JP6560815B2 - 結合による高データレート拡張 - Google Patents

結合による高データレート拡張 Download PDF

Info

Publication number
JP6560815B2
JP6560815B2 JP2018500604A JP2018500604A JP6560815B2 JP 6560815 B2 JP6560815 B2 JP 6560815B2 JP 2018500604 A JP2018500604 A JP 2018500604A JP 2018500604 A JP2018500604 A JP 2018500604A JP 6560815 B2 JP6560815 B2 JP 6560815B2
Authority
JP
Japan
Prior art keywords
packet
frame
pon
xgem
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018500604A
Other languages
English (en)
Other versions
JP2018520600A (ja
Inventor
ルオ,ユアンチウ
エッフェンベルガー,フランク
リメイン,デュアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of JP2018520600A publication Critical patent/JP2018520600A/ja
Application granted granted Critical
Publication of JP6560815B2 publication Critical patent/JP6560815B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0228Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths
    • H04J14/023Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Small-Scale Networks (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

[関連出願の参照]
本願は、米国仮出願第62/191148号、2015年7月10日出願、名称「結合による高データレート拡張(High Data Rate Extension With Bonding)」の優先権及び利益を請求する米国非仮特許出願番号第15/205930号、2016年7月8日出願、名称「結合による高データレート拡張(High data rate extension with bonding)」の利益を請求する。これらの出願は、参照によりそれらの全体がここに組み込まれる。
[技術分野]
本発明は、通信分野に関し、特に、受動光ネットワーク(passive optical network、PON)における結合による高データレート拡張に関する。
受動光ネットワーク(passive optical network、PON)は、顧客に通信を配信する電気通信ネットワークの最終部分であるラストマイルによりネットワークアクセスを提供する1つのシステムである。PONは、中央局(central office、CO)にある光回線終端装置(optical line terminal、OLT)、光分配ネットワーク(optical distribution network、ODN)、及びユーザ宅にある光端末回線装置(optical network units、ONU)により構成されるポイントツーマルチポイント(point-to-multipoint、P2MP)ネットワークである。PONは、例えば複数の顧客が居る道路の端にある、OLTとONUとの間に配置されるリモートノード(remote node、RN)も含んで良い。
近年、ギガビット可能PON(gigabit-capable PON、GPON)及びイーサネットPON(Ethernet PON、EPON)のような時分割多重(time-division multiplexing、TDM)PONが、マルチメディア用途のために世界中に展開されている。TDM PONでは、全体の能力は、時分割多元接続(time-division multiple access、TDMA)方式を用いて複数ユーザの間で共有され、したがって、各ユーザの平均帯域幅は、100メガビット毎秒(Mbps)より下に制限されることがある。
波長分割多重(Wavelength-division multiplexing、WDM)PONは、将来のブロードバンドアクセスサービスのために非常に有望なソリューションとして検討されている。WDM PONは、最大10ギガビット毎秒(Gbps)の専用帯域幅により高速リンクを提供できる。波長分割多重(wavelength-division multiple access、WDMA)を利用することにより、WDM PON内の各ONUは、CO又はOLTと通信するために専用波長チャネルによりサービスされる。次世代PON(Next-generation PON、NG−PON)及びNG−PON2は、10Gb/sより高いデータレートを提供できるポイントツーポイントWDM PON(point-to-point WDM PON、P2P−WDM PON)を含むことがある。
NG−PON及びNG−PON2は、時間及び波長分割多重(time-and wavelength-division multiplexing、TWDM)PONも含むことがあり、TWDM PONも10Gb/sより高いデータレートを提供できる。TWDM PONは、増大するユーザ数が単一のOLTによりユーザ当たり十分な帯域幅でサービスされ得るように、より高い容量をサポートするためにTDMA及びWDMAを結合し得る。TWDM PONでは、WDM PONはTDM PONの上に重ね合わされて良い。言い換えると、単一の供給ファイバを共有するために異なる波長が一緒に多重化されて良く、各波長はTDMAを用いて複数のユーザにより共有されて良い。
複数チャネル受動光ネットワーク(passive optical network、PON)レイヤを生成するよう構成されるネットワーク要素は、
命令を含む非一時的メモリ記憶装置と、
前記メモリと通信する1又は複数のプロセッサであって、前記1又は複数のプロセッサは、前記命令を実行して、
データを複数のパケットフラグメントにフラグメント化し、
前記複数のパケットフラグメントを1又は複数のフレームにカプセル化し、
送信スケジュールにより、前記1又は複数のフレームの送信を複数のチャネルにスケジューリングし、前記フレームを送信するための順序は、チャネル利用可能に部分的に基づく、
1又は複数のプロセッサと、
前記1又は複数のプロセッサと通信し及び前記送信スケジュールに従い前記1又は複数のフレームを前記複数のチャネルで送信するよう構成される送信機と、
を含み得る。
複数チャネル受動光ネットワーク(passive optical network、PON)におけるフラグメント化パケット送信の方法であって、
ネットワーク要素のギガビットPONカプセル化方法(Gigabit-PON encapsulation method、GEM)/次世代PONカプセル化方法(next generation-PON encapsulation method、XGEM)エンジンにより、データを複数のパケットフラグメントにフラグメント化するステップと、
前記GEM/XGEMエンジンにより、前記複数のパケットフラグメントをフレームにカプセル化するステップと、
前記ネットワーク要素の結合ブロックにより、前記フレームの送信を複数のチャネルにスケジューリングするステップであって、前記フレームを送信する順序は、チャネル利用可能性に部分的に基づく、ステップと、
前記ネットワーク要素の送信機により、受信機へ、前記スケジューリングに従い、前記複数のチャネル上で前記フレームを送信するステップと、
を含む方法が提供される。
複数チャネル送信の受信端において、複数チャネルPONにおけるフラグメント化パケット受信の方法であって、
受信機において、複数のチャネルに渡り複数のカプセル化パケットフラグメントを受信するステップであって、前記複数のパケットフラグメントのうちの各パケットフラグメントはヘッダを含む、ステップと、
前記複数のパケットフラグメントのそれぞれのヘッダの到着時間に従い、前記複数のパケットフラグメントを組み立てるステップと、
プロセッサにより、前記それぞれのヘッダの前記到着時間に基づき、前記複数のパケットフラグメントをシーケンス内にバッファリングするステップと、
を含み得る。
本開示のより完全な理解のために、添付の図面及び詳細な説明と関連して以下の簡単な説明を参照する。類似の参照符号は類似の部分を表す。
時間及び波長分割多重PON(time-and wavelength-division multiplexed PON、TWDM−PON)システムアーキテクチャの一実施形態の概略図である。 例示的なPONレイヤ表現アーキテクチャを示す。 第2の例示的なPONレイヤ表現アーキテクチャを示す。 例示的なPONチャネル結合の方法のフローチャートを示す。 複数チャネル通信において利用可能チャネルの表現を示す。 データパケットフラグメントを複数チャネルを介して通信する第1の実施形態の時間図を示す。 データパケットフラグメントを複数チャネルを介して通信する第2の実施形態の時間図を示す。 データパケットフラグメントを複数チャネルを介して通信する第3の実施形態の時間図を示す。 ネットワーク要素の概略図である。
始めに理解されるべきことに、1又は複数の実施形態の説明的実装が以下に提供されるが、開示のシステム及び/又は方法は、現在知られているか既存かに関わらず任意の数の技術を用いて実装できる。本開示は、いかようにも、本願明細書に図示し記載する例示的設計及び実装を含む説明的実施形態、図面及び以下に記載する技術に限定されず、添付の請求の範囲の範囲内で該請求の範囲の等価範囲全てに従って変更できる。
図1は、4個のOLTポート又はOLTチャネル終端部(channel termination、CT)111を含むOLT110を備える時間及び波長分割多重PON(time-and wavelength-division multiplexed PON、TWDM−PON)システムアーキテクチャ100の一実施形態の概略図である。種々の実施形態では、OLT110は、オペアンプ112と、アップストリーム及びダウンストリーム通信を分けるサーキュレータ113と、を更に含み得る。TWDM−PONシステム100は、スプリッタ130を介してOLT110と通信する複数のONUも含み得る。各ONU120は、OLT110と共にデータを送信し及び/又は受信できる。ここで、各ONU120は、単一波長を用いて又は複数波長を用いて通信するよう構成されて良い。TWDM−PONは、40Gb/sの最小容量を有する次世代PONのためのソリューションとして選択されている。標準的なTWDM−PONシステムでは、アップストリーム及びダウンストリーム方向の両方で最大8個の波長があり、ONUは自身の波長を任意の運用チャネルに調整できる。しかしながら、システム内に8個より多くの又は少ない波長が存在して良く、ここに開示の実施形態は特定の波長数に限定されない。
一実施形態では、OLT110は、ONU120及び別のネットワーク(示さない)と通信するよう構成される任意の装置を含む。具体的にOLT110は、他のネットワークとONU120との間の仲介として作用する。例えば、OLT110は、ネットワークから受信したデータをONU120へ転送し、ONU120から受信したデータをシステムネットワークインタフェース(system network interface、SNI)を介して他のネットワークへ転送する。OLT110の特定の構成はPON100の種類に依存して変化し得るが、OLT110は、送信機及び受信機と、複数の波長に渡り信号を多重化する波長分割多重マルチプレクサ(wavelength division multiplexing multiplexer、WDM MUX)114と、複数の波長の信号を逆多重化するデマルチプレクサ115と、光信号上のパケット符号化/復号化を制御する媒体アクセス制御部(media access controller、MAC)116と、を含む。他のネットワークが、TWDM−PONシステム100内で使用されるPONプロトコルと異なる、イーサネット又は同期光ネットワーキング/同期デジタルハイアラーキー(Synchronous Optical Networking/Synchronous Digital Hierarchy、SONET/SDH)のようなネットワークプロトコルを使用するとき、OLT110は、該ネットワークプロトコルをPONプロトコルに変換する変換器を更に含む。OLT110は、また、PONプロトコルをネットワークプロトコルに変換する。OLT110は、標準的に、中央局のような中央位置に置かれるが、代替の実施形態では他の位置に置かれて良い。
一実施形態では、ONU120は、OLT110及び顧客若しくはユーザとユーザネットワークインタフェース(user network interface、UNI)を介して通信するよう構成される任意の装置を含む。具体的にONU120は、OLT110と顧客との間の仲介として作用する。例えば、ONU120は、OLT110から受信したデータを顧客へ転送し、顧客から受信したデータをOLT110へ転送する。ONU120の特定の構成は、TWDM−PONシステム100の種類に依存して変化し得るが、一実施形態では、ONU120は、OLT110へ光信号を送信するよう構成される光送信機と、OLT110から光信号を受信するよう構成される光受信機と、パケット符号化/復号化を制御するMAC121と、を含む。幾つかの実施形態では、光信号はバーストモードで送信される。共通波長を共有する複数の光信号が送信される実施形態では、光信号は共通送信チャネルを利用する。さらに、ONU120は、光信号を、イーサネット又は非同期転送モード(asynchronous transfer mode、ATM)プロトコルにおける信号のような顧客のための電気信号に変換する変換器(示されない)と、電気信号を顧客装置へ送信し及び/又はそれから受信する第2送信機及び/又は受信機と、を更に含む。幾つかの実施形態では、ONU120及び光加入者線終端装置(optical network terminal、ONT)は同様であり、したがって、これらの用語はここでは同義的に使用される。ONU120は、標準的に、顧客施設のような分散位置に置かれるが、代替の実施形態では他の位置に置かれて良い。
図2は、一実施形態によるPONレイヤ200を示す。PONレイヤ200は、データフラグメント化、カプセル化、及び同期のために、G−PONカプセル化方法(G-PON encapsulation method、GEN)及びXG−PON(XG-PON encapsulation method、XGEM)を利用して良い。PONレイヤ200は、PONトランスミッションコンバージェンス(transmission convergence、TC)レイヤ210及びPON物理媒体依存(physical media dependent、PMD)レイヤ220を含んで良い。さらに、PON TCレイヤ210は、TC物理アダプテーションサブレイヤ211、TCフレーミングサブレイヤ212、及びTCサービスアダプテーションサブレイヤ213を含んで良い。図2に示されるように、TCサービスアダプテーションサブレイヤ213は、PON TCレイヤ210内に、ユーザデータアダプタ214及びGEM/XGEMエンジン215を含んで良い。GEM/XGEMエンジン215は、TCフレーミングサブレイヤ212と、及び同様にTC物理アダプテーションサブレイヤ211と通信する。具体的に、PONレイヤ200は、単一の波長チャネル容量により、単一のフレームサブレイヤ及び単一のPMDレイヤを用いて通信するよう構成される。PON TCレイヤ210及びTC物理アダプテーションサブレイヤ211は、参照することによりここに組み込まれるITU−T勧告G.987.3及びG.989.3に記載されたように動作する。
標準的な送信方法では、送信側(ダウンストリーム送信ではOLT、又はアップストリーム送信ではONU)において、ユーザデータのようなデータは、先ず断片にフラグメント化されGEM/XGEMフレームにカプセル化される。各GEM/XGEMフレームは、固定サイズヘッダ及び可変サイズペイロードを含んで良い。送信側のPONレイヤは、1又は複数のGEM/XGEMフレームをフレーミングサブレイヤフレーム/バーストペイロードに更に追加し、データを受信機へ送信する。さらに、受信側(ダウンストリーム送信ではONU、又はアップストリーム送信ではOLT)において、データは、GEM/XGEMフレームからGEM/XGEMフレームヘッダ内のGEM/XGEMポートIDに基づき再組立される。標準的なシステムでは、G−PON及びXG−PONは、TWDM−PONと同様の情報フローを有する。
上述のように、標準的なOLT又はONUは、PON TCレイヤの中に、1つのTC PHYアダプテーションサブレイヤ、1つのTCフレーミングサブレイヤ、及び1つのサービスアダプテーションサブレイヤを含む。しかしながら、単一波長チャネル容量を超えて、より高いデータレート容量を有することが望ましい場合がある。より高いデータレート容量を得る1つの可能な方法は、2以上の波長チャネルを同時に終端する能力でOLT又はONUを拡張し、それにより単一物理チャネル容量より高いデータレートを達成することによる。
種々の実施形態によると、PONシステムは、PON TCレイヤの複数データリソース集約のために構成される。種々の実施形態では、PONレイヤの送信方法は、単一波長を従来のONUにではなく、複数の波長チャネルからのデータを単一OLT又はONUに集約することを含む。例として、種々の実施形態は、複数の波長を有するTWDM−PONを参照して議論されるが、本発明はこのシステムに限定されない。
種々の実施形態では及び図3を参照して、PONレイヤ表現300は、上述のPONレイヤ表現200と同様であるが、結合ブロック350、並びに複数のTC物理アダプテーションサブレイヤ及びTCフレーミングサブレイヤを更に含む。具体的に、PONレイヤ表現300は、第1PON PMDレイヤ320A、第2PON PMDレイヤ320B、及びPON TCレイヤ310を含む。さらに、PON TCレイヤ310は、第1TC物理アダプテーションサブレイヤ311A、第2TC物理アダプテーションサブレイヤ311B、第1TCフレーミングサブレイヤ312A、第2TCフレーミングサブレイヤ312B、TCサービスアダプテーションサブレイヤ313、及び結合ブロック350を含み得る。第1TC物理アダプテーションサブレイヤ311A及び第1TCフレーミングサブレイヤ312Aは第1波長チャネルに関連付けられること、及び第2TC物理アダプテーションサブレイヤ311B及び第2TCフレーミングサブレイヤ312Bは第2波長チャネルに関連付けられること、が理解される。図3は2つのPON PMD320レイヤ、2つのTC物理アダプテーションサブレイヤ311、及び2つのTCフレーミングサブレイヤ312を示すが、本開示は、これに限定されず、複数の波長チャネルを実現するために複数のこのようなコンポーネントを有することができる。TCサービスアダプテーションサブレイヤ313は、ユーザデータアダプタ314及びGEM/XGEMエンジン315機能を含んで良い。GEM/XGEMエンジン315は、結合ブロック350と通信する。結合ブロック350は、第1及び第2TCフレーミングサブレイヤ312A、312Bと、及び同様に第1及び第2TC物理アダプテーションサブレイヤ311A、311Bと通信する。
利用可能なデータレートは、異なる波長を多重化することにより、TWDM PONを用いて増大され得る。TWDM通信は、図3に示すように、複数チャネルPONレイヤにより実装され得る。複数のTCフレーミングサブレイヤ312A、312B及びTC物理アダプテーションサブレイヤ311A、311Bは、複数のデータソースを集約し又は逆集約する。本開示の目的のために、OLTを参照するが、PON TCレイヤ310はOLT又はONUの部分であり得る。例示的なOLT PON TCレイヤ310は、10Gb/sより高いデータレートサービスをサポートするよう構成される。OLTは、(ユーザデータクライアント340と交換されるデータのような)データ及び(OMCIクライアント345と交換されるOMCIアダプテーションデータのような)OMCIアダプテーションデータを扱うために、単一のTCサービスアダプテーションサブレイヤ313含む。
種々の実施形態によると、結合ブロック350は、複数ソーススケジューリングモジュールとして参照されて良く、送信側において、複数の関連するフレーミングサブレイヤへの、GEM/XGEMフレームのようなカプセル化フレームの送信をスケジューリングする。受信側で、対応する受信機の結合ブロックは、対応する受信機のGEM/XGEMエンジンにより受信され及び処理されるべき、フレーミングサブレイヤからのGEM/XGEMフレームをスケジューリングする。複数ソーススケジューリングモジュールは、GEM/XGEMフレームを分配し及び処理する順序も決定できる。種々の実施形態において、結合ブロック350は、複数のチャネル上でのGEM/XGEMフレームの送信をスケジューリングし、フレームを送信するための順序を選択する。フレームを送信するための順序は、個々のチャネルの利用可能性に部分的に基づく。フレームの送信スケジューリングは、フラグメントを順次送信することを含んで良い。第1パケットの全てのフラグメントは、後続パケットの任意のフラグメントを送信する前に、送信される、等である。種々のフラグメントは、次のチャネルが利用可能になるとき、複数のチャネルを用いて送信されて良い。パケットのフラグメントは、実質的に並列に、複数のチャネルのうちの1又は複数を介して送信され得る。
図4は、一実施形態によるPONチャネル結合の方法のフローチャート400である。図4を参照すると、TCレイヤ拡張によるPONチャネル結合の例示的な方法400は、ネットワーク要素のGEM/XGEMエンジンにより、データを複数のパケットフラグメントにフラグメント化するステップ410と、GEM/XGEMエンジンにより、複数のパケットフラグメントをフレームにカプセル化するステップ420と、ネットワーク要素の結合ブロックにより、フレームの送信を複数のチャネルにスケジューリングするステップであって、フレームを送信する順序は、チャネル利用可能性に部分的に基づく、ステップ430と、ネットワーク要素の送信機により、受信機へ、スケジューリングに従い、複数のチャネル上でフレームを送信するステップ440と、を含む。幾つかの例では、フレームは、到着時間駆動型スケジューリングにより送信される。しかしながら、例示的な実施形態では、複数チャネル結合機能を備えるOLTは、国際電気通信連合(International Telecommunication Union、ITU−T)G.989.1標準、修正案1に従う。一実施形態では、GEM/XGEMエンジンは、結合を実現するために、ユーザデータを固定サイズのパケットフラグメントにフラグメント化できる。例えば、集約データのグループは、64バイトのパケットフラグメントにフラグメント化され得る。最後のフラグメントのペイロードが64バイトより短い場合、最後のフラグメントは64バイトまでパディングされ得る。パディングは、受信側にあるGEM/XGEMエンジンがGEM/XGEMフレームを元のデータユニットに再組立して戻すのを助ける。64バイト以外の固定サイズのフラグメントも可能であることに留意する。
例えば、TWDM−PONシステムでは、10Gb/sを超えるレートを有するサービスをサポートするために、2以上の波長チャネルが結合され得る。第1の例では、スケジューリング方式は、結合される波長チャネル識別に基づくラウンドロビンであり得る。一例として、ID#1、#2、#3を有する波長チャネルが結合されると仮定する。送信側において、GEM/XGEMエンジンは、高レートサービスからのユーザデータをGEM/XGEMフレームにカプセル化し、GEM/XGEMフレームを結合ブロックへ転送する。第1スケジューリング周期で、第1GEM/XGEMフレームは波長チャネル#1に関連付けられたフレーミングサブレイヤへ送信され、第2GEM/XGEMフレームは波長チャネル#2に関連付けられたフレーミングサブレイヤへ行き、第3GEM/XGEMフレームは波長チャネル#3に関連付けられたフレーミングサブレイヤへ送信される。次のスケジューリング周期で、第4GEM/XGEMフレームは波長チャネル#1に関連付けられたフレーミングサブレイヤへ行き、第5GEM/XGEMフレームは波長チャネル#2に関連付けられたフレーミングサブレイヤへ行き、第6GEM/XGEMフレームは波長チャネル#3に関連付けられたフレーミングサブレイヤへ行く、等である。受信側において、結合ブロックは、フレーミングサブレイヤからのGEM/XGEMフレームをGEM/XGEMエンジンへ転送する際に、同じラウンドロビン順序に従う。
別の実施形態では、GEM/XGEMエンジンは、データを可変サイズのパケットフラグメントにフラグメント化できる。本実施形態では、送信スケジューリングは、受信機においてXGEM受信時間により決定され得る。送信は、チャネル利用可能時間、チャネル容量、フレーム送信時間、及び/又は到着時間を考慮して良い。したがって、その送信は、固定サイズフラグメントのものより高い複雑性を有し得る。
種々の実施形態で、複数チャネルに渡るカプセル化フレームの送信は、種々のアルゴリズムに基づいて良い。一例は、種々のサイズを有するXGEMフレームにカプセル化されるユーザパケットを有する複数チャネルに渡るXGEM動作に基づく。本例では、問題となるONU XGEMトラフィックエンティティのための結合チャネル(combine channel、CC)として動作するN個の物理PONチャネルが存在する。これらの物理チャネルは、フレーム構造及びスーパーフレーム構造を定めるXGTCフレーミングにより高精度まで時間が揃えられ得る。時間整合は、ダウンストリーム物理レイヤ同期ブロック(downstream physical layer synchronization block、PSBd)又はアップストリームにおけるその対応する時間(upstream physical layer synchronization block、PSBu)が同じになるまで、チャネルの各々を遅延することにより行われ得る。この整合を前提としても、全てのチャネルが同時に送信するために準備されない場合がある。通常、各チャネルは、特定時間Tstart[i]において利用可能になる。これらは、図5に示されるように、Tstart[0]<Tstart[1]<...<Tstart[n]になるよう昇順に並べられ得る。図5は、複数チャネル通信において利用可能チャネルの表現を示す。さらに、チャネルは、収容され得る強制最大ペイロード量(ペイロード長)を有して良い。アップストリーム方向では、これらは、関連チャネルの帯域幅マップの中で明示的に与えられる。ダウンストリーム方向では、開始時間は、ダウンストリームチャネル(つまり、前に行ったパケット)の現在使用状態により決定され、終了時間は、現在フレームの終了であり得る。これを念頭に置くと、結合チャネルは、先入先出(first-in first-out、FIFO)バッファのセットとして現れる。OLT又はONUの各々は特定ドレインレートで実行し得るので、バッファビューは有用である。種々のチャネルが並べられると、結合トラフィックは、例えば図6、7、及び8に示される方法に従い、スケジューリングされて良い。
開示のXGEMの1つの設計特徴は、フラグメントのヘッダが受信されると、再組立処理が残りのデータを自身のパケット再組立バッファのどこににいれるかが分かることである。更に重要なことに、XGEMは、フラグメントが終了する場所、したがって、次のフラグメントが現在パケットの継続である場合に次のフラグメントが始まる場所が分かる。代替で、現在フラグメントが最後のフラグメントとしてマーク付けされる場合、受信機は、次のフラグメントが別のパケットに属することが分かる。この特長は、パケット長が先験的に分からずパケットが終了すると学習される他のパケットトランスポートプロトコルと全く異なる。XGEMのこの設計を前提として、受信機が自動的にヘッダを正しい順序で得るため、及びしたがって再組立処理を実行するために、次のXGEMヘッダは、最も早く利用可能なチャネルに入れられる。
この処理の結果としてのフラグメントの配置の幾つかの例は、図6に示される。図6は、次のフラグメントが次の利用可能なチャネルでどのように送信されるかを示す。図6は、データパケットフラグメントを複数チャネルを介して通信する第1の実施形態の時間図を示す。本例では、10個のパケット(Pkt1乃至Pkt10)は、合計13個のフラグメントで伝達される。受信機は、フラグメントのヘッダが到着すると該フラグメントが「到着した」と見なすので、各フラグメントの始め(ヘッダがある所)は時間的に関連する瞬間である。これらの瞬間は、時間軸まで達する破線により図6に示される。パケットフラグメントは、パケットフラグメントが最終パケットフラグメントでないとき「0」の値を及びパケットフラグメントが最終パケットフラグメントであるとき「1」のEoP値を有するパケット終了(End of Packet、EoP)指示子を有する。これらを調べることにより、私達は、フラグメントが以下の順序で受信されることが分かる。
時間1:チャネル1上でPkt1、EoP=「Ture」(1)
時間2:チャネル2上でPkt2、EoP=1
時間3:チャネル3上でPkt3、EoP=1
時間4:チャネル2上でPkt4、EoP=1
時間5:チャネル4上でPkt5、EoP=1
時間6:チャネル3上でPkt6、EoP=1
時間7:チャネル2上でPkt7、EoP=1
時間8:チャネル1上でPkt8、EoP=0(パケットの終了ではない)
時間9:チャネル4上でPkt8、EoP=1
時間10:チャネル4上でPkt9、EoP=0
時間11:チャネル3上でPkt9、EoP=0
時間12:チャネル2上でPkt9、EoP=1
時間13:チャネル2上でPkt10、EoP=0(このパケットは次フレームで継続し得る)
図6に示すように、パケットフラグメントは、全て順序通りであり、通常の再組立処理は妨げられずに動作できる。時間8で、チャネル1及び4は、正確に同時に利用可能である。この重なりを解決するために、チャネルのうちの一方は、意図的に空きXGEMヘッダにより占有され得る。空きヘッダは、受信機によりチャネルが「最初」であると見なされるか否かに拘わらず、フラグメント組立が正しく動作するために継続することを提供する。代替の実施形態では、チャネルは、順次番号付けされ、重なりの場合には、より低く番号付けされたチャネルがルールに従い最初に選択され得る。複数のチャネルが利用可能なときにチャネルを選択する処理は、所定動作ルールにより決定され得る。処理は、送信機及び受信機の両者が同じ動作ルールを適用する限り、問題なく動作し続ける。
上述のアルゴリズムは、データパケットをカプセル化するために最小数のXGEMヘッダを使用するので、チャネルの最大利用のために構成される。しかしながら、再組立されたパケットは、この強制的順序で上位層に転送される必要があり得ることに留意すべきである。これは、幾つかのパケットが、全ての先行するパケットが終了するまで遅延され(それらの再組立バッファ内に保持され)なければならないことを意味する。これは、図7に示される。図7では、破線がパケット完了の関連時間を示す。図7は、データパケットフラグメントを複数チャネルを介して通信する第2の実施形態の時間図を示す。本例では図示のパケット完了シーケンスは、2、3、4、1、5、8、6、7、及び9である。したがって、パケット順序付けを施行するために、パケット2、3、及び4はパケット1が完了するまで待機し、パケット8はパケット6及び7が完了するまで待機する。実用では、パケットは、このパケット順序付け実施を簡略化するために、ユーザプロセスにバッファ記述子を転送することにより、ユーザに「転送される」。
種々の実施形態で、特定の用途では、チャネルの待ち時間を最小化することが望ましい場合がある。これらの場合には、ユーザパケットは、可能な限り速く分配されるべきである。種々の実施形態で、及び図8を参照すると、図8は、データパケットフラグメントを複数チャネルを介して通信する第3の実施形態の時間図を示す。最小待ち時間は、より速い送信をもたらす場合にパケットが2以上のチャネルに渡りフラグメント化され得る、より複雑なアルゴリズムに従うことにより達成され得る。例示的な処理では、複数のチャネルに渡り並列に送信されるために、より大きなパケットは、より小さなフラグメントに分割され得る。例示的な処理は、非常に小さなフラグメント及び関連する非効率なオーバヘッドの生成を回避するために、所定の最小パケットサイズを含んで良い。所定の最小パケットサイズより小さなパケットは、フラグメント化されなくて良く、このような実施形態では全体が送信される。さらに、種々の実施形態で、及び図8に明確な透写線により示されるように、遅延最適化アルゴリズムの実装は、パケット完了シーケンスが順序通りであるよう動作する。相応して、受信機は、パケット順序強制の管理を要求されなくて良く、パケット順序強制の欠如はパケット完了レートを増大する。
種々の実施形態で、受信パケット順序も、PONレイヤによりパケットフラグメントにシーケンス番号を追加することにより実施され得る。例えば、XGEMヘッダは、最終フラグメント(Last Fragment、LF)指示子を既に有して良く、受信機がXGEMをユーザデータパケットに再組立し及びそれらを正しい順序で転送できるように、シーケンス番号はXGEMヘッダに追加され得る。
図9は、複数チャネルPONシステムにおけるチャネル結合のためのネットワーク要素900の概略図である。ネットワーク要素900は、開示の実施形態のうちの任意のものを実施するために適して良い。例えば、ネットワーク要素900は、OLT又はONUを実装して良く、図2及び3に関して記載されたレイヤ、コンポーネント、及び/又は機能を実行して良い。ネットワーク要素900は、ポート910、通信機ユニット(Tx/Rx)920、プロセッサ930、及びメモリ940を有する。ポート910は、送信機、受信機、又はそれらの組合せであって良いTx/Rx920に結合される。Tx/Rx920は、ポート910を介してデータを送信し及び受信して良い。プロセッサ930は、Tx/Rx920に結合され、命令を実行し及びデータを処理するよう構成される。メモリ940は、プロセッサ930に結合され、ここの記載の実施形態を実施するためのデータ及び命令を格納するよう構成される。プロセッサ930は、メモリ940に格納された命令を取得し実行できる。ネットワーク要素900は、電気信号及び光信号を受信し及び送信するTx/Rx920及びポート910に結合された電気−光(electrical-to-optical、EO)コンポーネント及び光−電気(optical-to-electrical、OE)コンポーネントも含み得る。
プロセッサ930は、ハードウェア及びソフトウェアにより実装されて良い。プロセッサ930は、1又は複数の中央処理ユニット(central processing unit、CPU)チップ、論理ユニット、コア(例えば、マルチコアプロセッサのような)、フィールドプログラマブルゲートアレイ(field-programmable gate array、FPGA)、特定用途向け集積回路(application specific integrated circuit、ASIC)、又はデジタル信号プロセッサ(digital signal processor、DSP)として実装されて良い。プロセッサ930は、ポート910、Tx/Rx920、及びメモリ940と通信する。
メモリ940は、ディスク及び固体ドライブのうちの1又は複数を含み、プログラムが実行のために選択されるとき該プログラムを格納し並びにプログラム実行中にリードされる命令及びデータを格納するオーバフローデータ記憶装置として使用されて良い。メモリ940は、揮発性及び/又は不揮発性であって良く、読み出し専用メモリ(read-only memory、ROM)、ランダムアクセスメモリ(random-access memory、RAM)、三値連想メモリ(ternary content-addressable memory、TCAM)、又は静的ランダムアクセスメモリ(static random-access memory、SRAM)であって良い。
一実施形態では、ネットワーク要素900は、ネットワーク要素のギガビットPONカプセル化方法(Gigabit-PON encapsulation method、GEM)/次世代PONカプセル化方法(next generation-PON encapsulation method、XGEM)エンジンにより、データを複数のパケットフラグメントにフラグメント化するフラグメント化モジュールと、GEM/XGEMエンジンにより、複数のパケットフラグメントをフレームにカプセル化するカプセル化モジュールと、ネットワーク要素の結合ブロックにより、フレームの送信を複数のチャネルにスケジューリングするスケジュールモジュールであって、フレームを送信する順序は、チャネル利用可能性に部分的に基づく、スケジュールモジュールと、ネットワーク要素の送信機により、受信機へ、スケジューリングに従い、複数のチャネル上でフレームを送信する送信モジュールと、を含む。幾つかの実施形態では、ネットワーク要素900は、実施形態において記載されたステップのうちの任意の1つ又は組合せを実行する他の又は追加のモジュールを含んで良い。
一実施形態では、ネットワーク要素900は、受信機において、複数のチャネルに渡り複数のカプセル化パケットフラグメントを受信する受信機モジュールであって、複数のパケットフラグメントのうちの各パケットフラグメントはヘッダを含む、受信機モジュールと、複数のパケットフラグメントのそれぞれのヘッダの到着時間に従い、複数のパケットフラグメントを組み立てる組立モジュールと、プロセッサにより、それぞれのヘッダの到着時間に基づき、複数のパケットフラグメントを順次バッファリングするバッファモジュールと、を含む。幾つかの実施形態では、ネットワーク要素900は、実施形態において記載されたステップのうちの任意の1つ又は組合せを実行する他の又は追加のモジュールを含んで良い。
幾つかの実施形態が本開示で提供されたが、開示のシステム及び方法は、本開示の精神又は範囲から逸脱することなく、多くの他の特定の形式で実施されても良いことが理解される。本例は、説明として考えられるべきであり、制限であると考えられるべきではない。また、意図は、ここに与えた詳細事項に限定されない。例えば、種々の要素又は構成要素は、別のシステムに結合され又は統合されても良い。或いは、特定の特徴が省略され又は実装されなくても良い。
さらに、種々の実施形態で分散又は別個として記載され図示された技術、システム、サブシステム、及び方法は、本開示の範囲から逸脱することなく、他のシステム、モジュール、技術又は方法に結合され又は統合されて良い。互いに結合され又は直接結合され又は通信するとして示され又は議論された他のアイテムは、電気的に、機械的に又は他の方法かに関わらず、特定のインタフェース、装置又は中間構成要素を通じて間接的に結合され又は通信して良い。変更、置換及び代替の他の例は、当業者により解明可能であり、本開示の精神及び範囲から逸脱することなく行われ得る。

Claims (8)

  1. 複数チャネル受動光ネットワーク(passive optical network、PON)におけるフラグメント化パケット送信の方法であって、
    ネットワーク要素のギガビットPONカプセル化方法(Gigabit-PON encapsulation method、GEM)/次世代PONカプセル化方法(next generation-PON encapsulation method、XGEM)エンジンにより、ある数のデータパケットを複数のパケットフラグメントにフラグメント化するステップと、
    前記GEM/XGEMエンジンにより、前記複数のパケットフラグメントをフレームにカプセル化するステップと、
    前記ネットワーク要素の結合ブロックにより、前記フレームの送信を複数のチャネルにスケジューリングするステップと
    前記ネットワーク要素の送信機により、前記スケジューリングに従い、前記複数のチャネル上で前記フレームを送信するステップと、を含み、
    前記フレームの前記送信をスケジューリングするステップは、パケットフラグメントを順次送信するステップを含み、前記データパケットのうちの1つに属するすべてのパケットフラグメントは、前記データパケットのうちの後続する1つに属する任意のパケットフラグメントを送信する前に、送信される、方法。
  2. 次のパケットフラグメントは、前記複数のチャネルの次の利用可能チャネルで送信される、請求項1に記載の方法。
  3. 2次チャネル及び前記次の利用可能チャネルが通信のために同時に利用可能であるとき、前記2次チャネルでアイドルヘッダを送信するステップ、を更に含む請求項2に記載の方法。
  4. 前記フレームの前記送信をスケジューリングするステップは、前記複数のチャネルのうちの1つを選択する際にラウンドロビン方式を適用する、請求項2に記載の方法。
  5. 前記フレームの前記送信をスケジューリングするステップは、受信機におけるフレーム受信時間により決定され、前記受信機における前記フレーム受信時間は、チャネル利用可能時間、又はフレーム送信時間のうちの1又は複数の基づき計算される、請求項1乃至4のいずれか一項に記載の方法。
  6. 前記データパケットをフラグメント化するステップは、前記GEM/XGEMエンジンが、前記データパケットを可変サイズのパケットフラグメントにフラグメント化するステップを含み、各フレームは、固定サイズのヘッダと可変サイズのペイロードとを含み、前記フレームはGEM/XGEMフレームである、請求項1乃至5のいずれか一項に記載の方法。
  7. 前記データパケットをフラグメント化するステップは、前記GEM/XGEMエンジンが、前記データパケットを固定サイズのパケットフラグメントにフラグメント化するステップを含み、各フレームは、固定サイズのヘッダと固定サイズのペイロードとを含み、フラグメントペイロードが所定ペイロード長より少ないとき、前記GEM/XGEMエンジンは、前記所定ペイロード長を満たすよう前記フラグメントペイロードをパディングする、請求項1乃至6のいずれか一項に記載の方法。
  8. 前記パケットフラグメントは、パケット終了(end of packet、EoP)指示子含み、前記EoP指示子は、前記パケットフラグメントがフレーム内の最終パケットフラグメントであるかどうかを示す、請求項乃至のいずれか一項に記載の方法。
JP2018500604A 2015-07-10 2016-07-11 結合による高データレート拡張 Active JP6560815B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562191148P 2015-07-10 2015-07-10
US62/191,148 2015-07-10
US15/205,930 2016-07-08
US15/205,930 US10177871B2 (en) 2015-07-10 2016-07-08 High data rate extension with bonding
PCT/CN2016/089626 WO2017008713A1 (en) 2015-07-10 2016-07-11 High data rate extension with bonding

Publications (2)

Publication Number Publication Date
JP2018520600A JP2018520600A (ja) 2018-07-26
JP6560815B2 true JP6560815B2 (ja) 2019-08-14

Family

ID=57731429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018500604A Active JP6560815B2 (ja) 2015-07-10 2016-07-11 結合による高データレート拡張

Country Status (5)

Country Link
US (2) US10177871B2 (ja)
EP (1) EP3304830B1 (ja)
JP (1) JP6560815B2 (ja)
CN (1) CN107735988B (ja)
WO (1) WO2017008713A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014031992A2 (en) * 2012-08-24 2014-02-27 Broadcom Corporation Channel bonding for ethernet passive optical network over coax (epoc) networks
US9755746B1 (en) * 2014-10-03 2017-09-05 Adtran, Inc. Systems and methods for digitally splitting an optical line terminal across multiple fibers
CN110086541B (zh) * 2015-05-20 2023-02-14 华为技术有限公司 一种无源光网络成帧的方法、装置及系统
US9924248B2 (en) * 2015-12-01 2018-03-20 Adtran, Inc. Pon wavelength bonding for high-rate services
US10397674B2 (en) * 2015-12-01 2019-08-27 Adtran, Inc. PON wavelength bonding for providing higher-rate data services
CN107302412B (zh) * 2016-04-14 2019-12-13 中兴通讯股份有限公司 无源光网络架构及其实现数据传输的方法和光网络设备
US10461864B2 (en) 2016-04-14 2019-10-29 Calix, Inc. Channel bonding techniques in a network
KR102088968B1 (ko) 2017-08-23 2020-03-13 한국전자통신연구원 멀티 레인을 효율적으로 활용하는 광 선로 단말 및 상기 광 선로 단말을 포함하는 수동형 광 네트워크
WO2019205136A1 (zh) * 2018-04-28 2019-10-31 华为技术有限公司 报文处理方法及设备
WO2020057187A1 (en) * 2018-09-21 2020-03-26 Huawei Technologies Co., Ltd. Passive optical network (pon) channel bonding protocol
US10749623B2 (en) * 2018-12-21 2020-08-18 Adtran, Inc. Fault-tolerant distributed passive optical network bonding
CN112153493B (zh) * 2019-06-27 2022-04-22 华为技术有限公司 报文处理方法及设备
CN112637112A (zh) * 2019-10-09 2021-04-09 中兴通讯股份有限公司 多通道数据发送方法、组装方法、装置、介质、电子设备
CN112713960A (zh) * 2019-10-25 2021-04-27 中兴通讯股份有限公司 数据发送方法、接收方法、装置、通信节点及存储介质
CN111601186A (zh) * 2019-12-31 2020-08-28 中兴通讯股份有限公司 Pon多通道动态绑定传输方法、pon节点和存储介
CN113596629B (zh) * 2020-04-30 2023-03-31 中国移动通信有限公司研究院 信息传输方法、装置、通信设备及可读存储介质
CN114079550A (zh) * 2020-08-14 2022-02-22 中兴通讯股份有限公司 数据发送、接收方法、装置、发送设备、接收设备及介质
EP4002862A1 (en) * 2020-11-12 2022-05-25 Nokia Solutions and Networks Oy An optical line terminal and an optical network unit
CN116709066A (zh) * 2020-11-20 2023-09-05 华为技术有限公司 Pon中的数据传输方法、装置和系统
US20210092058A1 (en) * 2020-12-08 2021-03-25 Intel Corporation Transmission of high-throughput streams through a network using packet fragmentation and port aggregation
CN114727170A (zh) * 2021-01-04 2022-07-08 上海诺基亚贝尔股份有限公司 在光网络中实施的方法、设备和计算机可读存储介质
FR3132814A1 (fr) * 2022-02-17 2023-08-18 Orange Procédés et dispositifs de traitement de données descendantes pour réseaux optique passifs en cascade
FR3132813A1 (fr) * 2022-02-17 2023-08-18 Orange Procédés et dispositifs de traitement de données montantes pour réseaux optiques passifs en cascade
CN115484517B (zh) * 2022-09-06 2023-06-23 苏州大学 一种无源光网络中线路速率优化方法及装置

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8010469B2 (en) * 2000-09-25 2011-08-30 Crossbeam Systems, Inc. Systems and methods for processing data flows
US9525696B2 (en) * 2000-09-25 2016-12-20 Blue Coat Systems, Inc. Systems and methods for processing data flows
US7031343B1 (en) * 2000-11-17 2006-04-18 Alloptic, Inc. Point-to-multipoint passive optical network that utilizes variable-length packets
US20020165978A1 (en) * 2001-05-07 2002-11-07 Terence Chui Multi-service optical infiniband router
US7027443B2 (en) 2001-08-23 2006-04-11 Pmc-Sierra Ltd. Reassembly engines for multilink applications
US20030108063A1 (en) * 2001-12-07 2003-06-12 Joseph Moses S. System and method for aggregating multiple information channels across a network
WO2004112326A1 (ja) * 2003-06-10 2004-12-23 Fujitsu Limited パケット転送方法及び装置
JP3848639B2 (ja) * 2003-06-23 2006-11-22 アンリツ株式会社 パケット調整装置
WO2006063307A2 (en) * 2004-12-10 2006-06-15 Broadcom Corporation Upstream channel bonding in a cable communications system
WO2006092734A1 (en) * 2005-03-03 2006-09-08 Gdx North America Inc. Reinforced sealing, trimming or guiding strips
US20070116466A1 (en) * 2005-11-18 2007-05-24 Broadlight Ltd. Optical network unit (ONU) circuit
CN100527708C (zh) * 2006-04-30 2009-08-12 华为技术有限公司 无源光网络中的业务帧传输方法、光网络单元和光线路终端
US9312955B2 (en) 2006-05-22 2016-04-12 Alcatel Lucent Method and apparatus to reduce the impact of raman interference in passive optical networks with RF video overlay
US8208815B1 (en) * 2006-11-30 2012-06-26 Marvell International Ltd. Bit accurate upstream burst transmission phase method for reducing burst data arrival variation
JP4410792B2 (ja) * 2006-12-21 2010-02-03 株式会社日立コミュニケーションテクノロジー 暗号化装置
JP4333737B2 (ja) 2006-12-26 2009-09-16 沖電気工業株式会社 ギガビット受動型光加入者ネットワークで用いられる信号処理装置及び信号処理方法
US20080162922A1 (en) 2006-12-27 2008-07-03 Swartz Troy A Fragmenting security encapsulated ethernet frames
US8711685B2 (en) * 2007-03-06 2014-04-29 Alphion Corporation System and method for data reconfiguration in an optical communication network
JP5028179B2 (ja) * 2007-08-03 2012-09-19 株式会社日立製作所 Ponシステム
JP5122890B2 (ja) * 2007-09-06 2013-01-16 株式会社日立製作所 通信システム及びその装置
CN101409630A (zh) * 2007-10-11 2009-04-15 北京大学 一种流媒体数据发送接收方法、装置及系统
EP2252704A2 (en) * 2008-02-15 2010-11-24 University College Dublin National University Of Ireland, Dublin Alternatively transcribed genes associated with memory consolidation
JP4612713B2 (ja) * 2008-08-12 2011-01-12 株式会社日立製作所 パケット転送装置及びネットワークシステム
CN101662417B (zh) * 2008-08-26 2011-12-21 华为技术有限公司 多业务适配和承载的方法及设备
JP5206256B2 (ja) * 2008-09-09 2013-06-12 沖電気工業株式会社 帯域割当方法及び帯域割当装置
JP5097655B2 (ja) * 2008-09-16 2012-12-12 株式会社日立製作所 受動光網システム及び光多重終端装置
CN101729384B (zh) * 2008-10-15 2013-04-17 华为技术有限公司 一种标签交换方法、装置和系统
US8990431B2 (en) * 2009-05-05 2015-03-24 Citrix Systems, Inc. Systems and methods for identifying a processor from a plurality of processors to provide symmetrical request and response processing
WO2011019992A1 (en) * 2009-08-13 2011-02-17 New Jersey Institute Of Technology Scheduling wdm pon with tunable lasers with different tuning times
US20120149418A1 (en) * 2009-08-21 2012-06-14 Skubic Bjoer Bandwidth allocation
US8326152B2 (en) * 2010-04-15 2012-12-04 Alcatel Lucent System and method for scheduling timeslots for transmission by optical nodes in an optical network
US9143195B2 (en) * 2011-07-07 2015-09-22 Adtran, Inc. Systems and methods for communicating among network distribution points
US8600057B2 (en) * 2012-02-02 2013-12-03 Calix, Inc. Protecting optical transports from consecutive identical digits in optical computer networks
US8731198B2 (en) * 2012-02-02 2014-05-20 Calix, Inc. Protecting optical transports from consecutive identical digits in optical computer networks
US9184847B2 (en) * 2012-05-16 2015-11-10 Futurewei Technologies, Inc. Dynamic bandwidth assignment in hybrid access network with passive optical network and another medium
CN103856836B (zh) 2012-11-29 2019-01-04 中兴通讯股份有限公司 无源光网络中用户数据的发送和接收方法及系统、设备
WO2014187538A1 (en) 2013-05-20 2014-11-27 Alcatel Lucent Multicast video transmission in gigabit-capable passive optical networks
BR112015030807B1 (pt) * 2013-06-09 2022-10-04 Huawei Technologies Co., Ltd Método e aparelho para virtualizar rede ótica passiva e sistema de virtualização de rede ótica passiva
CN103401809B (zh) * 2013-08-13 2016-01-20 中国电子科技集团公司第二十八研究所 一种窄带通信系统中多信道动态分配方法
US9473410B2 (en) * 2014-03-31 2016-10-18 Sandvine Incorporated Ulc System and method for load balancing in computer networks
US9762349B1 (en) * 2015-09-21 2017-09-12 Cox Communications, Inc Hybrid multiplexing over passive optical networks
US9924248B2 (en) * 2015-12-01 2018-03-20 Adtran, Inc. Pon wavelength bonding for high-rate services
US10461864B2 (en) * 2016-04-14 2019-10-29 Calix, Inc. Channel bonding techniques in a network
US10601610B2 (en) * 2017-04-05 2020-03-24 Nokia Of America Corporation Tunnel-level fragmentation and reassembly based on tunnel context

Also Published As

Publication number Publication date
US10666376B2 (en) 2020-05-26
CN107735988B (zh) 2021-04-09
WO2017008713A1 (en) 2017-01-19
EP3304830A1 (en) 2018-04-11
US10177871B2 (en) 2019-01-08
JP2018520600A (ja) 2018-07-26
US20170012731A1 (en) 2017-01-12
EP3304830A4 (en) 2018-07-04
CN107735988A (zh) 2018-02-23
EP3304830B1 (en) 2023-04-19
US20190109665A1 (en) 2019-04-11

Similar Documents

Publication Publication Date Title
JP6560815B2 (ja) 結合による高データレート拡張
US10397674B2 (en) PON wavelength bonding for providing higher-rate data services
JP4169595B2 (ja) 可変長パケットを利用するポイントツーマルチポイント受動光ネットワーク
EP2415185B1 (en) Apparatus for link sharing among multiple epons
US8824504B2 (en) Packet add/drop multiplexer and data transmission method of packet add/drop multiplexer
US9793993B2 (en) Method and apparatus of delivering upstream data in ethernet passive optical network over coaxial network
KR100982016B1 (ko) 기가 비트 수동형 광 가입장망의 가입자 종단장치와 그 장치에서의 상향 프레임 처리 방법
US9924248B2 (en) Pon wavelength bonding for high-rate services
WO2017012565A1 (en) Highly efficient method for inverse multiplexing in an ethernet access network
US9681209B2 (en) Method and system for scheduling remote PONs connected via an ethernet switch
WO2017177549A1 (zh) 无源光网络架构及其实现数据传输的方法和光网络设备
WO2020057187A1 (en) Passive optical network (pon) channel bonding protocol
WO2011006403A1 (zh) 一种数据传输方法、系统以及运营商边缘节点
EP3446490B1 (en) Pon wavelength bonding for providing higher-rate data services
US11405705B2 (en) Multi-rate interleaved downstream frames in passive optical networks (PONs)
US20130028264A1 (en) Packet reassembly processing

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190719

R150 Certificate of patent or registration of utility model

Ref document number: 6560815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250