JPS62226802A - Ozonizer - Google Patents

Ozonizer

Info

Publication number
JPS62226802A
JPS62226802A JP61071645A JP7164586A JPS62226802A JP S62226802 A JPS62226802 A JP S62226802A JP 61071645 A JP61071645 A JP 61071645A JP 7164586 A JP7164586 A JP 7164586A JP S62226802 A JPS62226802 A JP S62226802A
Authority
JP
Japan
Prior art keywords
ozone
adsorption tower
air
adsorption
ozone generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61071645A
Other languages
Japanese (ja)
Other versions
JPH0475843B2 (en
Inventor
Takanori Nanba
難波 敬典
Shinji Endo
伸司 遠藤
Satoru Takeyama
竹山 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61071645A priority Critical patent/JPS62226802A/en
Publication of JPS62226802A publication Critical patent/JPS62226802A/en
Publication of JPH0475843B2 publication Critical patent/JPH0475843B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To produce ozone economically and stably by reducing the variations in O2 concn. in the air entering an ozonizer when ozone is generated by sending the air enriched in O2 due to the adsorption of N2 to the title ozonizer. CONSTITUTION:Compressed air is sent by a blower 2 to one of plural adsorption towers 1-a and 1-b packed with an N2 adsorbent to adsorb N2 in the air, and the air enriched in O2 is obtained. The O2-enriched air is sent to the ozonizer 10, and ozone is produced by electric discharge. The inside of another adsorption tower is evacuated by a vacuum pump 9 to desorb the N2 adsorbed in the preceding adsorption, and the adsorption capacity is regenerated. The plural adsorption towers are switched, and air of high O2 content is always supplied. In this case, a gas concn. buffer 11 packed with adsorbents for N2 and O2 is provided between the N2 adsorption tower and the ozonizer, the air contg. 40-93% O2 from the N2 adsorption tower is passed through the buffer to adsorb high-concn. N2 or O2, and the O2-enriched air with less variations in O2 concn. in the range 60-85% is produced and supplied to the ozonizer 10. Ozone is stably produced at a low cost in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は酸素濃縮装置とオゾン発生器を組み合わせた
オゾン発生装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement of an ozone generator that combines an oxygen concentrator and an ozone generator.

〔従来の技術〕[Conventional technology]

オゾンを放電を用いて製造する場合、原料ガスを乾燥空
気から酸素へ替えると同一のオゾンを生成するのに必要
な放電電力が約2分の1に低減できることは静電気学会
誌7巻3号150″f′Xを始め数多くの報告がある。
When producing ozone using electrical discharge, if the raw material gas is changed from dry air to oxygen, the electrical discharge power required to produce the same ozone can be reduced to about half. There are many reports including ``f'X.

この場合、オゾン生成に必要な電力は酸素1農度に対応
しており、かならずしも純酸素でなくても放電電力が低
減できることが合わせて示されている。また原料気体に
空気を用い吸着を利用して酸素濃度を高める装置として
ジョン・ウィリー・アンド・サンズ社発行「ゼオライト
・モレキュラー・シーブ」710頁(1974年)およ
び特開昭60−246205号公報に示されたものがあ
る。
In this case, the power required to generate ozone corresponds to one degree of oxygen, and it is also shown that the discharge power can be reduced even if the oxygen is not pure. Additionally, a device that uses air as the raw material gas and uses adsorption to increase oxygen concentration is described in "Zeolite Molecular Sieve" published by John Wiley & Sons, p. 710 (1974) and in Japanese Patent Application Laid-Open No. 60-246205. There is something shown.

これらを組み合わせることで第3図のオゾン発生装置が
容易に類推される。図において(1−a)および(1−
b)は窒素を選択的に吸着する吸着剤、例えばゼオライ
トが充填された吸着塔である。(2)は原料空気を吸着
塔(1−a) 、 (1−b)に加圧供給するためのブ
ロア、(3)〜(8)は流路切り替え用の弁、(9)は
減圧吸引ポンプ、αQはオゾン発生器である。
By combining these, the ozone generator shown in FIG. 3 can be easily inferred. In the figure (1-a) and (1-
b) is an adsorption column filled with an adsorbent that selectively adsorbs nitrogen, such as zeolite. (2) is a blower for supplying raw material air to the adsorption towers (1-a) and (1-b) under pressure, (3) to (8) are valves for flow path switching, and (9) is a vacuum suction The pump, αQ, is an ozone generator.

原料空気はブロア(2)で大気圧以上に加圧され、吸着
塔(1−a)および(1−b)に送気される。図中では
、弁(3)、(6)、(7)が開放、弁(4)、(5)
、(8)が閉鎖状態にあり、吸着塔(1−a)が吸着動
作、吸着塔(1−b)が再生運動を行なう。原料空気は
吸着塔(t−a)に入り、成分中の窒素が選択的に吸着
し酸素濃度が高められたガスが弁(7)から排出される
。弁(7)から排出されるガス中の酸素濃度が低下する
までの時間内で設定された周期で弁(4)、(5)、(
8)が開放、弁(3)、(6)、(7)が閉鎖状態に切
り換えられ吸着塔(1−b)が吸着動作、吸着塔(1−
a)が再生動作を行なう。再生動作は、前の吸着動作で
吸着した窒素を減圧吸引ポンプ(9)で吸着塔外に排出
することにより行なう。上記のように弁の切り換えによ
り吸着る。このようにして生成した酸素濃度の高いガス
をオゾン発生器(9)に供給して少ない電力量でオゾン
を製造する。
The raw air is pressurized to atmospheric pressure or higher by the blower (2) and sent to the adsorption towers (1-a) and (1-b). In the figure, valves (3), (6), and (7) are open, and valves (4) and (5) are open.
, (8) are in a closed state, the adsorption tower (1-a) performs an adsorption operation, and the adsorption tower (1-b) performs a regeneration movement. The raw air enters the adsorption tower (t-a), nitrogen in the components is selectively adsorbed, and the gas with increased oxygen concentration is discharged from the valve (7). The valves (4), (5), (
8) is opened, valves (3), (6), and (7) are switched to the closed state, and the adsorption tower (1-b) is in adsorption operation, and the adsorption tower (1-
a) performs a playback operation. The regeneration operation is performed by discharging the nitrogen adsorbed in the previous adsorption operation to the outside of the adsorption tower using a vacuum suction pump (9). Adsorption is achieved by switching the valve as described above. The thus generated gas with high oxygen concentration is supplied to the ozone generator (9) to produce ozone with a small amount of electric power.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この装置が経済的に成立するためには、空気を原料とす
るオゾン発生装置と比べて消費電力が同等かもしくは小
さいことが要求される。そのためには、消費電力の大き
い減圧吸引ポンプの電力消費を軽減しなければならない
。すなわち、生成ガス中の酸素濃度は多少低下するが、
吸着塔の切り換え周期を長くすること、もしくは、吸着
剤単位重量当りの処理空気量を増すことで生成酸素濃縮
ガスの単位量当りの減圧吸引ポンプの消費電力が軽減で
きる。一方、オゾン発生器の消費電力は酸素濃度に対応
しており酸素濃度の低下に伴い消費電力が増加する。こ
のような関係から単位重量のオゾン生成に必要な総電力
量を検討すると、第一の吸着塔群の動作切り換えを排出
酸素濃度が40%以上93%以下の範囲に達した時点で
行なう場合に経済性が成り立ち、60%以上85%以下
の条件で最小電力消費を与える。しかしながら、この条
件では第4図に示すように酸素濃度が周期的に大きく変
動し、それに伴い生成オゾン濃度も同様に変動し、用途
によっては適用できないか大きな制約を受けるなどの問
題が発生する。
In order for this device to be economically viable, it is required that the power consumption be the same or lower than that of an ozone generator that uses air as a raw material. For this purpose, it is necessary to reduce the power consumption of the vacuum suction pump, which consumes a large amount of power. In other words, although the oxygen concentration in the produced gas decreases somewhat,
By lengthening the switching cycle of the adsorption tower or increasing the amount of air processed per unit weight of adsorbent, the power consumption of the vacuum suction pump per unit amount of oxygen-enriched gas produced can be reduced. On the other hand, the power consumption of an ozone generator corresponds to the oxygen concentration, and the power consumption increases as the oxygen concentration decreases. Considering the total amount of electricity required to generate a unit weight of ozone based on this relationship, it is found that if the operation of the first adsorption tower group is switched when the exhaust oxygen concentration reaches a range of 40% to 93%, It is economical and provides minimum power consumption under the conditions of 60% or more and 85% or less. However, under these conditions, as shown in FIG. 4, the oxygen concentration periodically fluctuates greatly, and the ozone concentration produced also fluctuates accordingly, leading to problems such as being unable to be applied to some applications or being subject to significant restrictions.

この発明は、かかる問題点を解決するためになされたも
ので、オゾン発生器に供給さるるガス中の酸素濃度の周
期変動を解消して安定した量のオゾンを製造することを
目的にする。
This invention was made to solve this problem, and aims to eliminate periodic fluctuations in the oxygen concentration in the gas supplied to the ozone generator and produce a stable amount of ozone.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係わるオゾン発生装置は、吸着塔とオゾン発
生器の間に窒素もしくは酸素を吸着する吸着剤を充填し
た吸着塔を新たに設け↑たもので1ある。
The ozone generator according to the present invention is one in which an adsorption tower filled with an adsorbent that adsorbs nitrogen or oxygen is newly installed between the adsorption tower and the ozone generator.

〔作   用〕[For production]

この発明において、新たに設けた吸着塔は小さな容積の
ものでも周期的な酸素濃度の変動に対して、過不足の酸
素もしくは窒素を吸着および脱着の動作を自発的に繰り
返して酸素濃度変動の緩和を行なう。
In this invention, even if the newly installed adsorption tower has a small capacity, it can spontaneously repeat the operation of adsorbing and desorbing excess or insufficient oxygen or nitrogen in response to periodic oxygen concentration fluctuations, thereby alleviating the oxygen concentration fluctuations. Do this.

〔実 施 例〕〔Example〕

本発明のオゾン発生装置の一実施例を第1図にか充填さ
れた第二の吸着塔であり、吸着塔群(1−a) 、 (
1−b)とオゾン発生器αQの間におかれる。
One embodiment of the ozone generator of the present invention is shown in FIG. 1, which is a second adsorption tower filled with adsorption tower groups (1-a), (
1-b) and the ozone generator αQ.

上記のように構成されたオゾン発生装置において、第2
図と同一の符号の構成機器の動作は従来のものと同じで
あり、説明を省略する。吸着塔群(1−a) 、 (1
−b)から周期的な酸素濃度の変動を伴うガスが濃度緩
衝器α乃に供給される。この中には窒素もしくは酸素を
吸着しうる吸着剤が充填されているが、ここでは窒素を
選択的に吸着する細孔径5オングストロームを有するゼ
オライトを例に挙げて説明する。窒素濃度が平均値より
高いガスが供給されると過剰の窒素はゼオライトに吸着
して供給された酸素濃度よりいくぶん低い酸素濃度のガ
スとして濃度緩衝器α◇から排出される。逆に窒素濃度
が平均値より低いガスが供給されると吸着剤に蓄積して
いた窒素がガス中に脱看して供給された酸素濃度よりい
くぶん低い酸素濃度のガスとして濃度緩衝器αつから排
出される。このようにして窒素濃度の変動が緩和されオ
ゾン発生器に一定した酸素濃度のガスが供給される。第
5図は濃度緩衝器の出入口の酸素濃度の変動緩和の一例
で、濃度緩衝器の空塔滞留時間は5秒、吸着剤温度O°
C1酸素濃度の変動周期1分の条件での結果である。
In the ozone generator configured as described above, the second
The operations of the component devices having the same symbols as those in the figure are the same as those of the conventional device, and the explanation thereof will be omitted. Adsorption tower group (1-a), (1
-b), a gas with periodic oxygen concentration fluctuations is supplied to the concentration buffer α. This is filled with an adsorbent capable of adsorbing nitrogen or oxygen, and here, zeolite having a pore diameter of 5 angstroms that selectively adsorbs nitrogen will be used as an example. When a gas with a nitrogen concentration higher than the average value is supplied, excess nitrogen is adsorbed on the zeolite and is discharged from the concentration buffer α◇ as a gas with an oxygen concentration somewhat lower than the supplied oxygen concentration. On the other hand, when a gas with a nitrogen concentration lower than the average value is supplied, the nitrogen accumulated in the adsorbent is released into the gas and is released from the concentration buffer α as a gas with an oxygen concentration somewhat lower than the supplied oxygen concentration. be discharged. In this way, fluctuations in nitrogen concentration are alleviated and gas with a constant oxygen concentration is supplied to the ozone generator. Figure 5 shows an example of alleviating fluctuations in oxygen concentration at the inlet and outlet of a concentration buffer.The retention time in the concentration buffer is 5 seconds, and the adsorbent temperature is 0°.
These are the results under the condition that the C1 oxygen concentration fluctuation period is 1 minute.

なお、酸素濃度変動の緩和効果に対する吸着剤温度の影
響は大きく、第6図に示すように温度を下げる程顕著に
濃度変動の緩和が行なえる。
It should be noted that the influence of the adsorbent temperature on the effect of alleviating oxygen concentration fluctuations is large, and as shown in FIG. 6, the lower the temperature, the more markedly the concentration fluctuations can be alleviated.

上記の例では窒素を選択的に吸着する吸着剤を挙げたが
、酸素を選択的に吸着する吸着剤を第二の吸着塔に充填
した場合も同等の効果が得られろのはいうまでもない。
Although the above example uses an adsorbent that selectively adsorbs nitrogen, it goes without saying that the same effect can be obtained if the second adsorption tower is filled with an adsorbent that selectively adsorbs oxygen. do not have.

また、別の実施例として第2図のオゾン発生装置がある
。図中、@は反応槽、(6)はガス回収用ブロアである
。他の符号のものは、第1図と同一のものである。オゾ
ン発生器00から供給されるオゾン含有気体を反応槽@
に注入して含有オゾンの殆んどを反応に消費して残りの
高い濃度の酸素を含有するガスをガス回収用ブロアで第
一の吸着塔群にリサイクルする装置においても、第二の
吸着塔α力を設けることにより安定したオゾンの発生が
得られる。
Another example is the ozone generator shown in FIG. In the figure, @ is a reaction tank, and (6) is a gas recovery blower. Other reference numerals are the same as in FIG. The ozone-containing gas supplied from the ozone generator 00 is transferred to the reaction tank @
In a system in which most of the ozone contained is consumed in the reaction and the remaining gas containing high concentration oxygen is recycled to the first adsorption tower group using a gas recovery blower, the second adsorption tower group By providing α force, stable ozone generation can be obtained.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとうり、第一の吸着塔群とオゾ
ン発生器の間に小容量の窒素もしくは酸素を吸着しうる
吸着剤を充填した第二の吸着塔を設け、オゾン発生器に
供給する原料気体中の酸素濃度の周期的変動を緩和して
安定したオゾンが製造できるオゾン発生装置が実現でき
る。
As explained above, this invention provides a second adsorption tower filled with an adsorbent capable of adsorbing a small amount of nitrogen or oxygen between the first adsorption tower group and the ozone generator, and supplies the ozone generator with the second adsorption tower. It is possible to realize an ozone generator that can produce stable ozone by alleviating periodic fluctuations in the oxygen concentration in the raw material gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による一実施例を示す概略構成図、第2
図はこの発明の別の実施様態例の概略構成図、第3図は
従来の吸着式酸素濃縮器とオゾン発生器を組み合わせた
オゾン発生装置の概略構成図である。第4図は従来シス
テムにおけるオゾン発生器に供給されるガス中の酸素濃
度の変動と、このガスを用いてオゾン発生を行なった時
のオゾン濃度の変動の特性図、第5図はこの発明を適用
した場合の第二の吸着塔の出入口のガス中の酸素濃度の
変動状況の説明図、第6図は第二の吸着塔内の吸着剤温
度と酸素濃度の周期変動の緩和効果の関係の説明図であ
る。 図中、(1−a) 、 (1−b)は第一の吸着塔、(
2)は原料空気加圧ブロア、(3)〜(8)は弁、(9
)は減圧吸引ポンプ、α0はオゾン発生器、01)は窒
素もしくは酸素を吸着しうる吸着剤を充填した第二の吸
着塔、(2)はオゾン反応槽、(至)はガス回収用ブロ
アである。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a schematic configuration diagram showing one embodiment of the present invention, and FIG.
The figure is a schematic configuration diagram of another embodiment of the present invention, and FIG. 3 is a schematic configuration diagram of an ozone generator that combines a conventional adsorption type oxygen concentrator and an ozone generator. Figure 4 is a characteristic diagram of the variation in oxygen concentration in the gas supplied to the ozone generator in a conventional system and the variation in ozone concentration when this gas is used to generate ozone. An explanatory diagram of the fluctuations in the oxygen concentration in the gas at the entrance and exit of the second adsorption tower when the application is applied, and Figure 6 shows the relationship between the adsorbent temperature in the second adsorption tower and the moderating effect of periodic fluctuations in oxygen concentration. It is an explanatory diagram. In the figure, (1-a) and (1-b) are the first adsorption tower, (
2) is a raw air pressurizing blower, (3) to (8) are valves, (9
) is a vacuum suction pump, α0 is an ozone generator, 01) is a second adsorption tower filled with an adsorbent that can adsorb nitrogen or oxygen, (2) is an ozone reaction tank, and (to) is a gas recovery blower. be. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)窒素を選択的に吸着する吸着剤を充填した複数の
第一の吸着塔群を順次吸着および脱着の操作を行ない空
気から酸素濃度を高めた気体を得、この気体を原料にオ
ゾン発生器によりオゾンを生成せしめる装置において、
上記第一の吸着塔群から排出される気体中の酸素濃度の
最低値が40%以上93%以下の設定値になるように動
作を設定し、上記第一の吸着塔群と上記オゾン発生器の
間に窒素もしくは酸素を吸着しうる吸着剤を充填した第
二の吸着塔を設けたことを特徴とするオゾン発生装置。
(1) A plurality of first adsorption tower groups filled with an adsorbent that selectively adsorbs nitrogen are sequentially adsorbed and desorbed to obtain a gas with a high oxygen concentration from the air, and this gas is used as a raw material to generate ozone. In a device that generates ozone using a device,
The operation is set so that the minimum value of the oxygen concentration in the gas discharged from the first adsorption tower group is a set value of 40% or more and 93% or less, and the first adsorption tower group and the ozone generator An ozone generator characterized in that a second adsorption tower filled with an adsorbent capable of adsorbing nitrogen or oxygen is provided between the adsorption towers.
(2)第二の吸着塔を常に環境温度以下に冷却すること
を特徴とする特許請求の範囲第1項記載のオゾン発生装
置。
(2) The ozone generator according to claim 1, characterized in that the second adsorption tower is always cooled to below the environmental temperature.
(3)オゾン発生器より供給されるオゾン含有気体を反
応槽に注入し、含有オゾンを所定の反応に利用した後、
上記反応槽からの酸素濃度の高い排気を回収して第一の
吸着塔群に供給することを特徴とする特許請求の範囲第
1項または第2項のいずれかに記載のオゾン発生装置。
(3) After injecting the ozone-containing gas supplied from the ozone generator into the reaction tank and using the ozone contained in the predetermined reaction,
3. The ozone generator according to claim 1, wherein exhaust gas having a high oxygen concentration from the reaction tank is recovered and supplied to the first adsorption tower group.
JP61071645A 1986-03-28 1986-03-28 Ozonizer Granted JPS62226802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61071645A JPS62226802A (en) 1986-03-28 1986-03-28 Ozonizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61071645A JPS62226802A (en) 1986-03-28 1986-03-28 Ozonizer

Publications (2)

Publication Number Publication Date
JPS62226802A true JPS62226802A (en) 1987-10-05
JPH0475843B2 JPH0475843B2 (en) 1992-12-02

Family

ID=13466569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61071645A Granted JPS62226802A (en) 1986-03-28 1986-03-28 Ozonizer

Country Status (1)

Country Link
JP (1) JPS62226802A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275402A (en) * 1988-04-27 1989-11-06 Nippon Sanso Kk Oxygen recycling ozonizer system
US5039314A (en) * 1989-06-26 1991-08-13 Voest-Alpine Industrienlagenbau Gesellschaft M.B.H. Method for producing oxygen and/or ozone
JP2008208026A (en) * 2008-05-20 2008-09-11 Mitsubishi Heavy Ind Ltd Production method of high concentration ozone gas, and its apparatus
JP2016221423A (en) * 2015-05-27 2016-12-28 前澤工業株式会社 Gas purification device and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275402A (en) * 1988-04-27 1989-11-06 Nippon Sanso Kk Oxygen recycling ozonizer system
US5039314A (en) * 1989-06-26 1991-08-13 Voest-Alpine Industrienlagenbau Gesellschaft M.B.H. Method for producing oxygen and/or ozone
JP2008208026A (en) * 2008-05-20 2008-09-11 Mitsubishi Heavy Ind Ltd Production method of high concentration ozone gas, and its apparatus
JP2016221423A (en) * 2015-05-27 2016-12-28 前澤工業株式会社 Gas purification device and method

Also Published As

Publication number Publication date
JPH0475843B2 (en) 1992-12-02

Similar Documents

Publication Publication Date Title
US6916359B2 (en) Ozone production processes
US5507957A (en) Treating materials with ozone
FI85953C (en) FOERFARANDE FOER FRAMSTAELLNING AV EN SYREPRODUKT MED EN RENHETSGRAD AV 95% FRAON OMGIVANDE LUFT.
KR100524425B1 (en) Pressure swing adsorption process and apparatus
US3221476A (en) Adsorption-desorption method
KR100260001B1 (en) Pressure swing adsorption process
US4376640A (en) Repressurization of pressure swing adsorption system
JP4579983B2 (en) Gas separation method by two-stage full recovery transformer adsorption
US4715867A (en) Auxiliary bed pressure swing adsorption molecular sieve
US6048384A (en) PSA process and system using simultaneous top and bottom evacuation of absorbent bed
KR970005367A (en) Optimum pressure transduction adsorption and desorption methods and apparatus
JPS6247050B2 (en)
JPH08239204A (en) Method for recovering enriched oxygen
US3663418A (en) Periodically reversed gas flow ozone production method and apparatus
US6911066B2 (en) Method for treating a gas mixture by adsorption
Hayashi et al. Dynamics of high purity oxygen PSA
JP6516941B1 (en) Ozone supply apparatus and ozone supply method
JP2003192315A (en) Equipment for refining helium
JPS62226802A (en) Ozonizer
US3719573A (en) Periodically reversed gas flow ozone production method and apparatus
US10259711B2 (en) Pressure swing adsorption for oxygen production
CN110062650B (en) Method for separating ozone
US10730004B2 (en) Recovery of oxygen used in ozone production
JP3143758B2 (en) Weight loss operation method of pressure fluctuation adsorption device
EP0055961B1 (en) Repressurization process for pressure swing adsorption system