTION OF SYMBOLS 1 Test piece 2 Hole 3 Magnesium adherence board 4 Glass adherence board 5 Support stand 6 Iron ball 7 Foam sheet 8 Adhesive 9 Jig 10 Adhesive 11 Jig 12 Cut

Claims (6)

独立気泡が形成された架橋ポリオレフィン樹脂発泡シートであって、前記独立気泡のMDおよびTDの平均気泡径が120μm以下、ZDの平均気泡径が80μm以下であり、厚みが50〜300μm以下であり、架橋度が40.4質量%以上であり、MD方向およびTD方向における結晶化度が、共に、25%以下であり、25%圧縮強度が600〜2000kPaである、架橋ポリオレフィン樹脂発泡シート。 Cross-linked polyolefin resin foam sheet in which closed cells are formed, wherein the average cell size of MD and TD of the closed cells is 120 μm or less, the average cell size of ZD is 80 μm or less, and the thickness is 50 to 300 μm or less, and the degree of crosslinking 40.4% by mass or more, crystallinity of the MD and TD directions are both state, and are 25% or less, Ru 25% compressive strength 600~2000kPa der, crosslinked polyolefin resin foam sheet. 層間強度が4.3MPa以上である、請求項1に記載の架橋ポリオレフィン樹脂発泡シート。 Interlaminar strength is the 4.3MPa or more, the crosslinked polyolefin resin foam sheet according to claim 1. 架橋ポリオレフィン樹脂発泡シートの厚みが、0.10mm〜0.20mmである、請求項1又は2に記載の架橋ポリオレフィン樹脂発泡シート。   The crosslinked polyolefin resin foam sheet according to claim 1 or 2, wherein the thickness of the crosslinked polyolefin resin foam sheet is from 0.10 mm to 0.20 mm. 前記ポリオレフィン樹脂が、メタロセン化合物の重合触媒から得られる直鎖状低密度ポリエチレンを備える請求項1〜3のいずれかに記載の架橋ポリオレフィン樹脂発泡シート。   The crosslinked polyolefin resin foam sheet according to any one of claims 1 to 3, wherein the polyolefin resin comprises linear low density polyethylene obtained from a polymerization catalyst of a metallocene compound. ポリオレフィン樹脂および熱分解型発泡剤を含む添加剤を押出機に供給して溶融混練し、押出機からシート状に押出すことによってポリオレフィン樹脂シートを製造する工程と、ポリオレフィン樹脂シートに電離性放射線を照射して発泡性ポリオレフィン樹脂シートを5質量%以上の架橋度に架橋させる工程と、架橋させたポリオレフィン樹脂シートを加熱し、熱分解型発泡剤を発泡させて、マイクロセルを形成する工程を有する、請求項1〜4のいずれかに記載の架橋ポリオレフィン樹脂発泡シートの製造方法。   Supplying an additive containing a polyolefin resin and a thermally decomposable foaming agent to an extruder, melting and kneading, and extruding the polyolefin resin sheet by extruding into a sheet from the extruder; and ionizing radiation to the polyolefin resin sheet Irradiation to crosslink the foamable polyolefin resin sheet to a degree of crosslinking of 5% by mass or more, and heat the crosslinked polyolefin resin sheet to foam the pyrolytic foaming agent to form microcells The manufacturing method of the crosslinked polyolefin resin foam sheet in any one of Claims 1-4. マイクロセルを形成後に、MD方向又はTD方向のいずれか一方又は双方の方向に延伸して、マイクロセルを延伸する工程を有する、請求項5に記載の架橋ポリオレフィン樹脂発泡シートの製造方法。
The method for producing a crosslinked polyolefin resin foamed sheet according to claim 5, further comprising a step of stretching the microcell by forming the microcell and then stretching the microcell in one or both of the MD direction and the TD direction.
JP2017520992A 2016-03-31 2017-03-31 Cross-linked polyolefin resin foam sheet and method for producing the same Active JP6572307B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016071594 2016-03-31
JP2016071594 2016-03-31
PCT/JP2017/013780 WO2017171068A1 (en) 2016-03-31 2017-03-31 Crosslinked polyolefin resin foam sheet and production method thereof

Publications (2)

Publication Number Publication Date
JPWO2017171068A1 JPWO2017171068A1 (en) 2018-12-06
JP6572307B2 true JP6572307B2 (en) 2019-09-04

Family

ID=59964833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017520992A Active JP6572307B2 (en) 2016-03-31 2017-03-31 Cross-linked polyolefin resin foam sheet and method for producing the same

Country Status (4)

Country Link
JP (1) JP6572307B2 (en)
KR (1) KR102090658B1 (en)
CN (1) CN108473708B (en)
WO (1) WO2017171068A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6918701B2 (en) * 2016-09-30 2021-08-11 積水化学工業株式会社 Polyolefin-based foam sheet, its manufacturing method and adhesive tape
US20220145033A1 (en) * 2019-03-26 2022-05-12 Toray Industries, Inc. Polyolefin-based resin foamed sheet and method of producing same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3728081A1 (en) * 1987-08-22 1989-03-02 Bosch Gmbh Robert RECTIFIER BEARING DEVICE
JP3671320B2 (en) * 1997-08-08 2005-07-13 日本発条株式会社 Rubber-like olefin soft resin cross-linked foam
EP1090950A4 (en) * 1998-06-25 2003-07-09 Nhk Spring Co Ltd Surface-decorated foam skin of cross-linked rubbery soft olefin resin
KR100563253B1 (en) 2003-07-11 2006-03-27 한국과학기술원 A carbon nanometer tube aligning method using magnetic field in an microgap and a carbon nanometer tube tip manufacturing method using thereof
JP4578407B2 (en) * 2003-07-16 2010-11-10 積水化学工業株式会社 Method for producing cross-linked polyolefin resin foam sheet
JP5899027B2 (en) * 2011-03-31 2016-04-06 積水化学工業株式会社 Cross-linked polyolefin resin foam sheet, adhesive tape and sealing material
JP2013053179A (en) * 2011-08-31 2013-03-21 Sekisui Chem Co Ltd Crosslinked polyolefin resin foamed sheet, pressure-sensitive adhesive tape, and sealing material
CN103160045B (en) * 2011-12-13 2015-12-02 广东天安新材料股份有限公司 A kind of polyvinyl-chloride foam material and preparation method thereof
CN104053734B (en) * 2011-12-26 2016-10-05 Dic株式会社 Adhesive tape
JP5785514B2 (en) * 2012-03-30 2015-09-30 積水化学工業株式会社 Cross-linked polyolefin resin foam sheet
CN105579501B (en) * 2013-09-30 2019-08-30 积水化学工业株式会社 Crosslinked polyolefin resin foamed sheet
JP6449857B2 (en) * 2014-09-30 2019-01-09 積水化学工業株式会社 Polyolefin resin foam sheet and adhesive tape
KR102090661B1 (en) * 2014-09-30 2020-03-18 세키스이가가쿠 고교가부시키가이샤 Polyolefin resin foam sheet and adhesive tape

Also Published As

Publication number Publication date
KR20180132632A (en) 2018-12-12
JPWO2017171068A1 (en) 2018-12-06
CN108473708A (en) 2018-08-31
CN108473708B (en) 2022-08-12
WO2017171068A1 (en) 2017-10-05
KR102090658B1 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
JP6672439B2 (en) Polyolefin resin foam sheet and adhesive tape
JP6709300B2 (en) Polyolefin resin foam sheet and adhesive tape
JP5785514B2 (en) Cross-linked polyolefin resin foam sheet
JP6207009B2 (en) Cross-linked polyolefin resin foam sheet
JP5899027B2 (en) Cross-linked polyolefin resin foam sheet, adhesive tape and sealing material
JP6496414B2 (en) Polyolefin resin foam sheet and adhesive tape
JP6466384B2 (en) Polyolefin resin foam sheet and adhesive tape
JP6466383B2 (en) Polyolefin resin foam sheet and adhesive tape
JP6572307B2 (en) Cross-linked polyolefin resin foam sheet and method for producing the same
JP2019178341A (en) Polyolefin resin foamed sheet and adhesive tape
WO2018181486A1 (en) Resin foam sheet, method for producing resin foam sheet, and adhesive tape
WO2017057628A1 (en) Polyolefin resin foamed sheet and adhesive tape
JP6496407B2 (en) Cross-linked polyolefin resin foam sheet and method for producing the same
JP6901476B2 (en) Crosslinked resin foam sheet, its manufacturing method, and adhesive tape
JP6918701B2 (en) Polyolefin-based foam sheet, its manufacturing method and adhesive tape
JP2019178210A (en) Resin foam sheet and adhesive tape

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180911

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181019

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190423

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190809

R151 Written notification of patent or utility model registration

Ref document number: 6572307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151