JP6567800B2 - Biological electrode - Google Patents

Biological electrode Download PDF

Info

Publication number
JP6567800B2
JP6567800B2 JP2013269226A JP2013269226A JP6567800B2 JP 6567800 B2 JP6567800 B2 JP 6567800B2 JP 2013269226 A JP2013269226 A JP 2013269226A JP 2013269226 A JP2013269226 A JP 2013269226A JP 6567800 B2 JP6567800 B2 JP 6567800B2
Authority
JP
Japan
Prior art keywords
pattern
electrode
conductive
outer edge
bioelectrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013269226A
Other languages
Japanese (ja)
Other versions
JP2015123198A5 (en
JP2015123198A (en
Inventor
由希 宮内
由希 宮内
西村 直樹
直樹 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Denshi Co Ltd
Original Assignee
Fukuda Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Denshi Co Ltd filed Critical Fukuda Denshi Co Ltd
Priority to JP2013269226A priority Critical patent/JP6567800B2/en
Publication of JP2015123198A publication Critical patent/JP2015123198A/en
Publication of JP2015123198A5 publication Critical patent/JP2015123198A5/ja
Application granted granted Critical
Publication of JP6567800B2 publication Critical patent/JP6567800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は主に生体電気信号取得用の電極(生体電極)に関し、特に、使い捨て型の生体電極に関する。   The present invention mainly relates to an electrode (bioelectrode) for obtaining a bioelectric signal, and more particularly, to a disposable bioelectrode.

従来、心電図を代表とする生体電気信号は、診断に有用な情報として広く用いられている。生体電気信号はその目的に応じて、安静時のみならず、運動中や日常生活中に取得することもある。例えば、ホルタ心電計による心電図取得は、日常生活中に長期間連続して生体電気信号を取得する代表的なものである。   Conventionally, bioelectric signals typified by an electrocardiogram have been widely used as information useful for diagnosis. Depending on the purpose, the bioelectric signal may be acquired not only at rest but also during exercise and daily life. For example, electrocardiogram acquisition using a Holter electrocardiograph is a typical example of acquiring a bioelectric signal continuously for a long time during daily life.

生体電気信号の取得には、体表面に装着する生体電極が必要である。そして、生体電極には、取得期間に渡って少ないノイズで安定した生体電気信号を取得することが求められる。そのため、生体電極には、取得する生体電気信号の種類や、取得環境、取得期間などに応じて様々な形態のものが存在する。   In order to acquire a bioelectric signal, a bioelectrode attached to the body surface is required. The bioelectrode is required to acquire a stable bioelectric signal with little noise over the acquisition period. Therefore, there are various types of bioelectrodes depending on the type of bioelectric signal to be acquired, the acquisition environment, the acquisition period, and the like.

長時間の使用が前提の生体電極は、衛生面やメンテナンスの手間を省くといった観点から、使い捨て(シングルユース)可能であることが望ましい。そのため、樹脂フィルムに配線パターンを印刷し、発泡シートのような絶縁物でサンドイッチした構成のような、低コストで製造可能な構成を有している(特許文献1)。   A bioelectrode premised on long-term use is desirably disposable (single use) from the viewpoint of saving hygiene and maintenance. Therefore, it has a configuration that can be manufactured at low cost, such as a configuration in which a wiring pattern is printed on a resin film and sandwiched with an insulator such as a foam sheet (Patent Document 1).

特開2007−44208号公報JP 2007-44208 A

ホルタ心電計による生体電気信号取得の大半は、被検者が着衣状態かつ安静でない状態で行われるため、被検者の体動によって生体電極と着衣との間で絶えず摩擦が生じる。上述の通り、使い捨て型の生体電極は低コストで製造する必要があるため、再利用を前提とした生体電極で用いられるようなシールドを内蔵した同軸誘導コードを用いることはできない。また、主に樹脂系の素材を用いて形成されるため、摩擦による静電気で帯電しやすい。そのため、特許文献1記載の生体電極では、静電気によって生体電気信号に重畳するノイズを抑制するための、導電性物質からなるシールドパターン(シールド層)を上面および下面に設けている。   Since most of the bioelectric signal acquisition by the Holter electrocardiograph is performed while the subject is in a clothing state and not at rest, friction is constantly generated between the biological electrode and the clothing due to the body movement of the subject. As described above, since the disposable bioelectrode needs to be manufactured at a low cost, a coaxial induction cord with a built-in shield that is used in a bioelectrode premised on reuse cannot be used. Moreover, since it is mainly formed using a resin-based material, it is easily charged by static electricity due to friction. For this reason, the bioelectrode described in Patent Document 1 is provided with shield patterns (shield layers) made of a conductive material on the upper and lower surfaces for suppressing noise superimposed on the bioelectric signal due to static electricity.

従来、このようなシールドパターンは一般に、カーボンと銀とを含有する導電性塗料を塗布(印刷)することで形成されることが多いが、帯電防止(ノイズ抑制)が必ずしも十分でなく、さらなる改良が望まれていた。   Conventionally, such a shield pattern is generally formed by applying (printing) a conductive paint containing carbon and silver, but antistatic (noise suppression) is not always sufficient, and further improvement Was desired.

本発明は、このような従来技術の問題点に鑑みなされたものであり、耐ノイズ性に優れ、かつ低コストで製造可能な生体電極を提供することを目的とする。   The present invention has been made in view of such problems of the prior art, and an object thereof is to provide a biological electrode that is excellent in noise resistance and can be manufactured at low cost.

上述の目的は、生体に装着する電極パッドと、一端を電極パッドに固定されるリード線部と、を有する生体電極であって、リード線部は、一端に電極部を含む平板状の基材に、複数の層を形成した積層構造であり、複数の層は、シールド層を含み、基材の上面に配置されたシールド層は、接地される導電細線パターンと、基材の上面全体を導電細線パターンの上から覆うように形成された導電性物質からなる全面パターンとを有し、導電細線パターンの導電率は、全面パターンの導電率よりも高く、電極部における導電細線パターンは、二次元図形の外縁と、外縁内に存在するとともに外縁に接続される線状パターンとからなるメッシュ状のパターンであり、電極部の下面には、生体電気信号を検出する検出電極が配置され、二次元図形の外縁は、検出電極の外縁を包含することを特徴とする生体電極によって達成される。 The above-described object is a biological electrode having an electrode pad to be attached to a living body and a lead wire portion fixed at one end to the electrode pad, and the lead wire portion is a flat base material including the electrode portion at one end. And a plurality of layers including a shield layer, and the shield layer disposed on the upper surface of the substrate is electrically conductive with the conductive fine wire pattern to be grounded and the entire upper surface of the substrate. The conductive thin line pattern has a conductivity higher than that of the entire surface pattern, and the conductive thin line pattern in the electrode portion is two-dimensional. It is a mesh pattern consisting of an outer edge of a figure and a linear pattern that exists within the outer edge and is connected to the outer edge. A detection electrode for detecting a bioelectric signal is arranged on the lower surface of the electrode part, and is two-dimensional outside of the graphic Is achieved by the biological electrodes, characterized in that it comprises an outer edge of the detection electrode.

このような構成により、本発明によれば、耐ノイズ性に優れるとともに低コストで製造可能な生体電極を提供することができる。   With such a configuration, according to the present invention, it is possible to provide a biological electrode that has excellent noise resistance and can be manufactured at low cost.

本発明の実施形態に係る生体電極のリード線部の構成例を示す分解斜視図である。It is a disassembled perspective view which shows the structural example of the lead wire part of the bioelectrode which concerns on embodiment of this invention. (a)〜(c)は実施形態に係る生体電極が有する導電細線パターンのメッシュパターンの例を説明するための図、(d)〜(e)は、実施形態に係る生体電極が有する導電細線パターンの他の形態例を示す図である。(A)-(c) is a figure for demonstrating the example of the mesh pattern of the conductive fine wire pattern which the biological electrode which concerns on embodiment has, (d)-(e) is the conductive fine wire which the biological electrode which concerns on embodiment has. It is a figure which shows the other example of a pattern. 実施形態に係る生体電極の電極パッド部分の構成例を示す分解斜視図である。It is a disassembled perspective view which shows the structural example of the electrode pad part of the bioelectrode which concerns on embodiment. 実施形態に係る生体電極の効果を説明するための図である。It is a figure for demonstrating the effect of the bioelectrode which concerns on embodiment.

以下、図面を参照して本発明の例示的な実施形態について詳細に説明する。
図1は、本発明の実施形態に係る生体電極のうち、一端を電極パッドに固定され、他端をコネクタに接続されるリード線部の基本的な構成例を示す分解斜視図である。電極パッドとリード線部とが一体に構成される使い捨て型の生体電極では、印刷や粘着材層を介した接着などよって平板状の基材に様々な機能を有する複数の層を形成した積層構造のリード線部を有する。本実施形態では、4つの電極を用いて2chの心電図の測定可能な生体電極に本発明を適用した例を説明する。しかし、本発明は心電図計測用の生体電極に限らず、他の生体電気信号を測定する電極にも適用可能である。また、電極の数にも特に制限は無く、1電極、3電極、5電極、7電極など、4電極以外の電極数の生体電極にも適用可能である。なお、1電極の場合、生体電気信号の測定時には他の1つ以上の電極と組み合わせて用いられる。他の1つ以上の電極は本実施形態で説明する構造を有するものであってもなくてもよい。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an exploded perspective view showing a basic configuration example of a lead wire portion in which one end is fixed to an electrode pad and the other end is connected to a connector, among biological electrodes according to an embodiment of the present invention. In a disposable bioelectrode in which the electrode pad and the lead wire part are integrated, a laminated structure in which a plurality of layers having various functions are formed on a flat base material by printing or adhesion via an adhesive material layer Lead wire part. In the present embodiment, an example in which the present invention is applied to a biological electrode capable of measuring a 2-ch electrocardiogram using four electrodes will be described. However, the present invention is not limited to a bioelectrode for electrocardiogram measurement, but can also be applied to electrodes for measuring other bioelectric signals. The number of electrodes is not particularly limited, and can be applied to biological electrodes having a number of electrodes other than four electrodes such as one electrode, three electrodes, five electrodes, and seven electrodes. In the case of one electrode, it is used in combination with one or more other electrodes when measuring a bioelectric signal. One or more other electrodes may or may not have the structure described in this embodiment.

図1に示す生体電極は、A〜Dの4つの電極を有する。各電極は基本的に共通の構成を有するが、電極Aは心電計(コネクタ)に近い位置に配置されている。一方、他の電極B〜Dについては、電極Aの外縁から、各電極に独立して設けられたコード部150を介して設けられている。電極Bは不関電極であり、接地されている。なお、図1は生体電極の構成要素のうち、基材114に対して印刷によって設けられる層の構造を示している。図1に示す本実施形態の生体電極では、電極Cが共用電極である。   The bioelectrode shown in FIG. 1 has four electrodes A to D. Each electrode basically has a common configuration, but the electrode A is arranged at a position close to an electrocardiograph (connector). On the other hand, the other electrodes B to D are provided from the outer edge of the electrode A through a cord portion 150 provided independently for each electrode. Electrode B is an indifferent electrode and is grounded. In addition, FIG. 1 has shown the structure of the layer provided by printing with respect to the base material 114 among the components of a bioelectrode. In the bioelectrode of this embodiment shown in FIG. 1, the electrode C is a common electrode.

なお、共用電極を用いない場合、2chの心電図波形を測定するための生体電極には5つの電極(1ch+/−,2ch+/−,不関電極)が必要である。5電極を用いる場合は、特許文献1に示されているように、個々の電極が独立したコード部を有する構成となる。   When the common electrode is not used, five electrodes (1ch +/−, 2ch +/−, indifferent electrode) are necessary for the bioelectrode for measuring the ECG waveform of 2ch. When five electrodes are used, as shown in Patent Document 1, each electrode has an independent cord portion.

平板状の基材114は例えばPETフィルムからなる。基材114の下面(電極装着時に体表面と対向する面)には、例えば印刷により電極パターン115が形成される。電極パターン115は先端部分が2層構造になっており、下層部分には円形の検出電極104と、検出電極104から手前に短いコード部1501が設けられている。また、後述する接続部121を設ける電極については、接続部121も下層に設けられる。下層部分は導電性粘着ゲル103と接する部分を含むため、変質しにくい塩化銀と銀の混合物から形成されている。一方、上層は銀から形成され、コード部150の先端部分1502は、下層の検出電極の中心からコード部1501と重複するように配置される。この重複部分は銀で形成されている上層の先端部分1502を塩化銀と銀の混合物で形成されている下層のコード部1501で保護するために設けられている。   The flat substrate 114 is made of, for example, a PET film. An electrode pattern 115 is formed on the lower surface of the base material 114 (the surface facing the body surface when the electrodes are mounted), for example, by printing. The electrode pattern 115 has a two-layer structure at the tip portion, and a circular detection electrode 104 and a short cord portion 1501 are provided in front of the detection electrode 104 in the lower layer portion. Moreover, about the electrode which provides the connection part 121 mentioned later, the connection part 121 is also provided in a lower layer. Since the lower layer portion includes a portion in contact with the conductive adhesive gel 103, the lower layer portion is formed from a mixture of silver chloride and silver which is not easily altered. On the other hand, the upper layer is made of silver, and the tip portion 1502 of the cord part 150 is arranged so as to overlap the cord part 1501 from the center of the lower detection electrode. This overlapping portion is provided in order to protect the upper end portion 1502 formed of silver with the lower cord portion 1501 formed of a mixture of silver chloride and silver.

電極パターン115の下面には、電極パターン115を絶縁するためのレジストパターン116がやはり印刷により設けられる。レジストパターン116の下面には、導電性物質からなる、静電気除去用の下シールドパターン117が印刷により設けられる。本実施形態では、下シールドパターン117はカーボンペーストで形成されている。下シールドパターン117のコード部150と、電極Aから至近端(コネクタ側)の下面、すなわち生体電極の最下面(生体表面に装着される面)には、不織布や発泡フォームといった、柔軟性を有する絶縁性シートが粘着材によって接着される。   A resist pattern 116 for insulating the electrode pattern 115 is also provided on the lower surface of the electrode pattern 115 by printing. On the lower surface of the resist pattern 116, a lower shield pattern 117 made of a conductive material for removing static electricity is provided by printing. In the present embodiment, the lower shield pattern 117 is formed of a carbon paste. The cord portion 150 of the lower shield pattern 117 and the lower surface of the proximal end (connector side) from the electrode A, that is, the lowermost surface of the biological electrode (surface attached to the biological surface) have flexibility such as nonwoven fabric or foamed foam. The insulating sheet which has is adhere | attached with an adhesive material.

基材114の上面(生体に装着されない面)には、上シールドパターン113が形成されている。本実施形態で上シールドパターン113は、基材114側(電極パターン115側)に設けられ、接地される導電細線パターン113Aと、導電細線パターン113A上に設けられ、基材114の全面を覆う全面パターン113Bとの2層から構成されることを特徴とする。   An upper shield pattern 113 is formed on the upper surface of the base material 114 (the surface not attached to the living body). In the present embodiment, the upper shield pattern 113 is provided on the substrate 114 side (electrode pattern 115 side), and is grounded on the conductive thin wire pattern 113A and the conductive thin wire pattern 113A, and covers the entire surface of the substrate 114. The pattern 113B is composed of two layers.

従来、上シールドパターン113は一層であり、カーボンと銀がブレンドされた導電性ペーストで基材114の全面を覆うように形成されるのが一般的であった。しかし、このようなシールドパターン(シールド層)では着衣との摩擦によって生じる静電気による電荷や外部から伝播するノイズに対するシールド効果は必ずしも十分ではなく、測定される生体電気信号に重畳するノイズのさらなる低減が求められていた。   Conventionally, the upper shield pattern 113 is a single layer and is generally formed so as to cover the entire surface of the substrate 114 with a conductive paste in which carbon and silver are blended. However, such a shield pattern (shield layer) does not necessarily have a sufficient shielding effect against static electricity generated by friction with clothes or noise propagated from the outside, and further reduces noise superimposed on the bioelectric signal to be measured. It was sought after.

シールドの効果を高めるには、シールドの導電率を高め、ノイズの原因となる電荷を速やかに接地させれば良い。シールド層の形成にカーボンと銀がブレンドされた導電性ペーストを用いる場合であれば、カーボンの比率を下げて銀の比率を上げればよい。しかし、銀の比率を高めるとコストが大きく上昇し、使い捨てを前提とした生体電極には見合わなくなってしまう。発明者が検討したところ、カーボンと銀の比が1:1の導電性ペーストを用いた場合でも、耐ノイズ性能(シールド性能)は改良の余地があった。   In order to enhance the effect of the shield, it is only necessary to increase the conductivity of the shield and promptly ground the charge causing noise. If a conductive paste in which carbon and silver are blended is used for forming the shield layer, the ratio of silver may be increased by decreasing the ratio of carbon. However, when the silver ratio is increased, the cost is greatly increased, which makes it unsuitable for a bioelectrode that is assumed to be disposable. As a result of examination by the inventors, there was room for improvement in noise resistance performance (shield performance) even when a conductive paste having a carbon to silver ratio of 1: 1 was used.

そこで、発明者は、導電性が高い高価な金属の使用量を実質的に増やさずにシールド性能を向上させる構成を検討した。その結果、導電性の高い物質で独立した細線状パターンを形成し、細線状パターンを構成する物質より導電性の低い導電性物質の層で基材全体を覆う構成によって、耐ノイズ性能を大幅に向上できることを見出し、本発明に到達した。これがすなわち、図1における導電細線パターン113Aと、全面パターン113Bとの組み合わせである。   In view of this, the inventor examined a configuration that improves the shielding performance without substantially increasing the amount of expensive metal having high conductivity. As a result, noise resistance is greatly improved by forming an independent fine line pattern with a highly conductive substance and covering the entire substrate with a layer of a conductive substance that is less conductive than the substance constituting the fine line pattern. The inventors have found that it can be improved and have reached the present invention. This is a combination of the thin conductive wire pattern 113A in FIG. 1 and the entire surface pattern 113B.

導電細線パターン113Aは、導電率(電気伝導度)が高い物質から形成する。具体的には20℃における導電率が1.43×105[S/m]以上(電気抵抗率が7×10-6[Ω・m]以下)の物質であることが好ましい。この条件を満たせば、非金属、金属、非金属と金属との混合物のいずれを用いてもよいが、金属を含有することが好ましい。金属の中でも、20℃における導電率が1.0×107[S/m]以上(電気抵抗率が10×10-8[Ω・m]以下)であるものが好ましく、20℃における導電率が2.5×107[S/m]以上(電気抵抗率が4×10-8[Ω・m]以下)であるものがさらに好ましい。この条件を満たす金属の例としては、単体では銀(6.4×107[S/m], 1.55×10-8[Ω・m])、銅(6.1×107[S/m], 1.64×10-8[Ω・m])、アルミニウム(3.8×107[S/m], 2.58×10-8[Ω・m])、金(3.0×107[S/m], 3.28×10-8[Ω・m])などがある。 The thin conductive wire pattern 113A is formed from a material having high conductivity (electrical conductivity). Specifically, a substance having an electric conductivity at 20 ° C. of 1.43 × 10 5 [S / m] or more (electric resistivity of 7 × 10 −6 [Ω · m] or less) is preferable. Any of nonmetal, metal, and a mixture of nonmetal and metal may be used as long as this condition is satisfied, but it is preferable to contain a metal. Among metals, those having a conductivity at 20 ° C. of 1.0 × 10 7 [S / m] or more (electric resistivity of 10 × 10 −8 [Ω · m] or less) are preferable, and the conductivity at 20 ° C. is 2.5. It is more preferable that it is 10 7 [S / m] or more (electric resistivity is 4 × 10 −8 [Ω · m] or less). Examples of metals that satisfy this condition are silver (6.4 × 10 7 [S / m], 1.55 × 10 −8 [Ω · m]), copper (6.1 × 10 7 [S / m], 1.64 ×) 10 -8 [Ω · m]) , aluminum (3.8 × 10 7 [S / m], 2.58 × 10 -8 [Ω · m]), gold (3.0 × 10 7 [S / m], 3.28 × 10 - 8 [Ω · m]).

また、金属はFe-Cr系合金、Fe-Ni-Mn系合金やMo-Cr-Fe-Ni系合金など、合金であってもよい。また、非導電性の成分が含まれてもよい。具体的にどのような物質を用いるかは、細線パターンの形成方法や入手の容易性、コストなどを勘案して決定することができる。例えば印刷によってパターンを形成する場合、ペースト状の製品の入手性と導電率のバランスから銀や銀を含有する物質が好ましく用いることができる。   The metal may be an alloy such as an Fe—Cr alloy, an Fe—Ni—Mn alloy, or a Mo—Cr—Fe—Ni alloy. Further, a non-conductive component may be included. The specific substance to be used can be determined in consideration of the thin line pattern forming method, availability, cost, and the like. For example, when a pattern is formed by printing, silver or a substance containing silver can be preferably used from the balance between the availability of a pasty product and the conductivity.

導電細線パターン113Aは、上層に設けられる全面パターン113Bを導通する電荷を速やかに接地させるための配線を形成する。つまり、導電細線パターン113Aは、もともと、基材114の全面を隙間なく覆って単体でシールド機能を実現することを目的としておらず、高い導電性を有する高価な金属を用いる場合でも、少量で形成可能である。具体的には、コード部150では1本の細線で形成し、コード部150より面積が大きく、かつ検出電極104が形成される電極部1141についても、二次元図形の外縁と、外縁内に存在し、外縁に接続される線状パターンからなるメッシュ状のパターン1131Aで形成することができる。ここで、メッシュの形状には特に制限は無いが、その外縁が、検出電極104の外縁もしくは、体表面と検出電極104とを電気的に接続するための導電性粘着ゲル103(図3参照)の外縁を包含するように形成することが好ましい。これは、ノイズの大半が導電性粘着ゲル103部分を通じて信号に重畳するためである。   The conductive fine line pattern 113A forms a wiring for promptly grounding the electric charges that conduct the entire surface pattern 113B provided in the upper layer. In other words, the conductive thin wire pattern 113A is not originally intended to cover the entire surface of the base material 114 without a gap and to realize a shield function alone, and is formed in a small amount even when an expensive metal having high conductivity is used. Is possible. Specifically, the code unit 150 is formed by a single thin line, and the electrode unit 1141 having a larger area than the code unit 150 and on which the detection electrode 104 is formed also exists on the outer edge and the outer edge of the two-dimensional figure. However, it can be formed of a mesh pattern 1131A composed of a linear pattern connected to the outer edge. Here, the shape of the mesh is not particularly limited, but the outer edge of the mesh is a conductive adhesive gel 103 for electrically connecting the outer edge of the detection electrode 104 or the body surface and the detection electrode 104 (see FIG. 3). It is preferable to form so that the outer edge of this may be included. This is because most of the noise is superimposed on the signal through the conductive adhesive gel 103 portion.

図1では、円の外縁と、円の外縁を6等分する点の2つを円の中心を通って接続する3つの直線パターンが導電性物質の細線で形成されたメッシュ形状を示しているが、図2(a)に示すように複数の同心円と、それらの外縁を接続する直線パターンを有する形状や、図2(b)に示すように規則的な格子状であってもよい。一方、図2(c)に示すようならせん状のパターンはここでいうメッシュ状のパターンには該当しない。なお、らせん状のパターンは外部からノイズが到来した際に誘導電流を生じるため好ましくない。メッシュ状のパターン1131Aは、基材114の電極部1141上の各位置から、メッシュ状のパターン1131Aを形成する細線までの最短距離にばらつきが少ない形状とすることが好ましい。換言すれば、外縁の内部に設けられるパターンは等間隔もしくは対称形状を有することが好ましい。   FIG. 1 shows a mesh shape in which three linear patterns connecting the outer edge of a circle and two points that divide the outer edge of the circle into six equal parts through the center of the circle are formed by thin lines of conductive material. However, a shape having a plurality of concentric circles as shown in FIG. 2 (a) and a linear pattern connecting the outer edges thereof, or a regular lattice shape as shown in FIG. 2 (b) may be used. On the other hand, the spiral pattern as shown in FIG. 2C does not correspond to the mesh pattern here. A spiral pattern is not preferable because an induced current is generated when noise comes from the outside. The mesh pattern 1131A preferably has a shape with little variation in the shortest distance from each position on the electrode portion 1141 of the substrate 114 to the fine line forming the mesh pattern 1131A. In other words, the pattern provided inside the outer edge preferably has an equal interval or a symmetrical shape.

導電細線パターン113Aは信号ノイズの原因となる電荷を速やかに逃がす(接地する)ために、接地電極Bの電極パターンを通じてコネクタの接地端子と接続される。本実施形態では、基材114の下面側でのみコネクタと電気的に接続可能な構成を有するため、基材114の上面側に設けられる導電細線パターン113Aを、基材114の下面側に設けられ、コネクタと電気的に接続する電極パターン115と電気的に接続するための接続部120,121が、電極Bの電極部1141に設けられるメッシュ状のパターン1131Aと電極Bの電極パターン115に設けられている。しかし、導電細線パターン113Aが直接コネクタと電気的に接続可能であれば、接続部120,121は不要であり、例えばコネクタ側の至近端1132がコネクタの端子と接する位置まで引き延ばされる。図2(d),(e)は接続部120,121を有さない場合の導電細線パターン113Aを、5電極および4電極の構成について模式的に示している。   The conductive thin wire pattern 113A is connected to the ground terminal of the connector through the electrode pattern of the ground electrode B in order to quickly release (ground) the charge causing signal noise. In this embodiment, since it has a configuration that can be electrically connected to the connector only on the lower surface side of the base material 114, the conductive thin wire pattern 113A provided on the upper surface side of the base material 114 is provided on the lower surface side of the base material 114. The connection portions 120 and 121 for electrical connection with the electrode pattern 115 electrically connected to the connector are provided on the mesh pattern 1131A provided on the electrode portion 1141 of the electrode B and the electrode pattern 115 of the electrode B. ing. However, if the conductive thin wire pattern 113A can be directly electrically connected to the connector, the connecting portions 120 and 121 are not necessary, and are extended to a position where, for example, the proximal end 1132 on the connector side contacts the terminal of the connector. FIGS. 2D and 2E schematically show the conductive thin line pattern 113A in the case of not having the connecting portions 120 and 121 with respect to the configuration of five electrodes and four electrodes.

図1の例では、導電細線パターン113Aは基材114の略全体にわたって設けられている。しかし、上述の通り、測定信号に重畳するノイズは検出電極104に設けられる導電性粘着ゲル103部分からの混入が支配的である。従って、各電極部1141上に設けられたメッシュ状のパターン1131Aをコネクタの接地端子に導くために必要な経路にだけ導電細線パターン113Aを設けるようにしてもよい。図1の例では四つの電極A〜Dのうち、電極Bだけに接続部120,121が設けられているため、電極C,Dに設けられたメッシュ状のパターン1131Aの接地は、電極AおよびBを通ることで実現される。従って、電極C,Dの電極部1141に設けられたメッシュ状のパターン1131Aと電極Aとの間、および電極Aと電極Bとの間のコード部150にも導電細線パターン113Aが必要である。しかしながら、電極Aのメッシュ状のパターン1131Aから至近端1132までの区間に設けられている導電細線パターン113Aは必須ではない。一方で、図2(e)に示した、接続部120,121が不要な場合には、各電極部1141に設けられたメッシュ状のパターン1131Aから至近端1132まで電荷を移送するために、電極Aから至近端1132までの間も導電細線パターン113Aが必要である。   In the example of FIG. 1, the conductive thin wire pattern 113 </ b> A is provided over substantially the entire base material 114. However, as described above, the noise superimposed on the measurement signal is dominated by the conductive adhesive gel 103 provided on the detection electrode 104. Therefore, the conductive fine line pattern 113A may be provided only in a route necessary for guiding the mesh pattern 1131A provided on each electrode portion 1141 to the ground terminal of the connector. In the example of FIG. 1, since the connection portions 120 and 121 are provided only for the electrode B among the four electrodes A to D, the grounding of the mesh pattern 1131A provided for the electrodes C and D is Realized by passing B. Therefore, the conductive thin wire pattern 113A is also required between the mesh-shaped pattern 1131A provided on the electrode portion 1141 of the electrodes C and D and the electrode A, and the cord portion 150 between the electrode A and the electrode B. However, the conductive fine line pattern 113A provided in the section from the mesh-shaped pattern 1131A of the electrode A to the closest end 1132 is not essential. On the other hand, when the connection parts 120 and 121 shown in FIG. 2E are unnecessary, in order to transfer charges from the mesh-shaped pattern 1131A provided in each electrode part 1141 to the closest end 1132, The conductive thin wire pattern 113A is also required between the electrode A and the nearest end 1132.

導電細線パターン113Aの上に設けられる全面パターン113Bは、導電細線パターン113Aの上から基材114の表面全体を覆うように形成される。全面パターン113Bは導電性物質から形成されるが、導電細線パターン113Aを形成する物質よりも導電性が低い。また導電細線パターン113Aを酸化や腐食等の変質から保護する機能を持たせるため、全面パターン113Bも酸化や腐食をしにくい素材で形成することが好ましい。本実施形態ではこれらの条件を満たし、かつ印刷でパターンを形成可能な素材として、非金属であるカーボンペーストを用いて全面パターン113Bを形成しているが、金属の使用を含め、他の物質を用いてもよい。   The entire surface pattern 113B provided on the conductive thin line pattern 113A is formed so as to cover the entire surface of the base material 114 from above the conductive thin line pattern 113A. The entire surface pattern 113B is formed of a conductive material, but has lower conductivity than the material forming the conductive thin line pattern 113A. In order to provide a function of protecting the conductive thin wire pattern 113A from alteration such as oxidation and corrosion, the entire surface pattern 113B is also preferably formed of a material that is not easily oxidized or corroded. In the present embodiment, the entire pattern 113B is formed using a non-metallic carbon paste as a material that satisfies these conditions and can form a pattern by printing, but other materials including the use of metal may be used. It may be used.

上述の通り、導電細線パターン113Aは細線から形成されるいわば配線であるため、その面積は基材114よりずっと小さい。従って、導電性物質からなる全面パターン113Bは、導電細線パターン113Aから離れた位置に存在する電荷を導電細線パターン113Aまで速やかに移動させる経路を提供し、速やかな帯電除去を実現している。また、X線を通さない導電細線パターン113Aが細線であるためX線映像において邪魔になりにくい。従って、カーボンのようなX線を透過する物質のみで全面パターン113Bを構成すると、生体電極を装着した状態でX線撮影を行うこともできる。   As described above, since the conductive fine line pattern 113A is a so-called wiring formed from a fine line, its area is much smaller than that of the base material 114. Therefore, the entire surface pattern 113B made of a conductive material provides a path for quickly moving charges existing at a position away from the conductive fine line pattern 113A to the conductive fine line pattern 113A, thereby realizing quick charge removal. Further, since the conductive thin line pattern 113A that does not transmit X-rays is a thin line, it is difficult to get in the way in the X-ray image. Therefore, if the entire surface pattern 113B is composed of only a substance that transmits X-rays such as carbon, it is possible to perform X-ray imaging with the bioelectrode attached.

図3は、本実施形態の生体電極における電極パッド101の構成を説明するための図である。電極パッドは生体表面に取り付けられる部分である。使い捨て型でない生体電極は、電極パッドとリード線(誘導コード)とが分離した構造を有するのが一般的であるが、使い捨て構造の場合は電極パッドとリード線とが一体化された構造を有する。   FIG. 3 is a diagram for explaining the configuration of the electrode pad 101 in the biological electrode of the present embodiment. An electrode pad is a part attached to the surface of a living body. A non-disposable bioelectrode generally has a structure in which an electrode pad and a lead wire (inductive cord) are separated from each other, but in the case of a disposable structure, the electrode pad and the lead wire have an integrated structure. .

図1に示したように、電極パターン115の先端部分に検出電極104が形成されている。電極パッド101のうち、導電性粘着ゲル103を体表面に固定するパッド基材106は、皮膚から発生する水分を発散させて皮膚に対する密着性を良好とし、かつ体動により生じる皮膚の皺などにも追従して変形可能とするため、柔軟性のある透湿防水フィルムで構成されている。パッド基材106として使用可能な透湿防水フィルムの厚さは、好ましくは20〜70μm、より好ましくは30〜60μm、特に好ましくは40〜60μm、最も好ましくは45〜55μmである。   As shown in FIG. 1, the detection electrode 104 is formed at the tip of the electrode pattern 115. Of the electrode pads 101, the pad base material 106 that fixes the conductive adhesive gel 103 to the body surface diffuses moisture generated from the skin to improve the adhesion to the skin, and to the skin wrinkles caused by body movements, etc. Is made of a flexible moisture-permeable waterproof film so that it can be deformed following the movement. The thickness of the moisture permeable waterproof film that can be used as the pad substrate 106 is preferably 20 to 70 μm, more preferably 30 to 60 μm, particularly preferably 40 to 60 μm, and most preferably 45 to 55 μm.

透湿防水フィルムが厚すぎると、皮膚からの水分を発散する効果が十分得られず、剥がれ易くなるほか、かぶれや蒸れなどの原因となり、装着感が悪化する。さらに、柔軟性(特に皮膚表面の皺に対する追従性)が低下するため、電極がごわごわして装着感が悪化するほか、剥がれやすくなる。さらに、柔軟性が低下することにより、生体電気信号にノイズが重畳しやすくなるという問題もある。   If the moisture permeable waterproof film is too thick, the effect of diffusing moisture from the skin cannot be obtained sufficiently, it becomes easy to peel off, and it causes rashes and stuffiness, which deteriorates the feeling of wearing. Furthermore, since flexibility (especially followability with respect to wrinkles on the surface of the skin) is reduced, the electrode is stiff and the wearing feeling is deteriorated, and it is easy to peel off. Furthermore, there is a problem that noise is easily superimposed on the bioelectric signal due to the decrease in flexibility.

パッド基材106の装着面には粘着剤が塗布されており、また、円弧状の第2のセパレータ102が装着面の外縁部に設けられている。第2のセパレータは剥離紙であり、電極パッド101全体のセパレータである第1のセパレータ109と対向する面は粘着性を有さない。従ってパッド基材106の装着面の第2のセパレータ102の存在する領域は第1のセパレータ109から容易に分離することが可能である。   An adhesive is applied to the mounting surface of the pad base material 106, and an arc-shaped second separator 102 is provided on the outer edge of the mounting surface. The second separator is release paper, and the surface facing the first separator 109 that is the separator of the entire electrode pad 101 does not have adhesiveness. Therefore, the region where the second separator 102 exists on the mounting surface of the pad base 106 can be easily separated from the first separator 109.

パッド基材106の略中央部には電極に対応する穴1061が設けられている。図1における各電極A〜Dとその近傍はシール部材105によってパッド基材106に取り付けられるため、最上面および最下面には絶縁性シート111が設けられていない。   A hole 1061 corresponding to the electrode is provided in a substantially central portion of the pad base material 106. Since the electrodes A to D and the vicinity thereof in FIG. 1 are attached to the pad base material 106 by the sealing member 105, the insulating sheet 111 is not provided on the uppermost surface and the lowermost surface.

電極の下面には、導電性粘着ゲル103が設けられる。導電性粘着ゲル103は、電極の下面に塗布された導電性粘着剤により電極に取り付けられてもよいし、外周部分をパッド基材106の装着面に塗布される粘着剤によって固定され、電極とは直接接するようにされてもよい。   A conductive adhesive gel 103 is provided on the lower surface of the electrode. The conductive adhesive gel 103 may be attached to the electrode by a conductive adhesive applied to the lower surface of the electrode, or the outer peripheral portion is fixed by the adhesive applied to the mounting surface of the pad base 106, May be in direct contact.

シール部材105は、例えばパッド基材106と同じ透湿防水フィルムから構成される。シール部材105は、電極をパッド基材106に固定するために設けられる。   The seal member 105 is made of, for example, the same moisture permeable waterproof film as the pad base material 106. The seal member 105 is provided to fix the electrode to the pad base material 106.

電極パッド101を装着する場合、まず第2のセパレータ102を用いて電極パッド101を第1のセパレータ109から分離する。そして、第2のセパレータ102で電極パッド101を支持しながら、装着部位に移動し、第2のセパレータの無い外縁部から体表面に貼り付ける。そして、第2のセパレータ102を剥がしながら、パッド基材106の全面を体表面に密着させる。   When mounting the electrode pad 101, first, the electrode pad 101 is separated from the first separator 109 using the second separator 102. Then, while supporting the electrode pad 101 with the second separator 102, the electrode pad 101 is moved to the mounting site, and is attached to the body surface from the outer edge portion without the second separator. Then, while peeling off the second separator 102, the entire surface of the pad base 106 is brought into close contact with the body surface.

図4は、図1および図3に示した構成を有する生体電極の効果を示す図である。
図1において導電細線パターン113Aを設けず、カーボンと銀とを1:1で混合した導電性ペーストで全面パターン113Bを形成した構成の生体電極を作成した(比較例)。一方、導電細線パターン113Aを銀ペースト(20℃の導電率 2×106[S/m]、電気抵抗率 5×10-7[Ω・m])、全面パターン113Bをカーボンペースト(20℃の導電率 5×102[S/m]、電気抵抗率 2×10-3[Ω・m])でそれぞれ形成した図1の構成の生体電極を作成した(実施例)。なお、比較例の構成、実施例の構成とも、銀の総使用量は同一である。
FIG. 4 is a diagram showing the effect of the bioelectrode having the configuration shown in FIGS. 1 and 3.
In FIG. 1, a bioelectrode having a structure in which the entire surface pattern 113B is formed with a conductive paste in which carbon and silver are mixed at a ratio of 1: 1 without providing the conductive thin wire pattern 113A was prepared (comparative example). On the other hand, the conductive thin wire pattern 113A is silver paste (conductivity 2 × 10 6 [S / m] at 20 ° C., electrical resistivity 5 × 10 −7 [Ω · m]), and the entire surface pattern 113B is carbon paste (20 ° C. A bioelectrode having the configuration shown in FIG. 1 and having a conductivity of 5 × 10 2 [S / m] and an electrical resistivity of 2 × 10 −3 [Ω · m]) was prepared (Example). In addition, the total amount of silver used is the same in the configuration of the comparative example and the configuration of the example.

そして、比較例の構成の電極を被検者の右胸部に、実施例の構成の電極を同一被検者の左胸部にそれぞれ装着し、両者が有する電極パッド101を布でこすりながら同時に2chの双極誘導心電図を計測した。
図4(a)に比較例の構成で取得された心電図を、図4(b)に実施例の構成で取得された心電図をそれぞれ示す。両図の比較から明らかなように、実施例の構成では、布でこすったことで発生する静電気の影響がほとんど現れていないのに対し、比較例の構成ではノイズが大幅に重畳した心電図となっていることがわかる。
Then, the electrode of the configuration of the comparative example is mounted on the right chest of the subject, the electrode of the configuration of the example is mounted on the left chest of the same subject, and the electrode pads 101 of both are simultaneously rubbed with a cloth while simultaneously 2ch Bipolar electrocardiogram was measured.
FIG. 4A shows an electrocardiogram acquired with the configuration of the comparative example, and FIG. 4B shows an electrocardiogram acquired with the configuration of the example. As is clear from the comparison of both figures, the configuration of the example shows almost no influence of static electricity generated by rubbing with a cloth, whereas the configuration of the comparative example is an electrocardiogram in which noise is greatly superimposed. You can see that

以上説明したように本実施形態によれば、電極パッドとリード線部とが一体的に構成される使い捨て型の生体電極におけるシールド層を、接地される導電細線パターンと、導電細線パターンの上から基材全体を覆うように形成された全面パターンとの二層構造とし、導電細線パターンの導電率を全面パターンの導電率よりも高くすることにより、導電率の高い金属の使用量を抑制しながら、低コストで耐ノイズ性能を向上させることができる。   As described above, according to the present embodiment, the shield layer in the disposable bioelectrode in which the electrode pad and the lead wire portion are integrally formed is formed from above the conductive thin wire pattern and the conductive thin wire pattern. While having a two-layer structure with the entire surface pattern formed so as to cover the entire base material, while making the conductivity of the conductive fine wire pattern higher than the conductivity of the entire surface pattern, while suppressing the amount of metal with high conductivity Noise resistance can be improved at low cost.

Claims (3)

生体に装着する電極パッドと、一端を前記電極パッドに固定されるリード線部と、を有する生体電極であって、
前記リード線部は、前記一端に電極部を含む平板状の基材に、複数の層を形成した積層構造であり、
前記複数の層は、シールド層を含み、
前記基材の上面に配置されたシールド層は、接地される導電細線パターンと、前記基材の上面全体を前記導電細線パターンの上から覆うように形成された導電性物質からなる全面パターンとを有し、
前記導電細線パターンの導電率は、前記全面パターンの導電率よりも高く、
前記電極部における前記導電細線パターンは、二次元図形の外縁と、該外縁内に存在するとともに該外縁に接続される線状パターンとからなるメッシュ状のパターンであり、
前記電極部の下面には、生体電気信号を検出する検出電極が配置され、
前記二次元図形の外縁は、前記検出電極の外縁を包含することを特徴とする生体電極。
A biological electrode having an electrode pad to be attached to a living body and a lead wire portion having one end fixed to the electrode pad,
The lead wire part is a laminated structure in which a plurality of layers are formed on a flat substrate including an electrode part at the one end,
The plurality of layers includes a shield layer;
The shield layer disposed on the upper surface of the base material includes a conductive fine line pattern to be grounded, and an overall pattern made of a conductive material formed so as to cover the entire upper surface of the base material from above the conductive fine line pattern. Have
The conductivity of the conductive thin wire pattern is higher than the conductivity of the entire surface pattern,
The conductive thin line pattern in the electrode part is a mesh pattern composed of an outer edge of a two-dimensional figure and a linear pattern that exists in the outer edge and is connected to the outer edge,
On the lower surface of the electrode portion, a detection electrode for detecting a bioelectric signal is disposed,
The biological electrode according to claim 1, wherein an outer edge of the two-dimensional figure includes an outer edge of the detection electrode.
前記導電細線パターンが、金、銀、銅の少なくとも1つを含有する物質で形成されることを特徴とする請求項1に記載の生体電極。   The bioelectrode according to claim 1, wherein the conductive thin wire pattern is formed of a substance containing at least one of gold, silver, and copper. 前記全面パターンが、非金属の導電性物質から形成されることを特徴とする請求項1または2に記載の生体電極。   The bioelectrode according to claim 1 or 2, wherein the entire surface pattern is formed from a non-metallic conductive material.
JP2013269226A 2013-12-26 2013-12-26 Biological electrode Active JP6567800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013269226A JP6567800B2 (en) 2013-12-26 2013-12-26 Biological electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013269226A JP6567800B2 (en) 2013-12-26 2013-12-26 Biological electrode

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018148877A Division JP6677769B2 (en) 2018-08-07 2018-08-07 Biological electrode

Publications (3)

Publication Number Publication Date
JP2015123198A JP2015123198A (en) 2015-07-06
JP2015123198A5 JP2015123198A5 (en) 2017-02-09
JP6567800B2 true JP6567800B2 (en) 2019-08-28

Family

ID=53534373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013269226A Active JP6567800B2 (en) 2013-12-26 2013-12-26 Biological electrode

Country Status (1)

Country Link
JP (1) JP6567800B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10568572B2 (en) 2016-03-14 2020-02-25 The Nielsen Company (Us), Llc Headsets and electrodes for gathering electroencephalographic data
CN110545718B (en) * 2017-04-28 2022-06-07 日东电工株式会社 Biosensor with a sensor element
JP6997533B2 (en) * 2017-04-28 2022-01-17 日東電工株式会社 Biosensor sheet

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4442315A (en) * 1980-11-17 1984-04-10 Fukuda Denshi Kabushiki Kaisha X-Ray transmissive electrode-shielded wire assembly and manufacture thereof
JPH052163Y2 (en) * 1988-10-05 1993-01-20
WO2007139479A1 (en) * 2006-06-01 2007-12-06 Cathprint Ab Tubular catheter for invasive use and manufacturing method therefor
JP5106885B2 (en) * 2007-03-06 2012-12-26 フクダ電子株式会社 Biological information measurement electrode
EP2150173B1 (en) * 2007-04-24 2011-06-22 Philips Intellectual Property & Standards GmbH Sensor arrangement and method for monitoring physiological parameters
CN101938938B (en) * 2008-02-04 2013-07-17 皇家飞利浦电子股份有限公司 Shielded electrode connector
ITMI20080526A1 (en) * 2008-03-28 2009-09-29 Walter Rossetti ELECTRODE COMPLEX FOR ELECTROCARDIOGRAM
JP5727359B2 (en) * 2011-12-27 2015-06-03 株式会社アイ・メデックス Biological electrode and electrical connection structure between layers
JP2013188277A (en) * 2012-03-13 2013-09-26 Nissan Motor Co Ltd Electrode device, and vehicle seat and vehicle interior member including the same
JP2013236922A (en) * 2012-04-19 2013-11-28 Tdk Corp Bioelectrode
JP6027774B2 (en) * 2012-05-31 2016-11-16 フクダ電子株式会社 Biological information acquisition electrode

Also Published As

Publication number Publication date
JP2015123198A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
JP5670604B2 (en) Biological electrode
KR101538426B1 (en) Electrode patch for measuring electrical signal from body and physiological signal measurement apparatus using it
CA1078927A (en) Radio transparent electrode
JP5727359B2 (en) Biological electrode and electrical connection structure between layers
JP6222546B2 (en) Electrical impedance tomography measuring device
JP6695321B2 (en) Biomedical electrode tool
JP4709672B2 (en) Electrocardiograph electrode
JP6567800B2 (en) Biological electrode
CN112839583A (en) Multi-measuring-point electrode patch
JP5106885B2 (en) Biological information measurement electrode
JP7072446B2 (en) Bioelectrode and its manufacturing method
JP6317104B2 (en) Biological electrode
CN110840448B (en) Electrocardiogram electrode patch and preparation method thereof
JP6677769B2 (en) Biological electrode
JPWO2013179368A1 (en) Biological electrode pad
JP6090562B2 (en) Biological electrode
JP6027774B2 (en) Biological information acquisition electrode
JP7126672B2 (en) Bioelectrode and electrical connection structure between layers
CN207236785U (en) Disposable biological electricity electrode
CN205548558U (en) Disposable noise proof, shielding electrode
WO2020144893A1 (en) On-body attachment member
JP3020953U (en) Bioelectrode shield and bioelectrode using the shield
JP2009119080A (en) Faraday shield component and bioinformation measuring method
US11497426B2 (en) Apparatus and electronic circuitry for sensing biosignals
JP5907677B2 (en) Bioelectrode cover and electrostatic induction noise suppression method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180807

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180815

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190801

R150 Certificate of patent or registration of utility model

Ref document number: 6567800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250