JP6561888B2 - Sealant composition for organic solar cell and organic solar cell - Google Patents

Sealant composition for organic solar cell and organic solar cell Download PDF

Info

Publication number
JP6561888B2
JP6561888B2 JP2016069205A JP2016069205A JP6561888B2 JP 6561888 B2 JP6561888 B2 JP 6561888B2 JP 2016069205 A JP2016069205 A JP 2016069205A JP 2016069205 A JP2016069205 A JP 2016069205A JP 6561888 B2 JP6561888 B2 JP 6561888B2
Authority
JP
Japan
Prior art keywords
organic solar
solar cell
component
group
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016069205A
Other languages
Japanese (ja)
Other versions
JP2017183546A (en
Inventor
明彦 吉原
明彦 吉原
孝敏 松尾
孝敏 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2016069205A priority Critical patent/JP6561888B2/en
Publication of JP2017183546A publication Critical patent/JP2017183546A/en
Application granted granted Critical
Publication of JP6561888B2 publication Critical patent/JP6561888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

本発明は、有機系太陽電池用シール剤組成物および有機系太陽電池に関する。   The present invention relates to an organic solar cell sealing agent composition and an organic solar cell.

色素増感型太陽電池、ペロブスカイト型太陽電池などの有機系太陽電池では、電解液の封入にシール剤が用いられている。   In organic solar cells such as a dye-sensitized solar cell and a perovskite solar cell, a sealing agent is used to enclose an electrolytic solution.

シール剤には、基材(電極基材)との優れた接着性が求められる。また、シール剤には、高い信頼性、すなわち、電解質に対する反応性が低いことが求められる。反応性が高いと、電解液によるシール剤の膨潤や劣化が生じやすく、光電変換効率の低下や電解液の漏洩につながる。   The sealing agent is required to have excellent adhesiveness with a base material (electrode base material). Further, the sealing agent is required to have high reliability, that is, low reactivity to the electrolyte. When the reactivity is high, the sealing agent is likely to swell or deteriorate due to the electrolytic solution, leading to a decrease in photoelectric conversion efficiency and leakage of the electrolytic solution.

特許文献1に記載の架橋可能なゴム組成物では、エチレン・α−オレフィン・非共役ポリエンランダム共重合体(A)と、ヒドロシリル基含有化合物(B)とを組み合わせている。このゴム組成物は、低架橋度で接着性が低く、熱硬化性であるため、このゴム組成物をシールに用いるとシールの際に加熱が必要である。そのため、接着性の低さや加熱による太陽電池の劣化が懸念される。   In the crosslinkable rubber composition described in Patent Document 1, an ethylene / α-olefin / non-conjugated polyene random copolymer (A) and a hydrosilyl group-containing compound (B) are combined. Since this rubber composition has a low degree of crosslinking, low adhesiveness, and is thermosetting, when this rubber composition is used for sealing, heating is required at the time of sealing. Therefore, there is a concern about the low adhesiveness and the deterioration of the solar cell due to heating.

特許文献2では、(A)(メタ)アクリル基を有する水添ポリブタジエン化合物を含む色素増感型太陽電池用シール剤組成物を開示している。しかし、このシール剤組成物は、信頼性に劣る。   Patent Document 2 discloses a dye-sensitized solar cell sealant composition containing a hydrogenated polybutadiene compound having (A) (meth) acrylic groups. However, this sealant composition is inferior in reliability.

特許文献3では、ポリイソブチレン樹脂系シール剤を含む光電変換素子を開示している。しかし、このポリイソブチレン樹脂系シール剤では、シールの際に硬化収縮が生じ、接着性に劣る。   Patent Document 3 discloses a photoelectric conversion element including a polyisobutylene resin-based sealing agent. However, with this polyisobutylene resin-based sealant, curing shrinkage occurs at the time of sealing, resulting in poor adhesion.

特開2015−134937号公報Japanese Patent Laying-Open No. 2015-134937 特開2010−180258号公報JP 2010-180258 A 再表2007−046499号Table 2007-046499

そこで、本発明は、基材との接着性に優れ、信頼性の高いシール性能を有するシール剤を形成可能な有機系太陽電池用シール剤組成物を提供することを目的とする。また、本発明は、信頼性の高いシール性能を有するシール剤を含む有機系太陽電池を提供することを目的とする。   Then, an object of this invention is to provide the sealing compound composition for organic solar cells which can form the sealing compound which is excellent in adhesiveness with a base material, and has the reliable sealing performance. Moreover, an object of this invention is to provide the organic type solar cell containing the sealing agent which has a reliable sealing performance.

本発明に係る有機系太陽電池用シール剤組成物は、
(A)液状の環状オレフィン構造を有するポリマーと、
(B)(メタ)アクリロイル基含有化合物と、
(C)光重合開始剤と、
を含む、有機系太陽電池用シール剤組成物である。組成物がこのような組成を有することにより、基材との接着性に優れ、信頼性の高いシール性能を有するシール剤を形成することができる。
The sealing composition for organic solar cells according to the present invention is:
(A) a polymer having a liquid cyclic olefin structure;
(B) a (meth) acryloyl group-containing compound;
(C) a photopolymerization initiator;
It is the sealing compound composition for organic type solar cells containing this. When the composition has such a composition, it is possible to form a sealing agent that has excellent adhesion to the substrate and has a highly reliable sealing performance.

本発明に係る有機系太陽電池用シール剤組成物は、成分(A)が、エチレン−プロピレン−ターポリマー共重合体であることが好ましい。これにより、電解液、水分などの封止性と基材との密着性の両立という効果がある。   In the sealing composition for organic solar cells according to the present invention, the component (A) is preferably an ethylene-propylene-terpolymer copolymer. Thereby, there exists an effect of coexistence with sealing performance, such as electrolyte solution and a water | moisture content, and adhesiveness with a base material.

本発明に係る有機系太陽電池用シール剤組成物は、成分(A)100質量部に対して、(D)フィラーを0.1〜1000質量部含むことが好ましい。これにより、機械的性質を高める効果がある。   It is preferable that the sealing compound composition for organic solar cells which concerns on this invention contains 0.1-1000 mass parts of (D) fillers with respect to 100 mass parts of components (A). Thereby, there exists an effect which improves a mechanical property.

本発明に係る有機系太陽電池用シール剤組成物は、成分(A)100質量部に対して、成分(B)を10〜200質量部含むことが好ましい。これにより、封止性と密着性の向上という効果がある。   It is preferable that the sealing compound composition for organic solar cells which concerns on this invention contains 10-200 mass parts of components (B) with respect to 100 mass parts of components (A). Thereby, there exists an effect of an improvement of sealing performance and adhesiveness.

本発明に係る有機系太陽電池用シール剤組成物は、有機系太陽電池用シール剤組成物を適用する基材が有機樹脂である場合にも好適に使用することができる。   The sealing composition for organic solar cells according to the present invention can be suitably used even when the substrate to which the sealing composition for organic solar cells is applied is an organic resin.

本発明に係る有機系太陽電池用シール剤組成物は、成分(D)が、表面処理されていることが好ましい。これにより、封止性という効果がある。   In the sealing composition for organic solar cells according to the present invention, the component (D) is preferably surface-treated. Thereby, there exists an effect called sealing property.

本発明に係る有機系太陽電池用シール剤組成物は、成分(B)が、カルボキシル基または酸無水物基を有する化合物を含むことが好ましい。これにより、基材との密着性という効果がある。   In the sealing composition for organic solar cells according to the present invention, the component (B) preferably contains a compound having a carboxyl group or an acid anhydride group. Thereby, there exists an effect of adhesiveness with a base material.

本発明に係る有機系太陽電池は、上記いずれかの有機系太陽電池用シール剤組成物の硬化物を含む、有機系太陽電池である。有機系太陽電池がこのような硬化物を含むことにより、高い信頼性を有する。   The organic solar cell according to the present invention is an organic solar cell including a cured product of any one of the above-described sealing compositions for organic solar cells. The organic solar cell has high reliability by including such a cured product.

本発明によれば、基材との接着性に優れ、信頼性の高いシール性能を有するシール剤を形成可能な有機系太陽電池用シール剤組成物を提供することができる。本発明によれば、信頼性の高いシール性能を有するシール剤を含む有機系太陽電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the sealing compound composition for organic solar cells which can form the sealing compound which is excellent in adhesiveness with a base material and has the reliable sealing performance can be provided. ADVANTAGE OF THE INVENTION According to this invention, the organic type solar cell containing the sealing compound which has a reliable sealing performance can be provided.

図1は、実施例で作製した有機系太陽電池セルの構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of an organic solar battery cell produced in the example.

以下、本発明の実施形態について説明する。これらの記載は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。   Hereinafter, embodiments of the present invention will be described. These descriptions are intended to exemplify the present invention and do not limit the present invention in any way.

本明細書において、数値範囲は、別段の記載がない限り、その範囲の下限値および上限値を含むことを意図している。例えば、1〜1000質量部は、下限値1質量部と上限値1000質量部を含むことを意図しており、1質量部以上1000質量部以下を意味する。   In this specification, numerical ranges are intended to include the lower and upper limits of the range, unless otherwise specified. For example, 1-1000 parts by mass is intended to include a lower limit of 1 part by mass and an upper limit of 1000 parts by mass, and means from 1 part by mass to 1000 parts by mass.

(有機系太陽電池用シール剤組成物)
本発明に係る有機系太陽電池用シール剤組成物は、
(A)液状の環状オレフィン構造を有するポリマーと、
(B)(メタ)アクリロイル基含有化合物と、
(C)光重合開始剤と、
を含む、有機系太陽電池用シール剤組成物(以下、単に「シール剤組成物」ということがある)である。組成物がこのような組成を有することにより、基材との接着性に優れ、信頼性の高いシール性能を有するシール剤を形成することができる。
(Sealant composition for organic solar cells)
The sealing composition for organic solar cells according to the present invention is:
(A) a polymer having a liquid cyclic olefin structure;
(B) a (meth) acryloyl group-containing compound;
(C) a photopolymerization initiator;
An organic solar cell sealing agent composition (hereinafter sometimes simply referred to as “sealing agent composition”). When the composition has such a composition, it is possible to form a sealing agent that has excellent adhesion to the substrate and has a highly reliable sealing performance.

<(A)成分>
(A)成分は、液状の環状オレフィン構造を有するポリマーである。本発明において液状とは、23℃において液状であることを指す。環状オレフィン構造としては、例えば、ノルボルネン構造が挙げられる。
<(A) component>
The component (A) is a polymer having a liquid cyclic olefin structure. In the present invention, “liquid” means liquid at 23 ° C. Examples of the cyclic olefin structure include a norbornene structure.

(A)成分は、エチレンから導かれる構成単位(i)と、炭素原子数3〜20のα−オレフィンから導かれる構成単位(ii)と、以下の一般式(1)で表されるノルボルネン化合物および一般式(2)で表されるノルボルネン化合物から選択される少なくとも1種の非共役ポリエンから導かれる構成単位(iii)とを含むことが好ましい。

Figure 0006561888
一般式(1)中、R1は、水素原子または炭素原子数1〜10のアルキル基であり、R2は、水素原子または炭素原子数1〜5のアルキル基であり、nは、0〜10の整数である。一般式(2)中、R3は、水素原子または炭素原子数1〜10のアルキル基である。 The component (A) includes a structural unit (i) derived from ethylene, a structural unit (ii) derived from an α-olefin having 3 to 20 carbon atoms, and a norbornene compound represented by the following general formula (1) And a structural unit (iii) derived from at least one non-conjugated polyene selected from norbornene compounds represented by the general formula (2).
Figure 0006561888
In General Formula (1), R 1 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, R 2 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and n is 0 to 0. It is an integer of 10. In general formula (2), R < 3 > is a hydrogen atom or a C1-C10 alkyl group.

構成単位(ii)を構成する炭素原子数3〜20のα−オレフィンとしては、例えば、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセン、1−トリデセン、1−テトラデセン、1−ペンタデセン、1−ヘキサデセン、1−ヘプタデセン、1−ノナデセン、1−エイコセン、9−メチル−1−デセン、11−メチル−1−ドデセン、12−エチル−1−テトラデセンなどが挙げられる。α−オレフィンは、好ましくは、炭素原子数3〜10のα−オレフィンである。また、α−オレフィンは、より好ましくは、1−ブテン、1−ヘキセンおよび1−オクテンから選択される1種以上である。炭素原子数3〜20のα−オレフィンは、1種単独で、または2種以上を組み合わせて用いてもよい。   Examples of the α-olefin having 3 to 20 carbon atoms constituting the structural unit (ii) include propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1 -Nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-nonadecene, 1-eicosene, 9-methyl-1-decene 11-methyl-1-dodecene, 12-ethyl-1-tetradecene, and the like. The α-olefin is preferably an α-olefin having 3 to 10 carbon atoms. The α-olefin is more preferably at least one selected from 1-butene, 1-hexene and 1-octene. The α-olefin having 3 to 20 carbon atoms may be used alone or in combination of two or more.

構成単位(iii)を構成する非共役ポリエンは、末端ビニル基含有ノルボルネン化合物であり、上記一般式(1)で表されるノルボルネン化合物および一般式(2)で表されるノルボルネン化合物から選択される少なくとも1種である。   The non-conjugated polyene constituting the structural unit (iii) is a terminal vinyl group-containing norbornene compound, and is selected from the norbornene compound represented by the general formula (1) and the norbornene compound represented by the general formula (2). At least one.

一般式(1)中、nは、0〜10の整数である。nは、好ましくは0〜5の整数である。   In general formula (1), n is an integer of 0-10. n is preferably an integer of 0 to 5.

一般式(1)中、R1は、水素原子または炭素原子数1〜10のアルキル基である。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、イソペンチル基、t−ペンチル基、ネオペンチル基、ヘキシル基、イソヘキシル基、へプチル基、オクチル基、ノニル基、デシル基などが挙げられる。R1は、好ましくは水素原子、メチル基またはエチル基である。 In General Formula (1), R 1 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, n-pentyl group, isopentyl group, t-pentyl group, A neopentyl group, a hexyl group, an isohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, etc. are mentioned. R 1 is preferably a hydrogen atom, a methyl group or an ethyl group.

一般式(1)中、R2は、水素原子または炭素原子数1〜5のアルキル基である。アルキル基としては、例えば、上記R1の具体例のうち、炭素原子数1〜5のアルキル基が挙げられる。R2は、好ましくは水素原子、メチル基またはエチル基である。 In general formula (1), R 2 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. As the alkyl group, for example, among the specific examples of the R 1, include an alkyl group having 1 to 5 carbon atoms. R 2 is preferably a hydrogen atom, a methyl group or an ethyl group.

一般式(2)中、R3は、水素原子または炭素原子数1〜10のアルキル基である。アルキル基としては、例えば、R1で挙げたアルキル基が挙げられる。 In general formula (2), R < 3 > is a hydrogen atom or a C1-C10 alkyl group. As an alkyl group, the alkyl group quoted by R < 1 > is mentioned, for example.

一般式(1)または(2)で表されるノルボルネン化合物としては、例えば、5−メチレン−2−ノルボルネン、5−ビニル−2−ノルボルネン、5−(2−プロペニル)−2−ノルボルネン、5−(3−ブテニル)−2−ノルボルネン、5−(1−メチル−2−プロペニル)−2−ノルボルネン、5−(4−ペンテニル)−2−ノルボルネン、5−(1−メチル−3−ブテニル)−2−ノルボルネン、5−(5−ヘキセニル)−2−ノルボルネン、5−(5−ヘプテニル)−2−ノルボルネン、5−(1−メチル−4−ペンテニル)−2−ノルボルネン、5−(2,3−ジメチル−3−ブテニル)−2−ノルボルネン、5−(2−エチル−3−ブテニル)−2−ノルボルネン、5−(6−ヘプテニル)−2−ノルボルネン、5−(3−メチル−5−ヘキセニル)−2−ノルボルネン、5−(3,4−ジメチル−4−ペンテニル)−2−ノルボルネン、5−(3−エチル−4−ペンテニル)−2−ノルボルネン、5−(7−オクテニル)−2−ノルボルネン、5−(2−メチル−6−ヘプテニル)−2−ノルボルネン、5−(1,2−ジメチル−5−ヘキセシル)−2−ノルボルネン、5−(5−エチル−5−ヘキセニル)−2−ノルボルネン、5−(1,2,3−トリメチル−4−ペンテニル)−2−ノルボルネンなどが挙げられる。ノルボルネン化合物は、好ましくは、5−ビニル−2−ノルボルネン、5−メチレン−2−ノルボルネン、5−(2−プロペニル)−2−ノルボルネン、5−(3−ブテニル)−2−ノルボルネン、5−(4−ペンテニル)−2−ノルボルネン、5−(5−ヘキセニル)−2−ノルボルネン、5−(5−ヘプテニル)−2−ノルボルネン、5−(6−ヘプテニル)−2−ノルボルネンおよび5−(7−オクテニル)−2−ノルボルネンから選択される1種以上である。   Examples of the norbornene compound represented by the general formula (1) or (2) include 5-methylene-2-norbornene, 5-vinyl-2-norbornene, 5- (2-propenyl) -2-norbornene, 5- (3-butenyl) -2-norbornene, 5- (1-methyl-2-propenyl) -2-norbornene, 5- (4-pentenyl) -2-norbornene, 5- (1-methyl-3-butenyl)- 2-norbornene, 5- (5-hexenyl) -2-norbornene, 5- (5-heptenyl) -2-norbornene, 5- (1-methyl-4-pentenyl) -2-norbornene, 5- (2,3 -Dimethyl-3-butenyl) -2-norbornene, 5- (2-ethyl-3-butenyl) -2-norbornene, 5- (6-heptenyl) -2-norbornene, 5- (3-methyl) -5-hexenyl) -2-norbornene, 5- (3,4-dimethyl-4-pentenyl) -2-norbornene, 5- (3-ethyl-4-pentenyl) -2-norbornene, 5- (7-octenyl) ) -2-norbornene, 5- (2-methyl-6-heptenyl) -2-norbornene, 5- (1,2-dimethyl-5-hexesyl) -2-norbornene, 5- (5-ethyl-5-hexenyl) ) -2-norbornene, 5- (1,2,3-trimethyl-4-pentenyl) -2-norbornene and the like. The norbornene compound is preferably 5-vinyl-2-norbornene, 5-methylene-2-norbornene, 5- (2-propenyl) -2-norbornene, 5- (3-butenyl) -2-norbornene, 5- ( 4-pentenyl) -2-norbornene, 5- (5-hexenyl) -2-norbornene, 5- (5-heptenyl) -2-norbornene, 5- (6-heptenyl) -2-norbornene and 5- (7- 1 or more types selected from octenyl) -2-norbornene.

非共役ポリエンとして、一般式(1)および(2)で表されるノルボルネン化合物に加えて、追加の非共役ポリエンとして、例えば、1,4−ヘキサジエン、3−メチル−1,4−ヘキサジエン、4−メチル−1,4−ヘキサジエン、5−メチル−1,4−ヘキサジエン、4,5−ジメチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエンなどの鎖状非共役ジエン;メチルテトラヒドロインデン、5−エチリデン−2−ノルボルネン、5−イソプロピリデン−2−ノルボルネン、5−ビニリデン−2−ノルボルネン、6−クロロメチル−5−イソプロペニル−2−ノルボルネン、ジシクロペンタジエンなどの環状非共役ジエン;2,3−ジイソプロピリデン−5−ノルボルネン、2−エチリデン−3−イソプロピリデン−5−ノルボルネン、2−プロペニル−2,2−ノルボルナジエンなどのトリエンなどの非共役ポリエンを併用してもよい。   As the non-conjugated polyene, in addition to the norbornene compounds represented by the general formulas (1) and (2), as the additional non-conjugated polyene, for example, 1,4-hexadiene, 3-methyl-1,4-hexadiene, 4 A chain non-conjugated diene such as methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 4,5-dimethyl-1,4-hexadiene, 7-methyl-1,6-octadiene; Cyclic nonconjugated dienes such as indene, 5-ethylidene-2-norbornene, 5-isopropylidene-2-norbornene, 5-vinylidene-2-norbornene, 6-chloromethyl-5-isopropenyl-2-norbornene, dicyclopentadiene 2,3-diisopropylidene-5-norbornene, 2-ethylidene-3-isopropylidene-5-no; Bornene, it may be used in combination non-conjugated polyene such as trienes such as 2-propenyl-2,2-norbornadiene.

一般式(1)および(2)で表されるノルボルネン化合物と、上記追加の非共役ポリエンとを併用する場合、これらの比は適宜調節すればよく、特に限定されない。例えば、一般式(1)および(2)で表されるノルボルネン化合物100モル%に対して、追加の非共役ポリエンは、通常50モル%以下、好ましくは40モル%以下、より好ましくは30モル%以下、さらに好ましくは20モル%以下、特に好ましくは10モル%以下で用いる。   In the case where the norbornene compound represented by the general formulas (1) and (2) and the additional non-conjugated polyene are used in combination, these ratios may be appropriately adjusted and are not particularly limited. For example, with respect to 100 mol% of the norbornene compound represented by the general formulas (1) and (2), the additional non-conjugated polyene is usually 50 mol% or less, preferably 40 mol% or less, more preferably 30 mol%. Hereinafter, it is more preferably used at 20 mol% or less, particularly preferably at 10 mol% or less.

エチレンから導かれる構成単位(i)と、炭素原子数3〜20のα−オレフィンから導かれる構成単位(ii)とのモル比((i):(ii))は、適宜調節すればよく、特に限定されないが、通常35:65〜95:5、好ましくは40:60〜90:10、より好ましくは45:55〜85:15である。   The molar ratio ((i) :( ii)) of the structural unit (i) derived from ethylene and the structural unit (ii) derived from the α-olefin having 3 to 20 carbon atoms may be appropriately adjusted. Although not particularly limited, it is usually 35:65 to 95: 5, preferably 40:60 to 90:10, and more preferably 45:55 to 85:15.

(A)成分は、特に好ましくはエチレン−プロピレン−ターポリマー共重合体である。これにより、電解液、水分などの封止性と基材との密着性の両立という効果がある。   The component (A) is particularly preferably an ethylene-propylene-terpolymer copolymer. Thereby, there exists an effect of coexistence with sealing performance, such as electrolyte solution and a water | moisture content, and adhesiveness with a base material.

(A)成分は低粘度であることが好ましい。そのため、(A)成分の重量平均分子量(Mw)は、好ましくは10000以下であり、より好ましくは2000〜6000である。   The component (A) preferably has a low viscosity. Therefore, the weight average molecular weight (Mw) of (A) component becomes like this. Preferably it is 10,000 or less, More preferably, it is 2000-6000.

(A)成分のヨウ素価は、特に限定されず、適宜調節すればよいが、通常11〜55(g/100g)、好ましくは11〜30(g/100g)、より好ましくは11〜20(g/100g)としてもよい。ヨウ素価を上記範囲内とすることにより、電解液との反応性を低くし、成分(B)との反応性が向上でき信頼性を高めることができる。   The iodine value of the component (A) is not particularly limited and may be adjusted as appropriate, but is usually 11 to 55 (g / 100 g), preferably 11 to 30 (g / 100 g), more preferably 11 to 20 (g). / 100 g). By setting the iodine value within the above range, the reactivity with the electrolytic solution can be lowered, the reactivity with the component (B) can be improved, and the reliability can be enhanced.

(A)成分の調製方法は、特に限定されず、公知の方法を用いることができる。例えば、新ポリマー製造プロセス(株式会社工業調査会、309〜330頁)や特許文献1に記載の方法により調製することができる。例えば、(A)成分は、バナジウム化合物および有機アルミニウム化合物を主成分として含有する触媒の存在下、重合温度20〜60℃、重合圧力0.4〜5MPa、非共役ポリエンとエチレンとの供給量のモル比(非共役ポリエン/エチレン)0.01〜0.2の条件で、エチレンと、炭素原子数3〜20のα−オレフィンと、非共役ポリエンとをランダム共重合することにより得られる。   (A) The preparation method of a component is not specifically limited, A well-known method can be used. For example, it can be prepared by a method described in a new polymer production process (Industry Research Institute, Inc., pages 309 to 330) or Patent Document 1. For example, the component (A) has a polymerization temperature of 20 to 60 ° C., a polymerization pressure of 0.4 to 5 MPa, a supply amount of non-conjugated polyene and ethylene in the presence of a catalyst mainly containing a vanadium compound and an organoaluminum compound. It is obtained by randomly copolymerizing ethylene, an α-olefin having 3 to 20 carbon atoms, and a nonconjugated polyene under a molar ratio (nonconjugated polyene / ethylene) of 0.01 to 0.2.

(A)成分のポリマーは、グラフト変性剤でグラフト変性されていてもよい。グラフト変性剤は、1種単独で、または2種以上を組み合わせて用いてもよい。グラフト変性剤としては、例えば、不飽和カルボン酸、不飽和カルボン酸の酸無水物、不飽和カルボン酸エステル、ヒドロキシル基含有エチレン性不飽和化合物、アミノ基含有エチレン性不飽和化合物、エポキシ基含有エチレン性不飽和化合物、芳香族ビニル化合物、ビニルエステル化合物、塩化ビニルなどが挙げられる。   The polymer of component (A) may be graft-modified with a graft modifier. The graft modifiers may be used alone or in combination of two or more. Examples of the graft modifier include unsaturated carboxylic acid, acid anhydride of unsaturated carboxylic acid, unsaturated carboxylic acid ester, hydroxyl group-containing ethylenically unsaturated compound, amino group-containing ethylenically unsaturated compound, and epoxy group-containing ethylene. Unsaturated unsaturated compounds, aromatic vinyl compounds, vinyl ester compounds, vinyl chloride and the like.

グラフト変性剤としての不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、テトラヒドロフタル酸、ビシクロ(2,2,1)ヘプト−2−エン−5,6−ジカルボン酸などが挙げられる。   Examples of the unsaturated carboxylic acid as the graft modifier include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, tetrahydrophthalic acid, bicyclo (2,2,1) hept-2-ene- Examples include 5,6-dicarboxylic acid.

グラフト変性剤としての不飽和カルボンの酸無水物としては、例えば、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水テトラヒドロフタル酸、ビシクロ(2,2,1)ヘプト−2−エン−5,6−ジカルボン酸無水物などが挙げられる。   Examples of unsaturated carboxylic acid anhydrides as graft modifiers include maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo (2,2,1) hept-2-ene-5, Examples include 6-dicarboxylic acid anhydride.

グラフト変性剤としての不飽和カルボン酸エステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、マレイン酸ジメチル、マレイン酸モノメチル、フマル酸ジメチル、イタコン酸ジメチル、シトラコン酸ジエチル、テトラヒドロフタル酸ジメチル、ビシクロ(2,2,1)ヘプト−2−エン−5,6−ジカルボン酸ジメチルなどが挙げられる。   Examples of the unsaturated carboxylic acid ester as the graft modifier include, for example, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, dimethyl maleate, monomethyl maleate, dimethyl fumarate, dimethyl itaconate, diethyl citraconic acid Dimethyl tetrahydrophthalate, dimethyl bicyclo (2,2,1) hept-2-ene-5,6-dicarboxylate, and the like.

また、グラフト変性剤の使用量は、グラフト変性前のポリマー100g当たり、好ましくは0.1モル以下である。   The amount of the graft modifier used is preferably 0.1 mol or less per 100 g of the polymer before graft modification.

(A)成分のポリマー(未変性ポリマー)をグラフト変性する方法は、特に限定されず、公知の方法を適宜選択して用いることができる。例えば、未変性ポリマーとグラフト変性剤とを、ラジカル開始剤の存在下で反応させることによって、グラフト変性ポリマーを得ることができる。   The method for graft-modifying the component (A) polymer (unmodified polymer) is not particularly limited, and a known method can be appropriately selected and used. For example, a graft-modified polymer can be obtained by reacting an unmodified polymer with a graft modifier in the presence of a radical initiator.

ラジカル開始剤としては、特に限定されず、適宜選択して用いることができる。例えば、ジクミルパーオキサイド、ジ−t−ブチルパーオキサイド、ジ−t−ブチルパーオキシ−3,3,5−トリメチルシクロヘキサン、t−ブチルクミルパーオキサイド、ジ−t−アミルパーオキサイド、t−ブチルヒドロパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシン)ヘキシン−3、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、α,α’−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼンなどのジアルキルパーオキサイド類;t−ブチルパーオキシアセテート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシピバレート、t−ブチルパーオキシマレイン酸、t−ブチルパーオキシネオデカノエート、t−ブチルパーオキシベンゾエート、ジ−t−ブチルパーオキシフタレートなどのパーオキシエステル類;ジシクロヘキサノンパーオキサイドなどのケトンパーオキサイド類;およびこれらの組み合わせなどが挙げられる。   It does not specifically limit as a radical initiator, It can select suitably and can be used. For example, dicumyl peroxide, di-t-butyl peroxide, di-t-butylperoxy-3,3,5-trimethylcyclohexane, t-butylcumyl peroxide, di-t-amyl peroxide, t-butyl Hydroperoxide, 2,5-dimethyl-2,5-di (t-butylperoxin) hexyne-3, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, 2,5-dimethyl- Dialkyl peroxides such as 2,5-di (t-butylperoxy) hexane and α, α′-bis (t-butylperoxy-m-isopropyl) benzene; t-butylperoxyacetate, t-butylperoxide Oxyisobutyrate, t-butylperoxypivalate, t-butylperoxymaleic acid, t-butylperoxyneode Peroxyesters such as canoate, t-butylperoxybenzoate, di-t-butylperoxyphthalate; ketone peroxides such as dicyclohexanone peroxide; and combinations thereof.

(A)成分としては、市販品を用いてもよい。市販品としては、例えば、三井化学株式会社製のエチレン・プロピレン・ターポリマーのPX−068などの三井EPTシリーズ、などが挙げられる。   (A) As a component, you may use a commercial item. Examples of commercially available products include Mitsui EPT series such as PX-068 of ethylene / propylene / terpolymer manufactured by Mitsui Chemicals, Inc.

(A)成分は、1種単独で、または2種以上を組み合わせて用いてもよい。   (A) A component may be used individually by 1 type or in combination of 2 or more types.

<(B)成分>
(B)成分は、(メタ)アクリロイル基含有化合物である。すなわち、アクリロイル基を有する化合物および/またはメタクリロイル基を有する化合物である。理論に拘束されることを望むものではないが、上記(A)成分と(B)成分とを併用することにより、架橋度が増大し、信頼性が向上するものと推測される。なお、後述する(D)成分の表面処理に用いるシランカップリング剤が、(メタ)アクリロイル基を有する場合、当該シランカップリング剤は、(B)成分ではなく、シランカップリング剤として扱う。
<(B) component>
The component (B) is a (meth) acryloyl group-containing compound. That is, a compound having an acryloyl group and / or a compound having a methacryloyl group. Although not wishing to be bound by theory, it is presumed that the combined use of the component (A) and the component (B) increases the degree of crosslinking and improves the reliability. In addition, when the silane coupling agent used for surface treatment of the (D) component mentioned later has a (meth) acryloyl group, the said silane coupling agent is handled not as (B) component but as a silane coupling agent.

(B)成分は、特に限定されず、適宜選択して用いることができる。例えば、アクリル酸、メタクリル酸などの(メタ)アクリロイル基含有カルボン酸およびこれらの酸無水物;グリシジルアクリレート、テトラヒドロフルフリルアクリレート、グリシジルメタクリレート、テトラヒドロフルフリルメタクリレートなどの環状エーテル基を有する(メタ)アクリロイル基含有化合物;シクロヘキシルアクリレート、イソボルニルアクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンタニルエチルアクリレート、4−tert−ブチルシクロヘキシルアクリレート、1−アダマンタニルアクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、ジシクロペンテニルメタクリレート、ジシクロペンテニルオキシエチルメタクリレート、ジシクロペンタニルメタクリレート、ジシクロペンタニルエチルメタクリレート、4−tert−ブチルシクロヘキシルメタクリレート、1−アダマンタニルメタクリレートなどの環状脂肪族基を有する単官能(メタ)アクリロイル基含有化合物;ラウリルアクリレート、イソノニルアクリレート、2−エチルヘキシルアクリレート、イソブチルアクリレート、tert−ブチルアクリレート、イソオクチルアクリレート、イソアミルアクリレート、ラウリルメタクリレート、イソノニルメタクリレート、2−エチルヘキシルメタクリレート、イソブチルメタクリレート、tert−ブチルメタクリレート、イソオクチルメタクリレート、イソアミルメタクリレートなどの鎖状脂肪族基を有する単官能(メタ)アクリロイル基含有化合物;ベンジルアクリレート、フェノキシエチルアクリレート、ベンジルメタクリレート、フェノキシエチルメタクリレート、2−ヒドロキシ−3−フェノキシプロピルメタクリレートなどの芳香環を有する単官能(メタ)アクリロイル基含有化合物;ポリエチレングリコールジアクリレート、デカンジオールジアクリレート、ノナンジオールジアクリレート、ヘキサンジオールジアクリレート、トリシクロデカンジメタノールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレートなどの多官能(メタ)アクリロイル基含有化合物、ポリプロピレングリコールジメタクリレート、ウレタンジメタクリレート、イソプレンジメタクリレート、ポリブタジエンジメタクリレート、液状水添ポリブタジエンジアクリレート、ポリイソブチレンジメタクリレートなどアクリルオリゴマーなどが挙げられる。   The component (B) is not particularly limited and can be appropriately selected and used. For example, (meth) acryloyl group-containing carboxylic acids such as acrylic acid and methacrylic acid, and acid anhydrides thereof; (meth) acryloyl having cyclic ether groups such as glycidyl acrylate, tetrahydrofurfuryl acrylate, glycidyl methacrylate, and tetrahydrofurfuryl methacrylate Group-containing compounds: cyclohexyl acrylate, isobornyl acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyethyl acrylate, dicyclopentanyl acrylate, dicyclopentanyl ethyl acrylate, 4-tert-butylcyclohexyl acrylate, 1-adamantanyl acrylate , Cyclohexyl methacrylate, isobornyl methacrylate, dicyclopentenyl methacrylate, dicyclopent Monofunctional (meth) acryloyl group-containing compounds having a cyclic aliphatic group such as nyloxyethyl methacrylate, dicyclopentanyl methacrylate, dicyclopentanyl ethyl methacrylate, 4-tert-butylcyclohexyl methacrylate, 1-adamantanyl methacrylate; Acrylate, isononyl acrylate, 2-ethylhexyl acrylate, isobutyl acrylate, tert-butyl acrylate, isooctyl acrylate, isoamyl acrylate, lauryl methacrylate, isononyl methacrylate, 2-ethylhexyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, isooctyl methacrylate, Monofunctional having a chain aliphatic group such as isoamyl methacrylate ( T) Acryloyl group-containing compound; monofunctional (meth) acryloyl group-containing compound having an aromatic ring such as benzyl acrylate, phenoxyethyl acrylate, benzyl methacrylate, phenoxyethyl methacrylate, 2-hydroxy-3-phenoxypropyl methacrylate; polyethylene glycol diacrylate Decanediol diacrylate, nonanediol diacrylate, hexanediol diacrylate, tricyclodecane dimethanol diacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexa Polyfunctional (meth) acryloyl group-containing compound such as acrylate And acrylic oligomers such as polypropylene glycol dimethacrylate, urethane dimethacrylate, isoprene dimethacrylate, polybutadiene dimethacrylate, liquid hydrogenated polybutadiene diacrylate, and polyisobutylene dimethacrylate.

(B)成分は、好ましくは、カルボキシル基または酸無水物基を有する化合物を含む。これにより、基材との密着性が向上するという効果がある。   The component (B) preferably contains a compound having a carboxyl group or an acid anhydride group. Thereby, there exists an effect that adhesiveness with a base material improves.

(B)成分の量は、特に限定されず、適宜調節すればよい。シール剤組成物は、(A)成分100質量部に対して、(B)成分を、好ましくは10〜200質量部含む。これにより、封止性と密着性が向上するという効果がある。   The amount of component (B) is not particularly limited and may be adjusted as appropriate. The sealing agent composition preferably contains 10 to 200 parts by mass of component (B) with respect to 100 parts by mass of component (A). Thereby, there exists an effect that sealing performance and adhesiveness improve.

<(C)成分>
(C)成分は、光重合開始剤である。(C)成分は、特に限定されず、公知の光重合開始剤を用いることができる。
<(C) component>
(C) A component is a photoinitiator. (C) A component is not specifically limited, A well-known photoinitiator can be used.

(C)成分としては、例えば、アセトフェノン、2,2−ジエトキシアセトフェノン、m−クロロアセトフェノン、p−tert−ブチルトリクロロアセトフェノン、4−ジアルキルアセトフェノン、2−ベンジルメチル2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1などのアセトフェノン類;ベンゾフェノンなどのベンゾフェノン類;ミヒラーケトンなどのミヒラーケトン類;ベンジル、ベンジルメチルエーテルなどのベンジル類;ベンゾイン、2−メチルベンゾインなどのベンゾイン類;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインブチルエーテルなどのベンゾインエーテル類;ベンジルジメチルケタールなどのベンジルジメチルケタール類;チオキサントン、2−クロロチオキサントン、などのチオキサントン類;プロピオフェノン、アントラキノン、アセトイン、ブチロイン、トルオイン、ベンゾイルベンゾエート、α−アシロキシムエステル、などの各種カルボニル化合物;テトラメチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド、ジフェニルジスルフィド、2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノプロパン−1−オンなどの硫黄化合物;アゾビスイソブチロニトリル、アゾビス−2,4−ジメチルバレロニトリルなどのアゾ化合物;ベンゾイルパーオキサイド、ジ−tert−ブチルパーオキサイドなどの過酸化物が挙げられる。この他、フェニルグリオキシレート類;2,4,6−トリメチルベンゾイル−ジフェニルホスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキシドなどのアシルホスフィンオキシド類;ホウ素化合物など有機色素系化合物、鉄−フタロシアニン系化合物などが挙げられる。(C)成分は、1種単独で、または2種以上を組み合わせて用いてもよい。   Examples of the component (C) include acetophenone, 2,2-diethoxyacetophenone, m-chloroacetophenone, p-tert-butyltrichloroacetophenone, 4-dialkylacetophenone, 2-benzylmethyl 2-dimethylamino-1- (4 Acetophenones such as morpholinophenyl) -butanone; benzophenones such as benzophenone; Michler ketones such as Michler ketone; benzyls such as benzyl and benzylmethyl ether; benzoins such as benzoin and 2-methylbenzoin; benzoin methyl ether Benzoin ethers such as benzoin ethyl ether, benzoin isopropyl ether and benzoin butyl ether; benzyl dimethyl ketals such as benzyl dimethyl ketal; Various carbonyl compounds such as propiophenone, anthraquinone, acetoin, butyroin, toluoin, benzoylbenzoate, α-acyloxime ester, tetramethylthiuram disulfide, tetramethylthiuram monosulfide, Sulfur compounds such as diphenyl disulfide and 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one; azo compounds such as azobisisobutyronitrile and azobis-2,4-dimethylvaleronitrile A peroxide such as benzoyl peroxide or di-tert-butyl peroxide; In addition, phenylglyoxylates; acyl phosphine oxides such as 2,4,6-trimethylbenzoyl-diphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide; organic dyes such as boron compounds Compounds, iron-phthalocyanine compounds, and the like. (C) A component may be used individually by 1 type or in combination of 2 or more types.

(C)成分の量は、特に限定されず、適宜調節すればよい。例えば、(A)成分と(B)成分の合計100質量部に対して、通常0.1質量部以上、好ましくは1質量部以上、通常10質量部以下、好ましくは5質量部以下である。   The amount of component (C) is not particularly limited and may be adjusted as appropriate. For example, with respect to a total of 100 parts by mass of the component (A) and the component (B), it is usually 0.1 parts by mass or more, preferably 1 part by mass or more, usually 10 parts by mass or less, preferably 5 parts by mass or less.

<(D)成分>
(D)成分は、フィラーである。(D)成分は、任意成分であり、機械的性質を高める効果がある。(D)成分は、特に限定されず、公知の無機フィラーおよび有機フィラーから選択して用いればよい。
<(D) component>
(D) A component is a filler. The component (D) is an optional component and has an effect of improving mechanical properties. The component (D) is not particularly limited, and may be selected from known inorganic fillers and organic fillers.

無機フィラーとしては、例えば、シリカ、微粉ケイ酸、アルミナ、酸化マグネシウム、酸化バリウム、酸化カルシウムなどの酸化物系フィラー;カーボンブラック、グラファイト;水酸化アルミニウム、水酸化マグネシウムなどの水酸化物系フィラー;珪藻土、石灰岩などの堆積岩系フィラー;カオリナイト、モンモリオナイトなどの粘土鉱物系フィラー;フェライト、鉄、コバルトなどの磁性系フィラー;銀、金、銅、合金などの導電性フィラー;軽質炭酸カルシウム、重質炭酸カルシウム、タルク、クレーなどが挙げられる。   Examples of the inorganic filler include oxide fillers such as silica, finely divided silicic acid, alumina, magnesium oxide, barium oxide, and calcium oxide; carbon black, graphite; hydroxide fillers such as aluminum hydroxide and magnesium hydroxide; Sedimentary rock fillers such as diatomite and limestone; clay mineral fillers such as kaolinite and montmorillonite; magnetic fillers such as ferrite, iron and cobalt; conductive fillers such as silver, gold, copper and alloys; light calcium carbonate, Heavy calcium carbonate, talc, clay and the like can be mentioned.

シリカの種類は、特に限定されず、適宜選択すればよい。例えば、煙霧質シリカ、沈降性シリカなどが挙げられる。   The type of silica is not particularly limited and may be appropriately selected. Examples thereof include fumed silica and precipitated silica.

カーボンブラックの種類は、特に限定されず、適宜選択すればよい。例えば、SRF、GPF、FEF、HAF、ISAF、SAF、FT、MTなどが挙げられる。   The type of carbon black is not particularly limited and may be appropriately selected. For example, SRF, GPF, FEF, HAF, ISAF, SAF, FT, MT and the like can be mentioned.

有機フィラーとしては、例えば、シリコーンフィラー、エポキシ樹脂フィラー、ポリアミド繊維などが挙げられる。   As an organic filler, a silicone filler, an epoxy resin filler, a polyamide fiber etc. are mentioned, for example.

(D)成分は、好ましくは表面処理されている。これにより、封止性という効果がある。表面処理の手法は、特に限定されず、公知の表面処理の手法を用いることができる。例えば、シランカップリング剤;ヘキサメチルジシラザン、クロロシラン、アルコキシシラン等の反応性シラン;低分子量のシロキサンなどを用いて表面処理してもよい。   The component (D) is preferably surface-treated. Thereby, there exists an effect called sealing property. The surface treatment method is not particularly limited, and a known surface treatment method can be used. For example, the surface treatment may be performed using a silane coupling agent; a reactive silane such as hexamethyldisilazane, chlorosilane, or alkoxysilane; a low molecular weight siloxane.

シランカップリング剤としては、例えば、3−アクリロイルオキシプロピルトリメトキシシラン、3−メタクリロイルオキシプロピルトリメトキシシラン、3−アクリロイルオキシプロピルトリエトキシシラン、3−メタクリロイルオキシプロピルトリエトキシシラン、3−アクリロイルオキシプロピルメチルジメトキシシラン、3−メタクリロイルオキシプロピルメチルジメトキシシラン、3−アクリロイルオキシプロピルメチルジエトキシシラン、3−メタクリロイルオキシプロピルメチルジエトキシシラン;3−イソシアネートプロピルトリエトキシシラン、3−イソシアネートプロピルトリメトキシシラン、3−イソシアネートプロピルメチルジエトキシシラン、3−イソシアネートプロピルメチルジメトキシシラン;p−スチリルトリメトキシシラン、p−スチリルトリエトキシシラン;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、ビニルトリス(2−メトキシエトキシ)シラン;2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン;N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−(2−ミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン;3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、アリルトリメトキシシランなどを挙げることができる。   Examples of the silane coupling agent include 3-acryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-acryloyloxypropyltriethoxysilane, 3-methacryloyloxypropyltriethoxysilane, and 3-acryloyloxypropyl. Methyldimethoxysilane, 3-methacryloyloxypropylmethyldimethoxysilane, 3-acryloyloxypropylmethyldiethoxysilane, 3-methacryloyloxypropylmethyldiethoxysilane; 3-isocyanatopropyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3 -Isocyanatopropylmethyldiethoxysilane, 3-isocyanatopropylmethyldimethoxysilane; p-styryl Limethoxysilane, p-styryltriethoxysilane; vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, vinyltris (2-methoxyethoxy) silane; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane; N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-minoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-A Nopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane; 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyl Examples include triethoxysilane and allyltrimethoxysilane.

シランカップリング剤は、好ましくは、3−アクリロイルオキシプロピルトリメトキシシラン、3−アクリロイルオキシプロピルトリエトキシシラン、3−アクリロイルオキシプロピルメチルジメトキシシラン、3−アクリロイルオキシプロピルメチルジエトキシシランなどのアクリロイル基を有するシランカップリング剤である。   The silane coupling agent preferably has an acryloyl group such as 3-acryloyloxypropyltrimethoxysilane, 3-acryloyloxypropyltriethoxysilane, 3-acryloyloxypropylmethyldimethoxysilane, and 3-acryloyloxypropylmethyldiethoxysilane. It has a silane coupling agent.

(D)成分の量は、特に限定されず、適宜調節すればよい。シール剤組成物は、(A)成分100質量部に対して、(D)フィラーを、好ましくは0.1〜1000質量部含み、より好ましくは10〜300質量部含む。形状は特に限定されず、粒など不定形、球、板状、棒状など適時選択すればばよい。粒径は、例えば、本発明のシール剤組成物を色素増感太陽電池に用いる場合、光電極と対向電極間の距離により適時選択すればよいが、通常0.001μm〜500μm、好ましくは0.01〜50μmである。   The amount of component (D) is not particularly limited and may be adjusted as appropriate. The sealing agent composition preferably contains 0.1 to 1000 parts by mass, and more preferably 10 to 300 parts by mass of the (D) filler with respect to 100 parts by mass of the component (A). The shape is not particularly limited, and may be selected as appropriate, such as an indefinite shape such as a grain, a sphere, a plate, or a rod. For example, when the sealant composition of the present invention is used in a dye-sensitized solar cell, the particle size may be selected as appropriate depending on the distance between the photoelectrode and the counter electrode, but is usually 0.001 μm to 500 μm, preferably 0.00. 01 to 50 μm.

(その他の成分)
シール剤組成物は、上述した(A)、(B)および(C)の他、任意に、前記(D)成分や、シール剤組成物に用いられる、溶媒、増感剤、着色剤、難燃剤、可塑剤、重合禁止剤、酸化防止剤、消泡剤、カップリング剤、レベリング剤、レオロジーコントロール剤などを含んでいてもよい。
(Other ingredients)
In addition to the above-mentioned (A), (B) and (C), the sealant composition is optionally a solvent, a sensitizer, a colorant, a difficult agent used in the component (D) and the sealant composition. A flame retardant, a plasticizer, a polymerization inhibitor, an antioxidant, an antifoaming agent, a coupling agent, a leveling agent, a rheology control agent and the like may be contained.

増感剤としては、通常使用されるものなら特に限定されないが、好ましくは300nm以上の波長の光を吸収可能な芳香族系化合物がよい。例えば、アントラセン化合物、クマリン化合物、カルバゾール化合物、ベンゾオキサゾール化合物、ナフタレン及びハロゲン化ナフタレン等のナフタレン化合物、スチルベン化合物、ベンジジン化合物、ピレン化合物、ペリレン化合物、ナフタルイミド化合物、及び、ベンゾトリアゾール化合物等が挙げられる。このような紫外線を吸収して発光する化合物を増感剤として用いることで、一方向からの照射では照射されない遮光領域における該接着剤の十分な硬化を達成することができる。増感剤の量は、特に限定されず、適宜調節すればよい。例えば、(A)成分と(B)成分の合計100重量部に対して、通常0.01質量部以上、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、通常10質量部以下、好ましくは5質量部以下、より好ましくは3質量部以下である。   The sensitizer is not particularly limited as long as it is usually used, but an aromatic compound that can absorb light having a wavelength of 300 nm or more is preferable. Examples include anthracene compounds, coumarin compounds, carbazole compounds, benzoxazole compounds, naphthalene compounds such as naphthalene and halogenated naphthalene, stilbene compounds, benzidine compounds, pyrene compounds, perylene compounds, naphthalimide compounds, and benzotriazole compounds. . By using such a compound that absorbs ultraviolet rays and emits light as a sensitizer, it is possible to achieve sufficient curing of the adhesive in a light shielding region that is not irradiated by irradiation from one direction. The amount of the sensitizer is not particularly limited and may be adjusted as appropriate. For example, with respect to a total of 100 parts by weight of component (A) and component (B), it is usually 0.01 parts by weight or more, preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, usually 10 parts by weight. Part or less, preferably 5 parts by weight or less, more preferably 3 parts by weight or less.

重合禁止剤は、保存安定性を保つために重合禁止剤を使用することができるが、重合禁止剤は添加量が多すぎると保存安定性が良くなる一方で、反応性が遅くなるため0.001〜0.1質量にすることが好ましい。   As the polymerization inhibitor, a polymerization inhibitor can be used in order to maintain the storage stability. However, when the polymerization inhibitor is added in an excessive amount, the storage stability is improved, but the reactivity becomes slow. It is preferable to make it 001-0.1 mass.

この他、シール剤組成物は、例えば、ラジカル反応に関与する炭素−炭素二重結合を実質的に含有せず、23℃で流動性を示す液状飽和エラストマーを含んでいてもよい。   In addition, the sealing agent composition may contain, for example, a liquid saturated elastomer that does not substantially contain a carbon-carbon double bond involved in a radical reaction and exhibits fluidity at 23 ° C.

液状飽和エラストマーとしては、例えば、水添ポリブタジエン、末端水酸基含有水添ポリブタジエン、末端カルボキシル基含有水添ポリブタジエン、水添ポリイソプレン、末端水酸基含有ポリイソプレン、末端カルボキシル基含有ポリイソプレン、水添ブタジエン−イソプレン共重合体、ポリイソブチレンなどが挙げられる。この他、液状飽和エラストマーとして、例えば、その末端にヒドロキシル基やカルボキシル基などの官能基(末端官能基)が存在するものが挙げられる。   Examples of the liquid saturated elastomer include hydrogenated polybutadiene, terminal hydroxyl group-containing hydrogenated polybutadiene, terminal carboxyl group-containing hydrogenated polybutadiene, hydrogenated polyisoprene, terminal hydroxyl group-containing polyisoprene, terminal carboxyl group-containing polyisoprene, and hydrogenated butadiene-isoprene. A copolymer, polyisobutylene, etc. are mentioned. In addition, examples of the liquid saturated elastomer include those having a functional group (terminal functional group) such as a hydroxyl group or a carboxyl group at the terminal.

液状飽和エラストマーを用いる場合、配合量は特に限定されず、適宜調整すればよい。例えば、(A)成分と液状飽和エラストマーの合計100質量部に対して、液状飽和エラストマー1〜50質量部である。   In the case of using a liquid saturated elastomer, the blending amount is not particularly limited and may be appropriately adjusted. For example, it is 1 to 50 parts by mass of the liquid saturated elastomer with respect to 100 parts by mass in total of the component (A) and the liquid saturated elastomer.

<有機系太陽電池用シール剤組成物の調製方法>
有機系太陽電池用シール剤組成物の調製方法は、特に限定されず、公知の方法を用いて調製すればよい。例えば、上述した(A)、(B)、(C)および(D)成分、ならびに必要に応じてその他の成分を、サンドミル、ディスパー、コロイドミル、プラネタリーミキサー、ニーダーなどの公知の混合装置を用いて、混合することで調製することができる。
<Method for Preparing Sealant Composition for Organic Solar Cell>
The preparation method of the organic solar cell sealing agent composition is not particularly limited, and may be prepared using a known method. For example, the above-mentioned components (A), (B), (C) and (D), and other components as necessary are mixed with a known mixing apparatus such as a sand mill, a disper, a colloid mill, a planetary mixer, a kneader. And can be prepared by mixing.

<有機系太陽電池用シール剤組成物の硬化方法>
有機系太陽電池用シール剤組成物を硬化させるためのエネルギー線としては、紫外線、可視光、赤外線、電子線などが用いられるが、高速印刷を実現させるためには紫外線、電子線が好ましい。
紫外線照射装置としては、通常200〜500nmの範囲の光を含む光源、たとえば、高圧水銀灯、超高圧水銀灯、メタルハライド灯、ガリウム灯、キセノン灯、カーボンアーク灯などを有するものが使用できる。一方、電子線により硬化させる場合、通常100〜500eVのエネルギーを有する電子線加速装置が使用できる。
硬化条件などは、通常実施される公知の条件で行えばよい。活性化エネルギーの積算照射量は通常100〜5000mJ/cm2、好ましくは200〜4000mJ/cm2である。
<The hardening method of the sealing compound composition for organic type solar cells>
As energy rays for curing the sealing composition for organic solar cells, ultraviolet rays, visible light, infrared rays, electron beams and the like are used, but ultraviolet rays and electron beams are preferable in order to realize high-speed printing.
As the ultraviolet irradiation device, a light source usually containing light in the range of 200 to 500 nm, for example, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a gallium lamp, a xenon lamp, a carbon arc lamp, or the like can be used. On the other hand, when it hardens with an electron beam, the electron beam accelerator which usually has an energy of 100-500 eV can be used.
What is necessary is just to perform hardening conditions etc. on the well-known conditions normally implemented. The cumulative irradiation amount of activation energy is usually 100 to 5000 mJ / cm 2 , preferably 200 to 4000 mJ / cm 2 .

有機系太陽電池用シール剤組成物は、フレキソ印刷、グラビア印刷、スクリーン印刷、インクジェット印刷、オフセット印刷、あるいはバーコート法、ディップコート法、フローコート法、スプレーコート法、スピンコート法、ローラーコート法、リバースコート、エアナイフ、ディスペンスなどといったあらゆる印刷、塗装に使用することが可能であり、塗布される基材の形状等に応じて適宜選択することができる。   Sealing composition for organic solar cell is flexographic printing, gravure printing, screen printing, inkjet printing, offset printing, or bar coating method, dip coating method, flow coating method, spray coating method, spin coating method, roller coating method. It can be used for all kinds of printing and painting such as reverse coating, air knife, dispensing, etc., and can be appropriately selected according to the shape of the substrate to be applied.

<有機系太陽電池>
本発明に係る有機系太陽電池は、有機系太陽電池用シール剤組成物の硬化物を含む、有機系太陽電池である。有機系太陽電池がこのような硬化物を含むことにより、高い信頼性、すなわち、高い光電変換効率の維持率を有する。
<Organic solar cells>
The organic solar cell according to the present invention is an organic solar cell including a cured product of a sealing agent composition for organic solar cells. By including such a cured product, the organic solar cell has high reliability, that is, high photoelectric conversion efficiency maintenance rate.

有機系太陽電池としては、例えば、色素増感型太陽電池、ペロブスカイト型太陽電池などが挙げられる。本発明に係る有機系太陽電池は、例えば、電解液の封入部材としてあるいは集電配線などの保護層として、従来のシール剤に代えて、本発明に係る有機系太陽電池用シール剤組成物の硬化物を含めばよく、電極(光電極)、電解液(電解質、溶媒)、対向電極、保護層、反射防止層、ガスバリア層などの有機系太陽電池のその他の構成は、公知のものを用いればよい。以下、一例としての光電極、電解質層、対向電極を説明する。   Examples of organic solar cells include dye-sensitized solar cells and perovskite solar cells. The organic solar cell according to the present invention is, for example, an organic solar cell sealing agent composition according to the present invention, instead of a conventional sealing agent, as an electrolyte encapsulating member or as a protective layer for a current collector wiring or the like. What is necessary is just to include hardened | cured material, and other structures of organic type solar cells, such as an electrode (photoelectrode), electrolyte solution (electrolyte, solvent), a counter electrode, a protective layer, an antireflection layer, and a gas barrier layer, use a well-known thing. That's fine. Hereinafter, an example of a photoelectrode, an electrolyte layer, and a counter electrode will be described.

<光電極>
光電極は、特に限定されず、公知の光電極を適宜選択して用いることができる。例えば、光電極基材と、その上に形成された多孔質半導体微粒子層と、この多孔質半導体微粒子層の表面に増感色素が吸着されて形成された増感色素層とからなるものでもよい。光電極基材は、多孔質半導体微粒子層などを担持する役割と、集電体としての役割を担うものである。
<Photoelectrode>
A photoelectrode is not specifically limited, A well-known photoelectrode can be selected suitably and can be used. For example, it may be composed of a photoelectrode substrate, a porous semiconductor fine particle layer formed thereon, and a sensitizing dye layer formed by adsorbing a sensitizing dye on the surface of the porous semiconductor fine particle layer. . The photoelectrode substrate plays a role of supporting a porous semiconductor fine particle layer and the like and a role of a current collector.

光電極基材は、特に限定されず、公知の光電極基材を適宜選択して用いることができる。例えば、透明樹脂やガラスなどの基材上に、インジウム−スズ酸化物(ITO)やインジウム−亜鉛酸化物(IZO)、フッ素ドープスズ(FTO)などの複合金属酸化物からなる導電膜、カーボンナノチューブやグラフェンなどカーボン系導電膜、PEDOT/PSSなど導電性高分子膜など及びこれらを混合・積層した層、PEDOT/PSSなど導電性高分子膜など及びこれらを混合・積層した層を積層してなるものが挙げられる。   The photoelectrode substrate is not particularly limited, and a known photoelectrode substrate can be appropriately selected and used. For example, a conductive film made of a composite metal oxide such as indium-tin oxide (ITO), indium-zinc oxide (IZO), fluorine-doped tin (FTO), carbon nanotube, A carbon-based conductive film such as graphene, a conductive polymer film such as PEDOT / PSS, etc. and a layer in which these are mixed and laminated, a conductive polymer film such as PEDOT / PSS, etc. and a layer in which these are mixed and laminated Is mentioned.

透明樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シンジオタクチックポリスチレン(SPS)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート(PAr)、ポリスルホン(PSF)、ポリエステルスルホン(PES)、ポリエーテルイミド(PEI)、透明ポリイミド(PI)、シクロオレフィンポリマー(COP)などの合成樹脂が挙げられる。   Examples of the transparent resin include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polycarbonate (PC), polyarylate (PAr), polysulfone (PSF), Examples include synthetic resins such as polyester sulfone (PES), polyetherimide (PEI), transparent polyimide (PI), and cycloolefin polymer (COP).

光電極基材は、好ましくは有機樹脂である。   The photoelectrode substrate is preferably an organic resin.

多孔質半導体微粒子層は、半導体微粒子を含有する多孔質状の層である。多孔質状の層であることで、増感色素の吸着量が増え、変換効率が高い色素増感型太陽電池が得られやすくなる。   The porous semiconductor fine particle layer is a porous layer containing semiconductor fine particles. By being a porous layer, the amount of sensitizing dye adsorbed increases, and a dye-sensitized solar cell with high conversion efficiency is easily obtained.

半導体微粒子としては、例えば、酸化チタン、酸化亜鉛、酸化スズなどの金属酸化物の粒子が挙げられる。   Examples of the semiconductor fine particles include metal oxide particles such as titanium oxide, zinc oxide, and tin oxide.

半導体微粒子の粒子径(一次粒子の平均粒子径)は、特に限定されず、適宜調節すればよい。好ましくは2〜80nm、より好ましくは2〜60nmである。粒子径が小さいことで、抵抗を低下させることができる。   The particle size of semiconductor fine particles (average particle size of primary particles) is not particularly limited, and may be adjusted as appropriate. Preferably it is 2-80 nm, More preferably, it is 2-60 nm. Resistance can be reduced because the particle size is small.

多孔質半導体微粒子層の厚みは、特に限定されないが、通常、0.1〜50μm、好ましくは5〜30μmである。   Although the thickness of a porous semiconductor fine particle layer is not specifically limited, Usually, 0.1-50 micrometers, Preferably it is 5-30 micrometers.

多孔質半導体微粒子層の形成方法は特に限定されず、公知の方法を適宜選択して用いることができる。例えば、プレス法、水熱分解法、泳動電着法、バインダーフリーコーティング法などの公知の方法により多孔質半導体微粒子層を形成することができる。   The formation method of a porous semiconductor fine particle layer is not specifically limited, A well-known method can be selected suitably and can be used. For example, the porous semiconductor fine particle layer can be formed by a known method such as a press method, a hydrothermal decomposition method, an electrophoretic electrodeposition method, or a binder-free coating method.

増感色素層は、光によって励起されて多孔質半導体微粒子層に電子を渡し得る化合物(増感色素)が、多孔質半導体微粒子層の表面に吸着されてなる層である。   The sensitizing dye layer is a layer formed by adsorbing a compound (sensitizing dye) that can be excited by light and pass electrons to the porous semiconductor fine particle layer on the surface of the porous semiconductor fine particle layer.

増感色素は、特に限定されず、公知の色素増感型太陽電池の増感色素を適宜選択して用いることができる。例えば、シアニン色素、メロシアニン色素、オキソノール色素、キサンテン色素、スクワリリウム色素、ポリメチン色素、クマリン色素、リボフラビン色素、ペリレン色素などの有機色素;鉄、銅、ルテニウムなどの金属のフタロシアニン錯体やポルフィリン錯体などの金属錯体色素などが挙げられる。例えばN3、N719、N749、D102、D131、D150、N205、HRS−1、MK−2などが代表的な増感色素として挙げられる。   The sensitizing dye is not particularly limited, and a sensitizing dye of a known dye-sensitized solar cell can be appropriately selected and used. For example, organic dyes such as cyanine dyes, merocyanine dyes, oxonol dyes, xanthene dyes, squarylium dyes, polymethine dyes, coumarin dyes, riboflavin dyes, perylene dyes; metals such as phthalocyanine complexes and porphyrin complexes of metals such as iron, copper and ruthenium And complex dyes. For example, N3, N719, N749, D102, D131, D150, N205, HRS-1, MK-2 and the like can be mentioned as typical sensitizing dyes.

色素を溶解させる有機溶媒は、溶媒に存在している水分及び気体を除去するために、予め脱気及び蒸留精製しておくことが好ましい。溶媒としては、メタノール、エタノール、プロパノールなどアルコール類、アセトニトリルなどニトリル類、ハロゲン化炭化水素、エーテル類、アミド類、エステル類、炭酸エステル類、ケトン類、炭化水素、芳香族、ニトロメタンなどの溶媒が好ましい。   The organic solvent for dissolving the dye is preferably degassed and purified by distillation in advance in order to remove moisture and gas present in the solvent. Solvents include alcohols such as methanol, ethanol and propanol, nitriles such as acetonitrile, halogenated hydrocarbons, ethers, amides, esters, carbonates, ketones, hydrocarbons, aromatics, nitromethane and the like. preferable.

増感色素層の形成方法は特に限定されず、公知の方法を適宜選択して用いることができる。例えば、増感色素の溶液中に多孔質半導体微粒子層を浸漬する方法や、増感色素の溶液を多孔質半導体微粒子層上に塗布する方法などの公知の方法により増感色素層を形成することができる。   The formation method of a sensitizing dye layer is not specifically limited, A well-known method can be selected suitably and can be used. For example, a sensitizing dye layer is formed by a known method such as a method of immersing a porous semiconductor fine particle layer in a sensitizing dye solution or a method of applying a sensitizing dye solution onto the porous semiconductor fine particle layer. Can do.

光電極は、光を受けることで、外部の回路に電子を放出し得る電極であればよく、色素増感型太陽電池の光電極として公知のものを用いることができる。   The photoelectrode may be any electrode that can emit light to an external circuit by receiving light, and a known photoelectrode for a dye-sensitized solar cell can be used.

<電解質層>
電解質層は、光電極と対向電極とを分離するとともに、電荷移動を効率よく行わせるための層である。電解質層としては、固体、液体、ゲル状など半固体など特に限定されない。電解質層は、通常、支持電解質、酸化還元対(酸化還元反応において可逆的に酸化体および還元体の形で相互に変換しうる一対の化学種)、溶媒などを含有する。
<Electrolyte layer>
The electrolyte layer is a layer for separating the photoelectrode and the counter electrode and efficiently performing charge transfer. The electrolyte layer is not particularly limited, such as a solid, liquid, semi-solid such as a gel. The electrolyte layer usually contains a supporting electrolyte, a redox pair (a pair of chemical species that can be reversibly converted into an oxidized form and a reduced form in a redox reaction), a solvent, and the like.

支持電解質としては、例えば、リチウムイオンなどアルカリ金属、アルカリ土類金属などの塩、イミダゾリウムイオン、4級窒素原子をスピロ原子に持つ化合物、4級アンモニウムイオンなどの陽イオンを含むイオン性液体などが挙げられる。   Examples of the supporting electrolyte include salts such as alkali metals such as lithium ions and alkaline earth metals, imidazolium ions, compounds having quaternary nitrogen atoms as spiro atoms, and ionic liquids containing cations such as quaternary ammonium ions. Is mentioned.

酸化還元対は、酸化された増感色素を還元し得るものであれば、公知のものを用いることができる。酸化還元対としては、例えば、塩素化合物−塩素、ヨウ素化合物−ヨウ素、臭素化合物−臭素、タリウムイオン(III)−タリウムイオン(I)、ルテニウムイオン(III)−ルテニウムイオン(II)、銅イオン(II)−銅イオン(I)、鉄イオン(III)−鉄イオン(II)、コバルトイオン(III)−コバルトイオン(II)、バナジウムイオン(III)−バナジウムイオン(II)、マンガン酸イオン−過マンガン酸イオン、フェリシアン化物−フェロシアン化物、キノン−ヒドロキノン、フマル酸−コハク酸などが挙げられる。   As the redox couple, a known one can be used as long as it can reduce the oxidized sensitizing dye. Examples of the redox pair include chlorine compound-chlorine, iodine compound-iodine, bromine compound-bromine, thallium ion (III) -thallium ion (I), ruthenium ion (III) -ruthenium ion (II), copper ion ( II) -copper ion (I), iron ion (III) -iron ion (II), cobalt ion (III) -cobalt ion (II), vanadium ion (III) -vanadium ion (II), manganate ion-per Manganate ion, ferricyanide-ferrocyanide, quinone-hydroquinone, fumaric acid-succinic acid and the like can be mentioned.

溶媒は、太陽電池の電解質層の形成用溶媒として公知のものを用いることができる。溶媒としては、例えば、アセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリル、N,N−ジメチルホルムアミド、エチルメチルイミダゾリウムビストリフルオロメチルスルホニルイミド、炭酸プロピレン、グリコールエーテル、γ―ブチルラクトンなどが挙げられる。   A well-known thing can be used as a solvent for the formation of the electrolyte layer of a solar cell. Examples of the solvent include acetonitrile, methoxyacetonitrile, methoxypropionitrile, N, N-dimethylformamide, ethylmethylimidazolium bistrifluoromethylsulfonylimide, propylene carbonate, glycol ether, and γ-butyllactone.

電解質層の形成方法は特に限定されず、公知の方法を適宜選択して用いることができる。例えば、電解質層の構成成分を含有する溶液(電解液)を光電極上に塗布すること;光電極と対向電極を有するセルを作製し、その隙間に電解液を注入することで形成することができる。   The method for forming the electrolyte layer is not particularly limited, and a known method can be appropriately selected and used. For example, it can be formed by applying a solution (electrolyte) containing the constituent components of the electrolyte layer on the photoelectrode; producing a cell having the photoelectrode and the counter electrode, and injecting the electrolyte into the gap. .

(集電線)
光電極または対向電極の透明導電膜に集電線を配備し、区分されたセル部を設け、電流の電極内の移動を速やか行えるように設計するのが好ましい。
光電極および対向電極の集電線は、銀、銅、アルミニウム、タングステン、ニッケル、クロムのうちから選ばれた少なくとも1つ以上の金属あるいはこれらの合金からなることが好ましい。集電線が透明基板上に格子状に形成され形状でも好ましい。集電線の形成法としては、スパッタ法、蒸着法、メッキ法あるいはスクリーン印刷法などが用いられる。
(Collector)
It is preferable to arrange a current collecting line on the transparent conductive film of the photoelectrode or the counter electrode, provide a segmented cell portion, and design so that current can be quickly moved in the electrode.
The collector electrode of the photoelectrode and the counter electrode is preferably made of at least one metal selected from silver, copper, aluminum, tungsten, nickel, and chromium, or an alloy thereof. The current collector is preferably formed in a lattice shape on a transparent substrate. As a method for forming the current collector, sputtering, vapor deposition, plating, screen printing, or the like is used.

<対向電極>
対向電極は、公知の対向電極を適宜選択して用いることができる。例えば、支持体上に導電膜と触媒層とをこの順で備える対向電極などが挙げられる。
<Counter electrode>
As the counter electrode, a known counter electrode can be appropriately selected and used. For example, a counter electrode provided with a conductive film and a catalyst layer in this order on a support can be used.

支持体は、触媒層を担持する役割を担うものである。支持体としては、例えば、金属、金属酸化物、炭素材料、導電性高分子などを用いて形成された導電性のシートや、透明樹脂やガラスからなる非導電性のシートが挙げられる。   The support is responsible for supporting the catalyst layer. Examples of the support include a conductive sheet formed using a metal, a metal oxide, a carbon material, a conductive polymer, and the like, and a nonconductive sheet made of a transparent resin or glass.

透明樹脂は、例えば、上記光電極で挙げた透明樹脂が挙げられる。   As for transparent resin, the transparent resin quoted by the said photoelectrode is mentioned, for example.

導電膜としては、例えば、白金、金、銀、銅、アルミニウム、インジウム、チタンなどの金属;酸化スズ、酸化亜鉛などの導電性金属酸化物;インジウム−スズ酸化物(ITO)、インジウム−亜鉛酸化物(IZO)、フッ素ドープ酸化スズ(FTO)などの複合金属酸化物;カーボンナノチューブ、カーボンナノバット、グラフェン、フラーレンなどの炭素材料;およびこれら2種以上の組み合わせ;などからなるものが挙げられる。   Examples of the conductive film include metals such as platinum, gold, silver, copper, aluminum, indium and titanium; conductive metal oxides such as tin oxide and zinc oxide; indium-tin oxide (ITO) and indium-zinc oxide. Compound (IZO), composite metal oxides such as fluorine-doped tin oxide (FTO); carbon materials such as carbon nanotubes, carbon nanobatts, graphene, and fullerenes; and combinations of two or more thereof.

触媒層は、有機系太陽電池において、対向電極から電解質層に電子を渡すときの触媒として機能する。触媒層は、公知の触媒層を適宜選択して用いることができる。例えば、触媒作用を有する、導電性高分子、炭素ナノ構造体、貴金属粒子、または炭素ナノ構造体と貴金属粒子の両方を含むことが好ましい。   The catalyst layer functions as a catalyst when electrons are transferred from the counter electrode to the electrolyte layer in the organic solar cell. As the catalyst layer, a known catalyst layer can be appropriately selected and used. For example, it is preferable to include a conductive polymer, carbon nanostructure, noble metal particles, or both carbon nanostructure and noble metal particles having a catalytic action.

導電性高分子としては、例えば、ポリ(チオフェン−2,5−ジイル)、ポリ(3−ブチルチオフェン−2,5−ジイル)、ポリ(3−ヘキシルチオフェン−2,5−ジイル)、ポリ(2,3−ジヒドロチエノ−[3,4−b]−1,4−ジオキシン)(PEDOT)等のポリチオフェン;ポリアセチレンおよびその誘導体;ポリアニリンおよびその誘導体;ポリピロールおよびその誘導体;ポリ(p−キシレンテトラヒドロチオフェニウムクロライド)、ポリ[(2−メトキシ−5−(2’−エチルヘキシロキシ))−1,4−フェニレンビニレン]、ポリ[(2−メトキシ−5−(3’,7’−ジメチルオクチロキシ)−1,4−フェニレンビニレン)]、ポリ[2−2’,5’−ビス(2’’−エチルヘキシロキシ)フェニル]−1,4−フェニレンビニレン]等のポリフェニレンビニレン類;などを挙げることができる。   Examples of the conductive polymer include poly (thiophene-2,5-diyl), poly (3-butylthiophene-2,5-diyl), poly (3-hexylthiophene-2,5-diyl), and poly ( Polythiophene such as 2,3-dihydrothieno- [3,4-b] -1,4-dioxin) (PEDOT); polyacetylene and derivatives thereof; polyaniline and derivatives thereof; polypyrrole and derivatives thereof; poly (p-xylenetetrahydrothiophene) Nium chloride), poly [(2-methoxy-5- (2′-ethylhexyloxy))-1,4-phenylenevinylene], poly [(2-methoxy-5- (3 ′, 7′-dimethyloctyloxy) ) -1,4-phenylenevinylene)], poly [2-2 ′, 5′-bis (2 ″ -ethylhexyloxy) phenyl] -1, - polyphenylene vinylene such as phenylene vinylene]; and the like.

炭素ナノ構造体としては、例えば、天然黒鉛、活性炭、人造黒鉛、グラフェン、カーボンナノチューブ、カーボンナノバット、グラフェン、などを挙げることができる。   Examples of the carbon nanostructure include natural graphite, activated carbon, artificial graphite, graphene, carbon nanotube, carbon nanobat, and graphene.

貴金属粒子としては、触媒作用のあるものであれば特に限定されず、公知の貴金属粒子を適宜選択して用いることができる。例えば、金属白金、金属パラジウムおよび金属ルテニウムなどが挙げられる。   The noble metal particles are not particularly limited as long as they have a catalytic action, and known noble metal particles can be appropriately selected and used. For example, metal platinum, metal palladium, metal ruthenium, etc. are mentioned.

触媒層の形成方法は、特に限定されず、公知の方法を適宜選択して用いることができる。例えば、導電性高分子、炭素ナノ構造体、貴金属粒子、または炭素ナノ構造体と貴金属粒子の両方を適当な溶媒に溶解または分散させて得られる混合液を、導電膜上に塗布または噴霧し、該混合液の溶媒を乾燥させることにより行うことができる。炭素ナノ構造体や貴金属粒子を用いる場合、混合液にさらにバインダーを含有させてもよく、バインダーとしては炭素ナノ構造体の分散性や基材との密着性の点から、水酸基、カルボキシル基、スルホニル基、リン酸基など官能基、およびこれら官能基のナトリウム塩などをもつ高分子を用いるのが好ましい。   The formation method of a catalyst layer is not specifically limited, A well-known method can be selected suitably and can be used. For example, a conductive polymer, carbon nanostructure, noble metal particles, or a mixture obtained by dissolving or dispersing both carbon nanostructures and noble metal particles in an appropriate solvent is applied or sprayed onto the conductive film, It can be performed by drying the solvent of the mixed solution. When carbon nanostructures or noble metal particles are used, a binder may be further added to the mixed solution. As the binder, from the viewpoint of dispersibility of the carbon nanostructure and adhesion to the substrate, a hydroxyl group, a carboxyl group, and a sulfonyl group. It is preferable to use a polymer having a functional group such as a group, a phosphate group, and a sodium salt of these functional groups.

触媒層は、特開2014−120219号公報に記載のカーボンナノチューブの平均直径(Av)と直径の標準偏差(σ)が0.60>3σ/Av>0.20を満たすカーボンナノチューブ(以下、「特定のカーボンナノチューブ」ということがある)を含有するものであってもよい。ここで、「特定のカーボンナノチューブ」とは、それを構成する所定のカーボンナノチューブの集合の総称であり、「直径」とは当該所定のカーボンナノチューブの外径を意味する。   The catalyst layer is a carbon nanotube (hereinafter referred to as “the average diameter (Av) of carbon nanotubes and a standard deviation (σ) of diameters) satisfying 0.60> 3σ / Av> 0.20 described in JP 2014-120219 A” It may contain a “specific carbon nanotube”. Here, “specific carbon nanotube” is a general term for a set of predetermined carbon nanotubes constituting the carbon nanotube, and “diameter” means an outer diameter of the predetermined carbon nanotube.

特定のカーボンナノチューブは、公知の方法、例えば、表面にカーボンナノチューブ製造用触媒層(以下、「CNT製造用触媒層」ということがある)を有する基材(以下、「CNT製造用基材」ということがある)上に、原料化合物およびキャリアガスを供給して、化学的気相成長法(CVD法)によりカーボンナノチューブを合成する際に、系内に微量の酸化剤を存在させることで、CNT製造用触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法)により、得ることができる(例えば、国際公開第2006/011655号)。以下、スーパーグロース法により製造されたカーボンナノチューブをSGCNTということがある。   The specific carbon nanotube is a known method, for example, a substrate having a catalyst layer for producing carbon nanotubes (hereinafter sometimes referred to as “catalyst layer for producing CNT”) on the surface (hereinafter referred to as “substrate for producing CNT”) In addition, when a raw material compound and a carrier gas are supplied and carbon nanotubes are synthesized by a chemical vapor deposition method (CVD method), a small amount of oxidant is present in the system, so that CNT It can be obtained by a method (supergrowth method) of dramatically improving the catalytic activity of the production catalyst layer (for example, International Publication No. 2006/011655). Hereinafter, the carbon nanotube produced by the super growth method may be referred to as SGCNT.

触媒層の厚みは、好ましくは0.005μm〜100μmである。   The thickness of the catalyst layer is preferably 0.005 μm to 100 μm.

触媒層に含まれる特定のカーボンナノチューブの量は、好ましくは0.1〜2×104mg/m2、より好ましくは0.5〜5×103mg/m2である。 The amount of the specific carbon nanotube contained in the catalyst layer is preferably 0.1 to 2 × 10 4 mg / m 2 , more preferably 0.5 to 5 × 10 3 mg / m 2 .

特定のカーボンナノチューブを構成材料とする触媒層を含む対向電極は、例えば、特定のカーボンナノチューブを含有する分散液を調製し、この分散液を基材上に塗布し、得られた塗膜を乾燥させて触媒層を形成することで、作製することができる。   For the counter electrode including a catalyst layer composed of specific carbon nanotubes, for example, a dispersion containing specific carbon nanotubes is prepared, this dispersion is applied onto a substrate, and the resulting coating film is dried. The catalyst layer can be formed by forming the catalyst layer.

分散液の調製に用いる溶媒としては、例えば、水;メチルアルコール、エチルアルコール、プロピルアルコールなどのアルコール類;アセトン、メチルエチルケトンなどのケトン類;テトラヒドロフラン、ジオキサン、ジグライムなどのエーテル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、1,3−ジメチル−2イミダゾリジノンなどのアミド類;ジメチルスルホキシド、スルホランなどの含イオウ系溶媒などが挙げられる。これらの溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。   Examples of the solvent used for preparing the dispersion include water; alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane and diglyme; N, N-dimethyl. Amides such as formamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone; sulfur-containing solvents such as dimethyl sulfoxide and sulfolane. These solvents can be used alone or in combination of two or more.

分散液には、特定のカーボンナノチューブの分散性を向上させるための分散剤を含んでいてもよい。好ましい分散剤としては、例えば、公知のイオン性界面活性剤;カルボキシルメチルセルロース(CMC)、カルボキシルメチルセルロース塩などの非イオン性界面活性剤;ポリスチレンスルホン酸ナトリウムなどのポリスチレンスルホン酸塩などの高分子活性剤が挙げられる。   The dispersion liquid may contain a dispersant for improving the dispersibility of the specific carbon nanotube. Preferred dispersants include, for example, known ionic surfactants; nonionic surfactants such as carboxyl methyl cellulose (CMC) and carboxyl methyl cellulose salts; and polymer surfactants such as polystyrene sulfonates such as sodium polystyrene sulfonate. Is mentioned.

分散液は、さらに、結着剤、導電助剤、界面活性剤などを含有してもよい。これらは公知のものを適宜使用すればよい。   The dispersion may further contain a binder, a conductive aid, a surfactant and the like. These may be appropriately known ones.

分散液は、例えば、特定のカーボンナノチューブ、および、必要に応じて、その他の成分を溶媒中で混合し、カーボンナノチューブを分散させることで得ることができる。   The dispersion can be obtained, for example, by mixing specific carbon nanotubes and, if necessary, other components in a solvent to disperse the carbon nanotubes.

混合処理や分散処理は、公知の方法を利用することができる。例えば、ナノマイザー、アルティマイザー、超音波分散機、ボールミル、サンドグラインダー、ダイノミル、スパイクミル、DCPミル、バスケットミル、ペイントコンディショナー、高速撹拌装置などを用いる方法が挙げられる。   A known method can be used for the mixing process and the dispersion process. Examples thereof include a method using a nanomizer, an optimizer, an ultrasonic disperser, a ball mill, a sand grinder, a dyno mill, a spike mill, a DCP mill, a basket mill, a paint conditioner, a high-speed stirring device, and the like.

分散液中の特定のカーボンナノチューブの含有量は、特に限定されないが、分散液全体中、好ましくは0.001〜10質量%、より好ましくは0.01〜5質量%である。   Although content of the specific carbon nanotube in a dispersion liquid is not specifically limited, Preferably it is 0.001-10 mass% in the whole dispersion liquid, More preferably, it is 0.01-5 mass%.

<その他>
電極として作用する光電極層及び対向電極層の一方又は両方に、防汚層、ハードコートなど保護層、反射防止層、ガスバリア層等の機能性層を設けてもよい。基材と多孔質半導体層の間に緻密な半導体(金属酸化物TiO2、SnO2、Fe23、WO3、ZnO、Nb25など)の薄膜層を下地層として設けてもよい。また、短絡防止のためのセパレータを含ませてもよい。
<Others>
A functional layer such as an antifouling layer, a protective layer such as a hard coat, an antireflection layer, or a gas barrier layer may be provided on one or both of the photoelectrode layer and the counter electrode layer acting as an electrode. A thin film layer of a dense semiconductor (metal oxide TiO 2 , SnO 2 , Fe 2 O 3 , WO 3 , ZnO, Nb 2 O 5, etc.) may be provided as a base layer between the base material and the porous semiconductor layer. . Moreover, you may include the separator for short circuit prevention.

<取出し電極>
作成したモジュールから電流を取り出すために、取出し電極を設置することができる。通常、取出し電極の位置、材料、作成方法など特に限定されず、公知の方法で実施すればよい。材質としては、アルミニウム、ニッケル、ステンレス鋼、銅、金、銀、半田などの金属やカーボンなどのペースト、導電性テープなどを用いることができる。これらは光電極、対向電極側からそれぞれ負極・正極側の取出し電極となるように適時作成することができる。
<Extraction electrode>
An extraction electrode can be installed to extract the current from the created module. Usually, the position, material, and production method of the extraction electrode are not particularly limited, and may be performed by a known method. As the material, metals such as aluminum, nickel, stainless steel, copper, gold, silver, solder, pastes such as carbon, conductive tapes, and the like can be used. These can be prepared in a timely manner so as to be extraction electrodes on the negative electrode side and the positive electrode side from the photoelectrode and counter electrode side, respectively.

モジュールの構造としては、特に限定されないがZ型、W型、並列型、集電配列型、モノリシック型などがある。これらのモジュールを一つまたは2つ以上組み合わせて直列や並列接続して、複数接続してもよい。接続方法は、公知の手段を用いればよく、半田、金属板、ケーブル、フラットケーブル、フレキシブル基材、ケーブルなどを適時選択すればよい。   The structure of the module is not particularly limited, but includes a Z-type, a W-type, a parallel type, a current collection type, a monolithic type, and the like. A plurality of these modules may be connected in series or in parallel by combining one or two or more. A known method may be used for the connection method, and solder, a metal plate, a cable, a flat cable, a flexible substrate, a cable, or the like may be selected as appropriate.

色素増感型太陽電池の他、ペロブスカイト型太陽電池の例としては、例えば、特開2014−049631、特開2015−046583、特開2016−009737などに記載のペロブスカイト型太陽電池が挙げられる。   In addition to the dye-sensitized solar cell, examples of the perovskite solar cell include perovskite solar cells described in Japanese Patent Application Laid-Open No. 2014-096331, Japanese Patent Application Laid-Open No. 2015-046583, Japanese Patent Application Laid-Open No. 2006-009737, and the like.

<太陽電池モジュール製造方法>
モジュールの製造法は特に限定されず、真空張り合わせ法(ODF法)や、エンドシール法など、公知の方法で製造することができる。ODF法としては、例えば、WO2007/046499に記載の方法が挙げられる。エンドシール法としては、例えば、特開2006−004827に記載の方法が挙げられる。
<Solar cell module manufacturing method>
The method for producing the module is not particularly limited, and the module can be produced by a known method such as a vacuum bonding method (ODF method) or an end seal method. Examples of the ODF method include a method described in WO2007 / 046499. Examples of the end seal method include a method described in JP-A 2006-004827.

以下、実施例を挙げて本発明をさらに詳しく説明するが、これらの実施例は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。特に断らない限り、配合量は、質量部を意味する。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in more detail, these Examples aim at the illustration of this invention, and do not limit this invention at all. Unless otherwise specified, the blending amount means parts by mass.

実施例で用いた材料の詳細は以下のとおりである。
(A)成分(液状の環状オレフィン構造を有するポリマー)
液状EPT:液状エチレン−プロピレン−ターポリマー共重合体(三井化学株式会社製の製品名 PX−068)
(B)成分((メタ)アクリロイル基含有化合物)
イソボルニルアクリレート:共栄社化学株式会社製の製品名 ライトアクリレート(登録商標)IB−XA
トリシクロデカンジメタノールジアクリレート:サートマー社製の製品名SR833S
メタクリル酸:東京化成工業株式会社製
液状水添ポリブタジエンジアクリレート:大阪有機化学工業株式会社製の製品名 SPBDA−S30
(C)成分(光重合開始剤)
2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド(BASF社製の製品名 IRGACURE(登録商標)TPO、吸収波長300nm超)
(D)成分(フィラー)
シリカ(メタクリルシランで表面処理したフュームドシリカ):エボニック デグサ ゲーエムベーハー社製の製品名AEROSIL(登録商標)R711
シリカ:エボニック デグサ ゲーエムベーハー社製の製品名AEROSIL(登録商標)120
(組成物のその他の成分)
液状ポリイソブチレン:JXエネルギー株式会社製の日石ポリブテン グレードHV−300 M(マレイン酸変性液状ポリイソブチレン)
The details of the materials used in the examples are as follows.
Component (A) (Liquid polymer having a cyclic olefin structure)
Liquid EPT: Liquid ethylene-propylene-terpolymer copolymer (product name PX-068 manufactured by Mitsui Chemicals, Inc.)
Component (B) ((meth) acryloyl group-containing compound)
Isobornyl acrylate: Product name manufactured by Kyoeisha Chemical Co., Ltd. Light acrylate (registered trademark) IB-XA
Tricyclodecane dimethanol diacrylate: Product name SR833S manufactured by Sartomer
Methacrylic acid: Liquid hydrogenated polybutadiene diacrylate manufactured by Tokyo Chemical Industry Co., Ltd .: Product name manufactured by Osaka Organic Chemical Industry Co., Ltd. SPBDA-S30
Component (C) (photopolymerization initiator)
2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (product name IRGACURE (registered trademark) TPO, manufactured by BASF), absorption wavelength over 300 nm)
(D) component (filler)
Silica (fumed silica surface-treated with methacrylic silane): Product name AEROSIL (registered trademark) R711 manufactured by Evonik Degussa GmbH
Silica: Product name AEROSIL (registered trademark) 120 manufactured by Evonik Degussa GmbH
(Other components of the composition)
Liquid polyisobutylene: Nisseki polybutene grade HV-300 M (maleic acid-modified liquid polyisobutylene) manufactured by JX Energy Corporation

バインダーフリーの酸化チタンペースト:ペクセル・テクノロジーズ株式会社製の製品名 PECC−C01−06
増感色素溶液:増感色素 ルテニウム錯体(ソラロニクス社製の製品名 N719)、溶媒 アセトニトリル、tert−ブタノール、濃度0.4mM
Binder-free titanium oxide paste: Product name PECC-C01-06 manufactured by Pexel Technologies Co., Ltd.
Sensitizing dye solution: sensitizing dye ruthenium complex (product name N719 manufactured by Solaronics), solvent acetonitrile, tert-butanol, concentration 0.4 mM

以下の構成の有機系太陽電池を作製した。   An organic solar cell having the following configuration was produced.

(1)電解液の調製
ヨウ化リチウム0.1mol/L、t−ブチルピリジン0.5mol/L、および、1,2−ジメチル−3−プロピルイミダゾリウムヨージド0.6mol/Lとなるようにメトキシアセトニトリルに加えた。超音波洗浄機による振動により1時間撹拌したのち、24時間以上暗所に静置して、電解液を調製した。
(1) Preparation of electrolyte solution To be lithium iodide 0.1 mol / L, t-butylpyridine 0.5 mol / L, and 1,2-dimethyl-3-propylimidazolium iodide 0.6 mol / L Added to methoxyacetonitrile. After stirring for 1 hour by vibration with an ultrasonic cleaner, the solution was left in a dark place for 24 hours or more to prepare an electrolytic solution.

(2)色素溶液の調製
ルテニウム錯体色素(N719、ソラロニクス社製)72mgを200mLのメスフラスコに入れた。脱水エタノール190mLを混合し、撹拌した。メスフラスコに栓をしたのち超音波洗浄器による振動により、60分間撹拌した。溶液を常温に保った後、脱水エタノールを加え、全量を200mLとすることで、色素溶液を調製した。
(2) Preparation of dye solution 72 mg of a ruthenium complex dye (N719, manufactured by Solaronics) was placed in a 200 mL volumetric flask. 190 mL of dehydrated ethanol was mixed and stirred. After stoppering the volumetric flask, the mixture was stirred for 60 minutes by vibration with an ultrasonic cleaner. After keeping the solution at room temperature, dehydrated ethanol was added to make a total volume of 200 mL to prepare a dye solution.

(3)モジュールの作成
(1)光電極の作成
透明基材(ポリエチレンナフタレートフィルム、厚み200μm)上に透明導電層(インジウム−スズ酸化物(ITO))を積層した導電性電極基材(シート抵抗15Ω/sq 透過率0%@300nm、48%@395nm)を作成した。光電極セル幅に応じた間隔でレーザー処理を行い、絶縁線を形成した。高圧水銀ランプ(定格ランプ電力400W)光源をマスク貼合面から10cmの距離に置き、電磁波を1分間照射後直ちに、ポリマー成分を含まないバインダーフリー酸化チタンペースト(バインダー量1%未満、PECC−AW1−01、ペクセル・テクノロジーズ(株)製)をベーカー式アプリケータにより塗布した。ペーストを150度の熱風循環式オーブン中で10分間加熱乾燥し、1cm角の多孔質半導体微粒子層(酸化チタン層)を形成した。その後、多孔質半導体微粒子層を形成した導電性電極基材を、調製した色素溶液(40℃)に浸し、軽く撹拌しながら、色素を吸着させた。90分後、色素吸着済み酸化チタン膜を色素吸着容器から取り出し、エタノールにて洗浄して乾燥させ、光電極を作製した。
(3) Creation of module (1) Creation of photoelectrode Conductive electrode substrate (sheet) in which a transparent conductive layer (indium-tin oxide (ITO)) is laminated on a transparent substrate (polyethylene naphthalate film, thickness 200 μm) Resistance 15Ω / sq transmittance 0% @ 300nm, 48% @ 395nm) was created. Laser treatment was performed at intervals according to the photoelectrode cell width to form insulating wires. A high-pressure mercury lamp (rated lamp power 400 W) is placed at a distance of 10 cm from the mask bonding surface, and immediately after irradiation with electromagnetic waves for 1 minute, a binder-free titanium oxide paste containing no polymer component (less than 1% binder, PECC-AW1 -01, manufactured by Pexel Technologies Co., Ltd.) was applied using a Baker type applicator. The paste was heat-dried for 10 minutes in a hot air circulation oven at 150 degrees to form a 1 cm square porous semiconductor fine particle layer (titanium oxide layer). Then, the electroconductive electrode base material in which the porous semiconductor fine particle layer was formed was immersed in the prepared dye solution (40 degreeC), and the pigment | dye was adsorbed, stirring lightly. After 90 minutes, the dye-adsorbed titanium oxide film was taken out from the dye-adsorption container, washed with ethanol and dried to produce a photoelectrode.

(2)対向電極の作成
透明基材(ポリエチレンナフタレートフィルム、厚み200μm)上に透明導電層(インジウム−スズ酸化物(ITO))を積層した導電性電極基材(シート抵抗150Ω/sq)の導電面に、スパッタ法により白金層パターン(触媒層)を形成し、触媒層形成部分が72%程度の光透過率を有する対向電極を得た。このとき、上記光電極と対向電極とを、お互いの導電面を向かい合わせて重ね合せた時、酸化チタンパターン(多孔質半導体微粒子層形成部分)と白金パターン(触媒層形成部分)とは一致する構造とした(図1参照)。
(2) Creation of counter electrode A conductive electrode substrate (sheet resistance 150 Ω / sq) obtained by laminating a transparent conductive layer (indium-tin oxide (ITO)) on a transparent substrate (polyethylene naphthalate film, thickness 200 μm). A platinum layer pattern (catalyst layer) was formed on the conductive surface by sputtering to obtain a counter electrode having a light transmittance of about 72% at the catalyst layer forming portion. At this time, when the photoelectrode and the counter electrode are overlapped with their conductive surfaces facing each other, the titanium oxide pattern (porous semiconductor fine particle layer forming portion) and the platinum pattern (catalyst layer forming portion) coincide. It was set as the structure (refer FIG. 1).

(3)有機系太陽電池の作製
対向電極の触媒層形成面を表面として、アルミ製吸着板上に真空ポンプを使って固定し、表1のシール剤組成物を自動塗布ロボットによりディスペンサーで酸化チタン層の外周部分(貼り合せ後の封止剤幅5.0mm、厚み30μmになるように)に塗布した。また銀配線部分の上部に、光電極と対向電極間を導通させるための導電性樹脂組成物を同様にディスペンサーで塗布した。その後、酸化チタン層パターン部分に上記のように調製した電解液を所定量塗布し、自動貼り合せ装置を用いて長方形の酸化チタンパターンと同型の白金パターンが向かい合う構造となるように、減圧環境中で、電極間距離が(30μm)になるよう重ね合せ、光電極側からメタルハライドランプにより光照射(メタルハライドランプ 30℃、積算光量3000mJ/cm2)を行なった。さらに裏返して、対極側からメタルハライドランプにより光照射(メタルハライドランプ 30℃、積算光量3000mJ/cm2)を行なった。
(3) Production of organic solar cell The surface of the counter electrode on which the catalyst layer is formed is fixed on an aluminum adsorption plate using a vacuum pump, and the sealant composition shown in Table 1 is titanated with a dispenser by an automatic coating robot. It was applied to the outer peripheral part of the layer (so that the sealant width after bonding was 5.0 mm and the thickness was 30 μm). Further, a conductive resin composition for conducting between the photoelectrode and the counter electrode was similarly applied to the upper part of the silver wiring portion with a dispenser. After that, apply a predetermined amount of the electrolyte prepared as described above to the titanium oxide layer pattern part, and use a self-bonding device so that the rectangular titanium oxide pattern and the same type platinum pattern face each other in a reduced pressure environment. Then, the electrodes were overlapped so that the distance between the electrodes was (30 μm), and light was irradiated from the photoelectrode side with a metal halide lamp (metal halide lamp 30 ° C., integrated light quantity 3000 mJ / cm 2 ). Furthermore, it turned over and light irradiation (metal halide lamp 30 degreeC, integrated light quantity 3000mJ / cm < 2 >) was performed from the counter electrode side with the metal halide lamp.

表1に示す配合で、実施例および比較例のシール剤組成物を調製した。そして、以下に示す方法で、シール剤組成物の接着性(電解液で濡れている基材に対する接着性)および信頼性を評価した。その結果を表1に合わせて示す。   With the formulation shown in Table 1, sealant compositions of Examples and Comparative Examples were prepared. And the adhesiveness (adhesiveness with respect to the base material wetted with electrolyte solution) and reliability of a sealing compound composition were evaluated by the method shown below. The results are also shown in Table 1.

(接着性評価)
ガラス基材またはITO/PENのITO面上に、電解液(ヨウ化リチウム0.1mol/L、t−ブチルピリジン0.5mol/L、および、1,2−ジメチル−3−プロピルイミダゾリウムヨージド0.6mol/Lとなるようにメトキシアセトニトリルに溶解させたもの)を溶解させた電解液)を滴下し、次いで、シール剤組成物を電解液で濡れているガラス基材またはITO/PENのITO面上に滴下した。高圧水銀灯(270mW/cm2)で10秒間、紫外線を照射して、シール剤組成物を硬化させた。ガラス板から電解液を除去するために、ガラス基材またはITO/PENのITO面をイソプロパノールで洗浄し、その後、ガラス基材またはITO/PENのITO面上のシール剤組成物の形状を観察し、シール剤組成物の残存面積の割合に基づいて、以下の基準で評価した。
A:滴下したシール剤組成物の90%以上が基材上に接着している
B:滴下したシール剤組成物の50%以上90%未満が基材上に接着している
C:滴下したシール剤組成物の50%未満が基材上に接着している
(Adhesion evaluation)
On the ITO surface of the glass substrate or ITO / PEN, an electrolytic solution (lithium iodide 0.1 mol / L, t-butylpyridine 0.5 mol / L, and 1,2-dimethyl-3-propylimidazolium iodide was used. Electrolytic solution in which methoxyacetonitrile is dissolved so as to be 0.6 mol / L) is dropped, and then the sealant composition is wetted with the electrolytic solution glass substrate or ITO / PEN ITO It was dripped on the surface. The sealant composition was cured by irradiating with ultraviolet rays for 10 seconds with a high-pressure mercury lamp (270 mW / cm 2 ). In order to remove the electrolyte from the glass plate, the ITO surface of the glass substrate or ITO / PEN is washed with isopropanol, and then the shape of the sealant composition on the glass substrate or the ITO surface of ITO / PEN is observed. Based on the ratio of the remaining area of the sealant composition, the following criteria were used for evaluation.
A: 90% or more of the dropped sealing agent composition adheres to the substrate B: 50% or more and less than 90% of the dropped sealing agent composition adheres to the substrate C: The dropped seal Less than 50% of the agent composition adheres to the substrate

(信頼性評価)
初期の光電変換効率を測定し、室温30日後の変換効率を測定し、以下の式を用いて、変換効率の維持率を求め、信頼性を評価した。
維持率%=(室温30日後の光電変換効率)/(初期の光電変換効率)
A:85%以上
B:85%未満
(Reliability evaluation)
The initial photoelectric conversion efficiency was measured, the conversion efficiency after 30 days at room temperature was measured, the maintenance ratio of the conversion efficiency was determined using the following formula, and the reliability was evaluated.
Maintenance rate% = (photoelectric conversion efficiency after 30 days at room temperature) / (initial photoelectric conversion efficiency)
A: 85% or more B: Less than 85%

Figure 0006561888
Figure 0006561888

表1に示すように、(A)成分を含まない比較例1では、信頼性が低い結果となった。また、比較例2では、接着性が低く、電解液が漏れてモジュールが作成できず、信頼性評価が行えなかった。これに対して、実施例では、接着性に優れ、信頼性の高い結果となった。   As shown in Table 1, in Comparative Example 1 not including the component (A), the reliability was low. Moreover, in Comparative Example 2, the adhesiveness was low, the electrolyte solution leaked, a module could not be created, and the reliability evaluation could not be performed. On the other hand, in an Example, it was excellent in adhesiveness and brought the result with high reliability.

本発明によれば、基材との接着性に優れ、信頼性の高いシール性能を有するシール剤を形成可能な有機系太陽電池用シール剤組成物を提供することができる。本発明によれば、信頼性の高いシール性能を有するシール剤を含む有機系太陽電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the sealing compound composition for organic solar cells which can form the sealing compound which is excellent in adhesiveness with a base material and has the reliable sealing performance can be provided. ADVANTAGE OF THE INVENTION According to this invention, the organic type solar cell containing the sealing compound which has a reliable sealing performance can be provided.

1:実施例で作製した有機系太陽電池セル
2:PEN
3:ITO
4:PEN
5:ITO
6:酸化チタン層(1cm角)
7:白金層(1cm角)
8:シール剤
1: Organic solar battery cell produced in Example 2: PEN
3: ITO
4: PEN
5: ITO
6: Titanium oxide layer (1 cm square)
7: Platinum layer (1cm square)
8: Sealing agent

Claims (8)

(A)液状の環状オレフィン構造を有するポリマーと、
(B)(メタ)アクリロイル基含有化合物と、
(C)光重合開始剤と、
を含む、有機系太陽電池用シール剤組成物。
(A) a polymer having a liquid cyclic olefin structure;
(B) a (meth) acryloyl group-containing compound;
(C) a photopolymerization initiator;
A sealing agent composition for organic solar cells.
(A)成分が、エチレン−プロピレン−ターポリマー共重合体である、請求項1に記載の有機系太陽電池用シール剤組成物。   The sealing agent composition for organic solar cells according to claim 1, wherein the component (A) is an ethylene-propylene-terpolymer copolymer. (A)成分100質量部に対して、(D)フィラーを0.1〜1000質量部含む、請求項1または2に記載の有機系太陽電池用シール剤組成物。   (A) The sealing compound composition for organic solar cells of Claim 1 or 2 which contains 0.1-1000 mass parts of (D) fillers with respect to 100 mass parts of components. (A)成分100質量部に対して、(B)成分を10〜200質量部含む、請求項1〜3のいずれか一項に記載の有機系太陽電池用シール剤組成物。   (A) The sealing compound composition for organic solar cells as described in any one of Claims 1-3 which contains 10-200 mass parts of (B) component with respect to 100 mass parts of components. 前記有機系太陽電池用シール剤組成物を適用する基材が、有機樹脂である、請求項1〜4のいずれか一項に記載の有機系太陽電池用シール剤組成物。   The organic solar cell sealing agent composition according to any one of claims 1 to 4, wherein a base material to which the organic solar cell sealing agent composition is applied is an organic resin. (D)成分が、表面処理されている、請求項3〜5のいずれか一項に記載の有機系太陽電池用シール剤組成物。   (D) The sealing compound composition for organic solar cells as described in any one of Claims 3-5 by which the component is surface-treated. (B)成分が、カルボキシル基または酸無水物基を有する化合物を含む、請求項1〜6のいずれか一項に記載の有機系太陽電池用シール剤組成物。   (B) The sealing compound composition for organic solar cells as described in any one of Claims 1-6 in which a component contains the compound which has a carboxyl group or an acid anhydride group. 請求項1〜7のいずれか一項に記載の有機系太陽電池用シール剤組成物の硬化物を含む、有機系太陽電池。   The organic solar cell containing the hardened | cured material of the sealing compound composition for organic solar cells as described in any one of Claims 1-7.
JP2016069205A 2016-03-30 2016-03-30 Sealant composition for organic solar cell and organic solar cell Active JP6561888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016069205A JP6561888B2 (en) 2016-03-30 2016-03-30 Sealant composition for organic solar cell and organic solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016069205A JP6561888B2 (en) 2016-03-30 2016-03-30 Sealant composition for organic solar cell and organic solar cell

Publications (2)

Publication Number Publication Date
JP2017183546A JP2017183546A (en) 2017-10-05
JP6561888B2 true JP6561888B2 (en) 2019-08-21

Family

ID=60007160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016069205A Active JP6561888B2 (en) 2016-03-30 2016-03-30 Sealant composition for organic solar cell and organic solar cell

Country Status (1)

Country Link
JP (1) JP6561888B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6573089B1 (en) * 2018-05-31 2019-09-11 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, method for manufacturing light emitting device, and light emitting device
JP2021015902A (en) * 2019-07-12 2021-02-12 積水化学工業株式会社 Perovskite Solar Cell Encapsulant and Perovskite Solar Cell
US11753553B2 (en) * 2019-11-28 2023-09-12 Zeon Corporation Carbon nanotube water dispersion, conductive film, electrode, and solar cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037947A (en) * 2000-07-25 2002-02-06 Mitsui Chemicals Inc Curable composition and application thereof
TW201117453A (en) * 2009-11-05 2011-05-16 Everlight Chem Ind Corp An electrolyte composition for dye-sensitized solar cell and the dye-sensitized solar cell utilizing said electrolyte composition
CN102947949A (en) * 2010-04-22 2013-02-27 株式会社大赛璐 Optical semiconductor protective material, precursor for same, and method for manufacturing optical semiconductor protective material
JP6061475B2 (en) * 2011-03-09 2017-01-18 大阪瓦斯株式会社 All-solid photosensitized solar cell
JP2015134937A (en) * 2015-04-30 2015-07-27 三井化学株式会社 Crosslinkable rubber composition and crosslinked rubber molded body
CN112582547A (en) * 2016-03-30 2021-03-30 日本瑞翁株式会社 Organic solar cell

Also Published As

Publication number Publication date
JP2017183546A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP4462187B2 (en) Dye-sensitized solar cell and electrolyte thereof
JP2007220606A (en) Dye-sensitized solar cell module
CN1571170A (en) Photoelectric conversion device, electronic apparatus and electronic apparatus manufacturing method, metal film formation method and layer structure
JP6561888B2 (en) Sealant composition for organic solar cell and organic solar cell
JP4777739B2 (en) Sealing material for dye-sensitized solar cell formed from cured product of photocurable composition, dye-sensitized solar cell using the sealing material, and method for producing the same
JP5160951B2 (en) Dye-sensitized solar cell
JP2012226855A (en) Dye-sensitized solar cell and sealant used therein
WO2017169986A1 (en) Photocurable sealant composition, commodity, and organic solar cell
KR20130086934A (en) Photoelectric conversion element using thermosetting sealing agent for photoelectric conversion element
JP4457266B2 (en) Curable composition and sealant using the same
JP2011165469A (en) Semiconductor electrode layer, method of manufacturing the same, and electrochemical device
JP2010180324A (en) Photo-setting composition, its use as sealing material for wet organic solar cell, and wet organic solar cell
JP7188838B2 (en) Organic-inorganic composite solar cell and method for producing organic-inorganic composite solar cell
CN108885944B (en) Sealing agent composition for organic solar cell, sealing agent, electrode, and organic solar cell
JP2011154988A (en) Semiconductor electrode layer, its manufacturing method, and electrochemical device
TWI583016B (en) Organic and inorganic hybrid solar cell manufacturing methods and organic and inorganic hybrid solar cells
US20130099176A1 (en) Electrode compostion for inkjet printing and method for manufacturing electrode for dye-sensitized solar cell using the same
JP5422960B2 (en) Oxide semiconductor electrode for photoelectric conversion, method for producing the same, and dye-sensitized solar cell including the same
JP5750761B2 (en) Photocurable composition and its use as a sealing material for wet organic solar cells, and wet organic solar cells
KR101146174B1 (en) Dye sensitized solar cell for applying a light-spread film
JP2012156070A (en) Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery
KR101293466B1 (en) Dye Sensitized Solar Cell for applying a Reflection Film of Technical Type
JP2022032849A (en) Photoelectric conversion element and photoelectric conversion element module
JP2012043724A (en) Semiconductor electrode layer and manufacturing method thereof and electrochemical device
JP2011222430A (en) Method of forming photocatalyst film in dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190708

R150 Certificate of patent or registration of utility model

Ref document number: 6561888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250