JP6562541B2 - Gas purification device and gas purification method - Google Patents

Gas purification device and gas purification method Download PDF

Info

Publication number
JP6562541B2
JP6562541B2 JP2015107190A JP2015107190A JP6562541B2 JP 6562541 B2 JP6562541 B2 JP 6562541B2 JP 2015107190 A JP2015107190 A JP 2015107190A JP 2015107190 A JP2015107190 A JP 2015107190A JP 6562541 B2 JP6562541 B2 JP 6562541B2
Authority
JP
Japan
Prior art keywords
gas
tower
adsorption tower
adsorbed
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015107190A
Other languages
Japanese (ja)
Other versions
JP2016221423A (en
Inventor
進 石田
進 石田
護 皆方
護 皆方
英成 三宅
英成 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP2015107190A priority Critical patent/JP6562541B2/en
Publication of JP2016221423A publication Critical patent/JP2016221423A/en
Application granted granted Critical
Publication of JP6562541B2 publication Critical patent/JP6562541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Description

本発明は、原料混合ガスから障害となるガス成分をVPSA(Vacuum Pressure Swing Adsorption)方式またはPSA(Pressure Swing Adsorption)方式等によって分離除去して所要のガスを精製するようにしたガス精製装置とガス精製方法に関する。   The present invention relates to a gas purification apparatus and a gas which purify a required gas by separating and removing gas components which become an obstacle from a raw material mixed gas by a VPSA (Vacuum Pressure Swing Adsorption) method or a PSA (Pressure Swing Adsorption) method. The present invention relates to a purification method.

従来、原料混合ガスから特定のガス成分を分離回収する装置として、種々のガス精製装置が提案されている。吸着塔内には、使用目的により活性炭やゼオライトなどの吸着剤が充填され、圧力が高いときに吸着量が多く圧力が低いときには吸着量が少ない特性を利用して、圧力を変動させて原料ガス中の特定の成分を精製している。
代表的な精製装置として、空気中の酸素を濃縮するPSA装置やバイオガス中のメタンガスを濃縮するVPSA装置が知られている。そして、脱着する際に真空に近い状態まで圧力を下げる方式をVPSAと言い、大気圧程度で脱着する方式をPSAと言って区別する場合がある。
Conventionally, various gas purification apparatuses have been proposed as apparatuses for separating and recovering specific gas components from a raw material mixed gas. The adsorption tower is filled with adsorbents such as activated carbon and zeolite depending on the purpose of use, and the amount of adsorption is large when the pressure is high and the amount of adsorption is small when the pressure is low. The specific components inside are purified.
As typical purification apparatuses, a PSA apparatus for concentrating oxygen in the air and a VPSA apparatus for concentrating methane gas in biogas are known. A method of reducing the pressure to a state close to a vacuum when desorbing is sometimes referred to as VPSA, and a method of desorbing at about atmospheric pressure is sometimes referred to as PSA.

例えば、特許文献1に記載されたメタンガス精製装置では、メタンガス(濃度約60%)と二酸化炭素ガス(濃度約40%)を含む原料ガスを、第一吸着塔と第二吸着塔に交互に供給している。一方の吸着塔内の吸着剤で原料ガスから二酸化炭素ガスを吸着すると共に他方の吸着塔内で吸着剤に吸着した二酸化炭素ガスの排出を行うことを交互に繰り返すことで連続して処理している。
そして、第一吸着塔と第二吸着塔で二酸化炭素ガスを分離したメタンガスを精製ガスタンクに貯留したり、直接ボイラーに供給したりしている。また、第一吸着塔と第二吸着塔で吸着した二酸化炭素ガスは排出されて排ガスタンクに貯留している。
For example, in the methane gas purification apparatus described in Patent Document 1, a raw material gas containing methane gas (concentration about 60%) and carbon dioxide gas (concentration about 40%) is alternately supplied to the first adsorption tower and the second adsorption tower. doing. The carbon dioxide gas is adsorbed from the raw material gas by the adsorbent in one adsorption tower and the carbon dioxide gas adsorbed by the adsorbent is discharged alternately in the other adsorption tower. Yes.
And the methane gas which isolate | separated the carbon dioxide gas in the 1st adsorption tower and the 2nd adsorption tower is stored in a refined gas tank, or is directly supplied to a boiler. The carbon dioxide gas adsorbed by the first adsorption tower and the second adsorption tower is discharged and stored in the exhaust gas tank.

バイオガスの成分は原料(家畜糞尿や食品残渣など)の種類によって異なるが、一般的にはメタン濃度が40〜80%、二酸化炭素ガス濃度が20〜60%であり、他に水分、硫化水素、シロキサン、アンモニア等が含まれている。バイオガス精製では、前処理として、粉塵、水分、硫化水素等を除去した後、VPSA装置又はPSA装置によって、二酸化炭素を吸着・脱着させることで、メタン濃度の高い精製ガスを得ている。   The components of biogas vary depending on the type of raw material (livestock manure, food residue, etc.), but in general, the methane concentration is 40 to 80% and the carbon dioxide gas concentration is 20 to 60%. , Siloxane, ammonia and the like. In biogas purification, as a pretreatment, after removing dust, moisture, hydrogen sulfide, and the like, purified gas having a high methane concentration is obtained by adsorbing and desorbing carbon dioxide with a VPSA apparatus or PSA apparatus.

必要とされる精製ガスの濃度は用途に応じてさまざまであり、例えばガスエンジンによるバイオガス発電では、メタンガスとして50〜60%以上のメタン濃度があれば、硫化水素、水分、シロキサン等の有害物質を除去することで利用できる。原料のメタン濃度を高くすることで精製ガスの効率を向上することはできるが、メタン濃度を高めるためのバイオガス精製装置までは必ずしも必要とされない。精製ガスをバイオガスボイラーの燃料として用いる場合も同様である。   The concentration of purified gas required varies depending on the application. For example, in biogas power generation using a gas engine, if the methane gas has a methane concentration of 50 to 60% or more, harmful substances such as hydrogen sulfide, moisture, and siloxane It can be used by removing Although the efficiency of refined gas can be improved by increasing the methane concentration of the raw material, a biogas purifier for increasing the methane concentration is not necessarily required. The same applies to the case where purified gas is used as a fuel for a biogas boiler.

特開2014−226617号公報JP 2014-226617 A

一方、精製ガスをCNG(天然ガス)車などの自動車燃料として利用する場合などには、有害物質の除去に加えて95%以上の高いメタン濃度が要求され、好ましくは100%に近いメタン濃度が求められる。精製ガスを高圧ボンベや吸蔵装置を用いて、バイオガス発生場所から利用場所に移動させて利用する場合にも、メタン濃度が高い程効率が良い。また、高圧ボンベから減圧して利用するので、減圧する際に大きく熱を吸収することから、水分が高いと凍結する危険があるし、二酸化炭素の濃度が高いとドライアイスになる危険もある。都市ガス導管に注入して利用する場合にも、非常に高いガス精製基準が設けられている。
しかし、特許文献1に記載されたような従来の1組の吸着塔による精製装置では、精製ガス中のメタン濃度は80〜90%程度であり、実用的な運転条件で安定して95%以上の高濃度の精製ガスを製造することは極めて困難であった。
On the other hand, when using refined gas as an automobile fuel such as a CNG (natural gas) vehicle, in addition to removing harmful substances, a high methane concentration of 95% or more is required, and preferably a methane concentration close to 100%. Desired. Even when the purified gas is used by moving it from the biogas generation site to the usage site using a high-pressure cylinder or storage device, the higher the methane concentration, the better the efficiency. Further, since the pressure is reduced from the high-pressure cylinder and the heat is greatly absorbed when the pressure is reduced, there is a risk of freezing when the moisture is high, and there is a risk of becoming dry ice when the concentration of carbon dioxide is high. Even when injected into city gas conduits, very high gas purification standards are established.
However, in a conventional purification apparatus using a set of adsorption towers as described in Patent Document 1, the methane concentration in the purified gas is about 80 to 90%, and is stably 95% or more under practical operating conditions. It was extremely difficult to produce a high concentration purified gas.

本発明は、このような事情に鑑みてなされたものであって、簡単且つ省スペースの設備で効率よく高精度の精製ガスを製造できるようにしたガス精製装置とガス精製方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a gas purification apparatus and a gas purification method capable of producing highly accurate purified gas efficiently with simple and space-saving equipment. Objective.

本発明によるガス精製装置は、原料ガスから被吸着ガスを吸着して精製ガスを分離精製するガス精製装置において、原料ガスから被吸着ガスの吸着と排出を交互に行う第一吸着塔及び第二吸着塔と、第一吸着塔または第二吸着塔で被吸着ガスを吸着した後の一次精製ガスから更に被吸着ガスを吸着することで二次精製ガスを精製する仕上塔と、を備え、前記第一吸着塔及び第二吸着塔で被吸着ガスの吸着と排出を交互に行う間に前記仕上塔で被吸着ガスの吸着を更に行い、前記第一吸着塔及び第二吸着塔の休止の間に前記仕上塔で吸着剤に吸着された被吸着ガスの排出を行うようにしたことを特徴とする。
本発明によれば、原料ガスを第一吸着塔及び第二吸着塔の一方に供給して吸着剤によって被吸着ガスを吸着して一次精製ガスを精製すると共に他方の吸着塔では吸着剤に吸着された被吸着ガスを排出することを、交互に繰り返す処理が行われ、第一吸着塔及び第二吸着塔から交互に得られた一次精製ガスは仕上塔に供給されて残った被吸着ガスを吸着剤で更に吸着してより高濃度の二次精製ガスが得られる。
The gas purification apparatus according to the present invention includes a first adsorption tower and a second adsorption tower that alternately adsorb and discharge an adsorbed gas from a raw material gas in a gas purifier that separates and purifies the purified gas by adsorbing the adsorbed gas from the raw material gas. comprising an adsorption tower, and finishing tower purifying secondary purified gas by further adsorbing the adsorbed gas from the primary refining gas after adsorption of the adsorbed gas in the first adsorption tower or the second adsorption tower, the said While the first adsorption tower and the second adsorption tower alternately adsorb and discharge the gas to be adsorbed, the finishing tower further adsorbs the gas to be adsorbed, and during the pause of the first adsorption tower and the second adsorption tower. Further, the gas to be adsorbed adsorbed by the adsorbent in the finishing tower is discharged .
According to the present invention, the raw material gas is supplied to one of the first adsorption tower and the second adsorption tower, the adsorbed gas is adsorbed by the adsorbent to purify the primary purified gas, and the other adsorption tower adsorbs to the adsorbent. The process of alternately discharging the adsorbed gas is performed, and the primary purified gas obtained alternately from the first adsorption tower and the second adsorption tower is supplied to the finishing tower and the remaining adsorbed gas is removed. Further adsorption with the adsorbent gives a higher concentration of secondary purified gas.

更に、第一吸着塔及び第二吸着塔で被吸着ガスの吸着と排出を交互に行う交互運転と同時に、得られた一次精製ガスは仕上塔で更に被吸着ガスの吸着を行うことでより高精度の二次精製ガスを精製できる。しかも、第一吸着塔及び第二吸着塔を休止させている間に仕上塔に吸着された被吸着ガスを排出するので、第一及び第二吸着塔での交互運転の時間に比較して仕上塔における被吸着ガスの排出工程の時間が短く、運転効率の低下が短くてすむと共に効率よく高濃度の二次精製ガスを得られる。 Furthermore, simultaneously with the alternate operation of alternately adsorbing and discharging the gas to be adsorbed in the first adsorption tower and the second adsorption tower, the obtained primary purified gas is further increased by further adsorbing the gas to be adsorbed in the finishing tower. Accurate secondary purification gas can be purified. In addition, since the gas to be adsorbed on the finishing tower is discharged while the first adsorption tower and the second adsorption tower are stopped, the finishing time is compared with the time of the alternating operation in the first and second adsorption towers. The time for the process of discharging the adsorbed gas in the tower is short, the reduction in operating efficiency is short, and the secondary purified gas with high concentration can be obtained efficiently.

本発明によるガス精製方法は、原料ガスから被吸着ガスを吸着して精製ガスを分離精製するガス精製方法において、第一吸着塔及び第二吸着塔における一方の吸着塔内の吸着剤で被吸着ガスを吸着すると共に他方の吸着塔内の吸着剤から被吸着ガスを排出することを交互に繰り返して行い、第一吸着塔または第二吸着塔で精製した一次精製ガスから、仕上塔で更に被吸着ガスを吸着することで高濃度の二次精製ガスを精製し、前記第一吸着塔及び第二吸着塔の休止の間に前記仕上塔で吸着剤に吸着された被吸着ガスの排出を行うようにしたことを特徴とする。
本発明によれば、原料ガスを、第一吸着塔及び第二吸着塔における一方の吸着塔に供給して吸着剤によって被吸着ガスを吸着して一次精製ガスを精製すると共に他方の吸着塔では吸着剤に吸着された被吸着ガスを排出することを、交互に繰り返す。そして、第一吸着塔及び第二吸着塔から交互に得られた一次精製ガスは交互に仕上塔に供給され、残った被吸着ガスを吸着剤で更に吸着してより高濃度の二次精製ガスが得られる。
The gas purification method according to the present invention is a gas purification method in which an adsorbed gas is adsorbed from a raw material gas to separate and purify the purified gas, and is adsorbed by an adsorbent in one of the first adsorption tower and the second adsorption tower. While alternately adsorbing the gas and exhausting the gas to be adsorbed from the adsorbent in the other adsorption tower, the primary purification gas purified by the first adsorption tower or the second adsorption tower is further subjected to the treatment by the finishing tower. The adsorbed gas is adsorbed to purify the high-concentration secondary purified gas, and the adsorbed gas adsorbed by the adsorbent is discharged from the finishing tower while the first adsorption tower and the second adsorption tower are stopped. It is characterized by doing so.
According to the present invention, the raw material gas is supplied to one adsorption tower in the first adsorption tower and the second adsorption tower, the adsorbed gas is adsorbed by the adsorbent to purify the primary purified gas, and in the other adsorption tower, The discharge of the adsorbed gas adsorbed by the adsorbent is repeated alternately. The primary purified gas obtained alternately from the first adsorption tower and the second adsorption tower is alternately supplied to the finishing tower, and the remaining adsorbed gas is further adsorbed with an adsorbent to obtain a higher concentration secondary purified gas. Is obtained.

本発明によるガス精製装置及びガス精製方法によれば、第一吸着塔及び第二吸着塔によって原料ガスから交互に被吸着ガスの吸着と排出を繰り返し、交互に得られた一次精製ガスから仕上塔または再度の第一吸着塔及び第二吸着塔で更に被吸着ガスの吸着を行うことでより高濃度の二次精製ガスを効率的に精製できる。
しかも、ガス精製装置の構成が簡単で占有スペースが小さくて済むため設置スペースと設備費の増大を抑えることができる。
According to the gas purification apparatus and the gas purification method of the present invention, the adsorption and discharge of the gas to be adsorbed are alternately repeated from the source gas by the first adsorption tower and the second adsorption tower, and the finishing tower is obtained from the primary purification gas obtained alternately. Alternatively, the second purification gas having a higher concentration can be efficiently purified by further adsorbing the gas to be adsorbed in the first adsorption tower and the second adsorption tower again.
In addition, since the configuration of the gas purification apparatus is simple and the occupation space is small, an increase in installation space and equipment costs can be suppressed.

本発明の実施形態によるガス精製装置の基本構成を示す図である。It is a figure which shows the basic composition of the gas purification apparatus by embodiment of this invention.

以下、本発明の実施形態によるガス精製装置について図1を参照して説明する。
図1に示すガス精製装置1は、原料ガス、例えばバイオガス中のメタンガスを濃縮するVPSA装置である。このガス精製装置1に用いる原料ガスは例えば下水処理場で発生する消化ガスや、養豚場等の家畜糞尿等から発生するバイオガス等である。この原料ガスは、例えばメタンガス(濃度約60%)と二酸化炭素ガス(濃度約40%)を含んでいる。
Hereinafter, a gas purification apparatus according to an embodiment of the present invention will be described with reference to FIG.
A gas purification apparatus 1 shown in FIG. 1 is a VPSA apparatus that concentrates raw material gas, for example, methane gas in biogas. The raw material gas used in the gas purification apparatus 1 is, for example, digestion gas generated in a sewage treatment plant, biogas generated from livestock manure, etc. in a pig farm. This source gas contains, for example, methane gas (concentration about 60%) and carbon dioxide gas (concentration about 40%).

このガス精製装置1は、上述した原料ガスが管路2を通して供給され、粉塵や水分等を除去するための前処理設備3を介して原料ガスタンク4に貯留される。原料ガスタンク4からブロワ5またはバルブSV11を介して管路2が分岐され、その一方の管路2に第一吸着塔6Aが、他方の管路2に第二吸着塔6Bがそれぞれ連結されている。そして、管路2の第一吸着塔6A及び第二吸着塔6Bの下流側には管路2aを介して仕上塔7が連結されている。   In the gas purification apparatus 1, the above-described raw material gas is supplied through a pipe 2 and is stored in a raw material gas tank 4 through a pretreatment facility 3 for removing dust, moisture, and the like. The pipeline 2 is branched from the raw material gas tank 4 via the blower 5 or the valve SV11, and the first adsorption tower 6A is connected to one of the pipelines 2 and the second adsorption tower 6B is connected to the other pipeline 2, respectively. . A finishing tower 7 is connected to the downstream side of the first adsorption tower 6A and the second adsorption tower 6B in the pipe line 2 via a pipe line 2a.

なお、第一吸着塔6A及び第二吸着塔6Bでそれぞれ精製した一次精製ガスを2本の管路2aに分岐して仕上塔7に供給するようにしたが、分岐することなく1つの管路2aとしてそれぞれ仕上塔7に供給してもよい。   The primary purified gas purified in each of the first adsorption tower 6A and the second adsorption tower 6B is branched into two pipes 2a and supplied to the finishing tower 7. However, one pipe is not branched. 2a may be supplied to the finishing tower 7 respectively.

仕上塔7の下流側には精製された高濃度メタンガスを貯留するための精製ガスタンク9が設置されている。第一吸着塔6A及び第二吸着塔6B、そして仕上塔7にはそれぞれで吸着された二酸化炭素ガスを排ガスとして送り出す管路2bを介して貯留する排ガスタンク10が設置されている。管路2bの途中には各二酸化炭素ガスを排ガスタンク10に強制的に送り込む真空ポンプPが設置されている。
なお、仕上塔7は原料ガスが第一吸着塔6A及び第二吸着塔6Bで精製されたものが供給されるため既にメタンガスの濃度が高く、1つの塔だけがあればより高濃度に精製できる。
A purified gas tank 9 for storing purified high-concentration methane gas is installed on the downstream side of the finishing tower 7. The first adsorption tower 6A, the second adsorption tower 6B, and the finishing tower 7 are each provided with an exhaust gas tank 10 for storing the carbon dioxide gas adsorbed in the first adsorption tower 6B as a waste gas through a pipe line 2b. A vacuum pump P for forcibly sending each carbon dioxide gas to the exhaust gas tank 10 is installed in the middle of the pipe line 2b.
The finishing tower 7 is supplied with the raw material gas purified by the first adsorption tower 6A and the second adsorption tower 6B, so that the concentration of methane gas is already high and can be purified to a higher concentration if there is only one tower. .

第一吸着塔6Aと第二吸着塔6Bは例えば同一形状で同一の大きさとされ、内部は同じ構造になっている。即ち、第一吸着塔6Aと第二吸着塔6B内には、下層から上層に向けて、主として水分を除去するためのシリカゲル等の第一吸着剤、シロキサンや硫化水素を除去するための活性炭等の第二吸着剤、二酸化炭素を除去するためのゼオライト等の第三吸着剤が積層されて充填されている。なお、第一から第三吸着剤としてそれぞれ活性炭やゼオライトを用いてもよい。
第一吸着塔6Aと第二吸着塔6Bは同形同大で各吸着剤の充填量が等しいため、二酸化炭素の吸着量と放出量は略同一にできる。そして、第一吸着塔6Aと第二吸着塔6Bで交互に精製された一次精製ガスはメタン濃度が例えば80〜90%程度になる。
The first adsorption tower 6A and the second adsorption tower 6B have, for example, the same shape and the same size, and the inside has the same structure. That is, in the first adsorption tower 6A and the second adsorption tower 6B, from the lower layer to the upper layer, the first adsorbent such as silica gel for mainly removing water, activated carbon for removing siloxane and hydrogen sulfide, etc. The second adsorbent and a third adsorbent such as zeolite for removing carbon dioxide are stacked and filled. Note that activated carbon and zeolite may be used as the first to third adsorbents, respectively.
Since the first adsorption tower 6A and the second adsorption tower 6B have the same shape and the same size, and the filling amounts of the respective adsorbents are equal, the adsorption amount and the release amount of carbon dioxide can be made substantially the same. The primary purified gas purified alternately by the first adsorption tower 6A and the second adsorption tower 6B has a methane concentration of about 80 to 90%, for example.

また、仕上塔7は第一吸着塔6A及び第二吸着塔6Bと同一形状で同一の大きさであってもよいが、異なる形状と大きさでもよく、その内部には二酸化炭素を除去するためのゼオライト等の吸着剤のみを充填した。或いは、吸着剤として活性炭を用いてもよいし、他の吸着剤を含めることも可能である。
そして、仕上塔7で精製された二次精製ガスはメタン濃度が95%程度以上になる。
なお、第一吸着塔6Aと第二吸着塔6B、そして仕上塔7内の各種の吸着剤の充填量は原料ガスの成分割合に応じてそれぞれ最適な量を充填することができる。
The finishing tower 7 may have the same shape and the same size as the first adsorption tower 6A and the second adsorption tower 6B, but may have a different shape and size, in order to remove carbon dioxide inside. Only adsorbents such as zeolite were packed. Alternatively, activated carbon may be used as the adsorbent, and other adsorbents may be included.
The secondary purified gas purified by the finishing tower 7 has a methane concentration of about 95% or more.
In addition, the filling amount of the various adsorbents in the first adsorption tower 6A, the second adsorption tower 6B, and the finishing tower 7 can be filled with an optimum amount according to the component ratio of the raw material gas.

仕上塔7で精製された二次精製ガスは管路2aを通って精製ガスタンク9に貯留される。また、第一吸着塔6A及び第二吸着塔6B、仕上塔7内の吸着剤に吸着された二酸化炭素ガスである被吸着ガスは、各吸着剤から排出されて管路2bを通して排ガスタンク10に貯留可能とされている。
第一吸着塔6Aと第二吸着塔6B、仕上塔7の処理工程において、二酸化炭素ガスを各吸着剤で吸着した吸着塔6A,6Bや仕上塔7は圧力を高く設定し、吸着剤で吸着された二酸化炭素ガスを排出(脱気、放出)する他方の吸着塔6B,6A、仕上塔7は圧力を比較的低く設定することで、吸着と排出の処理工程を切り替えるものとする。
The secondary purified gas purified by the finishing tower 7 is stored in the purified gas tank 9 through the pipe line 2a. Further, the adsorbed gas, which is carbon dioxide gas adsorbed by the adsorbents in the first adsorbing tower 6A, the second adsorbing tower 6B, and the finishing tower 7, is discharged from each adsorbent and passed through the pipe line 2b to the exhaust gas tank 10. It can be stored.
In the processing steps of the first adsorption tower 6A, the second adsorption tower 6B, and the finishing tower 7, the adsorption towers 6A and 6B and the finishing tower 7 in which carbon dioxide gas is adsorbed by each adsorbent are set at a high pressure and adsorbed by the adsorbent. The other adsorption towers 6B and 6A and the finishing tower 7 that discharge (deaerate and release) the carbon dioxide gas that has been discharged are set to have a relatively low pressure to switch the adsorption and discharge processing steps.

また、第一及び第二吸着塔6A,6Bの上流側と下流側の各管路2,2a、2bにはストップバルブとして、バルブSV1、SV2、SV3、SV4、SV5、SV6、SV7、SV8、SV9、SV11がそれぞれ取り付けられている。また、仕上塔7の上流側と下流側の各管路2a、2bには、バルブSV12、SV13、SV15、SV14、SV10がそれぞれ取り付けられている。なお、バルブSV11はブロワ5と並列の管路2に設置されている。
なお、図1では省略されているが、上述した従来技術のように第一吸着塔6A及び第二吸着塔6Bを連結する循環路を形成して内部を熱伝導性の高い不凍液等の熱媒体を流通させる伝熱手段を設けてもよい。この場合、一方の吸着塔で被吸着ガスを吸着する際に発生する吸着熱を、被吸着ガスを排出する他方の吸着塔に熱伝導させることができる。
Further, the upstream side and downstream side pipelines 2, 2a, 2b of the first and second adsorption towers 6A, 6B are valves SV1, SV2, SV3, SV4, SV5, SV6, SV7, SV8, as stop valves. SV9 and SV11 are respectively attached. Further, valves SV12, SV13, SV15, SV14, SV10 are respectively attached to the upstream and downstream pipelines 2a, 2b of the finishing tower 7. The valve SV11 is installed in the pipeline 2 in parallel with the blower 5.
Although not shown in FIG. 1, a circulation path connecting the first adsorption tower 6A and the second adsorption tower 6B is formed as in the prior art described above, and the inside is a heat medium such as antifreeze having high thermal conductivity. You may provide the heat-transfer means to distribute | circulate. In this case, the heat of adsorption generated when the gas to be adsorbed is adsorbed by one of the adsorption towers can be thermally conducted to the other adsorption tower that discharges the gas to be adsorbed.

本実施形態によるガス精製装置1は上述した構成を備えており、次にガス精製方法について説明する。
原料ガスタンク4からバイオガス等の原料ガスが管路2を通して第一及び第二吸着塔6A,6Bに供給され、例えばバルブSV1、SV5、SV6が開、バルブSV2が閉とされた場合には第一吸着塔6Aに原料ガスが供給される。すると、第一吸着塔6A内では供給される原料ガスのうち水分やシロキサン・硫化水素と、被吸着ガスである二酸化炭素ガスが各吸着剤によって吸着され、メタンガスは吸着されないため高濃度となって第一吸着塔6Aの下流側の管路2aを通して仕上塔7に充填される。
そして、第一吸着塔6A内で二酸化炭素ガスが吸着剤に吸着される際に発熱して吸着熱を発生する。
The gas purification apparatus 1 according to the present embodiment has the above-described configuration, and a gas purification method will be described next.
A raw material gas such as biogas is supplied from the raw material gas tank 4 to the first and second adsorption towers 6A and 6B through the pipe line 2. For example, when the valves SV1, SV5, SV6 are opened and the valve SV2 is closed, A raw material gas is supplied to the single adsorption tower 6A. Then, in the first adsorption tower 6A, moisture, siloxane / hydrogen sulfide, and carbon dioxide gas, which is an adsorbed gas, are adsorbed by each adsorbent, and the methane gas is not adsorbed, resulting in a high concentration. The finishing tower 7 is filled through the pipe line 2a on the downstream side of the first adsorption tower 6A.
And when carbon dioxide gas is adsorbed by the adsorbent in the first adsorption tower 6A, it generates heat and generates heat of adsorption.

一方、第二吸着塔6Bでは管路2のバルブSV3、SV7,SV8が閉、バルブSV4が開とされ、第二吸着塔6B内の吸着剤に吸着された被吸着ガスである二酸化炭素ガスが放出され、バルブSV4を介して排ガスタンク10に送られる。
このとき、第二吸着塔6B内では二酸化炭素ガスが排出されることで冷却され温度が低下する。
なお、第一吸着塔6Aで発生した吸着熱が図示しない伝熱手段を介して第一吸着塔6Aから第二吸着塔6Bに伝達されて熱交換してもよい。第一吸着塔6Aでは吸着熱を奪われるため温度が低下して二酸化炭素ガスの吸着量が増大し、第二吸着塔6Bでは冷却された吸着剤の温度が第一吸着塔6Aから伝達される吸着熱によって上昇するため吸着剤からの二酸化炭素ガス放出量が増大する。こうして原料ガス中の二酸化炭素ガスの吸着と放出の処理効率を向上させることができる。
On the other hand, in the second adsorption tower 6B, the valves SV3, SV7, SV8 of the pipe line 2 are closed, the valve SV4 is opened, and carbon dioxide gas, which is an adsorbed gas adsorbed by the adsorbent in the second adsorption tower 6B, is produced. It is discharged and sent to the exhaust gas tank 10 via the valve SV4.
At this time, in the second adsorption tower 6B, the carbon dioxide gas is discharged and cooled to lower the temperature.
The heat of adsorption generated in the first adsorption tower 6A may be transferred from the first adsorption tower 6A to the second adsorption tower 6B through a heat transfer means (not shown) to exchange heat. Since the adsorption heat is deprived in the first adsorption tower 6A, the temperature decreases and the amount of carbon dioxide gas adsorbed increases, and in the second adsorption tower 6B, the temperature of the cooled adsorbent is transmitted from the first adsorption tower 6A. Since it rises due to the heat of adsorption, the amount of carbon dioxide gas released from the adsorbent increases. Thus, the treatment efficiency of adsorption and release of carbon dioxide gas in the raw material gas can be improved.

第一及び第二吸着塔6A,6Bによって原料ガス中の二酸化炭素ガスの吸着と排出を行うことで、第一吸着塔6A内の吸着剤の吸着量が飽和に近い状態または所定の大きさ以上になると、各バルブSV1〜SV8の開閉を切り換えて第一吸着塔6Aでは吸着剤から二酸化炭素ガスの排出を行う。これと同時に、第二吸着塔6Bには原料ガスを供給して二酸化炭素ガスを吸着剤で吸着することでメタンガスの濃度を高濃度にして排出し、一次精製ガスとして管路2aを通して仕上塔7に充填する。
第一及び第二吸着塔6A,6Bから交互に充填された原料ガスの一次精製ガスはメタン濃度80〜90%程度になり、二酸化炭素濃度は原料ガスと比較して大幅に低減される。
By adsorbing and discharging the carbon dioxide gas in the raw material gas by the first and second adsorption towers 6A and 6B, the adsorption amount of the adsorbent in the first adsorption tower 6A is close to saturation or larger than a predetermined size. Then, the opening and closing of the valves SV1 to SV8 are switched, and the carbon dioxide gas is discharged from the adsorbent in the first adsorption tower 6A. At the same time, the raw material gas is supplied to the second adsorption tower 6B and the carbon dioxide gas is adsorbed by the adsorbent to discharge the methane gas at a high concentration. As a primary purified gas, the finishing tower 7 is passed through the pipe 2a. To fill.
The primary purified gas of the raw material gas charged alternately from the first and second adsorption towers 6A and 6B has a methane concentration of about 80 to 90%, and the carbon dioxide concentration is greatly reduced as compared with the raw material gas.

つぎに、仕上塔7では、前後に連通する管路2a、2bにおいてSV12、SV14が開、SV13、SV15が閉となっている。第一及び第二吸着塔6A,6Bから交互に仕上塔7に充填された原料ガスの一次精製ガスは、仕上塔7内の吸着剤の全量が二酸化炭素ガス吸着剤で構成されているため更に残った二酸化炭素ガスが吸着され、二次精製ガスは一層高濃度になる。
しかも、仕上塔7での精製工程では、第一及び第二吸着塔6A,6Bで交互に二酸化炭素ガスの吸着と脱着を繰り返す工程と同時に、残った二酸化炭素ガスの吸着を連続して行うため、吸着可能時間が第一及び第二吸着塔6A及び6Bに比べて大幅に増加する。そのため、仕上塔7で精製される二次精製ガスはメタン濃度95%以上の高濃度になり、二酸化炭素濃度は原料ガスと比較して大幅に低減される。
Next, in the finishing tower 7, SV12 and SV14 are open and SV13 and SV15 are closed in the pipe lines 2a and 2b communicating in the front-rear direction. Since the primary purified gas of the raw material gas charged alternately into the finishing tower 7 from the first and second adsorption towers 6A and 6B is composed of carbon dioxide gas adsorbent, the total amount of the adsorbent in the finishing tower 7 is further increased. The remaining carbon dioxide gas is adsorbed and the secondary purified gas has a higher concentration.
Moreover, in the refining process in the finishing tower 7, the adsorption of the remaining carbon dioxide gas is continuously performed simultaneously with the process of alternately repeating the adsorption and desorption of carbon dioxide gas in the first and second adsorption towers 6A and 6B. The adsorbable time is significantly increased compared to the first and second adsorption towers 6A and 6B. Therefore, the secondary purified gas purified in the finishing tower 7 has a high methane concentration of 95% or more, and the carbon dioxide concentration is greatly reduced as compared with the raw material gas.

そして、第一及び第二吸着塔6A、6Bでの交互運転を所定回数(例えば5回〜20回程度)行った後の休止工程で、仕上塔7で脱着工程を行う。その場合、バルブSV12、SV14を閉にし、バルブSV13を開にして、仕上塔7内の吸着剤から吸着された二酸化炭素ガスを排出して、管路2bを通って給送して排ガスタンク10に貯留する。
この工程では、第一及び第二吸着塔6A及び6Bは休止工程とされ、第一及び第二吸着塔6A及び6Bでの交互運転の時間に比べて、仕上塔7の脱着工程は短くなるため、運転効率の低下は少なくできる。
Then, the desorption process is performed in the finishing tower 7 in a pause process after the alternating operation in the first and second adsorption towers 6A and 6B is performed a predetermined number of times (for example, about 5 to 20 times). In that case, the valves SV12 and SV14 are closed, the valve SV13 is opened, the carbon dioxide gas adsorbed from the adsorbent in the finishing tower 7 is discharged, and fed through the pipe line 2b to be sent to the exhaust gas tank 10. Store in.
In this step, the first and second adsorption towers 6A and 6B are set as a pause process, and the desorption process of the finishing tower 7 is shortened compared to the time of alternating operation in the first and second adsorption towers 6A and 6B. The decrease in operating efficiency can be reduced.

上述のように本実施形態によるガス精製装置1とガス精製方法によれば、第一吸着塔6A及び第二吸着塔6Bによって交互に二酸化炭素ガスの吸着と脱着を繰り返して得られた一次精製ガスは仕上塔7で更に二酸化炭素ガスの吸着を行うことでより、高濃度の二次精製ガスを効率的に精製できる。
しかも、本実施形態では、仕上塔7での吸着時間は第一吸着塔6A及び第二吸着塔6Bによる吸着と脱着の時間と同程度且つ同時であり、仕上塔7の二酸化炭素ガスの脱着時間を短くできるため、運転効率の低下を低減できて効率的な高濃度メタンガスの精製を行える。
また、本実施形態では、第一吸着塔6A及び第二吸着塔6Bに仕上塔7を追加した構成であるから、ガス精製装置1の構成が簡単で設置スペースが小さくて済むという利点がある。
As described above, according to the gas purification apparatus 1 and the gas purification method according to the present embodiment, the primary purified gas obtained by alternately repeating the adsorption and desorption of carbon dioxide gas by the first adsorption tower 6A and the second adsorption tower 6B. In the finishing tower 7, the carbon dioxide gas is further adsorbed, so that the secondary purified gas having a high concentration can be efficiently purified.
Moreover, in this embodiment, the adsorption time in the finishing tower 7 is similar to and simultaneous with the adsorption and desorption times in the first adsorption tower 6A and the second adsorption tower 6B, and the carbon dioxide gas desorption time in the finishing tower 7 Therefore, the reduction in operation efficiency can be reduced and the high-concentration methane gas can be purified efficiently.
Moreover, in this embodiment, since it is the structure which added the finishing tower 7 to 6 A of 1st adsorption towers and the 2nd adsorption tower 6B, there exists an advantage that the structure of the gas purification apparatus 1 is simple and installation space may be small.

なお、本発明は上述した実施形態によるガス精製装置1と精製方法に限定されることはなく、本発明の要旨を変更しない範囲で適宜の変更や置換等が可能であり、これらはいずれも本発明に含まれる。以下に、本発明の実施例や変形例等について説明するが、上述の実施形態と同一または同様な部分、部材には同一の符号を用いて説明を省略する。   Note that the present invention is not limited to the gas purification apparatus 1 and the purification method according to the above-described embodiment, and can be appropriately changed or replaced without departing from the spirit of the present invention. Included in the invention. Hereinafter, examples and modifications of the present invention will be described, but the same or similar parts and members as those of the above-described embodiment will be described using the same reference numerals.

以下、本発明の実施形態の運転事例を実施例として表1により説明する。
本実施例によるガス精製装置1とその精製方法は、上述した実施形態と同様である。第一吸着塔6A及び第二吸着塔6Bの運転方法は、従来型のVPSA装置と同様である。第一吸着塔6A及び第二吸着塔6Bにおける吸着工程及び脱着工程を各3分として、内圧を外気に開放する均圧1及び均圧2の工程と減圧または昇圧の工程を介して吸着と脱着工程を切り替えて交互に繰り返すようにした。
Hereinafter, the operation example of the embodiment of the present invention will be described with reference to Table 1 as an example.
The gas purification apparatus 1 and its purification method according to this example are the same as those in the above-described embodiment. The operation method of the first adsorption tower 6A and the second adsorption tower 6B is the same as that of the conventional VPSA apparatus. Adsorption and desorption are performed through the steps of pressure equalization 1 and pressure equalization 2 for releasing the internal pressure to the outside air, and the step of pressure reduction or pressure increase, with the adsorption step and the desorption step in the first adsorption tower 6A and the second adsorption tower 6B each taking 3 minutes. The process was switched and repeated alternately.

本実施例では、仕上塔7を組込むと共に、ブロワ5や真空ポンプPなどの付帯機器を共用していることを特徴としている。第一吸着塔6Aまたは第二吸着塔6Bで精製された一次精製ガスは、通常、メタン濃度が80〜90%程度になり、原料ガスと比較して二酸化炭素濃度は大幅に低減されている。
しかも、下記表1に示すように、仕上塔7は全量が二酸化炭素吸着剤で構成されていることから、吸着可能時間が第一吸着塔6A及び第二吸着塔6Bの吸着可能時間と比較して大幅に増加する。仕上塔7で精製された二次精製ガスはメタン濃度が95%以上になり、原料ガスと比較して二酸化炭素濃度は一層大幅に低減されている。
The present embodiment is characterized in that the finishing tower 7 is incorporated and auxiliary equipment such as the blower 5 and the vacuum pump P are shared. The primary purified gas purified by the first adsorption tower 6A or the second adsorption tower 6B usually has a methane concentration of about 80 to 90%, and the carbon dioxide concentration is greatly reduced as compared with the raw material gas.
Moreover, as shown in Table 1 below, since the finishing tower 7 is entirely composed of carbon dioxide adsorbent, the adsorption time is compared with the adsorption time of the first adsorption tower 6A and the second adsorption tower 6B. Greatly increased. The secondary refined gas refined in the finishing tower 7 has a methane concentration of 95% or more, and the carbon dioxide concentration is further greatly reduced as compared with the raw material gas.

Figure 0006562541
Figure 0006562541

上記表1において、各ステップ1〜12における各バルブV1〜V15、真空ポンプPやブロワ5の開やONを「1」、閉やOFFを「0」で示す。そして、第一吸着塔6A及び第二吸着塔6Bや仕上塔7でのステップ1〜ステップ8の交互運転を所定回数(5回〜20回程度)行って原料ガスの吸着を行って一次精製ガスを精製すると同時に、仕上塔7でも一次精製ガスの吸着を行って二次精製ガスを精製した。
その後、第一吸着塔6A及び第二吸着塔6Bの運転を休止して、仕上塔7において、大気に開放する均圧、減圧、二酸化炭素ガスの脱着、そして減圧を行う脱着工程をステップ9〜ステップ12で行った。この工程では、吸着塔A及びBは休止工程であるが、各吸着塔6Aと6Bでの交互の脱着工程の時間に比べて仕上塔7の脱着工程は短くなることから、運転効率の低下は少なくなっている。
In Table 1 above, the valves V1 to V15, the vacuum pump P and the blower 5 in each step 1 to 12 are shown as “1”, and “0” is shown as being closed or OFF. Then, the primary purification gas is obtained by performing the alternating operation of Step 1 to Step 8 in the first adsorption tower 6A, the second adsorption tower 6B and the finishing tower 7 a predetermined number of times (about 5 to 20 times) to adsorb the raw material gas. At the same time, the primary purification gas was also adsorbed in the finishing tower 7 to purify the secondary purification gas.
Thereafter, the operation of the first adsorption tower 6A and the second adsorption tower 6B is stopped, and the desorption process of performing pressure equalization, depressurization, desorption of carbon dioxide gas, and depressurization to the atmosphere in the finishing tower 7 is performed in steps 9 to 9. Performed in step 12. In this process, the adsorption towers A and B are pause processes, but the desorption process of the finishing tower 7 is shorter than the time of the alternate desorption process in each of the adsorption towers 6A and 6B. It is running low.

一般に、ガス吸着時には吸着熱を発生し、脱着時には熱を吸収する。一方で、ガスの固体への吸着は、温度が低いほど吸着量が多くなる。従って、吸着時は温度が低いほど有利であるが、吸着により温度が上昇することになる。逆に、脱着時は温度が高いほど有利であるが、脱着により温度が低下することになる。また、水分を吸着すると二酸化炭素を吸着するゼオライト等の吸着剤はその性能が大幅に低下する。   In general, heat of adsorption is generated during gas adsorption, and heat is absorbed during desorption. On the other hand, the adsorption amount of the gas to the solid increases as the temperature decreases. Therefore, the lower the temperature during the adsorption, the more advantageous, but the temperature rises due to the adsorption. On the contrary, the higher the temperature during the desorption, the more advantageous, but the temperature decreases due to the desorption. Moreover, when water is adsorbed, the performance of adsorbents such as zeolite that adsorbs carbon dioxide is greatly reduced.

これらの特徴により、本実施例において、第一及び第二吸着塔6A及び6Bで精製する一次精製ガスでは、メタン濃度が80〜90%程度と低く濃度の安定性も十分とは言えない場合があった。しかし、仕上塔7においては、一次精製ガスの水分が低く(露点として、−20〜−60℃程度)、二酸化炭素濃度も5〜20%と低くなっているから温度変化も少なくなり、精製能力が向上する。また、休止期間中も、第一及び第二吸着塔6A及び6Bは自動弁によって遮断されるから水分が混入する危険はない。
なお、第一及び第二吸着塔6A及び6Bは、長時間休止するとシリカゲル等の水分除去剤と二酸化炭素吸着剤が同一の塔内に充填されていることから、除湿能力の高い二酸化炭素吸着剤にシリカゲルからの水分が移行して、二酸化炭素吸着能力が低下するという問題があった。
Due to these characteristics, in this embodiment, the primary purified gas purified in the first and second adsorption towers 6A and 6B has a low methane concentration of about 80 to 90%, and the concentration stability may not be sufficient. there were. However, in the finishing tower 7, the primary purified gas has a low water content (dew point is about -20 to -60 ° C) and the carbon dioxide concentration is as low as 5 to 20%. Will improve. Moreover, since the 1st and 2nd adsorption towers 6A and 6B are interrupted | blocked by an automatic valve also during a rest period, there is no danger that a water | moisture content mixes.
Note that the first and second adsorption towers 6A and 6B have a high dehumidifying capacity because the moisture removing agent such as silica gel and the carbon dioxide adsorbent are packed in the same tower when paused for a long time. There was a problem that the moisture from the silica gel migrated to the carbon dioxide adsorbing capacity.

なお、本発明の実施形態等において用いるメタンガス等の原料ガスの一例について説明すると、下水処理場では一般に消化ガスと言い、二酸化炭素が40%程度、メタンガスが60%程度で安定している。また、下水に混入しているシャンプーやリンス等に起因してシロキサンが含まれている。
一方、家畜糞尿などのメタン発酵施設では、バイオガスと言われており、この場合は原料によってガス濃度は異なる。
An example of a raw material gas such as methane gas used in the embodiments of the present invention will be generally described as digestion gas in a sewage treatment plant, and carbon dioxide is about 40% and methane gas is about 60% and stable. In addition, siloxane is contained due to shampoo, rinse, etc. mixed in sewage.
On the other hand, in methane fermentation facilities such as livestock manure, it is said to be biogas. In this case, the gas concentration differs depending on the raw material.

なお、上述した実施形態等によるガス精製装置1及びガス精製方法では、原料ガスを構成するバイオガスにおいて、第一及び第二吸着塔6A,6Bと仕上塔7の各吸着剤で吸着され且つ排出される二酸化炭素ガスは被吸着ガスを構成し、原料ガスから二酸化炭素ガスを可能な限り除去した高濃度のメタンガスは一次及び二次精製ガスを構成する。
しかしながら、本発明において、原料ガスはバイオガスに限定されるものではなく複数種のガス成分を含む適宜の混合ガスを用いることができる。また、被吸着ガスも二酸化炭素ガスに限定されず、対応する吸着力の大きい吸着剤を選択することで各種の被吸着ガスを適用できる。また、精製ガスは吸着剤で吸着された被吸着ガス以外の残存成分のガスであり、必ずしもメタンガス等の単一成分のガスに限定されない。
In the gas purification apparatus 1 and the gas purification method according to the above-described embodiments and the like, the biogas constituting the raw material gas is adsorbed and discharged by the adsorbents of the first and second adsorption towers 6A and 6B and the finishing tower 7. The carbon dioxide gas to be formed constitutes an adsorbed gas, and the high-concentration methane gas obtained by removing carbon dioxide gas from the raw material gas as much as possible constitutes primary and secondary purified gas.
However, in the present invention, the raw material gas is not limited to biogas, and an appropriate mixed gas containing plural kinds of gas components can be used. Further, the gas to be adsorbed is not limited to carbon dioxide gas, and various types of gas to be adsorbed can be applied by selecting a corresponding adsorbent having a large adsorbing power. The purified gas is a residual component gas other than the gas to be adsorbed adsorbed by the adsorbent, and is not necessarily limited to a single component gas such as methane gas.

また、前処理設備3において、粉塵や水分だけでなく、硫化水素やシロキサン等をできるだけ除去するようにしてもよい。この場合、第一及び第二吸着塔6A,6Bにおいて、水分を除去するためのシリカゲル等の第一吸着剤やシロキサンや硫化水素を除去するための活性炭等の第二吸着剤の少なくとも一方を省略したり減量したりしてもよい。   Further, in the pretreatment facility 3, not only dust and moisture but also hydrogen sulfide, siloxane and the like may be removed as much as possible. In this case, in the first and second adsorption towers 6A and 6B, at least one of the first adsorbent such as silica gel for removing moisture and the second adsorbent such as activated carbon for removing siloxane and hydrogen sulfide is omitted. You may lose weight.

また、上述した実施形態によるガス精製装置1では、第一及び第二吸着塔6A,6Bのユニットにおける二酸化炭素ガスの吸着時間と排出時間が同等であるために、二酸化炭素ガスの吸着と排出を行う第一吸着塔6Aと第二吸着塔6Bを1塔ずつ2塔設けた2塔方式を採用した。しかしながら、二酸化炭素ガスの吸着時間と排出時間の比が異なる場合には、二酸化炭素ガスの吸着と排出を1塔:2塔で行う3塔方式や1塔:3塔で行う4塔方式等を採用してもよい。
なお、本発明によるガス精製装置は、上述したVPSA装置だけでなく、空気中の酸素を濃縮するPSA装置等にも適用できる。
Moreover, in the gas purification apparatus 1 by embodiment mentioned above, since the adsorption time and discharge | emission time of the carbon dioxide gas in the unit of the 1st and 2nd adsorption towers 6A and 6B are equivalent, adsorption | suction and discharge | emission of a carbon dioxide gas are carried out. A two-column system was adopted in which two first adsorption towers 6A and two second adsorption towers 6B were provided. However, when the ratio between the adsorption time and the discharge time of carbon dioxide gas is different, a three-column system in which carbon dioxide gas is adsorbed and discharged in one tower: two towers, a four tower system in which one tower: three towers are used, etc. It may be adopted.
The gas purification apparatus according to the present invention can be applied not only to the above-described VPSA apparatus but also to a PSA apparatus that concentrates oxygen in the air.

1、1A ガス精製装置
2,2a、2b 管路
3 前処理設備
6A 第一吸着塔
6B 第二吸着塔
7 仕上塔
SV1〜SV15 バルブ
1, 1A Gas purification devices 2, 2a, 2b Pipe line 3 Pretreatment facility 6A First adsorption tower 6B Second adsorption tower 7 Finishing tower SV1-SV15 Valve

Claims (2)

原料ガスから被吸着ガスを吸着して精製ガスを分離精製するガス精製装置において、
原料ガスから被吸着ガスの吸着と排出を交互に行う第一吸着塔及び第二吸着塔と、
前記第一吸着塔または第二吸着塔で被吸着ガスを吸着した後の一次精製ガスから更に被吸着ガスを吸着することで二次精製ガスを精製する仕上塔と、を備え
前記第一吸着塔及び第二吸着塔で被吸着ガスの吸着と排出を交互に行う間に前記仕上塔で被吸着ガスの吸着を更に行い、
前記第一吸着塔及び第二吸着塔の休止の間に前記仕上塔で吸着剤に吸着された被吸着ガスの排出を行うようにしたことを特徴とするガス精製装置。
In a gas purification device that separates and purifies purified gas by adsorbing the gas to be adsorbed from the source gas,
A first adsorption tower and a second adsorption tower for alternately adsorbing and discharging the gas to be adsorbed from the source gas;
A finishing tower for purifying the secondary purified gas by further adsorbing the adsorbed gas from the primary purified gas after adsorbing the adsorbed gas in the first adsorption tower or the second adsorption tower ,
While alternately adsorbing and discharging the gas to be adsorbed in the first adsorption tower and the second adsorption tower, further performing adsorption of the gas to be adsorbed in the finishing tower,
A gas refining apparatus , wherein the adsorbed gas adsorbed by the adsorbent in the finishing tower is discharged during the pause of the first adsorption tower and the second adsorption tower .
原料ガスから被吸着ガスを吸着して精製ガスを分離精製するガス精製方法において、
第一吸着塔及び第二吸着塔における一方の吸着塔内の吸着剤で被吸着ガスを吸着すると共に他方の吸着塔内の吸着剤から被吸着ガスを排出することを交互に繰り返して行い、
前記第一吸着塔または第二吸着塔で原料ガスを精製した一次精製ガスから、仕上塔で更に被吸着ガスを吸着することで高濃度の二次精製ガスを精製し、
前記第一吸着塔及び第二吸着塔の休止の間に前記仕上塔で吸着剤に吸着された被吸着ガスの排出を行うようにしたことを特徴とするガス精製方法。
In a gas purification method that separates and purifies purified gas by adsorbing the gas to be adsorbed from the source gas,
Adsorbing the gas to be adsorbed with the adsorbent in one adsorption tower in the first adsorption tower and the second adsorption tower, and alternately discharging the gas to be adsorbed from the adsorbent in the other adsorption tower,
From the primary purified gas obtained by refining the raw material gas in the first adsorption tower or the second adsorption tower, a high concentration secondary purified gas is purified by further adsorbing the gas to be adsorbed in the finishing tower ,
A gas purification method characterized in that the gas to be adsorbed adsorbed by the adsorbent in the finishing tower is discharged during the pause of the first adsorption tower and the second adsorption tower .
JP2015107190A 2015-05-27 2015-05-27 Gas purification device and gas purification method Active JP6562541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015107190A JP6562541B2 (en) 2015-05-27 2015-05-27 Gas purification device and gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015107190A JP6562541B2 (en) 2015-05-27 2015-05-27 Gas purification device and gas purification method

Publications (2)

Publication Number Publication Date
JP2016221423A JP2016221423A (en) 2016-12-28
JP6562541B2 true JP6562541B2 (en) 2019-08-21

Family

ID=57746957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015107190A Active JP6562541B2 (en) 2015-05-27 2015-05-27 Gas purification device and gas purification method

Country Status (1)

Country Link
JP (1) JP6562541B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128123A (en) * 1982-01-26 1983-07-30 Taiyo Sanso Kk Separation of gas and its device
JPS62226802A (en) * 1986-03-28 1987-10-05 Mitsubishi Electric Corp Ozonizer
JPH01176416A (en) * 1987-12-29 1989-07-12 Osaka Gas Co Ltd Purifying method for combustion exhaust gas
FR2799987B1 (en) * 1999-10-25 2002-04-26 Air Liquide PROCESS FOR PURIFYING A GAS BY ADSORPTION OF TWO IMPURITIES AND CORRESPONDING DEVICE

Also Published As

Publication number Publication date
JP2016221423A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
JP5968252B2 (en) Methane gas enrichment method
JP5888908B2 (en) Concentration method of ozone gas
JP2008045060A (en) Method for recovering and purifying methane from biofermented gas by using adsorbent
JP2006083311A (en) Apparatus for refining sewage gas and method for refining the same gas
KR102532439B1 (en) Method for inactivating activated carbon in a biogas refinery plant
CN108970332B (en) Method for decarbonizing converter and/or blast furnace gas
WO2011155058A1 (en) Gas-separating apparatus
PH12019500651A1 (en) Method for purifying hydrogen or helium, and device for purifying hydrogen or helium
CN116059784A (en) Method and system for capturing carbon dioxide in flue gas by pressure swing adsorption
JP3776904B2 (en) Siloxane removal method
JP6562543B2 (en) Gas purification device and gas purification method
JP4792013B2 (en) Hydrogen sulfide removal method and gas purification apparatus
JP6562541B2 (en) Gas purification device and gas purification method
JP2007308600A (en) Gas refiner and method for producing methane
TWI734835B (en) Hydrogen or helium refining method and hydrogen or helium refining device
JP2006016439A (en) Gas purification apparatus
JP6013864B2 (en) Methane fermentation gas purification method and purification system
CN202605970U (en) Multi-component adsorption device
JP2004337745A (en) Gas purification apparatus
JP2009249571A (en) Method for eliminating hydrogen sulfide contained in biogas
JP2004067946A (en) Purification system and purification method for anaerobic digestive fermentation gas as fuel for gas turbine
KR20200083003A (en) Nitrogen separation air drying system and nitrogen generating method using the same
JP2005111377A (en) Method and apparatus for purifying siloxane compound-containing gas, and digestion gas power generation installation
JP2781135B2 (en) Gas separation and recovery equipment
TWI829317B (en) Ethylene oxide gas removal method and ethylene oxide gas removal system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180426

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190722

R150 Certificate of patent or registration of utility model

Ref document number: 6562541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150