JP6561082B2 - Water treatment facility and water treatment method - Google Patents
Water treatment facility and water treatment method Download PDFInfo
- Publication number
- JP6561082B2 JP6561082B2 JP2017030310A JP2017030310A JP6561082B2 JP 6561082 B2 JP6561082 B2 JP 6561082B2 JP 2017030310 A JP2017030310 A JP 2017030310A JP 2017030310 A JP2017030310 A JP 2017030310A JP 6561082 B2 JP6561082 B2 JP 6561082B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- treated
- membrane separation
- membrane
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 197
- 238000000034 method Methods 0.000 title claims description 17
- 239000012528 membrane Substances 0.000 claims description 172
- 238000000926 separation method Methods 0.000 claims description 113
- 229920001222 biopolymer Polymers 0.000 claims description 67
- 239000000126 substance Substances 0.000 claims description 53
- 238000001471 micro-filtration Methods 0.000 claims description 27
- 239000005416 organic matter Substances 0.000 claims description 26
- 238000001914 filtration Methods 0.000 claims description 24
- 230000001629 suppression Effects 0.000 claims description 15
- 230000002401 inhibitory effect Effects 0.000 claims description 14
- 238000005259 measurement Methods 0.000 claims description 13
- 244000005700 microbiome Species 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 7
- 238000000746 purification Methods 0.000 claims description 7
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- 238000000108 ultra-filtration Methods 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 21
- 238000005374 membrane filtration Methods 0.000 description 14
- 238000005070 sampling Methods 0.000 description 9
- 239000011148 porous material Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 239000007800 oxidant agent Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 4
- 239000008394 flocculating agent Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 238000001223 reverse osmosis Methods 0.000 description 4
- 238000000967 suction filtration Methods 0.000 description 4
- 235000013162 Cocos nucifera Nutrition 0.000 description 3
- 244000060011 Cocos nucifera Species 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003480 eluent Substances 0.000 description 3
- 239000012510 hollow fiber Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000008363 phosphate buffer Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 229910021642 ultra pure water Inorganic materials 0.000 description 3
- 239000012498 ultrapure water Substances 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002572 peristaltic effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 150000008430 aromatic amides Chemical class 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000002270 exclusion chromatography Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/40—Valorisation of by-products of wastewater, sewage or sludge processing
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Biological Treatment Of Waste Water (AREA)
Description
本発明は、有機物を含む被処理水を膜分離する水処理設備および水処理方法に関する。 The present invention relates to a water treatment facility and a water treatment method for membrane separation of water to be treated containing organic matter.
従来、有機物を含む被処理水を膜分離する水処理設備として、前記被処理水を膜分離する膜分離部と、前記膜分離部の上流側に配され、膜分離前の前記被処理水中の有機物を前処理する前処理部と、を備えるものが知られている。該水処理装置の前処理部においては、膜分離部の分離膜における有機物由来の膜閉塞(以下、ファウリングともいう)を抑制するための前処理が行われている。有機物由来のファウリングは、膜分離部の分離膜の孔の内部に、被処理水中の有機物が入り込むことによって孔が目詰まりし、閉塞することにより生じると考えられている。
このような水処理設備としては、例えば、特許文献1および2に記載のものが挙げられる。
Conventionally, as a water treatment facility for membrane separation of water to be treated containing organic matter, a membrane separation unit for membrane separation of the water to be treated, and an upstream side of the membrane separation unit, the water to be treated before membrane separation What is provided with the pre-processing part which pre-processes organic substance is known. In the pretreatment unit of the water treatment apparatus, pretreatment for suppressing membrane blockage (hereinafter also referred to as fouling) derived from organic substances in the separation membrane of the membrane separation unit is performed. It is considered that fouling derived from organic matter is caused by clogging and clogging of the pores caused by the organic matter in the water to be treated entering the pores of the separation membrane of the membrane separation unit.
Examples of such water treatment facilities include those described in Patent Documents 1 and 2.
特許文献1に記載の水処理設備は、前処理部として、有機物を含む被処理水中のTOCを測定するTOC測定手段と、該TOC測定手段によって測定された被処理水中のTOCに応じて被処理水中の有機物を酸化分解する酸化剤を添加する酸化剤添加手段と、酸化剤添加後の被処理水を通水させたときに、該被処理水中の有機物を酸化分解する酸化処理層とを備え、膜分離部として、有機物が酸化分解された被処理水を膜分離する分離膜を備えている。
特許文献1に記載の水処理設備の前処理部においては、有機物を低分子化し、該有機物を分離膜の孔を透過させることにより、分離膜における有機物由来のファウリングを抑制している。
The water treatment facility described in Patent Document 1 includes a TOC measurement unit that measures TOC in water to be treated containing organic matter as a pretreatment unit, and a treatment according to the TOC in the water to be treated measured by the TOC measurement unit. An oxidant addition means for adding an oxidant that oxidizes and decomposes organic matter in water, and an oxidation treatment layer that oxidizes and decomposes organic matter in the treated water when the treated water after the addition of the oxidant is passed through. The membrane separation unit includes a separation membrane for membrane-separating water to be treated in which organic substances are oxidatively decomposed.
In the pretreatment part of the water treatment facility described in Patent Document 1, organic matter-derived fouling in the separation membrane is suppressed by reducing the molecular weight of the organic matter and allowing the organic matter to pass through the pores of the separation membrane.
特許文献2に記載の水処理設備は、膜分離部として、逆浸透膜と、該逆浸透膜の濃縮水のTOCを測定するTOC測定手段とを備え、前処理部として、膜分離部のTOC測定手段によって測定された濃縮水のTOCが所定値以上になったときに、有機物を含む被処理水に、有機物を栄養源として繁殖した微生物(バクテリア、カビなど)に由来するスライムの形成を抑制するスライム抑制剤(次亜塩素酸など)を供給するスライム抑制剤供給手段とを備えている。
特許文献2に記載の水処理設備の前処理部においては、被処理水にスライム抑制剤を供給し、被処理水中でのスライムの形成を抑制することによって、逆浸透膜における有機物由来のファウリングを抑制している。
The water treatment facility described in Patent Document 2 includes a reverse osmosis membrane as a membrane separation unit and a TOC measurement unit that measures the TOC of the concentrated water of the reverse osmosis membrane, and the TOC of the membrane separation unit as a pretreatment unit. When the TOC of the concentrated water measured by the measuring means exceeds a predetermined value, the formation of slime derived from microorganisms (bacteria, mold, etc.) that have propagated as organic nutrients in treated water containing organic substances is suppressed. And a slime inhibitor supply means for supplying a slime inhibitor (such as hypochlorous acid).
In the pretreatment part of the water treatment facility described in Patent Document 2, fouling derived from organic matter in the reverse osmosis membrane is performed by supplying a slime inhibitor to the treated water and suppressing the formation of slime in the treated water. Is suppressed.
上記各特許文献に記載の水処理設備のように、有機物を含む被処理水において、該被処理水中のTOC値を基準として、膜分離部におけるファウリングを抑制すべく、膜分離前の被処理水に酸化剤やスライム抑制剤を添加した場合、TOC値が同じであっても、ファウリングが発生することもあれば、ファウリングが発生しないこともあり、ファウリングの発生にはバラツキがあった。
そのため、TOC値を基準として、膜分離部におけるファウリングの発生を適切に抑制することは難しかった。
As in the water treatment facilities described in each of the above patent documents, in the water to be treated containing organic matter, the water to be treated before membrane separation to suppress fouling in the membrane separation unit with reference to the TOC value in the water to be treated. When an oxidizer or slime inhibitor is added to water, fouling may occur or fouling may not occur even if the TOC value is the same, and fouling may vary. It was.
For this reason, it has been difficult to appropriately suppress the occurrence of fouling in the membrane separation unit based on the TOC value.
本発明は上記実情に鑑みてなされたものであり、膜分離部におけるファウリングの発生を適切に抑制しつつ、被処理水を膜分離することができる水処理設備および水処理方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and provides a water treatment facility and a water treatment method capable of membrane separation of water to be treated while appropriately suppressing the occurrence of fouling in a membrane separation unit. Is an issue.
一般に、有機物を含む被処理水においては、該有機物の一部としてバイオポリマーが含まれている。
そして、本発明者が鋭意検討したところ、有機物を含む被処理水中のバイオポリマー濃度が所定濃度以上になったときに、膜分離におけるファウリングの発生が顕著になることが判明した。
In general, water to be treated containing an organic substance contains a biopolymer as a part of the organic substance.
And when this inventor earnestly examined, when the biopolymer density | concentration in the to-be-processed water containing an organic substance became more than predetermined concentration, it became clear that generation | occurrence | production of fouling in membrane separation became remarkable.
すなわち、本発明に係る水処理設備は、有機物を含む被処理水を膜分離する膜分離部と、前記膜分離部の上流側に配され、前記被処理水中のバイオポリマー濃度を所定閾値以下となるように調整する前処理部と、を備え、前記所定閾値は、0μg/Lより大きく17μg/L以下の範囲のいずれかの値に設定されている。 That is, the water treatment facility according to the present invention is disposed on the upstream side of the membrane separation unit for membrane separation of the water to be treated containing organic matter, and the biopolymer concentration in the water to be treated is a predetermined threshold or less. And a pre-processing unit that adjusts so that the predetermined threshold value is set to any value in the range of greater than 0 μg / L and less than or equal to 17 μg / L.
斯かる構成によれば、前処理部において、膜分離前の被処理水中のバイオポリマー濃度を所定の設定値の濃度以下(少なくとも17μg/L以下)となるように調整するので、膜分離部におけるファウリングの発生を十分に抑制することができる。
これにより、膜分離部におけるファウリングの発生を適切に抑制しつつ、被処理水を膜分離することができる。
According to such a configuration, in the pretreatment unit, the biopolymer concentration in the water to be treated before membrane separation is adjusted to be equal to or lower than a predetermined set value concentration (at least 17 μg / L or less). The occurrence of fouling can be sufficiently suppressed.
Thereby, the to-be-processed water can be membrane-separated, suppressing generation | occurrence | production of the fouling in a membrane separation part appropriately.
また、上記水処理設備においては、前記膜分離部は、精密濾過膜または限外濾過膜を備え、該精密濾過膜または該限外濾過膜を用いて前記被処理水を膜分離してもよい。 In the water treatment facility, the membrane separation unit may include a microfiltration membrane or an ultrafiltration membrane, and the water to be treated may be membrane-separated using the microfiltration membrane or the ultrafiltration membrane. .
斯かる構成によれば、膜分離部におけるファウリングの進行を抑制しつつ、安定した操作圧力で膜濾過を継続して行うことができる。 According to such a configuration, it is possible to continuously perform membrane filtration at a stable operation pressure while suppressing the progress of fouling in the membrane separation unit.
また、上記水処理設備においては、前記前処理部は、水質浄化作用を有する微生物を生育させた濾材を有し、かつ該濾材を用いて膜分離前の前記被処理水を濾過する生物接触濾過部を備えていてもよい。 In the water treatment facility, the pretreatment unit has a filter medium on which microorganisms having a water purification effect are grown, and uses the filter medium to filter the water to be treated before membrane separation. May be provided.
斯かる構成によれば、被処理水に含まれ、かつ微生物により浄化される成分であるバイオポリマーを、微生物による水質浄化作用により浄化しつつ、該被処理水中の懸濁物質を濾過することができる。
これにより、後段の膜分離部における膜分離の負荷を低減することができる。
According to such a configuration, it is possible to filter suspended substances in the water to be treated while purifying the biopolymer, which is a component contained in the water to be treated and purified by the microorganisms, by purifying the water by the microorganisms. it can.
As a result, it is possible to reduce the load of membrane separation in the downstream membrane separation section.
本発明に係る水処理方法は、有機物を含む被処理水を膜分離する膜分離工程と、前記膜分離工程前に、前記被処理水中のバイオポリマー濃度を所定閾値以下となるように調整する前処理工程と、を備え、前記所定閾値を、0μg/Lより大きく17μg/L以下の範囲のいずれかの値に設定する。 The water treatment method according to the present invention includes a membrane separation step of membrane-separating water to be treated containing organic matter, and before adjusting the biopolymer concentration in the water to be treated to be a predetermined threshold or less before the membrane separation step. The predetermined threshold value is set to any value in the range of greater than 0 μg / L and less than or equal to 17 μg / L.
斯かる構成によれば、前処理工程において、膜分離前の被処理水中のバイオポリマー濃度を所定の設定値の濃度以下(少なくとも17μg/L以下)となるように調整するので、膜分離工程におけるファウリングの発生を十分に抑制することができる。
これにより、膜分離工程におけるファウリングの発生を適切に抑制しつつ、被処理水を膜分離することができる。
According to such a configuration, in the pretreatment step, the biopolymer concentration in the water to be treated before membrane separation is adjusted to be equal to or lower than a predetermined set value concentration (at least 17 μg / L or less). The occurrence of fouling can be sufficiently suppressed.
Thereby, to-be-processed water can be membrane-separated, suppressing generation | occurrence | production of the fouling in a membrane separation process appropriately.
以上のように、本発明によれば、膜分離部におけるファウリングの発生を適切に抑制しつつ、被処理水を膜分離することができる水処理設備および水処理方法を提供することができる。 As described above, according to the present invention, it is possible to provide a water treatment facility and a water treatment method capable of membrane separation of water to be treated while appropriately suppressing the occurrence of fouling in the membrane separation unit.
以下、本発明の一実施形態に係る水処理設備について、図面を参照しながら説明する。 Hereinafter, a water treatment facility according to an embodiment of the present invention will be described with reference to the drawings.
水処理設備1は、有機物を含む被処理水Aを膜分離する膜分離部10と、膜分離部10の上流側に配され、被処理水A中のバイオポリマー濃度を所定閾値以下となるように調整する前処理部20と、を備える。
被処理水Aとしては、例えば、湖水(ダム湖水など)、沼水、河川水などが挙げられる。
The water treatment facility 1 is disposed on the upstream side of the membrane separation unit 10 for membrane separation of the water to be treated A containing organic matter, and the biopolymer concentration in the water to be treated A is equal to or lower than a predetermined threshold. And a pre-processing unit 20 that adjusts to the above.
Examples of the treated water A include lake water (dam lake water, etc.), swamp water, river water, and the like.
ここで、バイオポリマーとは、各種被処理水中に存在する有機物の一種であり、一般的には、みかけ分子量が10万Da以上の多糖類およびタンパク質とされている。
バイオポリマーは、有機炭素検出型排除クロマトグラフ法(LC−OCD)で測定することができる。ここで、LC−OCD法とは、試料中のTOC成分を分子量ごとに分画し、クロマトグラムとして示す分析法であり、クロマトグラム上では、分子量および親水性の大きい有機物ほど保持時間が短くなる傾向がある。
LC−OCD法の測定条件としては、カラムとして250mm×20mm TSK HW50Sを用い、流速を1.1mL/minにし、サンプル注入量を1mLにし、UV波長を254nmにし、OCD計への酸注入量を0.2mL/minにし、溶離液としてpH6.85 リン酸バッファを用い、酸性化溶液として1L超純水に対し、4mL O−リン酸(85%)およびペルオキソ二硫酸カリウム0.5gを添加した溶液を用いるというものを採用することができる。
LC−OCD法に用いる測定装置としては、例えば、高速液体クロマトグラフィー(HPLC)に湿式全有機炭素計測器(OCD計)を接続したLC−OCD装置(DOC−Labar製)を用いることができる。
Here, the biopolymer is a kind of organic substance existing in various kinds of water to be treated, and is generally a polysaccharide and a protein having an apparent molecular weight of 100,000 Da or more.
The biopolymer can be measured by organic carbon detection type exclusion chromatography (LC-OCD). Here, the LC-OCD method is an analysis method in which a TOC component in a sample is fractionated for each molecular weight and shown as a chromatogram. On the chromatogram, an organic substance having a higher molecular weight and hydrophilicity has a shorter retention time. Tend.
The measurement conditions of the LC-OCD method are as follows: 250 mm × 20 mm TSK HW50S is used as the column, the flow rate is 1.1 mL / min, the sample injection amount is 1 mL, the UV wavelength is 254 nm, and the acid injection amount to the OCD meter is 0.2 mL / min, pH 6.85 phosphate buffer was used as eluent, and 4 mL O-phosphoric acid (85%) and potassium peroxodisulfate 0.5 g were added to 1 L ultrapure water as an acidifying solution. The thing using a solution is employable.
As a measuring apparatus used for the LC-OCD method, for example, an LC-OCD apparatus (manufactured by DOC-Labar) in which a wet total organic carbon measuring instrument (OCD meter) is connected to high performance liquid chromatography (HPLC) can be used.
膜分離部10は、精密濾過膜(MF膜)を含む膜分離ユニットを有し、前処理部20で前処理された有機物等を含む被処理水Aの有機物を膜分離ユニットで膜分離するように構成されている。
また、膜分離部10は、膜分離ユニットでの膜分離によって、精密濾過膜を透過して有機物が低減された透過水Zと、精密濾過膜を透過せずに有機物等が濃縮された濃縮水Xとを得るように構成されている。
The membrane separation unit 10 includes a membrane separation unit including a microfiltration membrane (MF membrane), and membrane separation is performed on the organic matter in the water to be treated A including the organic matter pretreated by the pretreatment unit 20 using the membrane separation unit. It is configured.
In addition, the membrane separation unit 10 includes permeated water Z in which organic substances are reduced by permeation through the microfiltration membrane and concentrated water in which organic substances and the like are concentrated without permeating through the microfiltration membrane by membrane separation in the membrane separation unit. X is obtained.
詳しくは、膜分離部10は、図2に示すように、複数の膜分離ユニット11を有する。膜分離部10においては、複数の膜分離ユニット11が並列的に被処理水Aを膜分離するように、膜分離ユニット11がそれぞれ配されている。すなわち、膜分離部10は、被処理水Aを並列的に膜分離する複数の膜分離ユニット11を有する。
膜分離部10は、図2に示すように、被処理水Aの膜分離によって、膜分離ユニット11のそれぞれで精密濾過膜を透過して有機物が低減された透過水Zと、膜分離ユニット11のそれぞれで精密濾過膜を透過せず有機物等が濃縮された濃縮水Xとを得るように構成されている。
すなわち、膜分離部10は、膜分離によって生じた透過水Zと濃縮水Xとがそれぞれ取り出されるように構成されている。
Specifically, the membrane separation unit 10 includes a plurality of membrane separation units 11 as shown in FIG. In the membrane separation unit 10, the membrane separation units 11 are arranged so that the plurality of membrane separation units 11 membrane-separate the water to be treated A in parallel. That is, the membrane separation unit 10 includes a plurality of membrane separation units 11 that perform membrane separation of the water to be treated A in parallel.
As shown in FIG. 2, the membrane separation unit 10 includes permeated water Z in which organic substances are reduced by permeation through the microfiltration membrane in each of the membrane separation units 11 by membrane separation of the water to be treated A, and the membrane separation unit 11. In each of the above, concentrated water X that does not permeate the microfiltration membrane and is concentrated with organic matter or the like is obtained.
That is, the membrane separation unit 10 is configured such that the permeated water Z and the concentrated water X generated by the membrane separation are respectively taken out.
精密濾過膜の材質としては、例えば、ポリフッ化ビニリデン(PVDF)、酢酸セルロース、芳香族アミドなどのポリアミド、ポリビニルアルコール、ポリスルホンなどが挙げられる。 Examples of the material for the microfiltration membrane include polyamides such as polyvinylidene fluoride (PVDF), cellulose acetate, and aromatic amide, polyvinyl alcohol, and polysulfone.
精密濾過膜の形状としては、従来公知のものが挙げられ、例えば、直径数mmの中空糸状に形成されたいわゆる中空糸膜状、スパイラル状、または板状の平膜状などが挙げられる。 Examples of the shape of the microfiltration membrane include conventionally known ones, such as a so-called hollow fiber membrane shape formed in a hollow fiber shape having a diameter of several millimeters, a spiral shape, or a plate-like flat membrane shape.
膜分離ユニット11は、精密濾過膜を含み、該精密濾過膜によって有機物を含む被処理水を膜分離し、精密濾過膜を透過して有機物が低減された透過水Zと、精密濾過膜を透過せず有機物等が濃縮された濃縮水Xとを得るように構成されている。
膜分離ユニット11としては、例えば、市販されている一般的なものを用いることができる。
膜分離部10の上流側には、被処理水Aを加圧するための加圧ポンプが配されていてもよい。
また、膜分離ユニット11として浸漬型のものを用いる場合、吸引することにより濾過を行うので、膜分離部10の下流側(すなわち、分離膜の透過側)に吸引ポンプが配されていてもよい。
The membrane separation unit 11 includes a microfiltration membrane. The microfiltration membrane separates water to be treated containing organic matter, and passes through the microfiltration membrane to reduce permeated water Z and permeate the microfiltration membrane. Without being concentrated, it is configured to obtain a concentrated water X in which organic substances and the like are concentrated.
As the membrane separation unit 11, for example, a general commercially available one can be used.
A pressurizing pump for pressurizing the water to be treated A may be disposed on the upstream side of the membrane separation unit 10.
Further, when an immersion type is used as the membrane separation unit 11, filtration is performed by suction, and therefore a suction pump may be arranged on the downstream side of the membrane separation unit 10 (that is, the permeation side of the separation membrane). .
本実施形態においては、膜分離ユニット11に分離膜として精密濾過膜が含まれる例について説明したが、膜分離ユニット11に含まれる分離膜はこれに限られない。膜分離ユニット11に含まれる分離膜は、例えば、逆浸透膜(RO膜)、限外濾過膜などであってもよい。 In the present embodiment, an example in which a microfiltration membrane is included as a separation membrane in the membrane separation unit 11 has been described, but the separation membrane included in the membrane separation unit 11 is not limited to this. The separation membrane included in the membrane separation unit 11 may be, for example, a reverse osmosis membrane (RO membrane), an ultrafiltration membrane, or the like.
本実施形態の前処理部20は、膜分離前の被処理水Aのバイオポリマー濃度を所定閾値以下となるように調整するように構成されている。前記所定閾値は、少なくとも膜分離部10におけるファウリングの発生が顕著になる17μg/L以下の値に設定される。前記所定閾値は、0μg/Lより大きく17μg/L以下の範囲内で任意に設定することができる。 The pretreatment unit 20 of the present embodiment is configured to adjust the biopolymer concentration of the water to be treated A before membrane separation to be equal to or less than a predetermined threshold value. The predetermined threshold value is set to a value of 17 μg / L or less at which occurrence of fouling in the membrane separation unit 10 becomes remarkable. The predetermined threshold value can be arbitrarily set within a range of greater than 0 μg / L and less than or equal to 17 μg / L.
本実施形態の前処理部20は、膜分離前の被処理水A中のバイオポリマー濃度を測定するバイオポリマー濃度測定部21と、バイオポリマー濃度が所定閾値を越えたときに、膜分離前の被処理水A中のバイオポリマー濃度を所定閾値以下となるようにファウリング抑制物質を膜分離前の被処理水Aに添加するファウリング抑制物質添加部22とを備える。 The pretreatment unit 20 of the present embodiment includes a biopolymer concentration measurement unit 21 that measures the biopolymer concentration in the water to be treated A before membrane separation, and a biopolymer concentration before membrane separation when the biopolymer concentration exceeds a predetermined threshold. A fouling suppression substance adding unit 22 for adding a fouling suppression substance to the for-treatment water A before membrane separation so that the biopolymer concentration in the for-treatment water A is equal to or less than a predetermined threshold value.
また、前処理部20は、バイオポリマー濃度測定部21およびファウリング抑制物質添加部22の上流側に、水質浄化作用を有する微生物を生育させた濾材を有し、かつ該濾材を用いて膜分離前の被処理水Aを濾過する生物接触濾過部23を備える。 In addition, the pretreatment unit 20 has a filter medium on which a microorganism having a water purification effect is grown on the upstream side of the biopolymer concentration measurement unit 21 and the fouling suppression substance addition unit 22, and membrane separation is performed using the filter medium. The biological contact filtration part 23 which filters the previous to-be-processed water A is provided.
さらに、前処理部20は、バイオポリマー濃度測定部21およびファウリング抑制物質添加部22の下流側に、ファウリング抑制物質と被処理水Aとを混合するための混合部24を備える。 Furthermore, the pretreatment unit 20 includes a mixing unit 24 for mixing the fouling suppression substance and the water to be treated A on the downstream side of the biopolymer concentration measurement unit 21 and the fouling suppression substance addition unit 22.
バイオポリマー濃度測定部21は、膜分離前の被処理水A中のバイオポリマー濃度を測定するように構成され、生物接触濾過後の被処理水Aをサンプリングするためのサンプリング槽21aと、サンプリング槽21a内の被処理水Aをサンプリングするサンプラー21bと、サンプラー21bによってサンプリングされた被処理水A中のバイオポリマー濃度を測定するための濃度測定装置21cとを備える。 The biopolymer concentration measuring unit 21 is configured to measure the biopolymer concentration in the treated water A before membrane separation, and a sampling tank 21a for sampling the treated water A after biological contact filtration, and a sampling tank The sampler 21b which samples the to-be-processed water A in 21a, and the density | concentration measuring apparatus 21c for measuring the biopolymer density | concentration in the to-be-processed water A sampled by the sampler 21b are provided.
サンプリング槽21aは、生物接触濾過部23において濾過された被処理水Aを内部空間に収容するように構成されている。
また、サンプリング槽21aは、内部空間に収容された被処理水Aを撹拌するように構成されている。
The sampling tank 21a is configured to accommodate the treated water A filtered in the biological contact filtration unit 23 in the internal space.
Moreover, the sampling tank 21a is comprised so that the to-be-processed water A accommodated in internal space may be stirred.
サンプラー21bは、サンプリング槽21a内の被処理水Aをサンプリングできるように構成されている。サンプラー21bとしては、ポータブル自動採水器、ベイラーサンプラーなどを用いることができる。 The sampler 21b is configured to sample the water to be treated A in the sampling tank 21a. As the sampler 21b, a portable automatic water sampler, a Bayer sampler, or the like can be used.
濃度測定装置21cは、被処理水A中のバイオポリマー濃度をLC−OCD法で測定できるように構成されている。LC−OCD法の測定条件としては、カラムとして250mm×20mm TSK HW50Sを用い、流速を1.1mL/minにし、サンプル注入量を1mLにし、UV波長を254nmにし、OCD計への酸注入量を0.2mL/minにし、溶離液としてpH6.85 リン酸バッファを用い、酸性化溶液として1L超純水に対し、4mL O−リン酸(85%)およびペルオキソ二硫酸カリウム0.5gを添加した溶液を用いるというものを採用することができる。
濃度測定装置21cとしては、例えば、DOC−Labar製のLC−OCD装置を用いることができる。
The concentration measuring device 21c is configured to measure the biopolymer concentration in the water to be treated A by the LC-OCD method. The measurement conditions of the LC-OCD method are as follows: 250 mm × 20 mm TSK HW50S is used as the column, the flow rate is 1.1 mL / min, the sample injection amount is 1 mL, the UV wavelength is 254 nm, and the acid injection amount to the OCD meter is 0.2 mL / min, pH 6.85 phosphate buffer was used as eluent, and 4 mL O-phosphoric acid (85%) and potassium peroxodisulfate 0.5 g were added to 1 L ultrapure water as an acidifying solution. The thing using a solution is employable.
As the concentration measuring device 21c, for example, an LC-OCD device manufactured by DOC-Labar can be used.
ファウリング抑制物質添加部22は、濃度測定装置21cで測定された被処理水A中のバイオポリマー濃度が所定閾値を越えたときに、ファウリング抑制物質を添加するように構成されている。 The fouling suppressing substance adding unit 22 is configured to add a fouling suppressing substance when the biopolymer concentration in the water to be treated A measured by the concentration measuring device 21c exceeds a predetermined threshold.
ファウリング抑制物質としては、凝集剤、粉末活性炭、酸化剤などの各種公知のものを用いることができる。好ましくは、凝集剤、粉末活性炭を用いることができる。より好ましくは、バイオポリマーを捕捉する凝集剤を用いることができる。
凝集剤としては、無機系凝集剤および有機系凝集剤のいずれも用いることができる。
無機系凝集剤としては、鉄系、アルミ系のものを用いることができる。鉄系の凝集剤としては、ポリ鉄、塩化第二鉄などが挙げられる。アルミ系の凝集剤としては、硫酸バンド(硫酸アルミニウム)、PAC(ポリ塩化アルミニウム)などが挙げられる。
有機系凝集剤としては、高分子凝集剤などを用いることができる。高分子凝集剤としては、天然高分子系および合成高分子系のいずれも用いることができる。また、高分子凝集剤として、カチオン性、アニオン性、ノニオン性、両性のいずれのものも用いることができる。
上記のような凝集剤の中でも、アルミ系の無機系凝集剤を用いることが好ましい。
また、粉末活性炭としては、ヤシ殻、木材(木質)等の植物系のものを原料とするもの、石炭、石油(ピッチ)等の鉱物系のものを原料とするものなどを用いることができる。これらの中でも、ヤシ殻を原料とするヤシ殻炭を用いることが好ましい。
As the fouling-inhibiting substance, various known substances such as a flocculant, powdered activated carbon, and an oxidizing agent can be used. Preferably, a flocculant and powdered activated carbon can be used. More preferably, an aggregating agent that captures the biopolymer can be used.
As the flocculant, both inorganic flocculants and organic flocculants can be used.
As the inorganic flocculant, iron-based and aluminum-based ones can be used. Examples of iron-based flocculants include polyiron and ferric chloride. Examples of the aluminum-based flocculant include sulfuric acid band (aluminum sulfate) and PAC (polyaluminum chloride).
As the organic flocculant, a polymer flocculant or the like can be used. As the polymer flocculant, either a natural polymer system or a synthetic polymer system can be used. As the polymer flocculant, any of cationic, anionic, nonionic, and amphoteric ones can be used.
Among the above flocculants, it is preferable to use an aluminum-based inorganic flocculant.
Moreover, as powdered activated carbon, what uses plant-type things, such as a coconut shell and wood (woody), as a raw material, What uses mineral-type things, such as coal and petroleum (pitch), etc. can be used. Among these, it is preferable to use coconut shell charcoal made from coconut shell.
ファウリング抑制物質として凝集剤を用いた場合、該凝集剤によってバイオポリマーを膜分離ユニット11に含まれる精密濾過膜の孔よりも大きなフロックにすることにより、バイオポリマーが精密濾過膜の孔の内部に入り込んで孔を目詰まりさせることを抑制し、精密濾過膜におけるファウリングの発生を抑制することができる。
また、ファウリング抑制物質として粉末活性炭を用いた場合、該粉末活性炭が有する細孔内にバイオポリマーを吸着させて、被処理水A中のバイオポリマー濃度を低下させることにより、精密濾過膜におけるファウリングの発生を抑制することができる。
When a flocculant is used as the fouling-inhibiting substance, the biopolymer is made larger than the pores of the microfiltration membrane included in the membrane separation unit 11 by the flocculant, so that the biopolymer is inside the pores of the microfiltration membrane. It is possible to suppress the penetration and clogging of the holes, and to suppress the occurrence of fouling in the microfiltration membrane.
In addition, when powdered activated carbon is used as a fouling-inhibiting substance, the biopolymer is adsorbed in the pores of the powdered activated carbon, and the biopolymer concentration in the water to be treated A is reduced, thereby reducing the fouling in the microfiltration membrane. Generation of a ring can be suppressed.
また、ファウリング抑制物質添加部22は、図示しない制御部を備えている。該制御部は、被処理水Aへのファウリング抑制物質の添加の要否を判定するとともに、ファウリング抑制物質の添加が必要な場合には、被処理水A中のバイオポリマー濃度に応じて被処理水Aへのファウリング抑制物質の添加量を制御している。そのため、必要量以上のファウリング抑制物質を添加することなく、ファウリングの発生を抑制することができる。これにより、膜分離部10におけるファウリングの発生を適切に抑制することができる。
ファウリング抑制物質の添加量は、ファウリング抑制物質添加後の被処理水A中のバイオポリマー濃度を9μg/L未満とする量であってもよい。
ファウリング抑制物質の添加量は、被処理水Aに添加するファウリング抑制物質の種類によって異なるが、例えば、ファウリング抑制物質として、粉末活性炭を用いた場合、被処理水A中のバイオポリマー濃度が9μg/Lより大きく100μg/L以下の場合には、被処理水Aに対する粉末活性炭の添加量が5mg/L以上30mg/L以下となるように添加することが好ましい。
また、ファウリング抑制物質として凝集剤(PAC)を用いた場合、被処理水A中のバイオポリマー濃度が9μg/Lより大きく100μg/L以下の場合には、被処理水Aに対する凝集剤(PAC)の添加量が3mg/L以上となるように添加することが好ましく、5mg/L以上となるように添加することがより好ましい。
Further, the fouling suppressing substance adding unit 22 includes a control unit (not shown). The control unit determines whether or not a fouling suppressing substance needs to be added to the water to be treated A. When the fouling suppressing substance needs to be added, the control unit determines whether the fouling suppressing substance needs to be added according to the biopolymer concentration in the water to be treated A. The amount of the fouling-inhibiting substance added to the water to be treated A is controlled. Therefore, the occurrence of fouling can be suppressed without adding more than the necessary amount of fouling-inhibiting substance. Thereby, generation | occurrence | production of the fouling in the membrane separation part 10 can be suppressed appropriately.
The addition amount of the fouling suppression substance may be an amount that makes the biopolymer concentration in the treated water A after the addition of the fouling suppression substance less than 9 μg / L.
The amount of the fouling-inhibiting substance added varies depending on the type of fouling-inhibiting substance added to the treated water A. For example, when powdered activated carbon is used as the fouling-inhibiting substance, the biopolymer concentration in the treated water A Is more than 9 μg / L and not more than 100 μg / L, it is preferable to add so that the amount of powdered activated carbon added to the water to be treated A is 5 mg / L or more and 30 mg / L or less.
Further, when a flocculant (PAC) is used as a fouling-inhibiting substance, when the biopolymer concentration in the water to be treated A is greater than 9 μg / L and not more than 100 μg / L, the flocculant (PAC ) Is preferably added so as to be 3 mg / L or more, more preferably 5 mg / L or more.
生物接触濾過部23は、水質浄化作用を有する微生物を生育させた濾材を有し、かつ該濾材を用いて膜分離前の被処理水Aを濾過するように構成されている。前記濾材は、水質浄化作用を有する微生物を粉末活性炭などの表面に生育させたものであってもよい。
生物接触濾過部23は、濾材表面の微生物による浄化作用により、被処理水Aに含まれる、バイオポリマーを含む有機物のみならず、鉄、マンガン、アンモニア態窒素などを浄化するとともに、被処理水Aに含まれる懸濁物質を濾材によって除去する。
生物接触濾過部23は、上向流式および下向流式のいずれのものでも用いることができる。
The biological contact filtration unit 23 has a filter medium on which microorganisms having a water purification effect are grown, and is configured to filter the treated water A before membrane separation using the filter medium. The filter medium may be one obtained by growing a microorganism having a water purification effect on the surface of powdered activated carbon or the like.
The biological contact filtration unit 23 purifies not only organic substances containing biopolymers, but also iron, manganese, ammonia nitrogen, and the like, which are contained in the water to be treated A, by the purification action of microorganisms on the surface of the filter medium. The suspended solids contained in are removed with a filter medium.
The biological contact filtration unit 23 can be either an upward flow type or a downward flow type.
ところで、生物接触濾過部23においては、濾材表面に生育された微生物は、冬季などの水温が比較的低い時期には活性が低下して、被処理水A中に含まれる有機物を分解する有機物分解能が低下するようになる。
その結果、冬季などの水温が比較的低い時期においては、生物接触濾過部23によって被処理水A中のバイオポリマーが浄化され難くなるため、水温が比較的高い時期に比べて、生物接触濾過後の被処理水A中のバイオポリマー濃度が大きく上昇し、生物接触濾過後の被処理水A中のバイオポリマー濃度が、前記所定閾値を越えることがある。
このような場合には、生物接触濾過後の被処理水Aにファウリング抑制物質添加部22からファウリング抑制物質を添加することにより、被処理水A中のバイオポリマー濃度を所定閾値以下に調整することができる。
By the way, in the biological contact filtration unit 23, the microorganisms grown on the surface of the filter medium have a reduced activity when the water temperature is relatively low such as in winter, and the organic matter resolution that decomposes the organic matter contained in the water to be treated A. Will fall.
As a result, since the biopolymer in the water to be treated A is difficult to be purified by the biological contact filtration unit 23 at a time when the water temperature is relatively low, such as in winter, compared to the time when the water temperature is relatively high, The biopolymer concentration in the water to be treated A greatly increases, and the biopolymer concentration in the water to be treated A after biological contact filtration may exceed the predetermined threshold value.
In such a case, the biopolymer concentration in the for-treatment water A is adjusted to a predetermined threshold or less by adding the fouling-inhibiting substance from the fouling-inhibiting substance adding unit 22 to the for-treatment water A after biological contact filtration. can do.
前処理部20は、ファウリング抑制物質添加部22の下流側に、被処理水Aにファウリング抑制物質を添加した場合に、被処理水Aとファウリング抑制物質とを混合する混合部24を備える。
混合部24は、ファウリング抑制物質と被処理水Aとを混合できるように構成されている。混合部24としては、撹拌機付き凝集混和タンク、ラインミキサなどを用いることができる。
When the pretreatment unit 20 adds a fouling suppression substance to the water to be treated A on the downstream side of the fouling suppression substance addition unit 22, the mixing unit 24 that mixes the water to be treated A and the fouling suppression substance. Prepare.
The mixing unit 24 is configured to mix the fouling suppressing substance and the water to be treated A. As the mixing unit 24, an agglomeration mixing tank with a stirrer, a line mixer, or the like can be used.
次に、本発明の一実施形態に係る水処理方法について説明する。 Next, a water treatment method according to an embodiment of the present invention will be described.
本実施形態に係る水処理方法は、図3に示すように、有機物を含む被処理水を膜分離する膜分離工程(S2)と、前記膜分離工程(S2)前に、前記被処理水中のバイオポリマー濃度を所定閾値以下となるように調整する前処理工程(S1)と、を備える。 As shown in FIG. 3, the water treatment method according to the present embodiment includes a membrane separation step (S2) for membrane-separating water to be treated containing organic matter, and before the membrane separation step (S2), And a pretreatment step (S1) for adjusting the biopolymer concentration to be equal to or less than a predetermined threshold value.
本実施形態の水処理方法においては、例えば、上述の水処理設備1を用いて、前処理部20にて、前記前処理工程(S1)を行い、膜分離部10にて、前記膜分離工程(S2)を行うことができる。 In the water treatment method of the present embodiment, for example, the pretreatment step (S1) is performed in the pretreatment unit 20 using the water treatment facility 1 described above, and the membrane separation step is performed in the membrane separation unit 10. (S2) can be performed.
(前処理工程:S1)
上記のように、本工程においては、膜分離前の被処理水A中のバイオポリマー濃度を所定閾値以下となるように調整する。前記所定閾値は、0μg/Lより大きく17μg/L以下の範囲において任意に設定することができる。
本工程においては、被処理水Aを生物接触濾過することにより、あるいは生物接触濾過後の被処理水Aにファウリング抑制物質を添加することにより、膜分離前の被処理水A中のバイオポリマー濃度を前記所定閾値以下となるように調整する。
本工程においては、バイオポリマー濃度測定部21で測定された、生物接触濾過後の被処理水A中のバイオポリマー濃度が前記所定閾値以下の場合には、生物接触濾過後の被処理水Aにファウリング抑制物質を添加せずに、膜分離工程(S2)で膜分離する被処理水Aとする。
一方で、濃度測定装置21cで測定された、生物接触濾過後の被処理水A中のバイオポリマー濃度が前記所定閾値を越える場合には、生物接触濾過後の被処理水Aにファウリング抑制物質を添加し、被処理水A中のバイオポリマー濃度を所定閾値以下に調整して、膜分離工程(S2)で膜分離する被処理水Aとする。
(Pretreatment step: S1)
As described above, in this step, the biopolymer concentration in the for-treatment water A before membrane separation is adjusted to be a predetermined threshold value or less. The predetermined threshold value can be arbitrarily set in the range of greater than 0 μg / L and less than or equal to 17 μg / L.
In this step, the biopolymer in the treated water A before membrane separation is obtained by subjecting the treated water A to biological contact filtration or by adding a fouling inhibitor to the treated water A after biological contact filtration. The density is adjusted to be equal to or less than the predetermined threshold value.
In this step, when the biopolymer concentration in the treated water A after biological contact filtration measured by the biopolymer concentration measuring unit 21 is equal to or lower than the predetermined threshold, the treated water A after biological contact filtration is added to the treated water A after biological contact filtration. It is set as the to-be-processed water A which carries out a membrane separation by a membrane separation process (S2), without adding a fouling suppression substance.
On the other hand, when the biopolymer concentration in the treated water A after biological contact filtration measured by the concentration measuring device 21c exceeds the predetermined threshold, the fouling-inhibiting substance is added to the treated water A after biological contact filtration. And the biopolymer concentration in the for-treatment water A is adjusted to a predetermined threshold value or less to obtain the for-treatment water A for membrane separation in the membrane separation step (S2).
(膜分離工程:S2)
上記のように、本工程においては、前処理部20にて、バイオポリマー濃度を前記所定閾値以下に調整した被処理水Aを膜分離する。
本工程においては、膜分離によって、精密濾過膜を透過して有機物が低減された透過水と、精密濾過膜を透過せずに有機物等が濃縮された濃縮水とが得られる。
(Membrane separation step: S2)
As described above, in this step, the pretreatment unit 20 performs membrane separation on the water A to be treated whose biopolymer concentration is adjusted to the predetermined threshold value or less.
In this step, permeated water in which the organic matter is reduced by permeation through the microfiltration membrane and concentrated water in which the organic matter is concentrated without permeating through the microfiltration membrane are obtained by membrane separation.
本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態および変形が可能とされたものである。また、上述の実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態および実施例ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内およびそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. Moreover, the above-mentioned embodiment is for demonstrating this invention, and does not limit the scope of the present invention. That is, the scope of the present invention is shown not by the embodiments and the examples but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
以下では、バイオポリマー濃度の異なる被処理水を用いて、精密濾過膜の膜濾過抵抗の上昇速度を測定した試験例について説明する。 Below, the test example which measured the raise rate of the membrane filtration resistance of a microfiltration membrane using the to-be-processed water from which biopolymer density | concentration differs is demonstrated.
<試験例1>
(被処理水)
某浄水場の水を、サンプリング場所またはサンプリング時期を変えて取水した。取水は6回行った。
<Test Example 1>
(Treated water)
Water from the Sakai Water Treatment Plant was taken at different sampling locations or sampling times. Water intake was performed 6 times.
(バイオポリマー濃度の測定)
バイオポリマー濃度は、高速液体クロマトグラフィー(HPLC)に湿式全有機炭素計測器(OCD計)を接続したLC−OCD(DOC−Labor製)により測定した。
この測定は、Stefan A.Huber et al.“Characterisation of aquatic humic and non−humic matter with size−exclusion chromatography−organic carbon detection−organic nitrogen detection(LC−OCD−OND)”Water Research 45(2011)pp879−885に記載された方法に準じ、以下の条件下で行った。
・流速:1.1mL/min
・サンプル注入量:1mL
・カラム:250mm×20mm TSK HW50S
・UV波長:254nm
・OCD計:酸注入量 0.2mL/min
・溶離液:pH6.85 リン酸バッファ
・酸性化溶液:1L超純水に対し、4mL O−リン酸(85%)およびペルオキソ二硫酸カリウム0.5gを添加
(Measurement of biopolymer concentration)
The biopolymer concentration was measured by LC-OCD (manufactured by DOC-Labor) in which a wet total organic carbon meter (OCD meter) was connected to high performance liquid chromatography (HPLC).
This measurement was performed by Stefan A. et al. Huber et al. "Characterization of aquatic humic and non-humic matter with size-exclusion chromatographic-organic carbon detection-organic carbon detection 11" Performed under conditions.
・ Flow rate: 1.1 mL / min
・ Sample injection volume: 1mL
Column: 250mm x 20mm TSK HW50S
・ UV wavelength: 254 nm
・ OCD meter: Acid injection amount 0.2mL / min
Eluent: pH 6.85 Phosphate buffer Acidification solution: Add 4 mL O-phosphoric acid (85%) and 0.5 g potassium peroxodisulfate to 1 L ultrapure water
(膜濾過抵抗の上昇速度の測定)
膜濾過抵抗R(m−1)は、以下の式(1)により算出した。
R=ΔP/(μ×J)・・(1)
ここで、ΔPは膜間差圧(Pa)であり、μは透過水の粘度(Pa・s)であり、Jは単位濾過面積当たりの流量(m3/(m2×s))である。
単位濾過面積当たりの流量Jおよび膜間差圧ΔPは、浸漬型の膜モジュールを用いて吸引濾過試験により求めた。前記膜モジュールは、ポリフッ化ビニリデン(polyvinylidene fluoride(PVDF))製の中空糸MF膜(旭化成ケミカルズ製)8本を有効膜面積が0.005m2となるようにモジュール化することにより構成した。なお、使用した膜の膜孔径は0.08μmであった。
前記吸引濾過試験において、被処理水の濾過速度は、ペリスタリックポンプ(L/Sシリーズ、ヤマト科学株式会社製)を用いて、初期透過フラックスが1.5m/d(62.5L/m2/h(LMH))となるように調整した。また、前記吸引濾過試験においては、前記膜モジュールの透過水を用いて、30分ごとに1分間、前記膜モジュールを逆流洗浄(逆洗)した。該逆洗は、ペリスタリックポンプ(MP型、EYELA製)を用いて、フラックスが2.25m/d(約94LMH)となる条件で行った。
単位濾過面積当たりの流量Jは、前記膜モジュールの単位時間当たりの膜透過水量(m3/s)を前記膜モジュールの有効膜面積で除することにより求めた。前記膜モジュールの単位時間当たりの透過水量(m3/s)は、前記膜モジュールの膜透過水を、電子天秤(FGシリーズ デジタルはかり、株式会社A&D製)上に設置したタンク内に流入させ、タンク内の膜透過水の質量変化を、データロガー(計量データロガー AD−1688、株式会社A&D製)によって1時間ごとに測定し、測定された1時間ごとの質量変化を算術平均し、さらに1秒ごとの質量変化に換算した値(kg)を透過水の密度(kg/m3)で除して求めた。
膜間差圧は、被処理水が透過する膜面側の圧力と、被処理水が透過した膜面側の圧力との差を圧力計(プレッシャセンサ、SMC製)でモニターし、データロガー(株式会社T&D製)によって1時間ごとに測定し、測定された各圧力差を算術平均することにより求めた。
また、透過水の粘度μは、透過水の膜透水時の温度に応じて、以下の二次近似式(2)を用いて求めた。透過水の膜透水時の温度は、前記の吸引濾過試験においてタンク内の水の温度を、データロガー(株式会社T&D製)によって1時間ごとに測定し、測定された各温度を算術平均することにより求めた。透過水の膜透水時の温度は、4.35〜19℃の間のいずれかの温度であった。
μ=0.006t2−0.0493t+1.7471(R2=0.9996)・・(2)
ここで、tは、透過水の膜透水時の温度である。
(Measurement of rate of increase in membrane filtration resistance)
Membrane filtration resistance R (m −1 ) was calculated by the following formula (1).
R = ΔP / (μ × J) (1)
Here, ΔP is the transmembrane pressure difference (Pa), μ is the permeated water viscosity (Pa · s), and J is the flow rate per unit filtration area (m 3 / (m 2 × s)). .
The flow rate J per unit filtration area and the transmembrane pressure difference ΔP were determined by a suction filtration test using an immersion type membrane module. The membrane module was configured by modularizing eight hollow fiber MF membranes (manufactured by Asahi Kasei Chemicals) made of polyvinylidene fluoride (PVDF) so that the effective membrane area was 0.005 m 2 . The membrane pore diameter of the membrane used was 0.08 μm.
In the suction filtration test, the initial permeation flux is 1.5 m / d (62.5 L / m 2 //) using a peristaltic pump (L / S series, manufactured by Yamato Scientific Co., Ltd.). h (LMH)). Further, in the suction filtration test, the membrane module was backwashed (backwashed) every 30 minutes for 1 minute using the permeated water of the membrane module. The backwashing was performed using a peristaltic pump (MP type, manufactured by EYELA) under conditions where the flux was 2.25 m / d (about 94 LMH).
The flow rate J per unit filtration area was determined by dividing the amount of permeated water per unit time (m 3 / s) of the membrane module by the effective membrane area of the membrane module. The amount of permeated water per unit time of the membrane module (m 3 / s) is determined by allowing the membrane permeated water of the membrane module to flow into a tank installed on an electronic balance (FG series digital scale, manufactured by A & D Co., Ltd.) The mass change of the permeated water in the tank is measured every hour by a data logger (weighing data logger AD-1688, manufactured by A & D Co., Ltd.), and the measured mass change every hour is arithmetically averaged. The value (kg) converted to mass change per second was divided by the density of permeated water (kg / m 3 ).
The transmembrane pressure difference is monitored by a pressure gauge (pressure sensor, manufactured by SMC) and the difference between the pressure on the membrane surface side through which the water to be treated permeates and the pressure on the membrane surface side through which the water to be treated permeates. Measured by H & D Co., Ltd. every hour and obtained by arithmetically averaging the measured pressure differences.
In addition, the viscosity μ of the permeated water was determined using the following second order approximate expression (2) according to the temperature at the time of permeation of the permeated water. The temperature at the time of permeation of the permeated water is measured by measuring the temperature of the water in the tank every hour with the data logger (manufactured by T & D Co., Ltd.) in the suction filtration test, and averaging the measured temperatures. Determined by The temperature at the time of permeation of the permeated water through the membrane was any temperature between 4.35 and 19 ° C.
μ = 0.006t 2 −0.0493t + 1.7471 (R 2 = 0.9996) (2)
Here, t is a temperature at the time of permeation of the permeated water through the membrane.
上記のようなバイオポリマー濃度の異なる被処理水を用いて、精密濾過膜の膜濾過抵抗の上昇速度を測定した結果を図4に示した。 The results of measuring the rate of increase in membrane filtration resistance of the microfiltration membrane using the water to be treated having different biopolymer concentrations as described above are shown in FIG.
図4から、被処理水中のバイオポリマー濃度が17μg/Lのときに膜濾過抵抗の上昇速度の値は比較的小さい値になることが分かった。
また、被処理水中のバイオポリマー濃度が12μg/Lのときに、膜濾過抵抗の上昇速度の値は、被処理水中のバイオポリマー濃度が17μg/Lのときよりも小さい値となることが分かった。
さらに、被処理水中のバイオポリマー濃度が9μg/Lのときに、膜濾過抵抗の上昇速度の値は、被処理水中のバイオポリマー濃度が12μg/Lのときよりも小さい値となることが分かった。
この結果から、バイオポリマー濃度を17μg/L以下に調整した被処理水を精密濾過膜にて膜濾過することにより、膜濾過抵抗の上昇速度の値が大きくなることを抑制でき、バイオポリマー濃度を12μg/L以下に調整した被処理水を精密濾過膜にて膜濾過することにより、膜濾過抵抗の上昇速度の値が大きくなることをより好適に抑制でき、バイオポリマー濃度を9μg/L以下に調整した被処理水を精密濾過膜にて膜濾過することにより、膜濾過抵抗の上昇速度の値が大きくなることをさらに好適に抑制することができることが分かった。
From FIG. 4, it was found that when the biopolymer concentration in the water to be treated was 17 μg / L, the value of the rate of increase in membrane filtration resistance was a relatively small value.
Further, it was found that when the biopolymer concentration in the water to be treated was 12 μg / L, the value of the increase rate of the membrane filtration resistance was smaller than that when the biopolymer concentration in the water to be treated was 17 μg / L. .
Furthermore, it was found that when the biopolymer concentration in the treated water was 9 μg / L, the value of the membrane filtration resistance increase rate was smaller than when the biopolymer concentration in the treated water was 12 μg / L. .
From this result, it is possible to suppress the increase in the rate of increase in membrane filtration resistance by subjecting water to be treated with a biopolymer concentration adjusted to 17 μg / L or less to a membrane with a microfiltration membrane. By subjecting the water to be treated adjusted to 12 μg / L or less to membrane filtration with a microfiltration membrane, it is possible to more suitably suppress an increase in the rate of increase in membrane filtration resistance, and to reduce the biopolymer concentration to 9 μg / L or less. It turned out that it can suppress more suitably that the value of the raise speed | rate of membrane filtration resistance becomes large by carrying out membrane filtration of the adjusted to-be-processed water with a microfiltration membrane.
1:水処理設備、10:膜分離部、20:前処理部、
11:膜分離ユニット、21:バイオポリマー濃度測定部、22:ファウリング抑制物質添加部、23:生物接触濾過部、24:混合部、
21a:サンプリング槽、21b:サンプラー、21c:濃度測定装置、
S1:前処理工程、S2:膜分離工程
1: water treatment equipment, 10: membrane separation unit, 20: pretreatment unit,
11: Membrane separation unit, 21: Biopolymer concentration measurement unit, 22: Fouling suppression substance addition unit, 23: Biological contact filtration unit, 24: Mixing unit,
21a: Sampling tank, 21b: Sampler, 21c: Concentration measuring device,
S1: Pretreatment process, S2: Membrane separation process
Claims (3)
前記膜分離部の上流側に配され、前記被処理水中のバイオポリマー濃度を所定閾値以下となるように調整する前処理部と、を備え、
前記前処理部は、膜分離前の前記被処理水中のバイオポリマー濃度を測定するバイオポリマー濃度測定部と、
前記バイオポリマー濃度測定部によって測定された前記バイオポリマー濃度が前記所定閾値を超えた場合に、ファウリングを抑制するようにファウリング抑制物質を膜分離前の前記被処理水に添加するファウリング抑制物質添加部と、
前記バイオポリマー濃度測定部および前記ファウリング抑制物質添加部よりも上流側に、水質浄化作用を有する微生物を生育させた濾材を有し、かつ該濾材を用いて膜分離前の前記被処理水を濾過する生物接触濾過部とを備え、
前記所定閾値は、9μg/L以上17μg/L以下の範囲のいずれかの値に設定されている、
水処理設備。 A membrane separation unit for membrane-separating water to be treated containing organic matter;
A pretreatment unit that is arranged on the upstream side of the membrane separation unit and adjusts the biopolymer concentration in the water to be treated to be a predetermined threshold value or less,
The pretreatment unit is a biopolymer concentration measurement unit that measures a biopolymer concentration in the water to be treated before membrane separation,
When the biopolymer concentration measured by the biopolymer concentration measuring unit exceeds the predetermined threshold value, fouling suppression is performed by adding a fouling suppression substance to the water to be treated before membrane separation so as to suppress fouling. A substance addition part;
There is a filter medium on which a microorganism having a water purification effect is grown upstream of the biopolymer concentration measuring section and the fouling suppression substance adding section, and the water to be treated before membrane separation using the filter medium A biological contact filtration unit for filtration,
The predetermined threshold is set to any value within a range of 9 μg / L to 17 μg / L.
Water treatment facility.
請求項1に記載の水処理設備。 The membrane separation unit includes a microfiltration or ultrafiltration membrane, and membranes the treated water using the microfiltration or the ultrafiltration membrane.
The water treatment facility according to claim 1.
前記膜分離工程前に、前記被処理水中のバイオポリマー濃度を所定閾値以下となるように調整する前処理工程と、を備え、
前記前処理工程は、水質浄化作用を有する微生物を生育させた濾材を用いて前記被処理水を濾過し、濾過された前記被処理水中のバイオポリマー濃度を測定し、測定されたバイオポリマー濃度が所定閾値を超える場合に、前記被処理水にファウリング抑制物質を添加して、前記膜分離工程で膜分離する被処理水とし、測定されたバイオポリマー濃度が所定閾値以下の場合に、前記被処理水にファウリング抑制物質を添加せずに、前記膜分離工程で膜分離する被処理水とし、
前記所定閾値を、9μg/L以上17μg/L以下の範囲のいずれかの値に設定する、
水処理方法。 A membrane separation step for membrane separation of water to be treated containing organic matter;
Before the membrane separation step, a pretreatment step of adjusting the biopolymer concentration in the water to be treated to be a predetermined threshold value or less, and
In the pretreatment step, the water to be treated is filtered using a filter medium on which a microorganism having a water purification effect is grown, and the concentration of the biopolymer in the filtered water to be treated is measured. When a predetermined threshold value is exceeded, a fouling-inhibiting substance is added to the water to be treated to obtain water to be treated for membrane separation in the membrane separation step, and when the measured biopolymer concentration is equal to or lower than the predetermined threshold value, Without adding a fouling-inhibiting substance to the treated water, it is treated water that undergoes membrane separation in the membrane separation step,
The predetermined threshold is set to any value within a range of 9 μg / L to 17 μg / L ;
Water treatment method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017030310A JP6561082B2 (en) | 2017-02-21 | 2017-02-21 | Water treatment facility and water treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017030310A JP6561082B2 (en) | 2017-02-21 | 2017-02-21 | Water treatment facility and water treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018134586A JP2018134586A (en) | 2018-08-30 |
JP6561082B2 true JP6561082B2 (en) | 2019-08-14 |
Family
ID=63366337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017030310A Active JP6561082B2 (en) | 2017-02-21 | 2017-02-21 | Water treatment facility and water treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6561082B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6630689B2 (en) * | 2017-02-21 | 2020-01-15 | 株式会社神鋼環境ソリューション | Water treatment equipment and water treatment method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3948337B2 (en) * | 2001-10-18 | 2007-07-25 | 栗田工業株式会社 | Ultrapure water production apparatus and ultrapure water production method |
JP2004025018A (en) * | 2002-06-25 | 2004-01-29 | Hitachi Zosen Corp | Sea water desalting apparatus by reverse osmosis |
JP2012170848A (en) * | 2011-02-18 | 2012-09-10 | Toshiba Corp | Water treatment system and method for injecting flocculant therefor |
JP6128964B2 (en) * | 2013-05-31 | 2017-05-17 | オルガノ株式会社 | Apparatus and method for treating water containing organic matter |
JP2016144778A (en) * | 2015-02-06 | 2016-08-12 | 栗田工業株式会社 | Water treatment flocculant and water treatment method |
JP6630689B2 (en) * | 2017-02-21 | 2020-01-15 | 株式会社神鋼環境ソリューション | Water treatment equipment and water treatment method |
-
2017
- 2017-02-21 JP JP2017030310A patent/JP6561082B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018134586A (en) | 2018-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bódalo et al. | Nanofiltration membranes to reduce phenol concentration in wastewater | |
Leiknes et al. | The development of a biofilm membrane bioreactor | |
Khan et al. | Combined effects of EPS and HRT enhanced biofouling on a submerged and hybrid PAC-MF membrane bioreactor | |
Lee et al. | Influence of sodium hypochlorite used for chemical enhanced backwashing on biophysical treatment in MBR | |
Kim et al. | Removal of geosmin and 2-methylisoboneol (2-MIB) by membrane system combined with powdered activated carbon (PAC) for drinking water treatment | |
US20140083934A1 (en) | Biological two-stage contaminated water treatment system | |
KR102009068B1 (en) | Method of operating reverse osmosis membrane device, and reverse osmosis membrane device | |
Brehant et al. | Assessment of ultrafiltration as a pretreatment of reverse osmosis membranes for surface seawater desalination | |
Abbasi-Garravand et al. | Role of two different pretreatment methods in osmotic power (salinity gradient energy) generation | |
JP2013137279A (en) | Water quality evaluation method, control method for water treatment system, and water treatment system | |
Ren et al. | Effect of operating conditions on the performance of multichannel ceramic ultrafiltration membranes for cattle wastewater treatment | |
Su et al. | Novel tri-bore PVDF hollow fiber membranes for the control of dissolved oxygen in aquaculture water | |
JP6554781B2 (en) | Operation method of reverse osmosis membrane device and reverse osmosis membrane device | |
Zhang | Impact of soluble microbial products and extracellular polymeric substances on filtration resistance in a membrane bioreactor | |
JP6561082B2 (en) | Water treatment facility and water treatment method | |
Gidstedt et al. | Chemically enhanced primary treatment, microsieving, direct membrane filtration and GAC filtration of municipal wastewater: a pilot-scale study | |
TWI760553B (en) | Water treatment method and water treatment device | |
JP6630689B2 (en) | Water treatment equipment and water treatment method | |
JP2019217504A (en) | Water treatment installation and water treatment method | |
Iversen et al. | Side effects of flux enhancing chemicals in membrane bioreactors (MBRs): study on their biological toxicity and their residual fouling propensity | |
Shirasaki et al. | Effects of reversible and irreversible membrane fouling on virus removal by a coagulation–microfiltration system | |
JP7113454B2 (en) | Water treatment method and equipment | |
Hatt et al. | Powdered activated carbon-microfiltration for waste-water reuse | |
Prisciandaro et al. | On the removal of natural organic matter from superficial water by using UF and MF membranes | |
Cui et al. | Influence of selective permeation of backwashing solution on the cleaning effectiveness in hollow fiber system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180629 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20180718 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180926 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20181106 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20181130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190722 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6561082 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |