JP6560407B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP6560407B2
JP6560407B2 JP2018115281A JP2018115281A JP6560407B2 JP 6560407 B2 JP6560407 B2 JP 6560407B2 JP 2018115281 A JP2018115281 A JP 2018115281A JP 2018115281 A JP2018115281 A JP 2018115281A JP 6560407 B2 JP6560407 B2 JP 6560407B2
Authority
JP
Japan
Prior art keywords
metal pattern
substrate
metal
extending
ceramic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018115281A
Other languages
Japanese (ja)
Other versions
JP2018139337A (en
Inventor
佐藤 幸弘
幸弘 佐藤
勝彦 舩津
勝彦 舩津
金澤 孝光
孝光 金澤
雅寛 小井土
雅寛 小井土
博美 田谷
博美 田谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2018115281A priority Critical patent/JP6560407B2/en
Publication of JP2018139337A publication Critical patent/JP2018139337A/en
Application granted granted Critical
Publication of JP6560407B2 publication Critical patent/JP6560407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)

Description

本発明は、半導体装置に関し、例えば、セラミック基板上に複数の金属パターンを介して複数の半導体チップが搭載された半導体装置に適用して有効な技術に関する。   The present invention relates to a semiconductor device, for example, a technique effective when applied to a semiconductor device in which a plurality of semiconductor chips are mounted on a ceramic substrate via a plurality of metal patterns.

特開2001−85611号公報(特許文献1)には、セラミック基板上に複数の導体層を介して複数のパワー素子が搭載された、パワーモジュールが記載されている。   Japanese Patent Laying-Open No. 2001-85611 (Patent Document 1) describes a power module in which a plurality of power elements are mounted on a ceramic substrate via a plurality of conductor layers.

また、特開2003−332481号公報(特許文献2)や特開2011−77087号公報(特許文献3)には、セラミック基板の上面に配線回路用の銅板を、セラミック基板の下面に放熱用の銅板を接合した、半導体モジュール用の基板が記載されている。   In Japanese Patent Application Laid-Open No. 2003-332481 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2011-77087 (Patent Document 3), a copper plate for a wiring circuit is provided on the upper surface of the ceramic substrate, and a heat radiation is provided on the lower surface of the ceramic substrate. A substrate for a semiconductor module to which a copper plate is bonded is described.

特開2001−85611号公報JP 2001-85611 A 特開2003−332481号公報JP 2003-332481 A 特開2011−77087号公報JP 2011-77087 A

セラミック基板上に導体パターンを介して複数の半導体チップを搭載した半導体装置がある。セラミック基板は、高周波特性や熱伝導率が優れているため、例えば、電力変換装置などのパワー系(電力制御系)の半導体装置に利用される。   There is a semiconductor device in which a plurality of semiconductor chips are mounted on a ceramic substrate via a conductor pattern. The ceramic substrate is excellent in high-frequency characteristics and thermal conductivity, and is used, for example, in a power system (power control system) semiconductor device such as a power converter.

ところが、一つの半導体装置内に複数の半導体チップを並べて搭載する場合、セラミック基板の平面積が大きくなる。この場合、半導体装置の取り付け時などに、セラミック基板に外力が印加されると、この外力に起因してセラミック基板にクラックなどの損傷が発生する懸念があることが判った。   However, when a plurality of semiconductor chips are mounted side by side in one semiconductor device, the plane area of the ceramic substrate increases. In this case, it has been found that if an external force is applied to the ceramic substrate when the semiconductor device is mounted, the ceramic substrate may be damaged such as cracks due to the external force.

その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。   Other problems and novel features will become apparent from the description of the specification and the accompanying drawings.

一実施の形態による半導体装置は、セラミック基板上に形成された複数の金属パターンと、上記複数の金属パターンに搭載された複数の半導体チップを有する。また、上記複数の金属パターンは、互いに対向する第1金属パターンおよび第2金属パターンを有する。また上記第1金属パターンと上記第2金属パターンとの間に設けられ、かつ、上記複数の金属パターンから露出した第1領域は、上記第1金属パターンの延在方向に沿って、ジグザグに延びるものである。   A semiconductor device according to an embodiment includes a plurality of metal patterns formed on a ceramic substrate and a plurality of semiconductor chips mounted on the plurality of metal patterns. The plurality of metal patterns include a first metal pattern and a second metal pattern that face each other. In addition, the first region provided between the first metal pattern and the second metal pattern and exposed from the plurality of metal patterns extends in a zigzag manner along the extending direction of the first metal pattern. Is.

上記一実施の形態によれば、半導体装置の信頼性を向上させることができる。   According to the one embodiment, the reliability of the semiconductor device can be improved.

実施の形態である半導体装置が組み込まれた、電力変換システムの構成例を示す説明図である。It is explanatory drawing which shows the structural example of the power conversion system with which the semiconductor device which is embodiment is integrated. 図1に示す半導体装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the semiconductor device shown in FIG. 図2に示す半導体装置の裏面側を示す平面図である。FIG. 3 is a plan view showing a back side of the semiconductor device shown in FIG. 2. 図3のA−A線に沿った断面図である。It is sectional drawing along the AA line of FIG. 図3に示すセラミック基板の上面側のレイアウトを示す平面図である。FIG. 4 is a plan view showing a layout on the upper surface side of the ceramic substrate shown in FIG. 3. 図5に示す複数の半導体チップが構成するインバータ回路を模式的に示す説明図である。It is explanatory drawing which shows typically the inverter circuit which the some semiconductor chip shown in FIG. 5 comprises. 図5に示す半導体チップの周辺を拡大して示す拡大平面図である。FIG. 6 is an enlarged plan view showing the periphery of the semiconductor chip shown in FIG. 5 in an enlarged manner. 図7のA−A線に沿った拡大断面図である。It is an expanded sectional view along the AA line of FIG. 図5に示す複数の金属パターンのレイアウトを示す平面図である。FIG. 6 is a plan view showing a layout of a plurality of metal patterns shown in FIG. 5. 図9に対する変形例を示す平面図である。It is a top view which shows the modification with respect to FIG. 図2に示す半導体装置の組立てフローを示す説明図である。FIG. 3 is an explanatory diagram showing an assembly flow of the semiconductor device shown in FIG. 2. 図11に示すダイボンド工程でセラミック基板上に複数の半導体チップを搭載した状態を示す平面図である。It is a top view which shows the state which mounted the several semiconductor chip on the ceramic substrate at the die-bonding process shown in FIG. 図12に示す複数の半導体チップと複数の金属パターンとをワイヤを介して電気的に接続した状態を示す平面図である。FIG. 13 is a plan view showing a state where a plurality of semiconductor chips and a plurality of metal patterns shown in FIG. 12 are electrically connected via wires. 図9に対する検討例を示す平面図である。It is a top view which shows the example of examination with respect to FIG.

(本願における記載形式・基本的用語・用法の説明)
本願において、実施の態様の記載は、必要に応じて、便宜上複数のセクション等に分けて記載するが、特にそうでない旨明示した場合を除き、これらは相互に独立別個のものではなく、記載の前後を問わず、単一の例の各部分、一方が他方の一部詳細または一部または全部の変形例等である。また、原則として、同様の部分は繰り返しの説明を省略する。また、実施の態様における各構成要素は、特にそうでない旨明示した場合、理論的にその数に限定される場合および文脈から明らかにそうでない場合を除き、必須のものではない。
(Description format, basic terms, usage in this application)
In the present application, the description of the embodiment will be divided into a plurality of sections for convenience, if necessary, but these are not independent from each other unless otherwise specified. Regardless of the front and rear, each part of a single example, one is a part of the other, or a part or all of the modifications. In principle, repeated description of similar parts is omitted. In addition, each component in the embodiment is not indispensable unless specifically stated otherwise, unless it is theoretically limited to the number, and obviously not in context.

同様に実施の態様等の記載において、材料、組成等について、「AからなるX」等といっても、特にそうでない旨明示した場合および文脈から明らかにそうでない場合を除き、A以外の要素を含むものを排除するものではない。たとえば、成分についていえば、「Aを主要な成分として含むX」等の意味である。たとえば、「シリコン部材」等といっても、純粋なシリコンに限定されるものではなく、SiGe(シリコン・ゲルマニウム)合金やその他シリコンを主要な成分とする多元合金、その他の添加物等を含む部材も含むものであることはいうまでもない。また、金メッキ、Cu層、ニッケル・メッキ等といっても、そうでない旨、特に明示した場合を除き、純粋なものだけでなく、それぞれ金、Cu、ニッケル等を主要な成分とする部材を含むものとする。   Similarly, in the description of the embodiment, etc., regarding the material, composition, etc., “X consisting of A” etc. is an element other than A unless specifically stated otherwise and clearly not in context. It does not exclude things that contain. For example, as for the component, it means “X containing A as a main component”. For example, “silicon member” is not limited to pure silicon, but includes a SiGe (silicon-germanium) alloy, other multi-component alloys containing silicon as a main component, and other additives. Needless to say, it is also included. In addition, the term “gold plating”, “Cu layer”, “nickel plating”, etc. includes not only pure materials, but also members mainly composed of gold, Cu, nickel, etc. unless otherwise specified. Shall be.

さらに、特定の数値、数量に言及したときも、特にそうでない旨明示した場合、理論的にその数に限定される場合および文脈から明らかにそうでない場合を除き、その特定の数値を超える数値であってもよいし、その特定の数値未満の数値でもよい。   In addition, when a specific number or quantity is mentioned, a numerical value exceeding that specific number will be used unless specifically stated otherwise, unless theoretically limited to that number, or unless otherwise clearly indicated by the context. There may be a numerical value less than the specific numerical value.

また、実施の形態の各図中において、同一または同様の部分は同一または類似の記号または参照番号で示し、説明は原則として繰り返さない。   Moreover, in each figure of embodiment, the same or similar part is shown with the same or similar symbol or reference number, and description is not repeated in principle.

また、添付図面においては、却って、煩雑になる場合または空隙との区別が明確である場合には、断面であってもハッチング等を省略する場合がある。これに関連して、説明等から明らかである場合等には、平面的に閉じた孔であっても、背景の輪郭線を省略する場合がある。更に、断面でなくとも、空隙でないことを明示するため、あるいは領域の境界を明示するために、ハッチングやドットパターンを付すことがある。   In the accompanying drawings, hatching or the like may be omitted even in a cross section when it becomes complicated or when the distinction from the gap is clear. In relation to this, when it is clear from the description etc., the contour line of the background may be omitted even if the hole is planarly closed. Furthermore, even if it is not a cross section, hatching or a dot pattern may be added in order to clearly indicate that it is not a void or to clearly indicate the boundary of a region.

<電力変換システムの構成例>
以下で図面を用いて詳しく説明する本実施の形態では、セラミック基板上に複数の半導体チップが並べて搭載された半導体装置の例として、入力された直流電力を交流電力に変換して出力する電力変換装置(インバータ装置)を取り上げて説明する。
<Configuration example of power conversion system>
In this embodiment, which will be described in detail below with reference to the drawings, as an example of a semiconductor device in which a plurality of semiconductor chips are mounted side by side on a ceramic substrate, power conversion that converts input DC power into AC power and outputs the power The device (inverter device) will be described.

図1は、本実施の形態の半導体装置が組み込まれた、電力変換システムの構成例を示す説明図である。   FIG. 1 is an explanatory diagram illustrating a configuration example of a power conversion system in which the semiconductor device of the present embodiment is incorporated.

図1に示す電力変換システムは、複数の太陽電池モジュールSCMから出力された直流電力を、インバータ回路INVによって交流電力に変換して、配電回路DTCに出力するシステムである。   The power conversion system shown in FIG. 1 is a system that converts DC power output from a plurality of solar cell modules SCM into AC power by an inverter circuit INV and outputs the AC power to a power distribution circuit DTC.

複数の太陽電池モジュールSCMのそれぞれは、光エネルギーを電気的エネルギーに変換する光電変換装置である。複数の太陽電池モジュールSCMのそれぞれは、複数の太陽電池セルを有し、複数の太陽電池セルのそれぞれで電気的エネルギーに変換された電力を、直流電力として出力する。   Each of the plurality of solar cell modules SCM is a photoelectric conversion device that converts light energy into electrical energy. Each of the plurality of solar cell modules SCM has a plurality of solar cells, and outputs electric power converted into electric energy by each of the plurality of solar cells as DC power.

また、図1に示す複数の太陽電池モジュールSCMと、インバータ回路INVとの間には、コンバータ回路CNVが接続されている。図1に示す例では、複数の太陽電池モジュールSCMから出力された直流電力は、コンバータ回路CNVにより昇圧され、高い電圧の直流電力に昇圧される。つまり、図1に示すコンバータ回路CNVは、直流電力を、相対的に高い電圧の直流電力に変換する、所謂、DC/DCコンバータである。   A converter circuit CNV is connected between the plurality of solar cell modules SCM shown in FIG. 1 and the inverter circuit INV. In the example shown in FIG. 1, the DC power output from the plurality of solar cell modules SCM is boosted by the converter circuit CNV and boosted to a high voltage DC power. That is, the converter circuit CNV shown in FIG. 1 is a so-called DC / DC converter that converts DC power into DC power having a relatively high voltage.

また、インバータ回路INVで電力変換された交流電力は、配電回路DTCに出力される。図1に示す例では、インバータ回路INVは、U相、V相、およびW相の三相の交流電力に変換され、三相交流電力が配電回路DTCに出力される。   The AC power converted by the inverter circuit INV is output to the power distribution circuit DTC. In the example illustrated in FIG. 1, the inverter circuit INV is converted into three-phase AC power of U phase, V phase, and W phase, and the three-phase AC power is output to the distribution circuit DTC.

また、図1に示す電力変換システムは、上記した電力変換動作を制御する制御回路CMDを有する。制御回路CMDは、コンバータ回路CNVおよびインバータ回路INVの各スイッチング素子に対して、制御信号を出力する。   Further, the power conversion system shown in FIG. 1 includes a control circuit CMD that controls the above-described power conversion operation. The control circuit CMD outputs a control signal to each switching element of the converter circuit CNV and the inverter circuit INV.

また、図1に示すインバータ回路INVは、複数のスイッチング素子を用いて、直流電力を交流電力に変換する電力変換回路である。図1に示す例では、6個のトランジスタQ1のそれぞれが、スイッチング素子として機能する。   The inverter circuit INV shown in FIG. 1 is a power conversion circuit that converts DC power into AC power using a plurality of switching elements. In the example shown in FIG. 1, each of the six transistors Q1 functions as a switching element.

スイッチング素子を用いて直流電力を交流電力に変換する場合、相対的に高い電位に接続されるハイサイドスイッチと、相対的に低い電位に接続されるローサイドスイッチと、が直列接続された回路を用いる。このハイサイドスイッチとローサイドスイッチとは、対になってオン−オフ動作する。一対のハイサイドスイッチおよびローサイドスイッチのうち、一方のスイッチがオン状態の時には、他方のスイッチはオフ状態になる。一対のハイサイドスイッチおよびローサイドスイッチがオン−オフ動作(以下、スイッチング動作と記載する)を高速で行うことにより、単相交流電力が出力される。   When DC power is converted into AC power using a switching element, a circuit in which a high-side switch connected to a relatively high potential and a low-side switch connected to a relatively low potential are connected in series is used. . The high-side switch and the low-side switch are turned on and off as a pair. When one of the pair of high-side switch and low-side switch is on, the other switch is off. The pair of high-side switches and low-side switches perform an on-off operation (hereinafter referred to as switching operation) at high speed, so that single-phase AC power is output.

また、図1に示す例では、直流電力を三相交流電力に変換するインバータ回路INVを示しており、ハイサイドスイッチおよびローサイドスイッチからなるスイッチペアは、U相、V相、およびW相の三相に対応して3ペア設けられている。また、U相、V相、およびW相の三相のそれぞれの出力ノードは、直列接続されたハイサイドスイッチとローサイドスイッチの間に接続され、各スイッチペアは、120度の位相差を有するようにスイッチング動作をする。これにより、直流電力をU相、V相、およびW相の三相を有する三相交流電力に変換することができる。   Further, the example shown in FIG. 1 shows an inverter circuit INV that converts DC power into three-phase AC power, and a switch pair composed of a high-side switch and a low-side switch has three phases of U phase, V phase, and W phase. Three pairs are provided corresponding to the phases. Also, the output nodes of the three phases U phase, V phase, and W phase are connected between the high-side switch and the low-side switch connected in series so that each switch pair has a phase difference of 120 degrees. Switching operation is performed. Thereby, DC power can be converted into three-phase AC power having three phases of U phase, V phase, and W phase.

例えば、図1に示す例では、ハイサイド側の端子HTに正の電位E1を印加し、ローサイド側の端子LTに電位E2を印加する。このとき、U相のノード、V相のノード、およびW相のノードのそれぞれの電位は、3組のスイッチペアのスイッチング動作に応じて、0とE1とに変化することになる。そして、例えば、U相とV相との間の線間電圧は、U相の電位からV相の電位を引いたものとなることから、+E1[V]、0[V]、−E1[V]と変化することになる。また、V相とW相との間の線間電圧は、U相とV相との間の線間電圧に対して位相が120度ずれた電圧波形となり、さらに、W相とU相との間の線間電圧は、V相とW相との間の線間電圧に対して位相が120度ずれた電圧波形となる。つまり、直流電力をインバータ回路INVに入力すると、三相交流電力の電圧波形が得られる。   For example, in the example shown in FIG. 1, a positive potential E1 is applied to the high-side terminal HT, and a potential E2 is applied to the low-side terminal LT. At this time, the potentials of the U-phase node, the V-phase node, and the W-phase node change to 0 and E1 according to the switching operation of the three switch pairs. For example, since the line voltage between the U phase and the V phase is obtained by subtracting the V phase potential from the U phase potential, + E1 [V], 0 [V], -E1 [V ] Will change. The line voltage between the V phase and the W phase is a voltage waveform whose phase is shifted by 120 degrees with respect to the line voltage between the U phase and the V phase. The line voltage between them has a voltage waveform whose phase is shifted by 120 degrees with respect to the line voltage between the V phase and the W phase. That is, when DC power is input to the inverter circuit INV, a voltage waveform of three-phase AC power is obtained.

また、図1に示すインバータ回路INVのスイッチング素子を構成するトランジスタQ1は、絶縁ゲートバイポーラトランジスタ(以下、IGBT(Insulated Gate Bipolar Transistor)という)である。スイッチング素子であるトランジスタQ1として、パワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を利用しても良い。このパワーMOSFETによれば、スイッチング動作をゲート電極に印加する電圧で制御する電圧駆動型であるため、高速スイッチングが可能な利点がある。   The transistor Q1 constituting the switching element of the inverter circuit INV shown in FIG. 1 is an insulated gate bipolar transistor (hereinafter referred to as IGBT (Insulated Gate Bipolar Transistor)). A power MOSFET (Metal Oxide Semiconductor Field Effect Transistor) may be used as the transistor Q1 which is a switching element. According to this power MOSFET, since the switching operation is controlled by the voltage applied to the gate electrode, there is an advantage that high-speed switching is possible.

ただし、パワーMOSFETでは、高耐圧化を図るに伴ってオン抵抗が高くなり発熱量が大きくなる性質がある。したがって、大電力で、かつ、高速でのスイッチング動作が要求される用途で用いるトランジスタQ1としては、IGBTが好ましい。このIGBTは、パワーMOSFETとバイポーラトランジスタの組み合わせから構成されており、パワーMOSFETの高速スイッチング特性と、バイポーラトランジスタの高耐圧性を兼ね備えた半導体素子である。以上より、本実施の形態1におけるインバータ回路INVには、スイッチング素子としてIGBTを採用している。   However, the power MOSFET has a property that the on-resistance increases and the heat generation amount increases as the breakdown voltage is increased. Therefore, the IGBT is preferable as the transistor Q1 used in applications that require a high power and high speed switching operation. This IGBT is composed of a combination of a power MOSFET and a bipolar transistor, and is a semiconductor element that combines the high-speed switching characteristics of the power MOSFET and the high breakdown voltage of the bipolar transistor. As described above, the inverter circuit INV in the first embodiment employs an IGBT as a switching element.

また、インバータ回路INVでは、ハイサイド側の端子HTと三相交流の各相(U相、V相、W相)との間にトランジスタQ1とダイオードD1が逆並列に接続されており、かつ、三相交流の各相とローサイド側の端子LTとの間にもトランジスタQ1とダイオードD1が逆並列に接続されている。すなわち、単相ごとに2つのトランジスタQ1と2つのダイオードD1が設けられており、3相で6つのトランジスタQ1と6つのダイオードD1が設けられている。そして、個々のトランジスタQ1のゲート電極には、制御回路CMDが接続されており、この制御回路CMDによって、トランジスタQ1のスイッチング動作が制御されるようになっている。このダイオードD1は、インバータ回路INVの出力側に接続されるインダクタンスに蓄えられた電気エネルギーを開放するために還流電流を流す機能を有している。   In the inverter circuit INV, the transistor Q1 and the diode D1 are connected in antiparallel between the high-side terminal HT and each of the three-phase AC phases (U phase, V phase, W phase), and A transistor Q1 and a diode D1 are also connected in antiparallel between each phase of the three-phase alternating current and the low-side terminal LT. That is, two transistors Q1 and two diodes D1 are provided for each single phase, and six transistors Q1 and six diodes D1 are provided for three phases. A control circuit CMD is connected to the gate electrode of each transistor Q1, and the switching operation of the transistor Q1 is controlled by the control circuit CMD. The diode D1 has a function of flowing a return current in order to release electric energy stored in an inductance connected to the output side of the inverter circuit INV.

<半導体装置>
次に、図1に示すインバータ回路INVを構成する半導体装置PKG1の構成例について説明する。図2は、図1に示す半導体装置の外観を示す斜視図である。また、図3は、図2に示す半導体装置の裏面側を示す平面図である。また、図4は、図3のA−A線に沿った断面図である。また、図5は、図3に示すセラミック基板の上面側のレイアウトを示す平面図である。また、図6は、図5に示す半導体装置が構成する回路を模式的に示す説明図である。また、図7は、図5に示す半導体チップの周辺を拡大して示す拡大平面図である。また、図8は図7のA−A線に沿った拡大断面図である。
<Semiconductor device>
Next, a configuration example of the semiconductor device PKG1 configuring the inverter circuit INV illustrated in FIG. 1 will be described. FIG. 2 is a perspective view showing an appearance of the semiconductor device shown in FIG. FIG. 3 is a plan view showing the back side of the semiconductor device shown in FIG. 4 is a cross-sectional view taken along the line AA in FIG. FIG. 5 is a plan view showing a layout on the upper surface side of the ceramic substrate shown in FIG. FIG. 6 is an explanatory diagram schematically showing a circuit configured by the semiconductor device shown in FIG. FIG. 7 is an enlarged plan view showing the periphery of the semiconductor chip shown in FIG. FIG. 8 is an enlarged sectional view taken along line AA in FIG.

なお、図7では、図5に示す複数の半導体チップCPの代表例として、トランジスタを備える半導体チップCPと、ダイオードを備える半導体チップCDをそれぞれ1個ずつ示している。図5に示す半導体チップCTHおよび半導体チップCTLは同じ構造を有するので、代表的に1個の半導体チップCPを示している。   In FIG. 7, as a representative example of the plurality of semiconductor chips CP illustrated in FIG. 5, one semiconductor chip CP including a transistor and one semiconductor chip CD including a diode are illustrated. Since the semiconductor chip CTH and the semiconductor chip CTL shown in FIG. 5 have the same structure, one semiconductor chip CP is typically shown.

図1に示すインバータ回路INVを構成する本実施の形態の半導体装置PKG1は、図2に示すように、上面側が蓋材(キャップ、カバー部材)CVに覆われている。蓋材CVは、図4に示すように複数の半導体チップCPを収容する収容部(ポケット)PKTを有する。蓋材CVは、複数の半導体チップCPが搭載される基材であるセラミック基板CS1の上面CStを覆っている。セラミック基板CS1の上面CStの周縁部は、接着材BD1を介して蓋材CVと接着固定されている。蓋材CVは、樹脂製の部材であって、例えば、エポキシ系の樹脂などから成る。   As shown in FIG. 2, the semiconductor device PKG1 of the present embodiment that constitutes the inverter circuit INV shown in FIG. 1 is covered with a cover material (cap, cover member) CV on the upper surface side. As shown in FIG. 4, the lid member CV has a housing part (pocket) PKT that houses a plurality of semiconductor chips CP. The lid member CV covers the upper surface CSt of the ceramic substrate CS1, which is a base material on which a plurality of semiconductor chips CP are mounted. The peripheral edge portion of the upper surface CSt of the ceramic substrate CS1 is bonded and fixed to the lid material CV via the adhesive material BD1. The lid member CV is a resin member, and is made of, for example, an epoxy resin.

また、蓋材CVの上面CVtからは、複数の端子LDが突出している。蓋材CVの上面CVtには複数の貫通孔THLが形成され、複数の端子LDは複数の貫通孔THLにそれぞれ挿入されている。複数の端子LDのそれぞれは、半導体装置PKG1の外部端子であって、図5に示すセラミック基板CS1上に搭載された複数の半導体チップCPと電気的に接続されている。   A plurality of terminals LD protrude from the upper surface CVt of the lid member CV. A plurality of through holes THL are formed in the upper surface CVt of the lid member CV, and the plurality of terminals LD are inserted into the plurality of through holes THL, respectively. Each of the plurality of terminals LD is an external terminal of the semiconductor device PKG1, and is electrically connected to the plurality of semiconductor chips CP mounted on the ceramic substrate CS1 shown in FIG.

また、図3に示すように、半導体装置PKG1の蓋材CVは、平面視において、X方向に沿って延びる辺CVs1、辺CVs1の反対側に位置する辺CVs2、X方向に対して直交するY方向に沿って延びる辺CVs3、および辺CVs3の反対側に位置する辺CVs4を有する。また、辺CVs1および辺CVs2は、辺CVs3および辺CVs4と比較して相対的に長い。なお、図3に示す例では、半導体装置PKG1の蓋材CVは、平面視において、四角形(図3では長方形)を成す。ただし、半導体装置PKG1の平面形状は四角形以外に種々の変形例がある。例えば、四角形の四つの角部のうち、辺CVs3と辺CVs1とが交差する交点の部分をX方向およびY方向に対して斜めにカットして、五角形にしても良い。この場合、斜めにカットされた角部は、半導体装置PKGの向きを識別するためのアライメントマークとして利用可能になる。   Further, as shown in FIG. 3, the lid member CV of the semiconductor device PKG1 has a side CVs1 extending along the X direction in the plan view, a side CVs2 positioned on the opposite side of the side CVs1, and Y orthogonal to the X direction. A side CVs3 extending along the direction and a side CVs4 located on the opposite side of the side CVs3 are included. Further, the side CVs1 and the side CVs2 are relatively longer than the side CVs3 and the side CVs4. In the example illustrated in FIG. 3, the lid member CV of the semiconductor device PKG1 has a quadrangular shape (rectangular shape in FIG. 3) in plan view. However, the planar shape of the semiconductor device PKG1 has various modifications other than a quadrangle. For example, among the four corners of a quadrilateral, an intersection portion where the side CVs3 and the side CVs1 intersect may be cut obliquely with respect to the X direction and the Y direction to form a pentagon. In this case, the diagonally cut corners can be used as alignment marks for identifying the orientation of the semiconductor device PKG.

また、図2および図3に示すように、蓋材CVは、半導体装置PKG1を例えばヒートシンクや支持部材などに固定するための取り付け部分である、フランジ部FLGを有している。図3に示すように、フランジ部FLGは、長手方向であるX方向に沿って、収容部PKTの両隣に設けられている。また、複数のフランジ部FLGの中央には、それぞれ貫通孔THHが形成されている。貫通孔THHは、蓋材CVのフランジ部FLGを厚さ方向に貫通する開口部であって、半導体装置PKG1を例えばヒートシンクや支持部材などに固定する際には、貫通孔THHにネジ(図示は省略)を挿入することにより、半導体装置PKG1をネジにより固定することができる。   As shown in FIGS. 2 and 3, the lid member CV has a flange portion FLG that is an attachment portion for fixing the semiconductor device PKG1 to, for example, a heat sink or a support member. As shown in FIG. 3, the flange portion FLG is provided on both sides of the accommodating portion PKT along the X direction which is the longitudinal direction. In addition, through holes THH are formed at the centers of the plurality of flange portions FLG, respectively. The through hole THH is an opening that penetrates the flange portion FLG of the lid material CV in the thickness direction. When the semiconductor device PKG1 is fixed to, for example, a heat sink or a support member, a screw (not shown) is inserted into the through hole THH. The semiconductor device PKG1 can be fixed with screws by inserting (omitted).

図3に示す例では、長手方向であるX方向に延びる仮想線VL1に沿って、二個の貫通孔THHが形成されている。ただし、貫通孔THHの形成位置には、種々の変形例がある。例えば、図3に示す蓋材CVの下面CVb側の四つの角部のそれぞれに、貫通孔THHを設けても良い。   In the example shown in FIG. 3, two through holes THH are formed along an imaginary line VL1 extending in the X direction, which is the longitudinal direction. However, there are various modifications in the positions where the through holes THH are formed. For example, you may provide the through-hole THH in each of the four corner | angular parts by the side of the lower surface CVb of the cover material CV shown in FIG.

次に、半導体装置PKG1の蓋材CVの収容部PKTに収容されるセラミック基板CS1およびセラミック基板CS1に固定される各部材について説明する。   Next, the ceramic substrate CS1 accommodated in the accommodating part PKT of the lid member CV of the semiconductor device PKG1 and each member fixed to the ceramic substrate CS1 will be described.

図4および図5に示すように、半導体装置PKG1は、セラミック基板CS1と、セラミック基板CS1の上面CStに形成された複数の金属パターンMPと、複数の金属パターンMPのうちの一部に搭載される複数の半導体チップCPと、を有する。   As shown in FIGS. 4 and 5, the semiconductor device PKG1 is mounted on the ceramic substrate CS1, the plurality of metal patterns MP formed on the upper surface CSt of the ceramic substrate CS1, and a part of the plurality of metal patterns MP. A plurality of semiconductor chips CP.

図4に示すようにセラミック基板CS1は、複数の半導体チップCPが搭載されるチップ搭載面である上面CStと、上面CStの反対側に位置する下面CSbとを有する。セラミック基板CS1は、セラミック材料から成り、本実施の形態では、例えばアルミナ(酸化アルミニウム:Al)からなる板状の部材である。 As shown in FIG. 4, the ceramic substrate CS1 has an upper surface CSt which is a chip mounting surface on which a plurality of semiconductor chips CP are mounted, and a lower surface CSb located on the opposite side of the upper surface CSt. The ceramic substrate CS1 is made of a ceramic material, and is a plate-like member made of, for example, alumina (aluminum oxide: Al 2 O 3 ) in the present embodiment.

図5に示すように、セラミック基板CS1は、平面視において、X方向に沿って延びる基板辺CSs1、基板辺CSs1の反対側に位置する基板辺CSs2、X方向に対して直交するY方向に沿って延びる基板辺CSs3、および基板辺CSs3の反対側に位置する基板辺CSs4を有する。また、基板辺CSs1および基板辺CSs2は、基板辺CSs3および基板辺CSs4と比較して相対的に長い。図5に示す例では、セラミック基板CS1は、平面視において、四角形(図5では長方形)を成す。   As shown in FIG. 5, the ceramic substrate CS1 has a substrate side CSs1 extending along the X direction, a substrate side CSs2 positioned on the opposite side of the substrate side CSs1, and a Y direction perpendicular to the X direction in plan view. And a substrate side CSs4 located on the opposite side of the substrate side CSs3. Further, the substrate side CSs1 and the substrate side CSs2 are relatively longer than the substrate side CSs3 and the substrate side CSs4. In the example shown in FIG. 5, the ceramic substrate CS1 has a quadrangular shape (rectangular shape in FIG. 5) in plan view.

また、図4に示すように、セラミック基板CS1の上面CStおよび下面CSbには、複数の金属パターンMPが接合されている。これら複数の金属パターンMPは、例えば、銅(Cu)膜の表面にニッケル(Ni)膜が積層された積層膜であって、セラミック基板CS1の上面CStまたは下面CSbに銅膜が直接的に接合されている。アルミナなどのセラミックからなる板材に銅膜を接合する場合、共晶反応を利用して接合する。また、銅膜の表面にニッケル膜を積層する方法は、例えば電気メッキ法を用いることができる。   Further, as shown in FIG. 4, a plurality of metal patterns MP are bonded to the upper surface CSt and the lower surface CSb of the ceramic substrate CS1. The plurality of metal patterns MP are, for example, a laminated film in which a nickel (Ni) film is laminated on the surface of a copper (Cu) film, and the copper film is directly bonded to the upper surface CSt or the lower surface CSb of the ceramic substrate CS1. Has been. When a copper film is bonded to a plate made of ceramic such as alumina, the bonding is performed using a eutectic reaction. Further, as a method of laminating a nickel film on the surface of the copper film, for example, an electroplating method can be used.

また、セラミック基板CS1の下面CSb側に掲載された金属パターンMPBは放熱用の端子であって、セラミック基板CS1の下面CSbの大部分を覆うように一様に形成されている。   The metal pattern MPB posted on the lower surface CSb side of the ceramic substrate CS1 is a terminal for heat dissipation, and is uniformly formed so as to cover most of the lower surface CSb of the ceramic substrate CS1.

また、セラミック基板CS1の上面CStに形成された複数の金属パターンMPは、図6に示すように、インバータ回路INVの配線経路の一部を構成する配線パターンであって、互いに分離された複数の金属パターンMPが形成されている。   Further, as shown in FIG. 6, the plurality of metal patterns MP formed on the upper surface CSt of the ceramic substrate CS1 are wiring patterns constituting a part of the wiring path of the inverter circuit INV, and are separated from each other. A metal pattern MP is formed.

複数の金属パターンMPは、ハイサイド側の電位E1が供給される金属パターンMPHを有する。また、複数の金属パターンMPは、電位E1よりも低いローサイド側の電位E2が供給される金属パターンMPLを有する。また、複数の金属パターンMPは、トランジスタQ1のスイッチング動作に応じて変化する電位が供給される金属パターンMPU、MPV、MPWを有する。また、複数の金属パターンMPは、端子LDを接続するための複数の金属パターンMPTを有する。   The plurality of metal patterns MP have a metal pattern MPH to which a high-side potential E1 is supplied. The plurality of metal patterns MP have metal patterns MPL to which a low-side potential E2 lower than the potential E1 is supplied. The plurality of metal patterns MP have metal patterns MPU, MPV, and MPW to which a potential that changes according to the switching operation of the transistor Q1 is supplied. The plurality of metal patterns MP have a plurality of metal patterns MPT for connecting the terminals LD.

金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれには、上記したように、120度の位相差を持つようにそれぞれ異なる電位が供給される。このため、金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれは、互いに分離した金属パターンMPである。また、金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれは、図5に示すように、出力用の端子LDが接続された金属パターンMPTと複数のワイヤBWを介して接続されている。このため、図1に示すU相、V相、およびW相の出力用の伝送経路には、図5に示すワイヤBWが含まれる。   Each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW is supplied with a different potential so as to have a phase difference of 120 degrees as described above. For this reason, each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW is a metal pattern MP separated from each other. Each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW is connected to the metal pattern MPT to which the output terminal LD is connected via a plurality of wires BW, as shown in FIG. Therefore, the U-phase, V-phase, and W-phase output transmission paths shown in FIG. 1 include the wire BW shown in FIG.

また、金属パターンMPHには、U相、V相、W相(図1参照)のそれぞれにおいて、同じ電位(ハイサイド側の電位E1(図6参照))が供給される。したがって、金属パターンMPHは、U相、V相、およびW相の区別に対応して分割されず、一体に形成されている。言い換えれば、ハイサイド側の電位E1はワイヤBWを介さずに複数のトランジスタQ1のそれぞれに供給される。なお、図5に対する変形例としては、図5に示す金属パターンMPHを、U相、V相、およびW相の区別に対応して分割し、分割された金属パターンMPHのそれぞれを、ワイヤなどの導体パターン(図示は省略)を介して電気的に接続する方法も考えられる。しかし、本実施の形態のように、同じ電位が供給される金属パターンMPHを分割せず、一体に形成することで、電位E1の供給経路のインピーダンスを低減することができる。このため、電位E1の供給経路の電気的特性を向上させることができる。また、金属パターンMPHにおける発熱量を低減することができる。   In addition, the same potential (high-side potential E1 (see FIG. 6)) is supplied to the metal pattern MPH in each of the U phase, the V phase, and the W phase (see FIG. 1). Therefore, the metal pattern MPH is not divided in accordance with the distinction between the U phase, the V phase, and the W phase, and is integrally formed. In other words, the high-side potential E1 is supplied to each of the plurality of transistors Q1 without passing through the wire BW. As a modification to FIG. 5, the metal pattern MPH shown in FIG. 5 is divided according to the distinction between the U phase, the V phase, and the W phase, and each of the divided metal patterns MPH is made of a wire or the like. A method of electrically connecting via a conductor pattern (not shown) is also conceivable. However, the impedance of the supply path of the potential E1 can be reduced by forming the metal pattern MPH to which the same potential is supplied, without being divided, as in the present embodiment, and forming them integrally. For this reason, the electrical characteristics of the supply path of the potential E1 can be improved. In addition, the amount of heat generated in the metal pattern MPH can be reduced.

また、金属パターンMPLには、U相、V相、W相(図1参照)のそれぞれにおいて、同じ電位(ローサイド側の電位E2(図6参照))が供給される。したがって、金属パターンMPLは、U相、V相、およびW相の区別に対応して分割されず、一体に形成されている。なお、図5に対する変形例としては、図5に示す金属パターンMPLを、U相、V相、およびW相の区別に対応して分割し、分割された金属パターンMPLのそれぞれを、ワイヤなどの導電性部材(図示は省略)を介して電気的に接続する方法も考えられる。ローサイド側の金属パターンMPLの場合、図5に示すように、半導体チップCPと金属パターンMPLとは、ワイヤBWを介して電気的に接続される。したがって、金属パターンMPLを分割せず、一体に形成しても、電位E2(図6参照)の供給経路からワイヤBWは排除されていない。しかし、金属パターンMPLを分割せず、一体に形成することで、電位E2の供給経路を安定させることはできるので、電位E2の供給経路の電気的特性を向上させることができる。また、金属パターンMPLに還流電流が流れる場合における発熱量を低減することができる。   Further, the same potential (low-side potential E2 (see FIG. 6)) is supplied to the metal pattern MPL in each of the U phase, the V phase, and the W phase (see FIG. 1). Therefore, the metal pattern MPL is not divided according to the distinction between the U phase, the V phase, and the W phase, and is formed integrally. As a modification to FIG. 5, the metal pattern MPL shown in FIG. 5 is divided in accordance with the distinction between the U phase, the V phase, and the W phase, and each of the divided metal patterns MPL is made of a wire or the like. A method of electrically connecting via a conductive member (not shown) is also conceivable. In the case of the low-side metal pattern MPL, as shown in FIG. 5, the semiconductor chip CP and the metal pattern MPL are electrically connected via a wire BW. Therefore, even if the metal pattern MPL is formed without being divided, the wire BW is not excluded from the supply path of the potential E2 (see FIG. 6). However, by forming the metal pattern MPL integrally without dividing, the supply path of the potential E2 can be stabilized, so that the electrical characteristics of the supply path of the potential E2 can be improved. In addition, the amount of heat generated when a reflux current flows through the metal pattern MPL can be reduced.

また、図5に示すように、上記した複数の金属パターンMPのうち、複数の金属パターンMPTにはそれぞれ一つの端子LDが搭載されている。また、複数の金属パターンMPのうち、金属パターンMPHおよび金属パターンMPLには、それぞれ複数の端子LDが搭載されている。図5に示す例では、金属パターンMPHおよび金属パターンMPLには、セラミック基板CS1の上面CStが有する四辺のうち、短辺である基板辺CSs3および基板辺CSs4に沿って、それぞれ一つずつ端子LDが搭載されている。   Moreover, as shown in FIG. 5, one terminal LD is mounted in each of the plurality of metal patterns MPT among the plurality of metal patterns MP described above. Of the plurality of metal patterns MP, the metal pattern MPH and the metal pattern MPL are each provided with a plurality of terminals LD. In the example shown in FIG. 5, each of the metal pattern MPH and the metal pattern MPL includes terminals LD one by one along the substrate side CSs3 and the substrate side CSs4 which are short sides among the four sides of the upper surface CSt of the ceramic substrate CS1. Is installed.

また、図5に示すように、上記した複数の金属パターンMPのうち、金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれには、端子LDは直接的には接続されていない。言い換えれば、金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれには、端子LDは搭載されていない。金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれは、複数のワイヤBWを介して金属パターンMPTと電気的に接続されている。つまり、金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれは、複数のワイヤBWおよび金属パターンMPTを介して端子LDと電気的に接続されている。   Further, as shown in FIG. 5, the terminal LD is not directly connected to each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW among the plurality of metal patterns MP described above. In other words, the terminal LD is not mounted on each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW. Each of metal pattern MPU, metal pattern MPV, and metal pattern MPW is electrically connected to metal pattern MPT via a plurality of wires BW. That is, each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW is electrically connected to the terminal LD via the plurality of wires BW and the metal pattern MPT.

また、複数の金属パターンMPのうちの一部(金属パターンMPH、金属パターンMPU、金属パターンMPV、および金属パターンMPW)には、複数の半導体チップCPが搭載されている。図5に示す複数の半導体チップCPのうちの一部は、図6に示すトランジスタQ1が形成されたスイッチング素子用の半導体チップCTH、CTLである。本実施の形態では、半導体チップCTH、CTLには、それぞれIGBTが形成されている。また、図5に示す複数の半導体チップCPのうちの他の一部は、図6に示すダイオードD1が形成された、半導体チップCDである。   A plurality of semiconductor chips CP are mounted on some of the plurality of metal patterns MP (metal pattern MPH, metal pattern MPU, metal pattern MPV, and metal pattern MPW). Some of the plurality of semiconductor chips CP shown in FIG. 5 are semiconductor chips CTH and CTL for switching elements in which the transistor Q1 shown in FIG. 6 is formed. In the present embodiment, IGBTs are formed in the semiconductor chips CTH and CTL, respectively. Further, another part of the plurality of semiconductor chips CP shown in FIG. 5 is a semiconductor chip CD in which the diode D1 shown in FIG. 6 is formed.

上記したように、インバータ回路INV(図6参照)の出力側にインダクタンスが接続される場合には、スイッチング素子であるトランジスタQ1(図6)と逆並列でダイオードD1(図6参照)が接続される。MOSFETのように、一つの半導体チップCPにスイッチング動作を行うトランジスタQ1の回路と還流電流を流すダイオードD1の回路とを内蔵させる場合には、スイッチング素子の数に応じて1個の半導体チップCPを搭載すれば良い。しかし、トランジスタQ1としてIGBTを利用する場合、ダイオードD1用の半導体チップCPを別に容易する必要がある。このため、本実施の形態では、図5に示すように、ハイサイド用のトランジスタを備える半導体チップCTH、およびローサイド用のトランジスタを備える半導体チップCTLのそれぞれに対して、ダイオードを備える半導体チップCDがセットで搭載される。   As described above, when the inductance is connected to the output side of the inverter circuit INV (see FIG. 6), the diode D1 (see FIG. 6) is connected in reverse parallel to the transistor Q1 (FIG. 6) as a switching element. The When the circuit of the transistor Q1 that performs the switching operation and the circuit of the diode D1 that flows the reflux current are built in one semiconductor chip CP like a MOSFET, one semiconductor chip CP is formed according to the number of switching elements. It only has to be installed. However, when the IGBT is used as the transistor Q1, it is necessary to make the semiconductor chip CP for the diode D1 easy. Therefore, in the present embodiment, as shown in FIG. 5, for each of the semiconductor chip CTH including a high-side transistor and the semiconductor chip CTL including a low-side transistor, a semiconductor chip CD including a diode is provided. Mounted in a set.

図7および図8に示すように複数の半導体チップCPのそれぞれは、上面CPtおよび上面の反対側に位置する下面CPb(図8参照)を有する。トランジスタを備える半導体チップCTHおよび半導体チップCTLは、上面CPtにおいて露出するエミッタ用の電極PDEおよびゲート用の電極PDGを有する。また、トランジスタを備える半導体チップCTHおよび半導体チップCTLは、下面CPbにコレクタ用の電極PDCを有する。コレクタ用の電極PDCは、接合材である半田SDを介して金属パターンMPの上面MPmに固定されている。また、コレクタ用の電極PDCは、半田SDを介して金属パターンMPと電気的に接続されている。   As shown in FIGS. 7 and 8, each of the plurality of semiconductor chips CP has an upper surface CPt and a lower surface CPb (see FIG. 8) located on the opposite side of the upper surface. The semiconductor chip CTH and the semiconductor chip CTL each including a transistor have an emitter electrode PDE and a gate electrode PDG that are exposed on the upper surface CPt. In addition, the semiconductor chip CTH and the semiconductor chip CTL including transistors have a collector electrode PDC on the lower surface CPb. The collector electrode PDC is fixed to the upper surface MPm of the metal pattern MP via the solder SD which is a bonding material. Further, the collector electrode PDC is electrically connected to the metal pattern MP through the solder SD.

詳しくは、図5に示すように、金属パターンMPHには、複数の半導体チップCTHが搭載されている。言い換えれば、一体に形成された金属パターンMPHには、複数の半導体チップCTHのコレクタ用の電極PDC(図8参照)が電気的に接続されている。また、金属パターンMPU、金属パターンMPV、および金属パターンMPWには、それぞれ半導体チップCTLが1個ずつ搭載されている。言い換えれば、金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれには、半導体チップCTLのコレクタ用の電極PDC(図8参照)が電気的に接続されている。   Specifically, as shown in FIG. 5, a plurality of semiconductor chips CTH are mounted on the metal pattern MPH. In other words, collector electrodes PDC (see FIG. 8) of the plurality of semiconductor chips CTH are electrically connected to the integrally formed metal pattern MPH. In addition, one semiconductor chip CTL is mounted on each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW. In other words, the collector electrode PDC (see FIG. 8) of the semiconductor chip CTL is electrically connected to each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW.

また、電極PDEには、図5に示すように複数のワイヤBWが接続されている。詳しくは、図5に示すように、ハイサイド用の半導体チップCTHの電極PDE(図7参照)は複数のワイヤBWを介して金属パターンMPU、金属パターンMPV、または金属パターンMPWのいずれかに接続されている。つまり、ハイサイド用の半導体チップCTHの電極PDEは、U相の出力端子UT(図6参照)、V相の出力端子VT(図6参照)、またはW相の出力端子WT(図6参照)のうちのいずれかに接続されている。また、図5に示すように、ローサイド用の半導体チップCTLの電極PDE(図7参照)は複数のワイヤBWを介して金属パターンMPLに接続されている。つまり、ローサイド用の半導体チップCTLの電極PDEは、図6に示すローサイド用の電位E2が供給される端子LTと電気的に接続されている。   Further, a plurality of wires BW are connected to the electrode PDE as shown in FIG. Specifically, as shown in FIG. 5, the electrode PDE (see FIG. 7) of the high-side semiconductor chip CTH is connected to one of the metal pattern MPU, the metal pattern MPV, or the metal pattern MPW via a plurality of wires BW. Has been. That is, the electrode PDE of the high-side semiconductor chip CTH is the U-phase output terminal UT (see FIG. 6), the V-phase output terminal VT (see FIG. 6), or the W-phase output terminal WT (see FIG. 6). Connected to one of them. Further, as shown in FIG. 5, the electrode PDE (see FIG. 7) of the low-side semiconductor chip CTL is connected to the metal pattern MPL via a plurality of wires BW. That is, the electrode PDE of the low-side semiconductor chip CTL is electrically connected to the terminal LT to which the low-side potential E2 shown in FIG. 6 is supplied.

また、電極PDGには、図5に示すように一本のワイヤBWが接続されている。詳しくは、図5に示すように、ハイサイド用の半導体チップCTHおよびローサイド用の半導体チップCTLのそれぞれが有する電極PDG(図7参照)のそれぞれは、ワイヤBWを介して金属パターンMPTと電気的に接続されている。金属パターンMPTからは、半導体チップCTHおよび半導体チップCTLが有するトランジスタQ1(図6参照)のスイッチング動作を駆動する駆動信号が供給される。   Further, as shown in FIG. 5, one wire BW is connected to the electrode PDG. Specifically, as shown in FIG. 5, each of the electrodes PDG (see FIG. 7) included in each of the high-side semiconductor chip CTH and the low-side semiconductor chip CTL is electrically connected to the metal pattern MPT via the wire BW. It is connected to the. From the metal pattern MPT, a drive signal for driving the switching operation of the semiconductor chip CTH and the transistor Q1 (see FIG. 6) included in the semiconductor chip CTL is supplied.

また、図7および図8に示すようにダイオードを備える半導体チップCDは、上面CPtにおいて露出するアノードの電極PDAを有する。また、図8に示すように、半導体チップCDは、下面CPbにカソードの電極PDKを有する。カソードの電極PDKは、接合材である半田SDを介して金属パターンMPの上面MPmに固定されている。また、カソードの電極PDKは、半田SDを介して金属パターンMPと電気的に接続されている。   Further, as shown in FIGS. 7 and 8, the semiconductor chip CD including a diode has an anode electrode PDA exposed on the upper surface CPt. As shown in FIG. 8, the semiconductor chip CD has a cathode electrode PDK on the lower surface CPb. The cathode electrode PDK is fixed to the upper surface MPm of the metal pattern MP through the solder SD which is a bonding material. The cathode electrode PDK is electrically connected to the metal pattern MP through the solder SD.

詳しくは、図5に示すように、金属パターンMPHには、複数の半導体チップCDが搭載されている。言い換えれば、一体に形成された金属パターンMPHには、複数の半導体チップCDのカソードの電極PDK(図8参照)が電気的に接続されている。また、金属パターンMPU、金属パターンMPV、および金属パターンMPWには、それぞれ半導体チップCDが1個ずつ搭載されている。言い換えれば、金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれには、半導体チップCDのカソードの電極PDK(図8参照)が電気的に接続されている。   Specifically, as shown in FIG. 5, a plurality of semiconductor chips CD are mounted on the metal pattern MPH. In other words, cathode electrodes PDK (see FIG. 8) of the plurality of semiconductor chips CD are electrically connected to the integrally formed metal pattern MPH. In addition, one semiconductor chip CD is mounted on each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW. In other words, a cathode electrode PDK (see FIG. 8) of the semiconductor chip CD is electrically connected to each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW.

また、電極PDAには、図5に示すように複数のワイヤBWが接続されている。詳しくは、図5に示すように、ハイサイド用の半導体チップCDの電極PDA(図7参照)は、複数のワイヤBWを介して金属パターンMPU、金属パターンMPV、または金属パターンMPWのいずれかに接続されている。また、ハイサイド用の半導体チップCDの電極PDA(図7参照)は、複数のワイヤBWを介して出力用の金属パターンMPTにも接続されている。つまり、ハイサイド用の半導体チップCDの電極PDAは、U相の出力端子UT(図6参照)、V相の出力端子VT(図6参照)、またはW相の出力端子WT(図6参照)のうちのいずれかに接続されている。また、図5に示すように、ローサイド用の半導体チップCDの電極PDA(図7参照)は、複数のワイヤBWを介して金属パターンMPLに接続されている。つまり、ローサイド用の半導体チップCDの電極PDAは、図6に示すローサイド用の電位E2が供給される端子LTと電気的に接続されている。   In addition, a plurality of wires BW are connected to the electrode PDA as shown in FIG. Specifically, as shown in FIG. 5, the electrode PDA (see FIG. 7) of the high-side semiconductor chip CD is connected to any one of the metal pattern MPU, the metal pattern MPV, or the metal pattern MPW via a plurality of wires BW. It is connected. The electrode PDA (see FIG. 7) of the high-side semiconductor chip CD is also connected to the output metal pattern MPT via a plurality of wires BW. That is, the electrode PDA of the high-side semiconductor chip CD is a U-phase output terminal UT (see FIG. 6), a V-phase output terminal VT (see FIG. 6), or a W-phase output terminal WT (see FIG. 6). Connected to one of them. Further, as shown in FIG. 5, the electrode PDA (see FIG. 7) of the low-side semiconductor chip CD is connected to the metal pattern MPL via a plurality of wires BW. That is, the electrode PDA of the low-side semiconductor chip CD is electrically connected to the terminal LT to which the low-side potential E2 shown in FIG. 6 is supplied.

図5に示す複数のワイヤBWは、金属ワイヤであって、本実施の形態では例えばアルミニウムから成る。ただし、ワイヤBWの材料には種々の変形例があって、アルミニウムの他、金、あるいは銅を用いることもできる。   The plurality of wires BW shown in FIG. 5 are metal wires, and are made of, for example, aluminum in the present embodiment. However, there are various modifications to the material of the wire BW, and gold or copper can be used in addition to aluminum.

また、図4に示すように、蓋材CVとセラミック基板CS1との間の空間には、封止材MGが充填されている。複数の半導体チップCPおよび複数のワイヤBWのそれぞれは、この封止材MGにより封止されている。封止材MGは、半導体チップCP、ワイヤBWおよび端子LDの一部を保護する部材である。封止用の部材としては、例えばエポキシ樹脂など、加熱することで硬化し、ある程度の強度が確保できる樹脂材料を用いる方法がある。しかし、封止材MGが硬化すると、半導体装置PKG1に温度サイクル負荷が印加された時にセラミック基板CS1と封止材MGの線膨張係数の差に起因して、半導体装置PKG1の内部に応力が発生する。そこで、本実施の形態では、エポキシ樹脂よりも柔らかい樹脂材料を用いて封止材MGを形成している。詳しくは、本実施の形態では、封止材MGは、シロキサン結合による主骨格を持つ、高分子化合物である、シリコーン樹脂である。   Further, as shown in FIG. 4, the space between the lid material CV and the ceramic substrate CS1 is filled with a sealing material MG. Each of the plurality of semiconductor chips CP and the plurality of wires BW is sealed with the sealing material MG. The sealing material MG is a member that protects part of the semiconductor chip CP, the wire BW, and the terminal LD. As a sealing member, for example, there is a method of using a resin material that can be cured by heating and ensure a certain degree of strength, such as an epoxy resin. However, when the sealing material MG is cured, stress is generated inside the semiconductor device PKG1 due to a difference in linear expansion coefficient between the ceramic substrate CS1 and the sealing material MG when a temperature cycle load is applied to the semiconductor device PKG1. To do. Therefore, in the present embodiment, the sealing material MG is formed using a resin material softer than the epoxy resin. Specifically, in the present embodiment, the sealing material MG is a silicone resin that is a high molecular compound having a main skeleton formed by a siloxane bond.

シリコーン樹脂は、エポキシ樹脂よりも柔らかい特性を有する。半導体装置PKG1に温度サイクル負荷が印加された時に発生した応力は、シリコーン樹脂である封止材MGが変形することにより、低減される。   Silicone resins have softer properties than epoxy resins. The stress generated when the temperature cycle load is applied to the semiconductor device PKG1 is reduced by the deformation of the sealing material MG that is a silicone resin.

<金属パターンの平面形状>
次に、図5に示す金属パターンの平面形状の詳細について説明する。図9は、図5に示す複数の金属パターンのレイアウトを示す平面図である。また、図14は、図9に対する検討例を示す平面図である。また、図10は図9に対する変形例を示す平面図である。
<Planar shape of metal pattern>
Next, the details of the planar shape of the metal pattern shown in FIG. 5 will be described. FIG. 9 is a plan view showing a layout of a plurality of metal patterns shown in FIG. FIG. 14 is a plan view showing a study example for FIG. FIG. 10 is a plan view showing a modification to FIG.

なお、図9、図10、および図14では、金属パターンから露出する領域の範囲を判りやすくするため、領域EX1および領域EX2に模様を付して示している。また、図9および図10では、領域EX1や領域EX2と対向する、凸部や凹部の範囲を明示するため、凸部や凹部を囲む部分にハッチングを付して示している。凸部および凹部は、図9および図10において、ハッチングを付して示す部分に囲まれた領域である。   In FIG. 9, FIG. 10, and FIG. 14, the region EX1 and the region EX2 are shown with patterns in order to make the range of the region exposed from the metal pattern easy to understand. Further, in FIGS. 9 and 10, in order to clearly indicate the range of the convex portion and the concave portion facing the region EX1 and the region EX2, the portions surrounding the convex portion and the concave portion are hatched. A convex part and a recessed part are the area | regions surrounded by the part which attached | subjects and hatches in FIG.9 and FIG.10.

まず、上記したように本実施の形態では、ハイサイド側の電位E1(図6参照)が供給される金属パターンMPH(図9参照)は、U相、V相、あるいはW相の区分に応じて分割されず、一体に形成される。また、ローサイド側の電位E2(図6参照)が供給される金属パターンMPL(図9参照)も、金属パターンMPHと同様に、U相、V相、あるいはW相の区分に応じて分割されず、一体に形成される。また、金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれには、上記したように、120度の位相差を持つようにそれぞれ異なる電位が供給される。このため、金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれは、U相、V相、あるいはW相の区分に応じて分割されている。   First, as described above, in the present embodiment, the metal pattern MPH (see FIG. 9) to which the high-side potential E1 (see FIG. 6) is supplied corresponds to the division of the U phase, the V phase, or the W phase. They are not divided and formed as one piece. Similarly to the metal pattern MPH, the metal pattern MPL (see FIG. 9) to which the low-side potential E2 (see FIG. 6) is supplied is not divided according to the division of the U phase, the V phase, or the W phase. , Integrally formed. Also, different potentials are supplied to the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW so as to have a phase difference of 120 degrees as described above. For this reason, each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW is divided according to the division of the U phase, the V phase, or the W phase.

ここで、上記の構成を単純化した場合、複数の金属パターンMPのレイアウトおよび平面形状は、図14に示す検討例のセラミック基板CSh1のようになる。セラミック基板CSh1は、平面視において複数の金属パターンMPのそれぞれが有する各辺のうち、X方向に沿って延びる各辺が、直線的に延びる点で図9に示す本実施の形態のセラミック基板CS1と相違する。   Here, when the above configuration is simplified, the layout and planar shape of the plurality of metal patterns MP are as in the ceramic substrate CSh1 in the examination example shown in FIG. The ceramic substrate CSh1 of the present embodiment shown in FIG. 9 is that the sides extending along the X direction out of the sides of each of the plurality of metal patterns MP in a plan view extend linearly. Is different.

セラミック基板CSh1の場合にも、金属パターンMPHは、U相、V相、あるいはW相の区分に応じて分割されず、一体に形成されるので、図9に示すセラミック基板CS1と同様に、電位E1(図6参照)の供給経路の電気的特性を向上させることができる。また、金属パターンMPHにおける発熱量を低減することができる。   Also in the case of the ceramic substrate CSh1, the metal pattern MPH is not divided according to the division of the U phase, the V phase, or the W phase, and is formed integrally, so that the potential is similar to the ceramic substrate CS1 shown in FIG. The electrical characteristics of the supply path of E1 (see FIG. 6) can be improved. In addition, the amount of heat generated in the metal pattern MPH can be reduced.

ところが、本願発明者が検討した結果、セラミック基板CSh1を用いた半導体装置の場合、半導体装置の取り付け時の外力に起因してセラミック基板CSh1にクラックが生じることが判った。詳しくは、上記クラックは、図14に示す金属パターンMPHと金属パターンMPU、MPV、MPWとの間に設けられた、金属パターンMPから露出した領域EX1において発生し易く、金属パターンMPHの辺MHs1に沿って延びるように進展することが判った。また、上記クラックは、図14に示す金属パターンMPLと金属パターンMPU、MPV、MPWとの間に設けられた、金属パターンMPから露出した領域EX2において発生し易く、金属パターンMPHの辺MHs2に沿って延びるように進展することが判った。   However, as a result of examination by the inventors of the present application, it has been found that in the case of a semiconductor device using the ceramic substrate CSh1, a crack is generated in the ceramic substrate CSh1 due to an external force when the semiconductor device is attached. Specifically, the crack is likely to occur in a region EX1 that is provided between the metal pattern MPH and the metal patterns MPU, MPV, and MPW shown in FIG. 14 and is exposed from the metal pattern MP, and is generated in the side MHs1 of the metal pattern MPH. It turns out that it progresses so that it may extend along. Further, the crack is likely to occur in a region EX2 provided between the metal pattern MPL and the metal patterns MPU, MPV, and MPW shown in FIG. 14 and exposed from the metal pattern MP, along the side MHs2 of the metal pattern MPH. It turns out that it progresses so that it may extend.

一方、図14に示す、金属パターンMPから露出する領域のうち、Y方向に沿って延びる領域では、上記クラックは発生し難いことが判った。例えば、金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれの間に設けられた領域では、上記クラックは発生し難い。また、図14に示す、金属パターンMPから露出する領域で、かつ、X方向に沿って直線的に延びる領域であっても、金属パターンMPHの辺MHs2と複数の金属パターンMPTの間の領域、および金属パターンMPLの辺MLs1と複数の金属パターンMPTの間の領域では上記クラックは発生し難いことが判った。   On the other hand, it was found that the cracks hardly occur in the region extending along the Y direction among the regions exposed from the metal pattern MP shown in FIG. For example, in the region provided between each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW, the crack is unlikely to occur. Moreover, even if it is the area | region exposed from the metal pattern MP shown in FIG. 14, and is an area | region extended linearly along a X direction, the area | region between edge | side MHs2 of the metal pattern MPH and several metal pattern MPT, In addition, it has been found that the crack is difficult to occur in the region between the side MLs1 of the metal pattern MPL and the plurality of metal patterns MPT.

上記の各知見より、金属パターンMPに覆われず、かつ直線的に延びる領域では上記クラックが発生し易いと考えられる。また、上記直線的に延びる領域の長さが長くなる程、上記クラックが発生し易くなると考えられる。したがって、セラミック基板CSh1のように長辺と短辺を有する基板の場合、長辺(基板辺CSs1および基板辺CSs2)の延在方向(図14ではX方向)に沿って延びる領域において上記クラックの発生を抑制する対策を施すことが好ましい。   From the above findings, it is considered that the crack is likely to occur in a region that is not covered with the metal pattern MP and extends linearly. Further, it is considered that the cracks are more likely to occur as the length of the linearly extending region becomes longer. Therefore, in the case of a substrate having a long side and a short side, such as the ceramic substrate CSh1, the crack is not generated in the region extending along the extending direction (X direction in FIG. 14) of the long sides (the substrate side CSs1 and the substrate side CSs2). It is preferable to take measures to suppress the occurrence.

また、上記したようにX方向に延びる領域でも、基板辺CSs1および基板辺CSs2のうちのいずれかに近い位置ではクラックが生じ難い。したがって、X方向に延びる複数の領域を有する場合には、短辺(基板辺CSs3および基板辺CSs4)の中心を結ぶ中心線(図14に示す仮想線VL1)までの距離が相対的に近い順に上記クラックが発生し易い。すなわち、図14に示す例では、領域EX1で最もクラックが発生し易く、次に領域EX2でクラックが発生し易い。   In addition, even in the region extending in the X direction as described above, cracks are unlikely to occur at positions close to either the substrate side CSs1 or the substrate side CSs2. Therefore, in the case of having a plurality of regions extending in the X direction, the distance to the center line (virtual line VL1 shown in FIG. 14) connecting the centers of the short sides (substrate side CSs3 and substrate side CSs4) is relatively short. The crack is likely to occur. That is, in the example shown in FIG. 14, the crack is most likely to occur in the region EX1, and then the crack is likely to occur in the region EX2.

また、上記クラックは、半導体装置を例えばヒートシンクや支持部材などに固定する際に発生し易い。なお、上記クラックを生じさせる原因となる力としては、半導体装置を例えばネジで固定する際の締め付け力が固定箇所によってバラつくことに起因して生じる力が考えられる。図3に示すように長手方向の両端に固定するための貫通孔THHを設けた場合、上記締め付け力のバラつきに起因する力は主として短辺方向(図14のY方向)に沿って作用する。しかし、上記締め付け力のバラつきが生じると、セラミック基板CSh1を面外方向にひねる力が作用するので、外力の一部は、長辺方向にも作用する。   Further, the crack is likely to occur when the semiconductor device is fixed to, for example, a heat sink or a support member. Note that the force that causes the cracks may be a force that is caused by the fact that the tightening force when the semiconductor device is fixed with, for example, a screw varies depending on the fixing location. When the through holes THH for fixing at both ends in the longitudinal direction are provided as shown in FIG. 3, the force resulting from the variation in the tightening force acts mainly along the short side direction (Y direction in FIG. 14). However, when the variation in the tightening force occurs, a force that twists the ceramic substrate CSh1 in the out-of-plane direction acts, and a part of the external force also acts in the long side direction.

また、図示は省略するが、金属パターンMPHおよび金属パターンMPLのそれぞれを、金属パターンMPU、金属パターンMPV、および金属パターンMPWのようにU相、V相、あるいはW相の区分に応じて分割した場合、領域EX1および領域EX2でも上記クラックは発生し難いことが判った。これを考慮すると、外力が印加された時に、その外力に起因して生じる応力を分散させることで、上記クラックの発生を抑制できると考えられる。   Although not shown, each of the metal pattern MPH and the metal pattern MPL is divided according to the division of the U phase, the V phase, or the W phase, such as the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW. In this case, it was found that the cracks hardly occur in the regions EX1 and EX2. Considering this, it is considered that the occurrence of the cracks can be suppressed by dispersing the stress generated due to the external force when the external force is applied.

そこで、本願発明者は、領域EX1(および領域EX2)における上記クラックの発生を抑制する技術を検討し、本実施の形態の構成を見出した。すなわち、図9に示すように、本実施の形態のセラミック基板CS1に設けられた領域EX1は、金属パターンMPHの延在方向(長手方向)であるX方向に沿って、ジグザグに延びる。領域EX1は、金属パターンMPHと金属パターンMPU、MPV、MPWとの間に設けられ、かつ、金属パターンMPから露出した領域である。領域EX1がジグザグに延びる場合、セラミック基板CS1に外力が印加されても、応力が特定の箇所に集中し難くなる。つまり、応力を分散させることができる。この結果、領域EX1における上記クラックの発生を抑制することができる。   Therefore, the inventor of the present application has studied a technique for suppressing the occurrence of cracks in the region EX1 (and the region EX2), and has found the configuration of the present embodiment. That is, as shown in FIG. 9, the region EX1 provided in the ceramic substrate CS1 of the present embodiment extends in a zigzag manner along the X direction that is the extending direction (longitudinal direction) of the metal pattern MPH. The region EX1 is a region that is provided between the metal pattern MPH and the metal patterns MPU, MPV, and MPW and is exposed from the metal pattern MP. When the region EX1 extends in a zigzag manner, even if an external force is applied to the ceramic substrate CS1, it is difficult for stress to concentrate on a specific location. That is, the stress can be dispersed. As a result, the occurrence of the crack in the region EX1 can be suppressed.

また、図9に示す例では、金属パターンMPLと金属パターンMPU、MPV、MPWとの間に設けられ、かつ、金属パターンMPから露出した領域である領域EX2は、セラミック基板CS1の長手方向であるX方向に沿って、ジグザグに延びる。これにより、領域EX2における上記クラックの発生を抑制することができる。   In the example shown in FIG. 9, the region EX2 that is provided between the metal pattern MPL and the metal patterns MPU, MPV, and MPW and is exposed from the metal pattern MP is the longitudinal direction of the ceramic substrate CS1. It extends zigzag along the X direction. Thereby, generation | occurrence | production of the said crack in area | region EX2 can be suppressed.

上記した「X方向に沿ってジグザグに延びる」とは、線や領域が延在方向であるX方向に対して直線的に延びず、延在経路中に屈曲部や湾曲部を有していることを意味する。したがって、「領域EX1(あるいは領域EX2)がX方向に沿ってジグザグに延びる」という記載の実施態様には、図9に示すように矩形波を描くように延びる実施態様の他、種々の変形例が含まれる。例えば、領域EX1(あるいは領域EX2)がX方向に沿って、蛇行しながら延びていても良い。また例えば、領域EX1(あるいは領域EX2)がX方向に沿って、三角波を描くように延びていても良い。   The above-mentioned “extend zigzag along the X direction” means that the line or region does not extend linearly with respect to the X direction, which is the extending direction, and has a bent portion or a curved portion in the extending path. Means that. Accordingly, the embodiment described as “the region EX1 (or the region EX2) extends in a zigzag manner along the X direction” includes various modifications in addition to the embodiment extending so as to draw a rectangular wave as shown in FIG. Is included. For example, the region EX1 (or the region EX2) may extend while meandering along the X direction. For example, the region EX1 (or the region EX2) may extend so as to draw a triangular wave along the X direction.

また、図9に示す本実施の形態のセラミック基板CS1の構造は、以下のように表現することができる。   Further, the structure of the ceramic substrate CS1 of the present embodiment shown in FIG. 9 can be expressed as follows.

本実施の形態のセラミック基板CS1の金属パターンMPHは、平面視において、X方向に延びる辺MHs1と、辺MHs1の反対側に位置する辺MHs2と、を有する。辺MHs1および辺MHs2は、それぞれ金属パターンMPHの長辺である。また、辺MHs1は、金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれと対向する辺であって、辺MHs2は、複数の金属パターンMPTと対向する辺である。   The metal pattern MPH of the ceramic substrate CS1 of the present embodiment has a side MHs1 extending in the X direction and a side MHs2 located on the opposite side of the side MHs1 in plan view. The sides MHs1 and MHs2 are the long sides of the metal pattern MPH. The side MHs1 is a side facing each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW, and the side MHs2 is a side facing the plurality of metal patterns MPT.

また、本実施の形態のセラミック基板CS1が有する金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれは、金属パターンMPHと金属パターンMPLの間に配列される金属パターンMPである。金属パターンMPU、金属パターンMPV、および金属パターンMPWは、X方向に沿って並ぶように配列されている。また、金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれの面積は金属パターンMPHの面積よりも相対的に小さい。   In addition, each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW included in the ceramic substrate CS1 of the present embodiment is a metal pattern MP arranged between the metal pattern MPH and the metal pattern MPL. The metal pattern MPU, the metal pattern MPV, and the metal pattern MPW are arranged so as to be aligned along the X direction. In addition, each area of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW is relatively smaller than the area of the metal pattern MPH.

金属パターンMPUは、平面視において、X方向に延びる辺MUs1と、辺MUs1の反対側に位置する辺MUs2と、を有する。また、辺MUs1は、金属パターンMPLと対向する辺であって、辺MUs2は、金属パターンMPHと対向する辺である。   The metal pattern MPU has a side MUs1 extending in the X direction and a side MUs2 located on the opposite side of the side MUs1 in plan view. Further, the side MUs1 is a side facing the metal pattern MPL, and the side MUs2 is a side facing the metal pattern MPH.

また、金属パターンMPVは、平面視において、X方向に延びる辺MVs1と、辺MVs1の反対側に位置する辺MVs2と、を有する。また、辺MVs1は、金属パターンMPLと対向する辺であって、辺MVs2は、金属パターンMPHと対向する辺である。   The metal pattern MPV has a side MVs1 extending in the X direction and a side MVs2 located on the opposite side of the side MVs1 in plan view. The side MVs1 is a side facing the metal pattern MPL, and the side MVs2 is a side facing the metal pattern MPH.

また、金属パターンMPWは、平面視において、X方向に延びる辺MWs1と、辺MWs1の反対側に位置する辺MWs2と、を有する。また、辺MWs1は、金属パターンMPLと対向する辺であって、辺MWs2は、金属パターンMPHと対向する辺である。   The metal pattern MPW has a side MWs1 extending in the X direction and a side MWs2 located on the opposite side of the side MWs1 in plan view. The side MWs1 is a side facing the metal pattern MPL, and the side MWs2 is a side facing the metal pattern MPH.

また、本実施の形態のセラミック基板CS1の金属パターンMPLは、平面視において、X方向に延びる辺MLs1と、辺MLs1の反対側に位置する辺MLs2と、を有する。辺MLs1および辺MLs2は、それぞれ金属パターンMPLの長辺である。また、辺MLs2は、金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれと対向する辺であって、辺MLs1は、複数の金属パターンMPTと対向する辺である。   Moreover, the metal pattern MPL of the ceramic substrate CS1 of the present embodiment has a side MLs1 extending in the X direction and a side MLs2 located on the opposite side of the side MLs1 in plan view. The sides MLs1 and MLs2 are the long sides of the metal pattern MPL. The side MLs2 is a side facing each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW, and the side MLs1 is a side facing the plurality of metal patterns MPT.

ここで、金属パターンMPHの辺MHs1は、平面視において、金属パターンMPUの辺MUs2に向かって突出する凸部PR1、および凸部PR1の両隣に形成される複数の凹部DT1を有する。また、金属パターンMPHの辺MHs1は、平面視において、金属パターンMPVの辺MVs2に向かって突出する凸部PR1、および凸部PR1の両隣に形成される複数の凹部DT1を有する。また、金属パターンMPHの辺MHs1は、平面視において、金属パターンMPWの辺MWs2に向かって突出する凸部PR1、および凸部PR1の両隣に形成される複数の凹部DT1を有する。   Here, the side MHs1 of the metal pattern MPH has a convex part PR1 protruding toward the side MUs2 of the metal pattern MPU and a plurality of concave parts DT1 formed on both sides of the convex part PR1 in plan view. Further, the side MHs1 of the metal pattern MPH has a convex part PR1 projecting toward the side MVs2 of the metal pattern MPV and a plurality of concave parts DT1 formed on both sides of the convex part PR1 in plan view. Further, the side MHs1 of the metal pattern MPH has a convex part PR1 projecting toward the side MWs2 of the metal pattern MPW and a plurality of concave parts DT1 formed on both sides of the convex part PR1 in plan view.

また、金属パターンMPUの辺MUs2は、平面視において、金属パターンMPHの辺MHs1に向かって突出する凸部PR2、および複数の凸部PR2の間に形成される凹部DT2を有する。また、金属パターンMPVの辺MVs2は、平面視において、金属パターンMPHの辺MHs1に向かって突出する凸部PR2、および複数の凸部PR2の間に形成される凹部DT2を有する。また、金属パターンMPWの辺MWs2は、平面視において、金属パターンMPHの辺MHs1に向かって突出する凸部PR2、および複数の凸部PR2の間に形成される凹部DT2を有する。   Further, the side MUs2 of the metal pattern MPU has a convex part PR2 projecting toward the side MHs1 of the metal pattern MPH and a concave part DT2 formed between the plurality of convex parts PR2 in plan view. Further, the side MVs2 of the metal pattern MPV has a convex part PR2 projecting toward the side MHs1 of the metal pattern MPH and a concave part DT2 formed between the plurality of convex parts PR2 in plan view. Further, the side MWs2 of the metal pattern MPW has a convex part PR2 projecting toward the side MHs1 of the metal pattern MPH and a concave part DT2 formed between the plurality of convex parts PR2 in plan view.

また、金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれが有する凸部PR2が、平面視において複数の凹部DT1で囲まれた領域に向かって突き出すように配置されている。   Further, the protrusion PR2 included in each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW is arranged so as to protrude toward a region surrounded by the plurality of recesses DT1 in plan view.

上記構成を備えることにより、セラミック基板CS1に設けられた領域EX1が、セラミック基板CS1の長手方向であるX方向に沿って、ジグザグに延びるようにすることができる。   By providing the above configuration, the region EX1 provided in the ceramic substrate CS1 can be extended in a zigzag manner along the X direction which is the longitudinal direction of the ceramic substrate CS1.

また、図9に示す例では、金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれが有する凸部PR2が、平面視において複数の凹部DT1で囲まれた領域内に設けられている。言い換えれば、平面視において、複数の凸部PR1は、複数の凹部DT2内に設けられ、複数の凸部PR2は、複数の凹部DT1内に設けられる。これにより、以下の効果が得られる。すなわち、図9に示すように領域EX1のY方向における幅WEX1を短くすることができる。このため、図5に示すように、ハイサイド側のスイッチング素子である半導体チップCTHと金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれとを電気的に接続するワイヤBWの長さを短くできる。詳しくは、半導体チップCTHと金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれとを電気的に接続するワイヤBWは、一方の端部が凸部PR2(図9参照)に接合されている。   Further, in the example shown in FIG. 9, the convex part PR2 included in each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW is provided in a region surrounded by the plurality of concave parts DT1 in plan view. In other words, in plan view, the plurality of protrusions PR1 are provided in the plurality of recesses DT2, and the plurality of protrusions PR2 are provided in the plurality of recesses DT1. Thereby, the following effects are acquired. That is, as shown in FIG. 9, the width WEX1 in the Y direction of the region EX1 can be shortened. For this reason, as shown in FIG. 5, the length of the wire BW that electrically connects the semiconductor chip CTH, which is a high-side switching element, and each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW is shortened. it can. Specifically, one end of the wire BW that electrically connects the semiconductor chip CTH and each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW is joined to the protrusion PR2 (see FIG. 9). .

図10に示す変形例のセラミック基板CS2の場合、領域EX1が、セラミック基板CS1の長手方向であるX方向に沿って、ジグザグに延びる点では図9に示すセラミック基板CS1と同様である。したがって、領域EX1における上記クラックの発生を抑制することができる。しかし、領域EX1のY方向における幅WEX1に着目すると、セラミック基板CS2は、凸部PR2が、平面視において凹部DT1で囲まれた領域内に設けられていないので、領域EX1の幅WEX1が図9に示すセラミック基板CS1の領域EX1よりも大きい。   In the case of the ceramic substrate CS2 of the modification shown in FIG. 10, the region EX1 is similar to the ceramic substrate CS1 shown in FIG. 9 in that the region EX1 extends zigzag along the X direction which is the longitudinal direction of the ceramic substrate CS1. Therefore, the occurrence of the crack in the region EX1 can be suppressed. However, paying attention to the width WEX1 of the region EX1 in the Y direction, the ceramic substrate CS2 is not provided with the convex portion PR2 in the region surrounded by the concave portion DT1 in plan view, so the width WEX1 of the region EX1 is as shown in FIG. It is larger than the region EX1 of the ceramic substrate CS1 shown in FIG.

幅WEX1を小さくすると、上記したように、半導体チップCTHと金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれとを電気的に接続するワイヤBWの長さを短くすることができる。この場合、図6に示す回路において、ハイサイド側のトランジスタQ1と出力ノードとを接続する伝送経路のインピーダンス成分を低減することができる。したがって、図9に示すように、凸部PR2が、平面視において凹部DT1で囲まれた領域内に設けられていることにより、ハイサイド側のスイッチング素子と出力ノードとを接続する伝送経路のインピーダンス成分を低減し、インバータ回路からの出力を安定させることができる。つまり、インバータ回路の電気的特性を向上させることができる。   When the width WEX1 is reduced, as described above, the length of the wire BW that electrically connects the semiconductor chip CTH and each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW can be shortened. In this case, in the circuit shown in FIG. 6, the impedance component of the transmission path connecting the high-side transistor Q1 and the output node can be reduced. Therefore, as shown in FIG. 9, the protrusion PR2 is provided in the region surrounded by the recess DT1 in plan view, so that the impedance of the transmission path that connects the switching element on the high side and the output node. The component can be reduced and the output from the inverter circuit can be stabilized. That is, the electrical characteristics of the inverter circuit can be improved.

また、ハイサイド側のスイッチング素子と出力ノードとを接続する伝送経路のインピーダンス成分を低減させる観点に着目すると、以下の構成がさらに好ましい。すなわち、図5に示すように半導体チップCTHと金属パターンMPUとを複数のワイヤBWで電気的に接続し、半導体チップCTHと金属パターンMPVとを複数のワイヤBWで電気的に接続し、半導体チップCTHと金属パターンMPWとを複数のワイヤBWで電気的に接続することが好ましい。このように、ワイヤBWの数を複数にすることで、ハイサイド側のスイッチング素子と出力ノードとを接続する伝送経路の断面積を増大させることができるので、インピーダンス成分を低減させることができる。   In view of reducing the impedance component of the transmission path connecting the switching element on the high side and the output node, the following configuration is more preferable. That is, as shown in FIG. 5, the semiconductor chip CTH and the metal pattern MPU are electrically connected by a plurality of wires BW, and the semiconductor chip CTH and the metal pattern MPV are electrically connected by a plurality of wires BW. It is preferable to electrically connect CTH and the metal pattern MPW with a plurality of wires BW. Thus, by using a plurality of wires BW, the cross-sectional area of the transmission path connecting the switching element on the high side and the output node can be increased, so that the impedance component can be reduced.

なお、本実施の形態では、半導体チップCPと金属パターンMPとを電気的に接続する部材としてワイヤBWを用いる例を示しているが、変形例としては、帯状に形成された金属(例えばアルミリボン)を用いることができる。またあるいは、パターニングされた金属板(銅クリップ)を用いて、半田を介して接続することもできる。この場合、複数のワイヤBWを用いる場合よりもさらにインピーダンスを低減できる。   In the present embodiment, an example in which the wire BW is used as a member for electrically connecting the semiconductor chip CP and the metal pattern MP is shown. However, as a modified example, a metal (for example, an aluminum ribbon) formed in a band shape is shown. ) Can be used. Alternatively, a patterned metal plate (copper clip) can be used to connect via solder. In this case, the impedance can be further reduced as compared with the case where a plurality of wires BW are used.

また、上記のように、ハイサイド側のスイッチング素子と出力ノードとを複数のワイヤBWにより電気的に接続する場合、各ワイヤBWの長さは短くすることが好ましい。つまり、図9に示すように、凸部PR2の面積を大きくすることが好ましい。図9に示す例では、複数の凸部PR2の面積は、金属パターンMPHの複数の凸部PR1のそれぞれの面積よりも大きい。このため、複数のワイヤBWを接続するためのスペースを確保することができる。   As described above, when the high-side switching element and the output node are electrically connected by the plurality of wires BW, it is preferable that the length of each wire BW is shortened. That is, as shown in FIG. 9, it is preferable to increase the area of the convex part PR2. In the example shown in FIG. 9, the areas of the plurality of protrusions PR2 are larger than the areas of the plurality of protrusions PR1 of the metal pattern MPH. For this reason, a space for connecting a plurality of wires BW can be secured.

また、上記構成により、図9に示す領域EX1において上記クラックが発生することを抑制できるが、領域EX2においてもクラックの発生を抑制することが好ましい。したがって、領域EX2に対しても、領域EX1と同様の対策を施すことが好ましい。   Moreover, although the said structure can suppress that the said crack generate | occur | produces in the area | region EX1 shown in FIG. 9, it is preferable to suppress generation | occurrence | production of a crack also in the area | region EX2. Therefore, it is preferable to take measures similar to those of the region EX1 for the region EX2.

詳しくは、金属パターンMPUの辺MUs1は、平面視において、金属パターンMPLの辺MLs2に向かって突出する凸部PR3、および複数の凸部PR3の間に形成される凹部DT3を有する。また、金属パターンMPVの辺MVs1は、平面視において、金属パターンMPLの辺MLs2に向かって突出する凸部PR3、および複数の凸部PR3の間に形成される凹部DT3を有する。また、金属パターンMPWの辺MWs1は、平面視において、金属パターンMPLの辺MLs2に向かって突出する凸部PR3、および複数の凸部PR3の間に形成される凹部DT3を有する。   Specifically, the side MUs1 of the metal pattern MPU has a convex part PR3 protruding toward the side MLs2 of the metal pattern MPL and a concave part DT3 formed between the plurality of convex parts PR3 in plan view. Further, the side MVs1 of the metal pattern MPV has a convex part PR3 protruding toward the side MLs2 of the metal pattern MPL and a concave part DT3 formed between the plurality of convex parts PR3 in plan view. Further, the side MWs1 of the metal pattern MPW has a convex part PR3 projecting toward the side MLs2 of the metal pattern MPL and a concave part DT3 formed between the plurality of convex parts PR3 in plan view.

また、金属パターンMPLの辺MLs2は、平面視において、金属パターンMPUの辺MUs1に向かって突出する凸部PR4、および凸部PR4の両隣に形成される複数の凹部DT4を有する。また、金属パターンMPLの辺MLs2は、平面視において、金属パターンMPVの辺MVs1に向かって突出する凸部PR4、および凸部PR4の両隣に形成される複数の凹部DT4を有する。また、金属パターンMPLの辺MLs2は、平面視において、金属パターンMPWの辺MWs1に向かって突出する凸部PR4、および凸部PR4の両隣に形成される複数の凹部DT4を有する。   Further, the side MLs2 of the metal pattern MPL has a convex part PR4 protruding toward the side MUs1 of the metal pattern MPU and a plurality of concave parts DT4 formed on both sides of the convex part PR4 in plan view. Further, the side MLs2 of the metal pattern MPL has a convex part PR4 projecting toward the side MVs1 of the metal pattern MPV and a plurality of concave parts DT4 formed on both sides of the convex part PR4 in plan view. Further, the side MLs2 of the metal pattern MPL has a convex part PR4 protruding toward the side MWs1 of the metal pattern MPW and a plurality of concave parts DT4 formed on both sides of the convex part PR4 in plan view.

また、金属パターンMPLが有する複数の凸部PR4は、平面視において、金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれが有する凹部DT3に向かって突き出すように配置されている。   Further, the plurality of convex portions PR4 included in the metal pattern MPL are arranged so as to protrude toward the concave portion DT3 included in each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW in a plan view.

上記構成を備えることにより、セラミック基板CS1に設けられた領域EX2が、セラミック基板CS1の長手方向であるX方向に沿って、ジグザグに延びるようにすることができる。   By providing the above configuration, the region EX2 provided in the ceramic substrate CS1 can extend zigzag along the X direction which is the longitudinal direction of the ceramic substrate CS1.

また、領域EX2の幅を短くする観点からは、図9に示すように、金属パターンMPLが有する複数の凸部PR4は、平面視において、金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれが有する凹部DT3で囲まれた領域内に設けられていることが好ましい。これにより、図5に示すローサイド側のスイッチング素子である半導体チップCTLと、金属パターンMPLとを電気的に接続するワイヤBWの長さを短くできる。つまり、図6に示すローサイド側の電位E2を入力する伝送経路のインピーダンス成分を低減することができる。   Further, from the viewpoint of shortening the width of the region EX2, as shown in FIG. 9, the plurality of convex portions PR4 included in the metal pattern MPL are each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW in plan view. It is preferable to be provided in a region surrounded by the recess DT3 included in the. Thereby, the length of the wire BW for electrically connecting the semiconductor chip CTL which is the low-side switching element shown in FIG. 5 and the metal pattern MPL can be shortened. That is, the impedance component of the transmission path for inputting the low-side potential E2 shown in FIG. 6 can be reduced.

また、図9に示す例では、複数の凸部PR4の面積は、複数の凸部PR3の面積よりも大きい。このため、半導体チップCTLと、金属パターンMPLとを電気的に接続する複数のワイヤBWを接続するためのスペースを確保することができる。   In the example shown in FIG. 9, the area of the plurality of projections PR4 is larger than the area of the plurality of projections PR3. Therefore, it is possible to secure a space for connecting the plurality of wires BW that electrically connect the semiconductor chip CTL and the metal pattern MPL.

ところで、上記したように、図14に示す領域EX1および領域EX2では、クラックが発生し易いことが判ったが、金属パターンMPHの辺MHs2と複数の金属パターンMPTの間の領域、および金属パターンMPLの辺MLs1と複数の金属パターンMPTの間の領域では上記クラックは発生し難い。   Incidentally, as described above, it has been found that cracks are likely to occur in the region EX1 and the region EX2 shown in FIG. 14, but the region between the side MHs2 of the metal pattern MPH and the plurality of metal patterns MPT, and the metal pattern MPL. In the region between the side MLs1 and the plurality of metal patterns MPT, the crack is unlikely to occur.

したがって、クラックの発生し難い領域、すなわち、金属パターンMPHの辺MHs2と複数の金属パターンMPTの間の領域、および金属パターンMPLの辺MLs1と複数の金属パターンMPTの間の領域は、図9に示すように、X方向に沿って、直線的に延びる。言い換えれば、金属パターンMPHの辺MHs2および金属パターンMPLの辺MLs1は、それぞれX方向に沿って直線的に延びる。セラミック基板CS1の短辺(基板辺CSs3および基板辺CSs4)の中心を結ぶ中心線(図9および図14に示す仮想線VL1)は、金属パターンMPHの辺MHs1と金属パターンMPLの辺MLs2との間に存在するので、辺MHs2および辺MLs1はそれぞれ仮想線VL1までの距離が遠い。   Therefore, the region where cracks are difficult to occur, that is, the region between the side MHs2 of the metal pattern MPH and the plurality of metal patterns MPT, and the region between the side MLs1 of the metal pattern MPL and the plurality of metal patterns MPT are shown in FIG. As shown, it extends linearly along the X direction. In other words, the side MHs2 of the metal pattern MPH and the side MLs1 of the metal pattern MPL each extend linearly along the X direction. A center line (virtual line VL1 shown in FIGS. 9 and 14) connecting the centers of the short sides (substrate side CSs3 and substrate side CSs4) of the ceramic substrate CS1 is between the side MHs1 of the metal pattern MPH and the side MLs2 of the metal pattern MPL. Since they exist in between, the sides MHs2 and MLs1 are far from the virtual line VL1.

このように、金属パターンMPHの一方の長辺をジグザグに延びるように形成し、他方の長辺を直線的に形成した場合、金属パターンMPHの面積を大きくできる。あるいは、図5に示す半導体チップCTHおよび半導体チップCDを搭載し易くなるので、金属パターンMPH上における半導体チップCPのレイアウトが容易になる。一方、金属パターンMPLの一方の長辺をジグザグに延びるように形成し、他方の長辺を直線的に形成した場合、金属パターンMPLの面積を大きくできる。   Thus, when one long side of the metal pattern MPH is formed so as to extend zigzag and the other long side is formed linearly, the area of the metal pattern MPH can be increased. Alternatively, since the semiconductor chip CTH and the semiconductor chip CD shown in FIG. 5 can be easily mounted, the layout of the semiconductor chip CP on the metal pattern MPH is facilitated. On the other hand, when one long side of the metal pattern MPL is formed so as to extend zigzag and the other long side is formed linearly, the area of the metal pattern MPL can be increased.

<半導体装置の製造方法>
次に、図1〜図10を用いて説明した半導体装置PKG1の製造工程について、図11に示す工程フローに沿って説明する。図11は、図2に示す半導体装置の組立てフローを示す説明図である。
<Method for Manufacturing Semiconductor Device>
Next, the manufacturing process of the semiconductor device PKG1 described with reference to FIGS. 1 to 10 will be described along the process flow shown in FIG. FIG. 11 is an explanatory diagram showing an assembly flow of the semiconductor device shown in FIG.

<基板準備>
まず、図11に示す基板準備工程では、図9に示すセラミック基板を準備する。本工程で準備するセラミック基板CS1を準備する。本工程で準備するセラミック基板CS1は、例えばアルミナを主成分とするセラミックであって、上面CStおよび下面CSb(図4参照)に複数の金属パターンMPが接合されている。
<Board preparation>
First, in the substrate preparation step shown in FIG. 11, the ceramic substrate shown in FIG. 9 is prepared. A ceramic substrate CS1 prepared in this step is prepared. The ceramic substrate CS1 prepared in this step is a ceramic mainly composed of alumina, for example, and a plurality of metal patterns MP are bonded to the upper surface CSt and the lower surface CSb (see FIG. 4).

これら複数の金属パターンMPは、例えば、銅(Cu)膜の表面にニッケル(Ni)膜が積層された積層膜であって、セラミック基板CS1の上面CStまたは下面CSbに共晶反応を利用して直接的に接合されている。また、銅膜には、電気メッキ法によりニッケル膜が積層されている。   The plurality of metal patterns MP are, for example, a laminated film in which a nickel (Ni) film is laminated on the surface of a copper (Cu) film, and a eutectic reaction is used on the upper surface CSt or the lower surface CSb of the ceramic substrate CS1. Directly joined. Further, a nickel film is laminated on the copper film by electroplating.

なお、複数の金属パターンMPの形状やレイアウトについては、図9、図10、および図14を用いて既に説明した通りなので、重複する説明は省略する。   Note that the shapes and layouts of the plurality of metal patterns MP have already been described with reference to FIGS. 9, 10, and 14, and thus redundant description is omitted.

<ダイボンド>
次に、図11に示すダイボンド工程では、図12に示すように、セラミック基板CS1の金属パターンMP上に、複数の半導体チップCPを搭載する。図12は、図11に示すダイボンド工程でセラミック基板上に複数の半導体チップを搭載した状態を示す平面図である。
<Die bond>
Next, in the die bonding step shown in FIG. 11, a plurality of semiconductor chips CP are mounted on the metal pattern MP of the ceramic substrate CS1, as shown in FIG. FIG. 12 is a plan view showing a state in which a plurality of semiconductor chips are mounted on a ceramic substrate in the die bonding step shown in FIG.

本工程では、複数の金属パターンMPのうち、ハイサイド側の電位E1(図6参照)が供給される金属パターンMPHには、複数(本実施の形態では3個)の半導体チップCTHおよび複数(本実施の形態では3個)の半導体チップCDが搭載される。また、複数の金属パターンMPのうち、交流電力の出力端子に接続される金属パターンMPU、MPV、MPWには、それぞれ1個の半導体チップCTLおよび1個の半導体チップCDが搭載される。また、複数の金属パターンMPのうち、ローサイド側の電位E2(図6参照)が供給される金属パターンMPLには半導体チップCPは搭載されない。また、複数の金属パターンMPのうち、入出力用の端子LD(図5参照)を接続するための複数の金属パターンMPTには、半導体チップCPは搭載されない。   In this step, among the plurality of metal patterns MP, the metal pattern MPH to which the high-side potential E1 (see FIG. 6) is supplied includes a plurality (three in this embodiment) of semiconductor chips CTH and a plurality ( In this embodiment, three semiconductor chips CD are mounted. In addition, one semiconductor chip CTL and one semiconductor chip CD are mounted on each of the metal patterns MPU, MPV, and MPW connected to the AC power output terminal among the plurality of metal patterns MP. In addition, the semiconductor chip CP is not mounted on the metal pattern MPL to which the low-side potential E2 (see FIG. 6) is supplied among the plurality of metal patterns MP. Further, among the plurality of metal patterns MP, the semiconductor chip CP is not mounted on the plurality of metal patterns MPT for connecting the input / output terminals LD (see FIG. 5).

また、図8に示すように、本工程では、複数の半導体チップCPのそれぞれは、半導体チップCPの下面CPbと金属パターンMPの上面を対向させた状態で、所謂フェイスアップ実装方式で搭載される。また、半導体チップCPの下面CPbには、電極PDK、PDCが形成されており、電極PDK、PDCと金属パターンMPとを電気的に接続するため、半導体チップCPは半田SDを介して搭載される。   As shown in FIG. 8, in this step, each of the plurality of semiconductor chips CP is mounted by a so-called face-up mounting method with the lower surface CPb of the semiconductor chip CP and the upper surface of the metal pattern MP facing each other. . Further, electrodes PDK and PDC are formed on the lower surface CPb of the semiconductor chip CP, and the semiconductor chip CP is mounted via the solder SD in order to electrically connect the electrodes PDK and PDC to the metal pattern MP. .

半田を介して半導体チップCPを搭載する方法は、以下のように行う。まず、半導体チップの搭載予定領域に、ペースト状の半田を塗布する。このペースト状の半田には、半田成分と、フラックス成分が含まれる。次に、複数の半導体チップCPを準備して(図11に示す半導体チップ準備工程)のそれぞれを半田上に押し付ける。複数の半導体チップCPがペースト状の半田を介して金属パターンMP上に仮接着された状態で、半田に対してリフロー処理(加熱処理)を施す。このリフロー処理により、半田が溶融し、一方は金属パターンMPに接合され、他方が半導体チップCPの電極PDK、PDCに接合される。そして半田を冷却することで、硬化させると、半導体チップCPのそれぞれが金属パターンMP上に固定される。   A method of mounting the semiconductor chip CP via solder is performed as follows. First, paste solder is applied to a region where a semiconductor chip is to be mounted. This paste solder contains a solder component and a flux component. Next, a plurality of semiconductor chips CP are prepared (semiconductor chip preparation step shown in FIG. 11) and each is pressed onto the solder. In a state where the plurality of semiconductor chips CP are temporarily bonded onto the metal pattern MP via the paste-like solder, the solder is subjected to a reflow process (heating process). By this reflow process, the solder is melted, one is bonded to the metal pattern MP, and the other is bonded to the electrodes PDK and PDC of the semiconductor chip CP. When the solder is cooled and cured, each of the semiconductor chips CP is fixed on the metal pattern MP.

なお、半導体チップCPの他、例えばチップコンデンサなど、半導体チップCP以外のチップ部品(電子部品、機能性素子)を搭載する場合には、本工程において、一括して搭載することができる。   In addition to the semiconductor chip CP, when mounting chip components (electronic components, functional elements) other than the semiconductor chip CP, such as a chip capacitor, for example, they can be mounted in a lump in this step.

<ワイヤボンド>
次に、図11に示すワイヤボンド工程では、図13に示すように、半導体チップCPと金属パターンMPとをワイヤ(導電性部材)BWを介して電気的に接続する。図13は、図12に示す複数の半導体チップと複数の金属パターンとをワイヤを介して電気的に接続した状態を示す平面図である。
<Wire bond>
Next, in the wire bonding step shown in FIG. 11, as shown in FIG. 13, the semiconductor chip CP and the metal pattern MP are electrically connected via a wire (conductive member) BW. FIG. 13 is a plan view showing a state in which a plurality of semiconductor chips and a plurality of metal patterns shown in FIG. 12 are electrically connected via wires.

本工程では、ハイサイド側の複数の半導体チップCTHのエミッタの電極PDE(図8参照)のそれぞれと、複数の金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれとを複数のワイヤBWを介して電気的に接続する。上記したように、複数のワイヤBWのそれぞれは、図9に示す凸部PR2に接合される。   In this step, each of the emitter electrodes PDE (see FIG. 8) of the plurality of semiconductor chips CTH on the high side and each of the plurality of metal patterns MPU, the metal pattern MPV, and the metal pattern MPW are connected to the plurality of wires BW. Electrical connection through As described above, each of the plurality of wires BW is joined to the convex part PR2 shown in FIG.

また、本工程では、ローサイド側の複数の半導体チップCTLのエミッタの電極PDE(図8参照)のそれぞれと、複数の金属パターンMPLとを複数のワイヤBWを介して電気的に接続する。上記したように、複数のワイヤBWのそれぞれは、図9に示す凸部PR4に接合される。   In this step, each of the emitter electrodes PDE (see FIG. 8) of the plurality of semiconductor chips CTL on the low side is electrically connected to the plurality of metal patterns MPL via the plurality of wires BW. As described above, each of the plurality of wires BW is joined to the convex part PR4 shown in FIG.

また、本工程では、ハイサイド側の複数の半導体チップCTHのゲートの電極PDG(図8参照)およびローサイド側の複数の半導体チップCTLのゲートの電極PDGのそれぞれと、複数の金属パターンMPTとをワイヤBWを介して電気的に接続する。   In this step, the gate electrodes PDG (see FIG. 8) of the plurality of semiconductor chips CTH on the high side and the gate electrodes PDG of the plurality of semiconductor chips CTL on the low side, and the plurality of metal patterns MPT are formed. Electrical connection is made via the wire BW.

また本工程では、複数のワイヤBWを介して、ハイサイド側の複数の半導体チップCDのアノードの電極PDAと、金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれと、複数の金属パターンMPTのそれぞれと、を複数のワイヤBWを介して電気的に接続する。図13に示すように一本のワイヤBWで複数箇所を電気的に接続することもできる。図13に示す例では、まず、ワイヤBWの一方の端部を複数の金属パターンMPU、金属パターンMPV、および金属パターンMPWのうちのいずれか一つに接続する。この時、上記したように、図9に示す凸部PR2にワイヤBWの端部を接合する。次に、ワイヤBWの中間部分を半導体チップCDのアノードの電極PDAに接続する。次に、ワイヤBWの他方の端部を金属パターンMPTに接合する。   In this step, the anode electrode PDA of the plurality of semiconductor chips CD on the high side side, the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW, and the plurality of metal patterns MPT via the plurality of wires BW. Are electrically connected to each other via a plurality of wires BW. As shown in FIG. 13, a plurality of locations can be electrically connected by a single wire BW. In the example shown in FIG. 13, first, one end of the wire BW is connected to any one of the plurality of metal patterns MPU, the metal pattern MPV, and the metal pattern MPW. At this time, as described above, the end portion of the wire BW is joined to the convex portion PR2 shown in FIG. Next, the intermediate portion of the wire BW is connected to the anode electrode PDA of the semiconductor chip CD. Next, the other end of the wire BW is bonded to the metal pattern MPT.

また本工程では、複数のワイヤBWを介して、ローサイド側の複数の半導体チップCDのアノードの電極PDAと、複数の金属パターンMPTのそれぞれと、を複数のワイヤBWを介して電気的に接続する。   In this step, the anode electrodes PDA of the plurality of low-side semiconductor chips CD and the plurality of metal patterns MPT are electrically connected via the plurality of wires BW via the plurality of wires BW. .

なお、本実施の形態では、半導体チップCPと金属パターンMPとを電気的に接続する部材としてワイヤを用いる例を示しているが、変形例としては、帯状に形成された金属(例えばアルミリボン)を用いることもできる。またあるいは、パターニングされた金属板(銅クリップ)を用いて、半田を介して接続することもできる。   In the present embodiment, an example is shown in which a wire is used as a member for electrically connecting the semiconductor chip CP and the metal pattern MP. However, as a modification, a metal (for example, an aluminum ribbon) formed in a band shape is shown. Can also be used. Alternatively, a patterned metal plate (copper clip) can be used to connect via solder.

<端子搭載>
次に、図11に示す端子搭載工程では、図5に示すように、複数の金属パターンMP上に端子LDを搭載する。端子LDは、複数の金属パターンと、図示しない外部機器とを電気的に接続するためのリード端子であって、細長く伸びる一方の端部を金属パターンMPに接続する。図4に示す例では、複数の端子LDのそれぞれは、半田SDを介して金属パターンMP上に搭載される。
<With terminal>
Next, in the terminal mounting step shown in FIG. 11, the terminals LD are mounted on the plurality of metal patterns MP as shown in FIG. The terminal LD is a lead terminal for electrically connecting a plurality of metal patterns and an external device (not shown), and has one end portion that is elongated and connected to the metal pattern MP. In the example shown in FIG. 4, each of the plurality of terminals LD is mounted on the metal pattern MP via the solder SD.

また、図5に示す例では、複数の金属パターンMPのうち、ハイサイド側の電位が供給される金属パターンMPH、およびローサイド側の電位が供給される金属パターンMPLには、それぞれ長手方向の両端(短辺である基板辺CSs3側および基板辺CSs4側)に端子LDが搭載される。また、複数の金属パターンMPTのそれぞれには、一本ずつ端子LDが搭載される。また、金属パターンMPU、金属パターンMPV、および金属パターンMPWのそれぞれには、端子LDは搭載されない。   In the example shown in FIG. 5, among the plurality of metal patterns MP, the metal pattern MPH to which a high-side potential is supplied and the metal pattern MPL to which a low-side potential is supplied have both ends in the longitudinal direction. Terminals LD are mounted on the substrate side CSs3 side and the substrate side CSs4 side which are short sides. One terminal LD is mounted on each of the plurality of metal patterns MPT. Further, the terminals LD are not mounted on each of the metal pattern MPU, the metal pattern MPV, and the metal pattern MPW.

<蓋材取付>
次に、図11に示す蓋材取付工程では、図4に示すように、セラミック基板CS1の上面CStを覆うように蓋材CVを接着固定する。セラミック基板CS1の上面CStの周縁部と蓋材CVとは、接着材BD1を介して接着固定される。
<Cover attachment>
Next, in the lid member attaching step shown in FIG. 11, as shown in FIG. 4, the lid member CV is bonded and fixed so as to cover the upper surface CSt of the ceramic substrate CS1. The peripheral edge portion of the upper surface CSt of the ceramic substrate CS1 and the lid material CV are bonded and fixed via an adhesive material BD1.

この時、蓋材CVの上面CVtには複数の貫通孔THLが形成されており、複数の端子LDは複数の貫通孔THLにそれぞれ挿入される。   At this time, a plurality of through holes THL are formed in the upper surface CVt of the lid member CV, and the plurality of terminals LD are inserted into the plurality of through holes THL, respectively.

なお、図4に示す例では、蓋材CVは複数の貫通孔THLが形成された部分と、セラミック基板CS1に接着固定される部分とが一体成型されている。しかし、変形例として、セラミック基板CS1に接着固定される部分と、複数の貫通孔THLが形成された部分とを分離可能な独立した部材としても良い。この場合、端子LDのレイアウトが変更になった場合でも複数の貫通孔THLが形成された部分のみを交換すれば良い。   In the example shown in FIG. 4, the cover material CV is integrally formed with a portion where a plurality of through holes THL are formed and a portion that is bonded and fixed to the ceramic substrate CS1. However, as a modification, an independent member that can separate a portion that is bonded and fixed to the ceramic substrate CS1 and a portion in which the plurality of through holes THL are formed may be used. In this case, even when the layout of the terminal LD is changed, only the portion where the plurality of through holes THL are formed needs to be replaced.

<封止>
次に、図11に示す封止工程では、図4に示すようにセラミック基板CS1と蓋材CVとに囲まれた空間内に封止材MGを供給し、複数の端子LDのそれぞれの一部分、複数の半導体チップCP、および複数のワイヤBWを封止する。封止材MGは、ゲル状の材料であり、蓋材CVの一部に図示しない供給用の貫通孔を形成しておき、貫通孔からゲル状の封止材MGを充填する。
<Sealing>
Next, in the sealing step shown in FIG. 11, as shown in FIG. 4, the sealing material MG is supplied into the space surrounded by the ceramic substrate CS <b> 1 and the lid material CV, and a part of each of the plurality of terminals LD, The plurality of semiconductor chips CP and the plurality of wires BW are sealed. The sealing material MG is a gel material, and a supply through hole (not shown) is formed in a part of the lid material CV, and the gel sealing material MG is filled from the through hole.

以上の各工程により、図1〜図10を用いて説明した半導体装置PKG1が得られる。その後、外観検査や電気的試験など、必要な検査、試験を行い、出荷される。また、図1に示す電力変換システムに組み込まれる。   Through the above steps, the semiconductor device PKG1 described with reference to FIGS. 1 to 10 is obtained. After that, necessary inspections and tests such as appearance inspection and electrical test are performed and shipped. Moreover, it integrates in the power conversion system shown in FIG.

<変形例>
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。なお、上記実施の形態中でもいくつかの変形例について説明したが、以下では、上記実施の形態で説明した変形例以外の代表的な変形例について説明する。
<Modification>
As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say. In addition, although some modifications were demonstrated also in the said embodiment, below, the typical modifications other than the modification demonstrated in the said embodiment are demonstrated.

<変形例1>
例えば、上記実施の形態では、スイッチング素子として、ハイサイド用のトランジスタQ1を3個、およびローサイド用のトランジスタQ1を3個用いて、三相交流電力を出力する電力変換回路について説明したが、スイッチング素子の数には種々の変形例がある。
<Modification 1>
For example, in the above embodiment, a power conversion circuit that outputs three-phase AC power using three high-side transistors Q1 and three low-side transistors Q1 as switching elements has been described. There are various variations in the number of elements.

例えば、一個のハイサイド用のトランジスタと、一個のローサイド用のトランジスタを用いて、ハーフブリッジ回路を構成すれば、単層交流電力を出力させることができる。また、フルブリッジ回路で単層交流を出力させる場合には、4個のトランジスタQ1を用いる。   For example, if a half-bridge circuit is configured using one high-side transistor and one low-side transistor, single-layer AC power can be output. When a single-layer alternating current is output by a full bridge circuit, four transistors Q1 are used.

この場合、ハイサイド側の電位が供給される金属パターンMPのインピーダンスを低減させるためには、一つの金属パターンMPに複数のスイッチング素子を搭載することになるので、金属パターンMPの一辺の長さが長くなる。したがって、上記実施の形態で説明したように、金属パターンMPの長辺に対向し、かつ金属パターンMPに覆われていない領域が、長辺の延在方向に沿ってジグザグに延びるように形成することで、該領域におけるクラックの発生を抑制できる。   In this case, in order to reduce the impedance of the metal pattern MP to which the high-side potential is supplied, a plurality of switching elements are mounted on one metal pattern MP, so the length of one side of the metal pattern MP. Becomes longer. Therefore, as described in the above embodiment, the region facing the long side of the metal pattern MP and not covered by the metal pattern MP is formed to extend zigzag along the extending direction of the long side. Thereby, generation | occurrence | production of the crack in this area | region can be suppressed.

<変形例2>
また例えば、上記実施の形態では、セラミック基板CS1上の金属パターンMPのレイアウトとして、ハイサイド用の金属パターンMPHとローサイド用の金属パターンMPLとの間に、金属パターンMPU、MPV、MPWが並べて配置される実施態様について説明した。
<Modification 2>
Further, for example, in the above embodiment, as the layout of the metal pattern MP on the ceramic substrate CS1, the metal patterns MPU, MPV, and MPW are arranged side by side between the high-side metal pattern MPH and the low-side metal pattern MPL. The embodiment to be described has been described.

しかし、変形例としては、ハイサイド用の金属パターンMPHと、X方向に沿って並んで配列される金属パターンMPU、MPV、MPWとの間にローサイド用の金属パターンMPLが設けられていても良い。この場合、ローサイド用の金属パターンMPLが有する辺のうち、金属パターンMPHと対向する辺MLs2(図9参照)に、凸部PR4(図9参照)および凸部PR4の両隣の凹部DT4(図9参照)を設けることが好ましい。また、金属パターンMPHと金属パターンMPLの間に設けられ、かつ、金属パターンMPから露出する領域が、金属パターンMPHの延在方向に沿ってジグザグに延びることが好ましい。   However, as a modification, a metal pattern MPL for low side may be provided between the metal pattern MPH for high side and the metal patterns MPU, MPV, MPW arranged side by side along the X direction. . In this case, among the sides of the low-side metal pattern MPL, the convex portion PR4 (see FIG. 9) and the concave portion DT4 (see FIG. 9) adjacent to the convex portion PR4 are formed on the side MLs2 (see FIG. 9) facing the metal pattern MPH. Preferably). Further, it is preferable that a region provided between the metal pattern MPH and the metal pattern MPL and exposed from the metal pattern MP extends in a zigzag manner along the extending direction of the metal pattern MPH.

また、ローサイド用の金属パターンMPLが有する辺のうち、金属パターンMPU、MPV、MPWのそれぞれと対向する辺(図示は省略)に凹部および上記凹部の両隣の凸部を設けることが好ましい。   Moreover, it is preferable to provide a recessed part and the convex part adjacent to the said recessed part in the edge | side (illustration omitted) which opposes each of metal pattern MPU, MPV, and MPW among the edges which the metal pattern MPL for low sides has.

<変形例3>
また、例えば、上記の通り種々の変形例について説明したが、上記で説明した各変形例同士を組み合わせて適用することができる。
<Modification 3>
For example, as described above, various modified examples have been described, but the above-described modified examples can be applied in combination.

その他、実施の形態に記載された内容の一部を以下に記載する。   In addition, a part of the contents described in the embodiment will be described below.

(1)
(a)第1面、前記第1面の反対側に位置する第2面を有し、前記第1面に複数の金属パターンが形成されたセラミック基板を準備する工程と、
(b)前記複数の金属パターンのうちの第1金属パターンに複数の第1半導体チップを搭載する工程と、
(c)前記複数の第1半導体チップのうちの少なくとも一部と、前記複数の金属パターンのうちの第2金属パターンとを電気的に接続する工程と、
を有し、
前記複数の金属パターンは、
第1辺を備え、前記複数の半導体チップのうちの複数の第1半導体チップが搭載される第1金属パターンと、
前記第1金属パターンの前記第1辺と対向する第2辺を有する第2金属パターンと、
を有し、
前記セラミック基板の前記第1面のうち、前記第1金属パターンと前記第2金属パターンの間に設けられ、かつ、前記複数の金属パターンから露出する第1領域は、前記第1金属パターンが延在する第1方向に沿って、ジグザグに延びる、半導体装置の製造方法。
(1)
(A) preparing a ceramic substrate having a first surface, a second surface located opposite to the first surface, and a plurality of metal patterns formed on the first surface;
(B) mounting a plurality of first semiconductor chips on a first metal pattern of the plurality of metal patterns;
(C) electrically connecting at least a part of the plurality of first semiconductor chips and a second metal pattern of the plurality of metal patterns;
Have
The plurality of metal patterns are:
A first metal pattern comprising a first side, on which a plurality of first semiconductor chips among the plurality of semiconductor chips are mounted;
A second metal pattern having a second side opposite to the first side of the first metal pattern;
Have
Of the first surface of the ceramic substrate, the first region provided between the first metal pattern and the second metal pattern and exposed from the plurality of metal patterns extends from the first metal pattern. A method for manufacturing a semiconductor device, wherein the method extends in a zigzag along a first direction.

BD1 接着材
BW ワイヤ(導電性部材)
CD、CP、CTH、CTL 半導体チップ
CMD 制御回路
CNV コンバータ回路
CPb 下面
CPt 上面
CS1、CS2、CSh1 セラミック基板
CSb 下面
CSs1、CSs2、CSs3、CSs4 基板辺
CSt 上面
CV 蓋材(キャップ、カバー部材)
CVb 下面
CVs1、CVs2、CVs3、CVs4 辺
CVt 上面
D1 ダイオード
DT1、DT2、DT3、DT4 凹部
DTC 配電回路
E1、E2 電位
EX1、EX2 領域
FLG フランジ部
INV インバータ回路
LD 端子
LT 端子
MG 封止材
MHs1、MHs2、MLs1、MLs2、MUs1、MUs2、MVs1、MVs2、MWs1、MWs2 辺
MP、MPB、MPH、MPL、MPT、MPU、MPV、MPW 金属パターン
MPm 上面
PDA、PDC、PDE、PDG、PDK 電極
PKG1 半導体装置
PKT 収容部(ポケット)
PR1、PR2、PR3、PR4 凸部
Q1 トランジスタ
SCM 太陽電池モジュール
SD 半田
THH、THL 貫通孔
UT、VT、WT 出力端子
VL1 仮想線(中心線)
WEX1 幅
BD1 Adhesive BW wire (conductive member)
CD, CP, CTH, CTL Semiconductor chip CMD Control circuit CNV Converter circuit CPb Lower surface CPt Upper surface CS1, CS2, CSh1 Ceramic substrate CSb Lower surface CSs1, CSs2, CSs3, CSs4 Substrate side CSt Upper surface CV Lid (cap, cover member)
CVb Lower surface CVs1, CVs2, CVs3, CVs4 Side CVt Upper surface D1 Diode DT1, DT2, DT3, DT4 Recessed DTC Distribution circuit E1, E2 Potential EX1, EX2 Region FLG Flange portion INV Inverter circuit LD terminal LT terminal MG1 Sealing material MH , MLs1, MLs2, MUs1, MUs2, MVs1, MVs2, MWs1, MWs2 Side MP, MPB, MPH, MPL, MPT, MPU, MPV, MPW Metal pattern MPm Upper surface PDA, PDC, PDE, PDG, PDK Electrode PKG1 Semiconductor device PKT1 Housing (pocket)
PR1, PR2, PR3, PR4 Convex part Q1 Transistor SCM Solar cell module SD Solder THH, THL Through hole UT, VT, WT Output terminal VL1 Virtual line (center line)
WEX1 width

Claims (9)

第1面および前記第1面の反対側に位置する第2面を有するセラミック基板と、
前記セラミック基板の前記第1面に形成された複数の金属パターンと、
前記複数の金属パターンのうちの一部に搭載された複数の半導体チップと、
を有し、
前記複数の金属パターンは、
第1辺を備え、前記複数の半導体チップのうちの複数の第1半導体チップが搭載された第1金属パターンと、
前記第1金属パターンの前記第1辺と対向する第2辺、および前記第2辺の反対側に位置する第3辺を備え、かつ、前記第1金属パターンとは分離された第2金属パターンと、
前記第2金属パターンの前記第3辺と対向する第4辺を備え、かつ、前記第1金属パターンおよび前記第2金属パターンとは分離された第3金属パターンと、
を有し、
前記第1金属パターンの前記第1辺は、平面視において、第1方向に延びる第1部分と、前記第1部分に連なり、かつ、前記第1方向に交差する第2方向に延びる第2部分と、前記第2部分に連なり、かつ、前記第1方向に延びる第3部分と、を有し、
前記第2金属パターンの前記第2辺は、平面視において、前記第1方向に延び、かつ前記第1辺の前記第1部分と対向する第4部分と、前記第4部分に連なり、かつ、前記第2方向に延び、かつ、前記第1辺の前記第2部分と対向する第5部分と、前記第5部分に連なり、かつ、前記第1方向に延び、かつ、前記第1辺の前記第3部分と対向する第6部分と、を有し、
前記第2金属パターンの前記第3辺は、平面視において、前記第1方向に延びる第7部分と、前記第7部分に連なり、かつ、前記第2方向に延びる第8部分と、前記第8部分に連なり、かつ、前記第1方向に延びる第9部分と、を有し、
前記第3金属パターンの前記第4辺は、平面視において、前記第1方向に延び、かつ前記第3辺の前記第7部分と対向する第10部分と、前記第10部分に連なり、かつ、前記第2方向に延び、かつ、前記第3辺の前記第8部分と対向する第11部分と、前記第11部分に連なり、かつ、前記第1方向に延び、かつ、前記第3辺の前記第9部分と対向する第12部分と、を有し、
前記複数の第1半導体チップのうちの少なくとも一部は、複数のワイヤを介して前記第2金属パターンと電気的に接続され、
前記複数のワイヤのそれぞれは、前記第2金属パターンのうち、前記第4部分と前記第5部分とに囲まれた領域に接合された、半導体装置。
A ceramic substrate having a first surface and a second surface located opposite the first surface;
A plurality of metal patterns formed on the first surface of the ceramic substrate;
A plurality of semiconductor chips mounted on a part of the plurality of metal patterns;
Have
The plurality of metal patterns are:
A first metal pattern comprising a first side and mounted with a plurality of first semiconductor chips among the plurality of semiconductor chips;
A second metal pattern having a second side opposite to the first side of the first metal pattern and a third side located on the opposite side of the second side and separated from the first metal pattern When,
A third metal pattern comprising a fourth side opposite to the third side of the second metal pattern and separated from the first metal pattern and the second metal pattern;
Have
The first side of the first metal pattern has a first portion extending in a first direction and a second portion extending in a second direction that is continuous with the first portion and intersects the first direction in plan view. And a third portion that is continuous with the second portion and extends in the first direction,
The second side of the second metal pattern, in plan view, extends in the first direction and is opposed to the first part of the first side, and is connected to the fourth part; and A fifth portion extending in the second direction and facing the second portion of the first side; connected to the fifth portion; and extending in the first direction; and the first side of the first side A sixth portion facing the third portion;
The third side of the second metal pattern has a seventh portion extending in the first direction, an eighth portion extending in the second direction and extending in the second direction in the plan view, and the eighth portion. A ninth portion extending in the first direction and connected to the portion;
The fourth side of the third metal pattern, in plan view, extends in the first direction and is continuous with the tenth portion facing the seventh portion of the third side; and An eleventh portion extending in the second direction and facing the eighth portion of the third side; connected to the eleventh portion; and extending in the first direction; and A twelfth portion facing the ninth portion;
At least some of the plurality of first semiconductor chips are electrically connected to the second metal pattern through a plurality of wires,
Each of the plurality of wires is a semiconductor device bonded to a region of the second metal pattern surrounded by the fourth portion and the fifth portion.
請求項1において、
前記第1金属パターンの前記第1辺の前記第2部分の長さは、前記第1辺の前記第1部分の長さより短く、
前記第2金属パターンの前記第2辺の前記第5部分の長さは、前記第2辺の前記第4部分の長さより短い、半導体装置。
In claim 1,
The length of the second part of the first side of the first metal pattern is shorter than the length of the first part of the first side,
The length of the fifth portion of the second side of the second metal pattern is shorter than the length of the fourth portion of the second side.
請求項1において、
前記複数のワイヤのそれぞれは、平面視において、前記第1辺の前記第1部分および前記第2辺の前記第4部分を跨ぐように延びる、半導体装置。
In claim 1,
Each of the plurality of wires extends in a plan view so as to straddle the first portion of the first side and the fourth portion of the second side.
請求項3において、
前記第1金属パターンの前記第1辺の前記第1部分の長さは、前記第1辺の前記第3部分の長さより長い、半導体装置。
In claim 3,
The length of the first portion of the first side of the first metal pattern is longer than the length of the third portion of the first side.
請求項1において、
前記第1金属パターンの前記第1辺の前記第2部分の長さは、前記第1辺の前記第3部分の長さより短く、
前記第2金属パターンの前記第2辺の前記第5部分の長さは、前記第2辺の前記第6部分の長さより短い、半導体装置。
In claim 1,
The length of the second part of the first side of the first metal pattern is shorter than the length of the third part of the first side,
The length of the fifth portion of the second side of the second metal pattern is shorter than the length of the sixth portion of the second side.
請求項1において、
前記セラミック基板の前記第1面は、前記第1方向に沿って延びる第1基板辺、前記第1基板辺の反対側に位置する第2基板辺、前記第2方向に沿って延びる第3基板辺、および前記第3基板辺の反対側に位置する第4基板辺を有し、
前記第1基板辺および前記第2基板辺の長さは、前記第3基板辺および前記第4基板辺の長さよりも長く、
前記第1金属パターンの前記第1辺および前記第2金属パターンの前記第2辺のそれぞれは、前記第1方向に沿って設けられている、半導体装置。
In claim 1,
The first surface of the ceramic substrate includes a first substrate side extending along the first direction, a second substrate side positioned on the opposite side of the first substrate side, and a third substrate extending along the second direction. A fourth substrate side located on the opposite side of the side and the third substrate side,
The lengths of the first substrate side and the second substrate side are longer than the lengths of the third substrate side and the fourth substrate side,
The semiconductor device, wherein each of the first side of the first metal pattern and the second side of the second metal pattern is provided along the first direction.
請求項1において、
前記第1金属パターンには、第1電位が供給され、
前記第2金属パターンには、前記第1電位とは異なる第2電位が供給される、半導体装置。
In claim 1,
A first potential is supplied to the first metal pattern,
The semiconductor device, wherein a second potential different from the first potential is supplied to the second metal pattern.
第1面および前記第1面の反対側に位置する第2面を有するセラミック基板と、
前記セラミック基板の前記第1面に形成された複数の金属パターンと、
前記複数の金属パターンのうちの一部に搭載された複数の半導体チップと、
を有し、
前記複数の金属パターンは、
第1辺を備え、前記複数の半導体チップのうちの複数の第1半導体チップが搭載された第1金属パターンと、
前記第1金属パターンの前記第1辺と対向する第2辺、および前記第2辺の反対側に位置する第3辺を備え、かつ、前記第1金属パターンとは分離された第2金属パターンと、
前記第2金属パターンの前記第3辺と対向する第4辺を備え、かつ、前記第1金属パターンおよび前記第2金属パターンとは分離された第3金属パターンと、
を有し、
前記第1金属パターンの前記第1辺は、平面視において、第1方向に延びる第1部分と、前記第1部分に連なり、かつ、前記第1方向に交差する第2方向に延びる第2部分と、前記第2部分に連なり、かつ、前記第1方向に延びる第3部分と、を有し、
前記第2金属パターンの前記第2辺は、平面視において、前記第1方向に延び、かつ前記第1辺の前記第1部分と対向する第4部分と、前記第4部分に連なり、かつ、前記第2方向に延び、かつ、前記第1辺の前記第2部分と対向する第5部分と、前記第5部分に連なり、かつ、前記第1方向に延び、かつ、前記第1辺の前記第3部分と対向する第6部分と、を有し、
前記第2金属パターンの前記第3辺は、平面視において、前記第1方向に延びる第7部分と、前記第7部分に連なり、かつ、前記第2方向に延びる第8部分と、前記第8部分に連なり、かつ、前記第1方向に延びる第9部分と、を有し、
前記第3金属パターンの前記第4辺は、平面視において、前記第1方向に延び、かつ前記第3辺の前記第7部分と対向する第10部分と、前記第10部分に連なり、かつ、前記第2方向に延び、かつ、前記第3辺の前記第8部分と対向する第11部分と、前記第11部分に連なり、かつ、前記第1方向に延び、かつ、前記第3辺の前記第9部分と対向する第12部分と、を有する、半導体装置。
A ceramic substrate having a first surface and a second surface located opposite the first surface;
A plurality of metal patterns formed on the first surface of the ceramic substrate;
A plurality of semiconductor chips mounted on a part of the plurality of metal patterns;
Have
The plurality of metal patterns are:
A first metal pattern comprising a first side and mounted with a plurality of first semiconductor chips among the plurality of semiconductor chips;
A second metal pattern having a second side opposite to the first side of the first metal pattern and a third side located on the opposite side of the second side and separated from the first metal pattern When,
A third metal pattern comprising a fourth side opposite to the third side of the second metal pattern and separated from the first metal pattern and the second metal pattern;
Have
The first side of the first metal pattern has a first portion extending in a first direction and a second portion extending in a second direction that is continuous with the first portion and intersects the first direction in plan view. And a third portion that is continuous with the second portion and extends in the first direction,
The second side of the second metal pattern, in plan view, extends in the first direction and is opposed to the first part of the first side, and is connected to the fourth part; and A fifth portion extending in the second direction and facing the second portion of the first side; connected to the fifth portion; and extending in the first direction; and the first side of the first side A sixth portion facing the third portion;
The third side of the second metal pattern has a seventh portion extending in the first direction, an eighth portion extending in the second direction and extending in the second direction in the plan view, and the eighth portion. A ninth portion extending in the first direction and connected to the portion;
The fourth side of the third metal pattern, in plan view, extends in the first direction and is continuous with the tenth portion facing the seventh portion of the third side; and An eleventh portion extending in the second direction and facing the eighth portion of the third side; connected to the eleventh portion; and extending in the first direction; and And a twelfth portion facing the ninth portion.
請求項8に記載の半導体装置において、
前記セラミック基板の前記第1面は、前記第1方向に沿って延びる第1基板辺、前記第1基板辺の反対側に位置する第2基板辺、前記第2方向に沿って延びる第3基板辺、および前記第3基板辺の反対側に位置する第4基板辺を有し、
前記第1基板辺および前記第2基板辺の長さは、前記第3基板辺および前記第4基板辺の長さよりも長く、
前記複数の金属パターンは、前記セラミック基板の前記第1基板辺と前記第1金属パターンとの間、および前記セラミック基板の前記第3基板辺と前記第3金属パターンとの間、に配置された複数の第4金属パターンを有し、
前記第1金属パターンは、前記第1辺の反対側に位置し、かつ、前記複数の第4金属パターンと対向するように前記第1方向に沿って直線的に延びる第5辺を備え、
前記第3金属パターンは、前記第4辺の反対側に位置し、かつ、前記複数の第4金属パターンと対向するように前記第1方向に沿って直線的に延びる第6辺を備え、
前記セラミック基板の前記第3基板辺の中心と前記第4基板辺の中心とを結ぶ第1仮想線は、前記第1金属パターンの前記第1辺と前記第3金属パターンの前記第4辺の間に存在する、半導体装置。
The semiconductor device according to claim 8,
The first surface of the ceramic substrate includes a first substrate side extending along the first direction, a second substrate side positioned on the opposite side of the first substrate side, and a third substrate extending along the second direction. A fourth substrate side located on the opposite side of the side and the third substrate side,
The lengths of the first substrate side and the second substrate side are longer than the lengths of the third substrate side and the fourth substrate side,
The plurality of metal patterns are disposed between the first substrate side of the ceramic substrate and the first metal pattern, and between the third substrate side of the ceramic substrate and the third metal pattern. Having a plurality of fourth metal patterns;
The first metal pattern includes a fifth side that is located on the opposite side of the first side and extends linearly along the first direction so as to face the plurality of fourth metal patterns.
The third metal pattern includes a sixth side that is located on the opposite side of the fourth side and extends linearly along the first direction so as to face the plurality of fourth metal patterns,
The first imaginary line connecting the center of the third substrate side and the center of the fourth substrate side of the ceramic substrate is the first side of the first metal pattern and the fourth side of the third metal pattern. A semiconductor device that exists in between.
JP2018115281A 2018-06-18 2018-06-18 Semiconductor device Active JP6560407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018115281A JP6560407B2 (en) 2018-06-18 2018-06-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018115281A JP6560407B2 (en) 2018-06-18 2018-06-18 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014199925A Division JP6357394B2 (en) 2014-09-30 2014-09-30 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2018139337A JP2018139337A (en) 2018-09-06
JP6560407B2 true JP6560407B2 (en) 2019-08-14

Family

ID=63451481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018115281A Active JP6560407B2 (en) 2018-06-18 2018-06-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JP6560407B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3829237B1 (en) 2018-07-25 2024-03-13 Panasonic Intellectual Property Corporation of America Transmission of channel state information and uplink data

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3225847B2 (en) * 1996-08-30 2001-11-05 株式会社日立製作所 Semiconductor module
JP3648954B2 (en) * 1997-11-26 2005-05-18 富士電機デバイステクノロジー株式会社 Semiconductor device
JP4164810B2 (en) * 2004-01-27 2008-10-15 富士電機デバイステクノロジー株式会社 Power semiconductor module
JP5062029B2 (en) * 2008-05-16 2012-10-31 株式会社豊田自動織機 Semiconductor device
US9018985B2 (en) * 2010-08-04 2015-04-28 Rohm Co., Ltd. Power module and output circuit
US9209176B2 (en) * 2011-12-07 2015-12-08 Transphorm Inc. Semiconductor modules and methods of forming the same
JP5704190B2 (en) * 2013-06-13 2015-04-22 富士電機株式会社 Semiconductor power module

Also Published As

Publication number Publication date
JP2018139337A (en) 2018-09-06

Similar Documents

Publication Publication Date Title
JP6357394B2 (en) Semiconductor device
JP6765469B2 (en) Power module semiconductor device
JP6333693B2 (en) Semiconductor device
CN106158839B (en) Semiconductor device with a plurality of transistors
JP5259016B2 (en) Power semiconductor module
TWI753996B (en) electronic device
US20130201741A1 (en) Power module for converting dc to ac
JP2018041769A (en) Semiconductor device
JP6673803B2 (en) Electronic equipment
US20210407875A1 (en) Semiconductor device
JP2007068302A (en) Power semiconductor device and semiconductor power converter
US11996344B2 (en) Semiconductor device
JP6354674B2 (en) Semiconductor device
JP6560407B2 (en) Semiconductor device
JP6574019B2 (en) Semiconductor device
JP7428679B2 (en) Power semiconductor devices and power conversion devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190718

R150 Certificate of patent or registration of utility model

Ref document number: 6560407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150