JP6559656B2 - Methacrylic resin composition and method for producing the same, molded product, film, and polarizing plate - Google Patents

Methacrylic resin composition and method for producing the same, molded product, film, and polarizing plate Download PDF

Info

Publication number
JP6559656B2
JP6559656B2 JP2016514722A JP2016514722A JP6559656B2 JP 6559656 B2 JP6559656 B2 JP 6559656B2 JP 2016514722 A JP2016514722 A JP 2016514722A JP 2016514722 A JP2016514722 A JP 2016514722A JP 6559656 B2 JP6559656 B2 JP 6559656B2
Authority
JP
Japan
Prior art keywords
methacrylic resin
mass
film
resin composition
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016514722A
Other languages
Japanese (ja)
Other versions
JPWO2015162926A1 (en
Inventor
淳裕 中原
淳裕 中原
達 阿部
達 阿部
利行 善當
利行 善當
悠貴 高須賀
悠貴 高須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Publication of JPWO2015162926A1 publication Critical patent/JPWO2015162926A1/en
Application granted granted Critical
Publication of JP6559656B2 publication Critical patent/JP6559656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Description

本発明は、メタクリル樹脂とポリカーボネート樹脂を含有して成るメタクリル樹脂組成物に関する。また、前記メタクリル樹脂組成物からなるフィルム、成形体、および前記フィルムを具備する偏光板に関する。   The present invention relates to a methacrylic resin composition comprising a methacrylic resin and a polycarbonate resin. Moreover, it is related with the polarizing plate which comprises the film which consists of the said methacrylic resin composition, a molded object, and the said film.

液晶表示装置には各種の樹脂製フィルムが使用されている。このうち偏光子保護フィルムには、トリアセチルセルロースが主に使用されている。トリアセチルセルロースからなるフィルムは透湿度が高いため、薄膜化するにしたがって、偏光子の品質低下を引き起こす傾向がある。偏光子保護フィルムの改良は液晶表示装置の薄型化において課題となっている。   Various resin films are used for liquid crystal display devices. Of these, triacetyl cellulose is mainly used for the polarizer protective film. Since a film made of triacetyl cellulose has high moisture permeability, the quality of the polarizer tends to be lowered as the film becomes thinner. Improvement of the polarizer protective film is a problem in reducing the thickness of the liquid crystal display device.

そこで、新たな偏光子保護フィルムの材料としてメタクリル樹脂が検討されている。メタクリル樹脂からなるフィルムを延伸処理すると靭性が高まることが知られている(特許文献1参照)。ところが、通常のメタクリル樹脂フィルムを延伸すると位相差が大きくなり、例えばIPS液晶方式では画面の品位低下を引き起こしてしまう。   Therefore, a methacrylic resin has been studied as a material for a new polarizer protective film. It is known that toughness increases when a film made of methacrylic resin is stretched (see Patent Document 1). However, when a normal methacrylic resin film is stretched, the phase difference increases, and for example, in the IPS liquid crystal system, the quality of the screen is lowered.

メタクリル樹脂にポリカーボネート樹脂などの樹脂を添加することで、位相差の小さいフィルムを得やすくなることが知られている(特許文献2〜5)。しかしながら、これらのメタクリル樹脂組成物は、透明性を確保するために、分子量の低いポリカーボネート樹脂を添加しているため延伸性が十分でなかった。具体的には、より薄膜に延伸する場合には割れ易くなり、また、延伸後のフィルムの強度を高めるために、より低い温度で延伸する場合には、破断しやすくなるといった問題を抱えていた。また、メタクリル樹脂組成物の耐熱性を高めるため、三連子表示のシンジオタクティシティ(rr)の高いメタクリル樹脂は、一般的に分子量分布が狭く、通常のメタクリル樹脂を用いたメタクリル樹脂組成物よりも延伸性が十分でなかった。   It is known that a film having a small retardation can be easily obtained by adding a resin such as a polycarbonate resin to a methacrylic resin (Patent Documents 2 to 5). However, these methacrylic resin compositions were not sufficiently stretchable because a polycarbonate resin having a low molecular weight was added to ensure transparency. Specifically, when it was stretched to a thinner film, it was prone to breakage, and when it was stretched at a lower temperature in order to increase the strength of the stretched film, it had a problem of being easily broken. . In addition, in order to increase the heat resistance of the methacrylic resin composition, methacrylic resins with high syndiotacticity (rr) in triplet display generally have a narrow molecular weight distribution, and methacrylic resin compositions using ordinary methacrylic resins. The stretchability was not sufficient.

特公昭57−32942号公報Japanese Patent Publication No.57-32942 特開平5−32846号公報JP-A-5-32846 特開2012−514759号公報JP 2012-514759 A 特開2013−148655号公報JP2013-148655A 特開2014−51649号公報JP 2014-51649 A

本発明は、上記背景に鑑みて成されたものであり、その目的とするところは、透明性が高く、厚さ方向の位相差が小さく、延伸しやすいメタクリル樹脂組成物を提供することである。また、厚さが均一で且つ表面平滑性に優れ、生産性が高く、強度の大きいメタクリル樹脂組成物からなるフィルムを提供することである。   The present invention has been made in view of the above background, and its object is to provide a methacrylic resin composition that has high transparency, a small retardation in the thickness direction, and is easy to stretch. . Another object of the present invention is to provide a film made of a methacrylic resin composition having a uniform thickness, excellent surface smoothness, high productivity and high strength.

本発明者らは、上記の目的を達成すべく検討を重ねた結果、以下の態様を包含する本発明を完成するに至った。   As a result of repeated studies to achieve the above object, the present inventors have completed the present invention including the following aspects.

〔1〕:メタクリル樹脂、ポリカーボネート樹脂および高分子加工助剤を含むメタクリル樹脂組成物であって、
前記メタクリル樹脂は、メタクリル酸メチル由来の構造単位の含有量が80質量%以上であって、重量平均分子量が200000以下であり、
前記ポリカーボネート樹脂は、1000以上、32000以下の粘度平均分子量を有しており、前記メタクリル樹脂100質量部に対する前記ポリカーボネート樹脂の含有量が1質量部以上、4質量部以下であり、
前記高分子加工助剤は、3,000以上、40,000以下の平均重合度を有しており、前記メタクリル樹脂100質量部に対する前記高分子加工助剤の含有量が0.3質量部以上、6質量部以下であり、
メタクリル樹脂組成物中に含有される前記メタクリル樹脂と前記ポリカーボネート樹脂との合計量が、80質量%以上であるメタクリル樹脂組成物。
[1]: A methacrylic resin composition containing a methacrylic resin, a polycarbonate resin, and a polymer processing aid,
The methacrylic resin has a content of structural units derived from methyl methacrylate of 80% by mass or more and a weight average molecular weight of 200000 or less,
The polycarbonate resin has a viscosity average molecular weight of 1000 or more and 32000 or less, and the content of the polycarbonate resin with respect to 100 parts by mass of the methacrylic resin is 1 part by mass or more and 4 parts by mass or less.
The polymer processing aid has an average degree of polymerization of 3,000 or more and 40,000 or less, and the content of the polymer processing aid with respect to 100 parts by mass of the methacrylic resin is 0.3 parts by mass or more. 6 parts by mass or less,
The methacrylic resin composition whose total amount of the said methacrylic resin and said polycarbonate resin contained in a methacrylic resin composition is 80 mass% or more.

〔2〕:前記メタクリル樹脂が、三連子表示のシンジオタクティシティ(rr)が50%以上であり、重量平均分子量が80000〜200000であり、且つメタクリル酸メチルに由来する構造単位の含有量が92質量%以上、100質量%以下である〔1〕に記載のメタクリル樹脂組成物。
〔3〕:前記メタクリル樹脂のシンジオタクティシティ(rr)が、58%以上、85%以下である〔1〕または〔2〕に記載のメタクリル樹脂組成物。
〔4〕:前記メタクリル樹脂のメタクリル酸メチル由来の構造単位の含有量が、99質量%以上である〔1〕〜〔3〕のいずれかひとつに記載のメタクリル樹脂組成物。
〔5〕:前記ポリカーボネート樹脂が、5000以上、18000以下の粘度平均分子量を有する〔1〕〜〔4〕のいずれかひとつに記載のメタクリル樹脂組成物。
〔6〕:前記メタクリル樹脂組成物の重量平均分子量が70000〜200000である〔1〕〜〔5〕のいずれかひとつに記載のメタクリル樹脂組成物。
〔7〕:前記メタクリル樹脂組成物の分子量分布が1.2〜2.5である〔1〕〜〔6〕のいずれかひとつに記載のメタクリル樹脂組成物。
[2]: The content of structural units derived from methyl methacrylate, wherein the methacrylic resin has a triadic syndiotacticity (rr) of 50% or more, a weight average molecular weight of 80,000 to 200,000. The methacrylic resin composition according to [1], wherein is 92 mass% or more and 100 mass% or less.
[3]: The methacrylic resin composition according to [1] or [2], wherein the syndiotacticity (rr) of the methacrylic resin is 58% or more and 85% or less.
[4] The methacrylic resin composition according to any one of [1] to [3], wherein the content of structural units derived from methyl methacrylate in the methacrylic resin is 99% by mass or more.
[5]: The methacrylic resin composition according to any one of [1] to [4], wherein the polycarbonate resin has a viscosity average molecular weight of 5000 or more and 18000 or less.
[6] The methacrylic resin composition according to any one of [1] to [5], wherein the methacrylic resin composition has a weight average molecular weight of 70,000 to 200,000.
[7]: The methacrylic resin composition according to any one of [1] to [6], wherein the molecular weight distribution of the methacrylic resin composition is 1.2 to 2.5.

〔8〕:〔1〕〜〔7〕のいずれかひとつに記載のメタクリル樹脂組成物からなる成形体。
〔9〕:〔1〕〜〔7〕のいずれかひとつに記載のメタクリル樹脂組成物からなるフィルム。
〔10〕:厚さが10〜50μmである、〔9〕に記載のフィルム。
〔11〕:面積比で1.5〜8倍に二軸延伸された〔9〕または〔10〕に記載のフィルム。
〔12〕:偏光子保護フィルムとして用いられる〔9〕〜〔11〕のいずれかひとつに記載のフィルム。
〔13〕:〔12〕に記載のフィルムが少なくとも1枚積層された偏光板。
〔14〕:メタクリル酸メチル由来の構造単位の含有量が80質量%以上であって、重量平均分子量が200000以下であるメタクリル樹脂100質量部と、1000以上、32000以下の粘度平均分子量を有するポリカーボネート樹脂1質量部以上、4質量部以下と、3,000以上、40,000以下の平均重合度を有する高分子加工助剤0.3質量部以上、6質量部以下と、の少なくとも3成分を混合してなるメタクリル樹脂組成物の製造方法。
[8]: A molded article comprising the methacrylic resin composition according to any one of [1] to [7].
[9]: A film comprising the methacrylic resin composition according to any one of [1] to [7].
[10] The film according to [9], having a thickness of 10 to 50 μm.
[11]: The film according to [9] or [10], which is biaxially stretched 1.5 to 8 times in area ratio.
[12]: The film according to any one of [9] to [11], which is used as a polarizer protective film.
[13]: A polarizing plate in which at least one film according to [12] is laminated.
[14]: Polycarbonate having a content of structural units derived from methyl methacrylate of 80% by mass or more and having a weight average molecular weight of 200,000 or less and a viscosity average molecular weight of 1000 or more and 32,000 or less. At least three components of 1 part by mass or more and 4 parts by mass or less of a resin and 0.3 part by mass or more and 6 parts by mass or less of a polymer processing aid having an average degree of polymerization of 3,000 or more and 40,000 or less A method for producing a methacrylic resin composition obtained by mixing.

本発明によれば、透明性が高く、厚さ方向の位相差が小さく、延伸しやすいメタクリル樹脂組成物を提供することができる。また、厚さが均一で且つ表面平滑性に優れ、生産性が高く、強度の大きいメタクリル樹脂組成物からなるフィルムを提供することができるという優れた効果を奏する。   According to the present invention, it is possible to provide a methacrylic resin composition that is highly transparent, has a small retardation in the thickness direction, and is easy to stretch. In addition, there is an excellent effect that a film made of a methacrylic resin composition having a uniform thickness and excellent surface smoothness, high productivity and high strength can be provided.

本発明の実施形態に係る偏光板の一例を示す断面図である。It is sectional drawing which shows an example of the polarizing plate which concerns on embodiment of this invention.

本発明のメタクリル樹脂組成物は、メタクリル樹脂、ポリカーボネート樹脂および高分子加工助剤を含有するものである。また、本発明のフィルムは、前記メタクリル樹脂組成物からなるフィルムである。   The methacrylic resin composition of the present invention contains a methacrylic resin, a polycarbonate resin and a polymer processing aid. Moreover, the film of this invention is a film which consists of the said methacryl resin composition.

本発明に用いられるメタクリル樹脂は、得られるフィルムの耐熱性の観点からメタクリル酸メチルに由来する構造単位の含有量が、メタクリル樹脂の質量を基準にして、80質量%以上であり、好ましくは92質量%以上、より好ましくは95質量%以上、さらに好ましくは97質量%以上、特に好ましくは99質量%以上、最も好ましくは100質量%である。   In the methacrylic resin used in the present invention, the content of the structural unit derived from methyl methacrylate is 80% by mass or more based on the mass of the methacrylic resin, preferably 92, from the viewpoint of heat resistance of the resulting film. More preferably, it is 95 mass% or more, More preferably, it is 97 mass% or more, Especially preferably, it is 99 mass% or more, Most preferably, it is 100 mass%.

本発明に用いられるメタクリル樹脂は、メタクリル酸メチルに由来する構造単位以外の構造単位を含んでいても良く、例えば、メタクリル酸エチル、メタクリル酸シクロヘキシル、メタクリル酸t−ブチル、メタクリル酸2−イソボルニル、メタクリル酸8−トリシクロ[5.2.1.02,6]デカニル、メタクリル酸4−t−ブチルシクロヘキシルなどのメタクリル酸メチル以外のメタクリル酸アルキルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2−エチルへキシルなどのアクリル酸アルキルエステル;アクリル酸フェニルなどのアクリル酸アリールエステル;アクリル酸シクロへキシル、アクリル酸ノルボルネニルなどのアクリル酸シクロアルキルエステル;アクリルアミド;メタクリルアミド;アクリロニトリル;メタクリロニトリル;などの一分子中に重合性の炭素−炭素二重結合を一つだけ有するビニル系単量体に由来する構造単位が挙げられる。メタクリル酸メチルに由来する構造単位以外の構造単位は、好ましくは8質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下、特に好ましくは1質量%以下、最も好ましくは0質量%である。The methacrylic resin used in the present invention may contain a structural unit other than the structural unit derived from methyl methacrylate, for example, ethyl methacrylate, cyclohexyl methacrylate, t-butyl methacrylate, 2-isobornyl methacrylate, Methacrylic acid alkyl esters other than methyl methacrylate such as 8-tricyclo [5.2.1.0 2,6 ] decanyl methacrylate and 4-t-butylcyclohexyl methacrylate; methyl acrylate, ethyl acrylate, propyl acrylate Alkyl acrylates such as butyl acrylate and 2-ethylhexyl acrylate; aryl acrylates such as phenyl acrylate; cycloalkyl acrylates such as cyclohexyl acrylate and norbornenyl acrylate; acrylamide It includes structural units derived from a vinyl monomer having only one carbon-carbon double bond - polymerizable carbon in one molecule such as; methacrylamide; acrylonitrile; methacrylonitrile. The structural unit other than the structural unit derived from methyl methacrylate is preferably 8% by mass or less, more preferably 5% by mass or less, further preferably 3% by mass or less, particularly preferably 1% by mass or less, and most preferably 0% by mass. %.

本発明に用いられるメタクリル樹脂は、三連子表示のシンジオタクティシティ(rr)の下限が、耐熱性の観点から、好ましくは50%、より好ましくは55%、さらに好ましくは58%、よりさらに好ましくは59%、最も好ましくは60%である。該メタクリル樹脂は、製膜性の観点から、三連子表示のシンジオタクティシティ(rr)の上限が、好ましくは99%、より好ましくは85%、さらに好ましくは77%、よりさらに好ましくは70%、よりさらに好ましくは65%、最も好ましくは64%である。このようなシンジオタクティシティを有するメタクリル樹脂は、分子量分布が狭いことに起因して延伸性が充分でないため、高分子加工助剤の添加がより効果を発現する。   In the methacrylic resin used in the present invention, the lower limit of the triplet-represented syndiotacticity (rr) is preferably 50%, more preferably 55%, still more preferably 58%, even more preferably from the viewpoint of heat resistance. Preferably it is 59%, most preferably 60%. In the methacrylic resin, from the viewpoint of film forming property, the upper limit of the triplet display syndiotacticity (rr) is preferably 99%, more preferably 85%, still more preferably 77%, and still more preferably 70. %, More preferably 65%, and most preferably 64%. Since the methacrylic resin having such syndiotacticity is not sufficiently stretchable due to the narrow molecular weight distribution, the addition of a polymer processing aid is more effective.

三連子表示のシンジオタクティシティ(rr)(以下、単に「シンジオタクティシティ(rr)」と称することがある。)は、連続する3つの構造単位の連鎖(3連子、triad)が有する2つの連鎖(2連子、diad)が、ともにラセモ(rrと表記する)である割合である。なお、ポリマー分子中の構造単位の連鎖(2連子、diad)において立体配置が同じものをメソ(meso)、逆のものをラセモ(racemo)と称し、それぞれm、rと表記する。
メタクリル樹脂のシンジオタクティシティ(rr)(%)は、重水素化クロロホルム中、30℃で、1H-NMRスペクトルを測定し、そのスペクトルからTMSを0ppmとした際の、0.6〜0.95ppmの領域の面積(X)と0.6〜1.35ppmの領域の面積(Y)とを計測し、式:(X/Y)×100にて算出することができる。
A triplet display syndiotacticity (rr) (hereinafter sometimes simply referred to as “syndiotacticity (rr)”) is a chain of three consecutive structural units (triplet, triad). The two chains (doublet, dad) that are included are the ratio of racemo (denoted as rr). In the chain of molecular units (doublet, diad) in the polymer molecule, those having the same configuration are referred to as “meso”, and those opposite to each other are referred to as “racemo”, which are expressed as m and r, respectively.
The syndiotacticity (rr) (%) of the methacrylic resin is 0.6 to 0 when a 1 H-NMR spectrum is measured at 30 ° C. in deuterated chloroform and TMS is set to 0 ppm from the spectrum. The area (X) of the .95 ppm region and the area (Y) of the 0.6 to 1.35 ppm region can be measured and calculated by the formula: (X / Y) × 100.

本発明に用いられるメタクリル樹脂は、重量平均分子量(以下、「Mw」と称することがある。)が、200000以下であり、好ましくは80000〜200000、より好ましくは85000〜160000、さらに好ましくは90000〜120000である。かかるMwが80000以上で、かつ、シンジオタクティシティ(rr)が50%以上あることで、得られるフィルムは、強度が高く、割れ難く、延伸し易い。そのためフィルムをより薄くすることができる。またMwが200000以下であることで、メタクリル樹脂の成形加工性が高まるので、得られるフィルムの厚さが均一で且つ表面平滑性に優れる傾向となる。   The methacrylic resin used in the present invention has a weight average molecular weight (hereinafter sometimes referred to as “Mw”) of 200000 or less, preferably 80000-200000, more preferably 85000-160000, and still more preferably 90000-. 120,000. When the Mw is 80000 or more and the syndiotacticity (rr) is 50% or more, the resulting film has high strength, is difficult to break, and is easy to stretch. Therefore, the film can be made thinner. Moreover, since Mw is 200000 or less, since the moldability of a methacrylic resin increases, the thickness of the obtained film tends to be uniform and excellent in surface smoothness.

本発明に用いられるメタクリル樹脂は、Mwと数平均分子量(以下、「Mn」と称することがある。)の比(Mw/Mn:以下、この値を「分子量分布」と称することがある。)が、好ましくは1.2〜2.0、より好ましくは1.3〜1.7である。分子量分布が1.2以上であることでメタクリル樹脂の流動性が向上し、得られるフィルムは表面平滑性に優れる傾向となる。分子量分布が2.0以下であることで得られるフィルムは耐衝撃性および靭性に優れる傾向となる。なお、MwおよびMnは、ゲルパーミエーションクロマトグラフィ(GPC)で測定したクロマトグラムを標準ポリスチレンの分子量に換算した値である。   The methacrylic resin used in the present invention is a ratio of Mw to number average molecular weight (hereinafter sometimes referred to as “Mn”) (Mw / Mn: hereinafter, this value may be referred to as “molecular weight distribution”). However, it is preferably 1.2 to 2.0, more preferably 1.3 to 1.7. When the molecular weight distribution is 1.2 or more, the fluidity of the methacrylic resin is improved, and the resulting film tends to be excellent in surface smoothness. A film obtained by having a molecular weight distribution of 2.0 or less tends to be excellent in impact resistance and toughness. Mw and Mn are values obtained by converting a chromatogram measured by gel permeation chromatography (GPC) into a molecular weight of standard polystyrene.

本発明に用いられるメタクリル樹脂は、JIS K7210に準拠して、230℃、3.8kg荷重の条件において測定される、メルトフローレートが、好ましくは0.1〜5g/10分、さらに好ましくは0.5〜4g/10分、最も好ましくは1.0〜3g/10分である。   The methacrylic resin used in the present invention has a melt flow rate of preferably 0.1 to 5 g / 10 minutes, more preferably 0, as measured under conditions of 230 ° C. and 3.8 kg load in accordance with JIS K7210. 0.5-4 g / 10 min, most preferably 1.0-3 g / 10 min.

本発明に用いられるメタクリル樹脂のガラス転移温度は、好ましくは110℃以上、より好ましくは118℃以上、さらに好ましくは120℃以上、よりさらに好ましくは123℃以上、最も好ましくは124℃以上である。該メタクリル樹脂のガラス転移温度の上限は、通常140℃、好ましくは130℃である。ガラス転移温度は、分子量やシンジオタクティシティ(rr)を調節することによって制御することができる。ガラス転移温度がこの範囲にあると、得られるフィルムの熱収縮などの変形が起こり難い。なお、ガラス転移温度は、実施例に記載の方法で測定した中間点ガラス転移温度である。   The glass transition temperature of the methacrylic resin used in the present invention is preferably 110 ° C. or higher, more preferably 118 ° C. or higher, still more preferably 120 ° C. or higher, still more preferably 123 ° C. or higher, and most preferably 124 ° C. or higher. The upper limit of the glass transition temperature of the methacrylic resin is usually 140 ° C, preferably 130 ° C. The glass transition temperature can be controlled by adjusting the molecular weight and syndiotacticity (rr). When the glass transition temperature is in this range, deformation such as heat shrinkage of the obtained film is difficult to occur. In addition, a glass transition temperature is the midpoint glass transition temperature measured by the method as described in an Example.

メタクリル樹脂の製造方法は特に制限されない。例えば、ラジカル重合法、アニオン重合法などの公知の重合法において、重合温度、重合時間、連鎖移動剤の種類や量、重合開始剤の種類や量などを調整することによって、Mw、シンジオタクティシティ(rr)などの特性が所望の範囲を満たすメタクリル樹脂を製造することができる。   The method for producing the methacrylic resin is not particularly limited. For example, in known polymerization methods such as radical polymerization method and anionic polymerization method, Mw, syndiotacticity can be adjusted by adjusting polymerization temperature, polymerization time, type and amount of chain transfer agent, type and amount of polymerization initiator, etc. A methacrylic resin having properties such as city (rr) satisfying a desired range can be produced.

例えば、ラジカル重合法の場合、重合温度を80℃以下にすることが好ましく、70℃以下にすることがより好ましく、60℃以下にすることがさらに好ましい。このように温度を調整すると、シンジオタクティシティ(rr)を高くすることが容易である。   For example, in the case of radical polymerization, the polymerization temperature is preferably 80 ° C. or lower, more preferably 70 ° C. or lower, and further preferably 60 ° C. or lower. By adjusting the temperature in this way, it is easy to increase the syndiotacticity (rr).

アニオン重合法の場合、重合開始剤として、n−ブチルリチウム、sec−ブチルリチウム、イソブチルリチウム、tert−ブチルリチウム等のアルキルリチウムを用いることが好ましい。また、生産性の観点から、有機アルミニウム化合物を共存させることが好ましい。有機アルミニウムとしては、下記式:
AlR123
(式中、R1、R2およびR3はそれぞれ独立して置換基を有してもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有してもよいアリール基、置換基を有していてもよいアラルキル基、置換基を有してもよいアルコキシル基、置換基を有してもよいアリールオキシ基またはN,N−二置換アミノ基を表す。R2およびR3は、それぞれが結合してなる、置換基を有していてもよいアリーレンジオキシ基であってもよい。)
で示される化合物が挙げられる。具体的には、イソブチルビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、イソブチルビス(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、イソブチル〔2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノキシ)〕アルミニウム等が挙げられる。
また、アニオン重合法においては、重合反応を制御するために、エーテルや含窒素化合物などを共存させることもできる。
In the case of the anionic polymerization method, it is preferable to use alkyllithium such as n-butyllithium, sec-butyllithium, isobutyllithium, or tert-butyllithium as the polymerization initiator. Moreover, it is preferable to make an organoaluminum compound coexist from a viewpoint of productivity. As organoaluminum, the following formula:
AlR 1 R 2 R 3
Wherein R 1 , R 2 and R 3 are each independently an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, or an aryl which may have a substituent. R 2 represents a group, an aralkyl group which may have a substituent, an alkoxyl group which may have a substituent, an aryloxy group which may have a substituent, or an N, N-disubstituted amino group. And R 3 may be an aryleneoxy group optionally having a substituent formed by bonding each other.
The compound shown by these is mentioned. Specifically, isobutylbis (2,6-di-tert-butyl-4-methylphenoxy) aluminum, isobutylbis (2,6-di-tert-butylphenoxy) aluminum, isobutyl [2,2′-methylenebis ( 4-methyl-6-tert-butylphenoxy)] aluminum and the like.
In the anionic polymerization method, an ether or a nitrogen-containing compound can coexist in order to control the polymerization reaction.

また、メタクリル樹脂をアニオン重合法にて製造する場合、重合反応の途中で重合開始剤の量より少ない量、具体的には、重合開始剤の量に対して、好ましくは1モル%〜50モル%、より好ましくは2モル%〜20モル%、さらに好ましくは5モル%〜10モル%の重合停止剤を添加したり、または重合反応の途中で最初に添加した重合開始剤の量に対して、好ましくは1モル%〜50モル%、より好ましくは2モル%〜20モル%、さらに好ましくは5モル%〜10モル%の重合開始剤を追加添加したりすることによって、重量平均分子量を調整できる。   In the case of producing a methacrylic resin by an anionic polymerization method, an amount smaller than the amount of the polymerization initiator in the course of the polymerization reaction, specifically, preferably 1 mol% to 50 mol with respect to the amount of the polymerization initiator. %, More preferably 2 mol% to 20 mol%, more preferably 5 mol% to 10 mol% of a polymerization terminator, or relative to the amount of the polymerization initiator initially added during the polymerization reaction The weight average molecular weight is adjusted by adding an additional polymerization initiator, preferably 1 mol% to 50 mol%, more preferably 2 mol% to 20 mol%, and even more preferably 5 mol% to 10 mol%. it can.

重量平均分子量、シンジオタクティシティ(rr)などが所望の特性を有するメタクリル樹脂を得る第2の方法として、所望の特性を満たさないメタクリル樹脂を一部に混合したり、所望の特性を満たさないメタクリル樹脂同士を適宜混合することにより、所望の特性(重量平均分子量、シンジオタクティシティ(rr)などの特性)を有するメタクリル樹脂を得る方法が挙げられる。かかる方法は、工程管理が容易である。複数種のメタクリル樹脂の混合は、公知の方法、例えばニーダールーダー、押出機、ミキシングロール、バンバリーミキサーなどの溶融混練装置を用いて行うことができる。混練時の温度は、使用するメタクリル樹脂の溶融温度に応じて適宜調節することができ、通常150〜300℃である。   As a second method for obtaining a methacrylic resin having desired characteristics such as weight average molecular weight and syndiotacticity (rr), a methacrylic resin that does not satisfy the desired characteristics is mixed in part or does not satisfy the desired characteristics. The method of obtaining the methacryl resin which has desired characteristics (characteristics, such as a weight average molecular weight, a syndiotacticity (rr)), by mixing methacrylic resin suitably is mentioned. Such a method is easy to manage the process. The mixing of a plurality of types of methacrylic resins can be carried out using a known method, for example, a melt kneading apparatus such as a kneader ruder, an extruder, a mixing roll, or a Banbury mixer. The temperature at the time of kneading | mixing can be suitably adjusted according to the melting temperature of the methacryl resin to be used, and is normally 150-300 degreeC.

所望の特性を有するメタクリル樹脂を得る第3の製造方法として、所望の特性範囲から外れているメタクリル樹脂の存在下で単量体を重合して、所望の重量平均分子量、シンジオタクティシティ(rr)などの特性が所望の範囲を満たすメタクリル樹脂を製造する方法がある。かかる重合は上記したラジカル重合法やアニオン重合法と同様にして行うことができる。第3の製造方法によれば、第2の製造方法に比べて、メタクリル樹脂に掛かる熱履歴が短くなるので、メタクリル樹脂の熱分解が抑制され、着色や異物の少ないフィルムが得られやすい。   As a third production method for obtaining a methacrylic resin having desired characteristics, a monomer is polymerized in the presence of a methacrylic resin that is out of the desired characteristic range to obtain a desired weight average molecular weight, syndiotacticity (rr). There is a method for producing a methacrylic resin having characteristics such as) satisfying a desired range. Such polymerization can be performed in the same manner as the radical polymerization method and the anion polymerization method described above. According to the third manufacturing method, since the thermal history applied to the methacrylic resin is shortened as compared with the second manufacturing method, thermal decomposition of the methacrylic resin is suppressed, and a film with less coloring and foreign matter is easily obtained.

上記のようなメタクリル樹脂の製造方法のうち、透明性の高いメタクリル樹脂が容易に製造できるという観点から、アニオン重合法によって特性が所望の範囲を満たすメタクリル樹脂を製造する方法;アニオン重合法で製造されたメタクリル樹脂と、ラジカル重合で製造されたメタクリル樹脂を混合することによって特性が規定範囲を満たすメタクリル樹脂を製造する方法;およびアニオン重合法で製造されたメタクリル樹脂と、別のアニオン重合法で製造されたメタクリル樹脂とを混合することによって特性が所望の範囲を満たすメタクリル樹脂を製造する方法が好ましく、アニオン重合法で製造されたメタクリル樹脂と、ラジカル重合で製造されたメタクリル樹脂を混合することによって特性が所望の範囲を満たすメタクリル樹脂を製造する方法がより好ましい。   Among the above methacrylic resin production methods, from the viewpoint that a highly transparent methacrylic resin can be easily produced, a method for producing a methacrylic resin whose characteristics satisfy a desired range by an anionic polymerization method; produced by an anionic polymerization method A method for producing a methacrylic resin whose characteristics satisfy a specified range by mixing a methacrylic resin produced by radical polymerization and a methacrylic resin produced by an anionic polymerization method and another anionic polymerization method A method of producing a methacrylic resin whose characteristics satisfy a desired range by mixing the produced methacrylic resin is preferable, and a methacrylic resin produced by anionic polymerization and a methacrylic resin produced by radical polymerization are mixed. Produces methacrylic resin whose characteristics meet the desired range That method is more preferable.

本発明に用いられるポリカーボネート樹脂は、多官能ヒドロキシ化合物と炭酸エステル形成性化合物との反応によって得られる重合体である。該ポリカーボネート樹脂は、メタクリル樹脂との相溶性、得られるフィルムの透明性がよいという観点から、芳香族ポリカーボネート樹脂が好ましい。   The polycarbonate resin used in the present invention is a polymer obtained by a reaction between a polyfunctional hydroxy compound and a carbonate ester-forming compound. The polycarbonate resin is preferably an aromatic polycarbonate resin from the viewpoint of compatibility with a methacrylic resin and good transparency of the resulting film.

本発明に用いられるポリカーボネート樹脂は、得られるメタクリル樹脂組成物からポリカーボネートがブリードアウトし難いという観点から、粘度平均分子量(以下、「Mv」と称することがある)が1000以上であり、好ましくは3000以上、より好ましくは5000以上、さらにより好ましくは10000以上である。また、メタクリル樹脂との相溶性の観点から、粘度平均分子量が、32000以下、好ましくは22000以下、より好ましくは18000以下、さらにより好ましくは17000以下である。使用するメタクリル樹脂のシンジオタクティシティ(rr)が高いほど、ポリカーボネート樹脂との相溶性が高く、より大きな粘度平均分子量のポリカーボネート樹脂を使用することができる。このような比較的粘度平均分子量の小さいポリカーボネートを添加する場合、延伸性が低下するため、高分子加工助剤の添加がより効果を発現する。   The polycarbonate resin used in the present invention has a viscosity average molecular weight (hereinafter sometimes referred to as “Mv”) of 1000 or more, preferably 3000 from the viewpoint that the polycarbonate hardly bleeds out from the obtained methacrylic resin composition. As mentioned above, More preferably, it is 5000 or more, More preferably, it is 10,000 or more. Moreover, from a compatible viewpoint with a methacryl resin, a viscosity average molecular weight is 32000 or less, Preferably it is 22000 or less, More preferably, it is 18000 or less, More preferably, it is 17000 or less. The higher the syndiotacticity (rr) of the methacrylic resin used, the higher the compatibility with the polycarbonate resin, and the higher the viscosity average molecular weight polycarbonate resin can be used. When such a polycarbonate having a relatively low viscosity average molecular weight is added, the stretchability is lowered, so the addition of a polymer processing aid is more effective.

ポリカーボネート樹脂の粘度平均分子量(Mv)は、キャノン−フェンスケ粘度計やウベローデ粘度計を用いてポリカーボネート樹脂0.5gを塩化メチレン100mLに溶解した溶液の比粘度ηspを20℃で測定し、下記のSchnellの式を満足する値として、20℃ 塩化メチレン溶液の極限粘度[η]から、算出することができる。
ηsp /c=[η]+0.45×[η]2
(但し[η]は極限粘度、上記条件ではc=0.5)
[η]=1.23×10- 4 Mv0 . 8 3
The viscosity average molecular weight (Mv) of the polycarbonate resin was determined by measuring the specific viscosity η sp of a solution obtained by dissolving 0.5 g of the polycarbonate resin in 100 mL of methylene chloride at 20 ° C. using a Canon-Fenske viscometer or an Ubbelohde viscometer. The value satisfying the Schnell equation can be calculated from the intrinsic viscosity [η] of a 20 ° C. methylene chloride solution.
η sp /c=[η]+0.45×[η] 2 c
([Η] is intrinsic viscosity, c = 0.5 under the above conditions)
[Η] = 1.23 × 10 - . 4 Mv 0 8 3

また、本発明に用いられるポリカーボネート樹脂の300℃、1.2kgでのMVR(メルトボリュームフローレート)値は、メタクリル樹脂との相溶性の観点から、1.0cm3/10分以上が好ましく、10cm3/10分以上がより好ましく、25cm3/10分以上が更に好ましく、33cm3/10分以上が特に好ましい。また、得られるメタクリル樹脂組成物からポリカーボネートがブリードアウトし難いという観点から、2×107cm3/10分以下が好ましく、1×105cm3/10分以下がより好ましく、10000cm3/10分以下が更に好ましく、390cm3/10分以下が特に好ましい。Also, 300 ° C. of polycarbonate resin used in the present invention, MVR (melt volume flow rate) value of at 1.2kg, from the viewpoint of the compatibility with the methacrylic resin is preferably 1.0 cm 3/10 minutes or more, 10 cm 3/10 minutes or more, more preferably, 25 cm 3/10 minutes or more is more preferable, 33cm 3/10 minutes or more is particularly preferable. From the viewpoint of hard polycarbonate methacrylic resin composition obtained may bleed out, preferably 2 × 10 7 cm 3/10 minutes or less, more preferably 1 × 10 5 cm 3/10 minutes or less, 10000 cm 3/10 min more preferably less, and particularly preferably 390cm 3/10 min.

また、本発明に用いられるポリカーボネート樹脂は、ゲルパーミエーションクロマトグラフィ(GPC)で測定したクロマトグラムを標準ポリスチレンの分子量に換算した重量平均分子量(Mw)が、得られるメタクリル樹脂組成物からポリカーボネートがブリードアウトし難いという観点から、Mwは、1300g/モル以上が好ましく、4700g/モル以上がより好ましく、8500g/モル以上が更に好ましく、19200g/モル以上が特に好ましい。また、メタクリル樹脂との相溶性の観点から、75000g/モル以下が好ましく、48300g/モル以下がより好ましく、38200g/モル以下が更に好ましく、35700g/モル以下が特に好ましい。
なお、ポリカーボネート樹脂の粘度平均分子量、MVR値や重量平均分子量は末端停止剤や分岐剤の量を調整することによって行うことができる。
The polycarbonate resin used in the present invention has a weight average molecular weight (Mw) obtained by converting a chromatogram measured by gel permeation chromatography (GPC) into a molecular weight of standard polystyrene. From the viewpoint of difficulty, Mw is preferably 1300 g / mole or more, more preferably 4700 g / mole or more, further preferably 8500 g / mole or more, and particularly preferably 19,200 g / mole or more. Moreover, from a compatible viewpoint with a methacryl resin, 75000 g / mol or less is preferable, 48300 g / mol or less is more preferable, 38200 g / mol or less is further more preferable, and 35700 g / mol or less is especially preferable.
The viscosity average molecular weight, MVR value, and weight average molecular weight of the polycarbonate resin can be adjusted by adjusting the amount of the terminal terminator or branching agent.

本発明に用いられるポリカーボネート樹脂のガラス転移温度は、好ましくは110℃以上、より好ましくは125℃以上、さらに好ましくは140℃以上である。該ポリカーネト樹脂のガラス転移温度の上限は、通常180℃である。   The glass transition temperature of the polycarbonate resin used in the present invention is preferably 110 ° C. or higher, more preferably 125 ° C. or higher, and further preferably 140 ° C. or higher. The upper limit of the glass transition temperature of the polycarbonate resin is usually 180 ° C.

ポリカーボネート樹脂の製造方法は、特に限定されない。例えば、ホスゲン法(界面重合法)及び溶融重合法(エステル交換法)などが挙げられる。また、本発明に好ましく用いられる芳香族ポリカーボネート樹脂は、溶融重合法で製造したポリカーボネート樹脂原料に、末端ヒドロキシ基量を調整するための処理を施して成るものであってもよい。   The method for producing the polycarbonate resin is not particularly limited. Examples thereof include a phosgene method (interfacial polymerization method) and a melt polymerization method (transesterification method). In addition, the aromatic polycarbonate resin preferably used in the present invention may be obtained by subjecting a polycarbonate resin raw material produced by a melt polymerization method to a treatment for adjusting the amount of terminal hydroxy groups.

ポリカーボネート樹脂を製造するための原料である多官能ヒドロキシ化合物としては、置換基を有していてもよい4,4’−ジヒドロキシビフェニル類;置換基を有していてもよいビス(ヒドロキシフェニル)アルカン類;置換基を有していてもよいビス(4−ヒドロキシフェニル)エーテル類;置換基を有していてもよいビス(4−ヒドロキシフェニル)スルフィド類;置換基を有していてもよいビス(4−ヒドロキシフェニル)スルホキシド類;置換基を有していてもよいビス(4−ヒドロキシフェニル)スルホン類;置換基を有していてもよいビス(4−ヒドロキシフェニル)ケトン類;置換基を有していてもよいビス(ヒドロキシフェニル)フルオレン類;置換基を有していてもよいジヒドロキシ−p−ターフェニル類;置換基を有していてもよいジヒドロキシ−p−クォーターフェニル類;置換基を有していてもよいビス(ヒドロキシフェニル)ピラジン類;置換基を有していてもよいビス(ヒドロキシフェニル)メンタン類;置換基を有していてもよいビス〔2−(4−ヒドロキシフェニル)−2−プロピル〕ベンゼン類;置換基を有していてもよいジヒドロキシナフタレン類;置換基を有していてもよいジヒドロキシベンゼン類;置換基を有していてもよいポリシロキサン類;置換基を有していてもよいジヒドロパーフルオロアルカン類などが挙げられる。   Examples of the polyfunctional hydroxy compound that is a raw material for producing a polycarbonate resin include 4,4′-dihydroxybiphenyls optionally having substituents; bis (hydroxyphenyl) alkanes optionally having substituents Bis (4-hydroxyphenyl) ethers optionally having substituents; bis (4-hydroxyphenyl) sulfides optionally having substituents; bis optionally having substituents (4-hydroxyphenyl) sulfoxides; bis (4-hydroxyphenyl) sulfones optionally having substituents; bis (4-hydroxyphenyl) ketones optionally having substituents; Bis (hydroxyphenyl) fluorenes that may have; dihydroxy-p-terphenyls that may have a substituent; Dihydroxy-p-quarterphenyls which may be substituted; bis (hydroxyphenyl) pyrazines which may have substituents; bis (hydroxyphenyl) menthanes which may have substituents; Optionally substituted bis [2- (4-hydroxyphenyl) -2-propyl] benzenes; dihydroxynaphthalenes optionally having substituents; dihydroxybenzenes optionally having substituents; Examples thereof include polysiloxanes optionally having a group; dihydroperfluoroalkanes optionally having a substituent.

これらの多官能ヒドロキシ化合物の中でも、2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−フェニルフェニル)プロパン、4,4'−ジヒドロキシビフェニル、ビス(4−ヒドロキシフェニル)スルホン、2,2−ビス(3,5−ジブロモ−4−ヒドロキシフェニル)プロパン、3,3−ビス(4−ヒドロキシフェニル)ペンタン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、ビス(4−ヒドロキシフェニル)エーテル、4,4’−ジヒドロキシベンゾフェノン、2,2−ビス(4−ヒドロキシ−3−メトキシフェニル)1,1,1,3,3,3−ヘキサフルオロプロパン、α,ω−ビス〔3−(2−ヒドロキシフェニル)プロピル〕ポリジメチルシロキサン、レゾルシン、2,7−ジヒドロキシナフタレンが好ましく、特に2,2−ビス(4−ヒドロキシフェニル)プロパンが好ましい。   Among these polyfunctional hydroxy compounds, 2,2-bis (4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) diphenylmethane, 1,1-bis ( 4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxy-3-phenylphenyl) propane, 4,4′- Dihydroxybiphenyl, bis (4-hydroxyphenyl) sulfone, 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane, 3,3-bis (4-hydroxyphenyl) pentane, 9,9-bis ( 4-hydroxy-3-methylphenyl) fluorene, bis (4-hydroxyphenyl) ether, 4,4 '-Dihydroxybenzophenone, 2,2-bis (4-hydroxy-3-methoxyphenyl) 1,1,1,3,3,3-hexafluoropropane, α, ω-bis [3- (2-hydroxyphenyl) Propyl] polydimethylsiloxane, resorcin, and 2,7-dihydroxynaphthalene are preferable, and 2,2-bis (4-hydroxyphenyl) propane is particularly preferable.

炭酸エステル形成性化合物としては、ホスゲンなどの各種ジハロゲン化カルボニルや、クロロホーメートなどのハロホーメート、ビスアリールカーボネートなどの炭酸エステル化合物が挙げられる。この炭酸エステル形成性化合物の量は、反応の化学量論比(当量)を考慮して適宜調整すればよい。   Examples of the carbonate ester-forming compound include various dihalogenated carbonyls such as phosgene, haloformates such as chloroformate, and carbonate ester compounds such as bisaryl carbonate. The amount of the carbonate ester-forming compound may be appropriately adjusted in consideration of the stoichiometric ratio (equivalent) of the reaction.

反応は、通常、酸結合剤の存在下に溶媒中で行われる。酸結合剤としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウムなどのアルカリ金属水酸化物や、炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩や、トリメチルアミン、トリエチルアミン、トリブチルアミン、N,N−ジメチルシクロヘキシルアミン、ピリジン、ジメチルアニリンなどの三級アミン、トリメチルベンジルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド、トリブチルベンジルアンモニウムクロライド、トリオクチルメチルアンモニウムクロライド、テトラブチルアンモニウムクロライド、テトラブチルアンモニウムブロマイドなどの四級アンモニウム塩、テトラブチルホスホニウムクロライド、テトラブチルホスホニウムブロマイドなどの四級ホスホニウム塩などが挙げられる。さらに、所望により、この反応系に亜硫酸ナトリウムやハイドロサルファイドなどの酸化防止剤を少量添加してもよい。酸結合剤の量は、反応の化学量論比(当量)を考慮して適宜調整すればよい。具体的には、原料の多官能ヒドロキシ化合物の水酸基1モル当たり、1当量もしくはそれより過剰な量、好ましくは1〜5当量の酸結合剤を使用すればよい。   The reaction is usually performed in a solvent in the presence of an acid binder. Examples of acid binders include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and cesium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, trimethylamine, triethylamine, tributylamine, Tertiary amines such as N, N-dimethylcyclohexylamine, pyridine, dimethylaniline, trimethylbenzylammonium chloride, triethylbenzylammonium chloride, tributylbenzylammonium chloride, trioctylmethylammonium chloride, tetrabutylammonium chloride, tetrabutylammonium bromide Quaternary ammonium salts, quaternary phosphonium salts such as tetrabutylphosphonium chloride, tetrabutylphosphonium bromide, etc. And the like. Furthermore, if desired, a small amount of an antioxidant such as sodium sulfite or hydrosulfide may be added to this reaction system. The amount of the acid binder may be appropriately adjusted in consideration of the stoichiometric ratio (equivalent) of the reaction. Specifically, 1 equivalent or an excess amount, preferably 1 to 5 equivalents of acid binder may be used per 1 mol of hydroxyl group of the starting polyfunctional hydroxy compound.

また、反応には、公知の末端停止剤や分岐剤を用いることができる。末端停止剤としては、p−tert−ブチル−フェノール、p−フェニルフェノール、p−クミルフェノール、p−パーフルオロノニルフェノール、p−(パーフルオロノニルフェニル)フェノール、p−(パーフルオロヘキシルフェニル)フェノール、p−tert−パーフルオロブチルフェノール、1−(P−ヒドロキシベンジル)パーフルオロデカン、p−〔2−(1H,1H−パーフルオロトリドデシルオキシ)−1,1,1,3,3,3−ヘキサフルオロプロピル〕フェノール、3,5−ビス(パーフルオロヘキシルオキシカルボニル)フェノール、p−ヒドロキシ安息香酸パーフルオロドデシル、p−(1H,1H−パーフルオロオクチルオキシ)フェノール、2H,2H,9H−パーフルオロノナン酸、1,1,1,3,3,3−テトラフロロ−2−プロパノールなどが挙げられる。   Moreover, a well-known terminal stopper and a branching agent can be used for reaction. As the terminator, p-tert-butyl-phenol, p-phenylphenol, p-cumylphenol, p-perfluorononylphenol, p- (perfluorononylphenyl) phenol, p- (perfluorohexylphenyl) phenol , P-tert-perfluorobutylphenol, 1- (P-hydroxybenzyl) perfluorodecane, p- [2- (1H, 1H-perfluorotridodecyloxy) -1,1,1,3,3,3- Hexafluoropropyl] phenol, 3,5-bis (perfluorohexyloxycarbonyl) phenol, perfluorododecyl p-hydroxybenzoate, p- (1H, 1H-perfluorooctyloxy) phenol, 2H, 2H, 9H-par Fluorononanoic acid, 1,1,1,3,3 - such Tetorafuroro-2-propanol.

分岐剤としては、フロログリシン、ピロガロール、4,6−ジメチル−2,4,6−トリス(4−ヒドロキシフェニル)−2−ヘプテン、2,6−ジメチル−2,4,6−トリス(4−ヒドロキシフェニル)−3−ヘプテン、2,4−ジメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(2−ヒドロキシフェニル)ベンゼン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、トリス(4−ヒドロキシフェニル)フェニルメタン、2,2−ビス〔4,4−ビス(4−ヒドロキシフェニル)シクロヘキシル〕プロパン、2,4−ビス〔2−ビス(4−ヒドロキシフェニル)−2−プロピル〕フェノール、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、2−(4−ヒドロキシフェニル)−2−(2,4−ジヒドロキシフェニル)プロパン、テトラキス(4−ヒドロキシフェニル)メタン、テトラキス〔4−(4−ヒドロキシフェニルイソプロピル)フェノキシ〕メタン、2,4−ジヒドロキシ安息香酸、トリメシン酸、シアヌル酸、3,3−ビス(3−メチル−4−ヒドロキシフェニル)−2−オキソ−2,3−ジヒドロインドール、3,3−ビス(4−ヒドロキシアリール)オキシインドール、5−クロロイサチン、5,7−ジクロロイサチン、5−ブロモイサチンなどが挙げられる。   Examples of branching agents include phloroglysin, pyrogallol, 4,6-dimethyl-2,4,6-tris (4-hydroxyphenyl) -2-heptene, 2,6-dimethyl-2,4,6-tris (4- Hydroxyphenyl) -3-heptene, 2,4-dimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (2-hydroxyphenyl) benzene, 1,3,5- Tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) ethane, tris (4-hydroxyphenyl) phenylmethane, 2,2-bis [4,4-bis (4-hydroxyphenyl) ) Cyclohexyl] propane, 2,4-bis [2-bis (4-hydroxyphenyl) -2-propyl] phenol, 2,6-bis (2-hydroxy-) -Methylbenzyl) -4-methylphenol, 2- (4-hydroxyphenyl) -2- (2,4-dihydroxyphenyl) propane, tetrakis (4-hydroxyphenyl) methane, tetrakis [4- (4-hydroxyphenylisopropyl) ) Phenoxy] methane, 2,4-dihydroxybenzoic acid, trimesic acid, cyanuric acid, 3,3-bis (3-methyl-4-hydroxyphenyl) -2-oxo-2,3-dihydroindole, 3,3- Bis (4-hydroxyaryl) oxindole, 5-chloroisatin, 5,7-dichloroisatin, 5-bromoisatin and the like can be mentioned.

ポリカーボネート樹脂は、ポリカーボネート単位以外に、ポリエステル、ポリウレタン、ポリエーテルもしくはポリシロキサン構造を有する単位等を含有しているものであってもよい。   The polycarbonate resin may contain a unit having a polyester, polyurethane, polyether or polysiloxane structure in addition to the polycarbonate unit.

高分子加工助剤は、高分子量成分を多く含んでいる物質である。高分子加工助剤と樹脂材料との間には高分子どうしの絡み合い(ネットワーク)が発生し、その絡み合い点が疑似架橋点として作用するとされている。そのため高分子加工助剤を添加した場合、ゴムを変形した時と同じように、その樹脂組成物を均一に延伸することができる。高分子加工助剤を無添加の樹脂材料の場合は、この疑似架橋点が存在しないため、例えば、延伸前のフィルムに厚みの薄い部分が存在するとその部分に応力集中し、局部的に伸ばされて破断するといった不具合が生じる場合がある。   The polymer processing aid is a substance containing a large amount of high molecular weight components. It is said that entanglement (network) between polymers occurs between the polymer processing aid and the resin material, and the entanglement point acts as a pseudo-crosslinking point. Therefore, when a polymer processing aid is added, the resin composition can be uniformly stretched in the same manner as when the rubber is deformed. In the case of a resin material to which no polymer processing aid is added, since this pseudo-crosslinking point does not exist, for example, if a thin part exists in the film before stretching, stress is concentrated on that part and the film is stretched locally. In some cases, such as breaking.

本発明において用いる高分子加工助剤は、平均重合度が3,000〜40,000の高分子化合物であり、好ましくはメタクリル酸メチル単位60質量%以上およびこれと共重合可能なビニル系単量体単位40質量%以下からなるものである。平均重合度は好ましくは6,000〜30,000であり、より好ましくは10,000〜25,000である。メタクリル酸メチルと共重合可能なビニル系単量体の例としては、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル等のメタクリル酸エステル、アクリル酸エチル、アクリル酸メチル、アクリル酸ブチル、アクリル酸シクロヘキシル等のアクリル酸エステル、スチレン、p−メチルスチレン、o−メチルスチレン等の芳香族ビニル化合物、N−プロピルマレイミド、N−シクロヘキシルマレイミド、N−o−クロロフェニルマレイミド等のマレイミド系化合物、エチレングリコールジメタクリレート、プロピレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ヘキサンジオールジメタクリレート、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、トリエチレングリコールジアクリレート、アリルメタクリレート、トリアリルイソシアヌレート等の多官能性単量体を挙げることができる。そうような高分子加工助剤としては、三菱レイヨン社製のメタブレンシリーズ、ダウ社製またはクレハ社製のパラロイドシリーズ等が挙げられる。なお、高分子加工助剤の平均重合度は自動希釈型毛細管粘度計(ウベローデ型)を用い、クロロホルムを溶媒として20℃で測定して、PMMA換算重合度で求めることができる。   The polymer processing aid used in the present invention is a polymer compound having an average degree of polymerization of 3,000 to 40,000, preferably 60% by mass or more of methyl methacrylate unit and a vinyl monomer copolymerizable therewith. It consists of 40 mass% or less of body units. The average degree of polymerization is preferably 6,000 to 30,000, more preferably 10,000 to 25,000. Examples of vinyl monomers copolymerizable with methyl methacrylate include: methacrylates such as ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, ethyl acrylate, methyl acrylate, butyl acrylate, cyclohexyl acrylate Acrylic acid esters such as styrene, aromatic vinyl compounds such as styrene, p-methylstyrene, o-methylstyrene, maleimide compounds such as N-propylmaleimide, N-cyclohexylmaleimide, N-o-chlorophenylmaleimide, ethylene glycol dimethacrylate , Propylene glycol dimethacrylate, triethylene glycol dimethacrylate, hexanediol dimethacrylate, ethylene glycol diacrylate, propylene glycol diacrylate, triethylene Recall diacrylate, allyl methacrylate, can be mentioned polyfunctional monomers such as triallyl isocyanurate. Examples of such a polymer processing aid include a metablene series manufactured by Mitsubishi Rayon, a paraloid series manufactured by Dow or Kureha. The average degree of polymerization of the polymer processing aid can be determined as a PMMA equivalent degree of polymerization by measuring at 20 ° C. using chloroform as a solvent using an automatic dilution capillary viscometer (Ubbelohde type).

高分子加工助剤を製造するための重合法については、特に制限はないが、乳化重合によるのが好適である。乳化重合に用いることのできる乳化剤としては、例えば、アニオン系乳化剤であるジオクチルスルホコハク酸ナトリウム、ジラウリルスルホコハク酸ナトリウム等のジアルキルスルホコハク酸塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、ドデシル硫酸ナトリウム等のアルキル硫酸塩、ノニオン系乳化剤であるポリオキシエチレンアルキルエーテル、ポリオキシエチレンノニルフェニルエーテル等、ノニオン・アニオン系乳化剤であるポリオキシエチレンノニルフェニルエーテル硫酸ナトリウム等のポリオキシエチレンノニルフェニルエーテル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレントリデシルエーテル酢酸ナトリウムなどのアルキルエーテルカルボン酸塩等を使用することができる。   There is no particular limitation on the polymerization method for producing the polymer processing aid, but it is preferable to use emulsion polymerization. Examples of the emulsifier that can be used in the emulsion polymerization include dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate and sodium dilauryl sulfosuccinate which are anionic emulsifiers, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, and sodium dodecyl sulfate. Polyoxyethylene nonyl phenyl ether sulfate such as polyoxyethylene alkyl ether, polyoxyethylene nonyl phenyl ether as nonionic emulsifier, polyoxyethylene nonyl phenyl ether sodium sulfate as nonionic anionic emulsifier, etc. , Polyoxyethylene alkyl ether sulfate such as sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene tridecyl ether acetate It may be used alkyl ether carboxylate such as um like.

また、使用する乳化剤の種類によって重合系のpHがアルカリ側になるときは、メタクリル酸アルキルエステル、アクリル酸アルキルエステルの加水分解を防止するために適当なpH調整剤を使用することができる。使用するpH調節剤としては、ホウ酸−塩化カリウム−水酸化カリウム、リン酸二水素カリウム−リン酸水素二ナトリウム、ホウ酸−塩化カリウム−炭酸カリウム、クエン酸−クエン酸水素カリウム、リン酸二水素カリウム−ホウ酸、リン酸水素二ナトリウム−クエン酸等を使用することができる。   When the pH of the polymerization system is alkaline depending on the type of emulsifier used, an appropriate pH adjuster can be used to prevent hydrolysis of the methacrylic acid alkyl ester and acrylic acid alkyl ester. Examples of pH regulators used include boric acid-potassium chloride-potassium hydroxide, potassium dihydrogen phosphate-disodium hydrogen phosphate, boric acid-potassium chloride-potassium carbonate, citric acid-potassium hydrogen citrate, diphosphate Potassium hydrogen-boric acid, disodium hydrogen phosphate-citric acid and the like can be used.

また、重合開始剤としては、水溶性開始剤あるいは油溶性開始剤の単独系、もしくはレドックス系のもので良く、水溶性開始剤の例としては通常の過硫酸塩等の無機開始剤を単独で用いるか、あるいは亜硫酸塩、亜硫酸水素塩、チオ硫酸塩等との組み合わせによってレドックス系開始剤として用いることもできる。   The polymerization initiator may be a water-soluble initiator or an oil-soluble initiator alone, or a redox-type initiator. Examples of water-soluble initiators include ordinary inorganic initiators such as persulfate alone. It can also be used as a redox initiator in combination with sulfites, bisulfites, thiosulfates and the like.

油溶性開始剤の例としては、tert−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、過酸化ベンゾイル、過酸化ラウロイル等の有機過酸化物、アゾ化合物等を単独で用いるか、あるいはナトリウムホルムアルデヒドスルホキシレート等との組み合わせによってレドックス系開始剤として用いることもできるが、かかる具体例のみに限定されるものではない。   Examples of oil-soluble initiators include organic peroxides such as tert-butyl hydroperoxide, cumene hydroperoxide, benzoyl peroxide, lauroyl peroxide, azo compounds, or sodium formaldehyde sulfoxylate. Although it can also be used as a redox-type initiator in combination with, etc., it is not limited only to this specific example.

また、高分子加工助剤の平均重合度は、n−オクチルメルカプタン、tert−ドデシルメルカプタン等の連鎖移動剤や重合条件等で任意に調整が可能である。   The average degree of polymerization of the polymer processing aid can be arbitrarily adjusted by a chain transfer agent such as n-octyl mercaptan or tert-dodecyl mercaptan, polymerization conditions, or the like.

本発明の高分子加工助剤の平均重合度は、3,000以上、40,000以下の範囲とする。高分子加工助剤の平均重合度が3,000未満では本発明のメタクリル樹脂組成物をフィルムにする際の製膜性の向上が認められないおそれや、延伸した際に十分な延伸性向上の改善効果が認められないことがある。一方、高分子加工助剤の平均重合度が40,000を超えると、透明性が低下すること、または、溶融張力が高くなりすぎて製膜時にメルトカーテンの両端部がちぎれやすくなることがある。高分子加工助剤の配合量は、メタクリル樹脂100質量部に対し、0.3〜6質量部であり、好ましくは0.5〜3質量部である。高分子加工助剤の配合量が0.3質量部未満であると、メタクリル樹脂組成物のフィルム製膜性および延伸性の十分な改善効果が発現しなくなる。一方、高分子加工助剤の配合量が6質量部を超えると、メタクリル樹脂組成物のガラス転移温度が低下すること、また透明性が低下すること、さらには、溶融張力が高くなりすぎて製膜時にメルトカーテンの両端部がちぎれやすくなることがある。   The average degree of polymerization of the polymer processing aid of the present invention is in the range of 3,000 to 40,000. If the average degree of polymerization of the polymer processing aid is less than 3,000, the film-forming property may not be improved when the methacrylic resin composition of the present invention is made into a film, or the stretchability is sufficiently improved when stretched. Improvement effect may not be observed. On the other hand, if the average degree of polymerization of the polymer processing aid exceeds 40,000, the transparency may decrease, or the melt tension may become too high and the melt curtain may be easily broken at both ends. . The compounding quantity of a polymer processing aid is 0.3-6 mass parts with respect to 100 mass parts of methacrylic resins, Preferably it is 0.5-3 mass parts. When the blending amount of the polymer processing aid is less than 0.3 parts by mass, the film forming property and stretchability of the methacrylic resin composition are not sufficiently improved. On the other hand, when the blending amount of the polymer processing aid exceeds 6 parts by mass, the glass transition temperature of the methacrylic resin composition is lowered, the transparency is lowered, and further, the melt tension is too high. When the film is formed, both ends of the melt curtain may be easily broken.

本発明のメタクリル樹脂組成物に含有されるポリカーボネート樹脂の含有量は、前記メタクリル樹脂100質量部に対して1質量部以上、4質量部以下、より好ましくは2質量部以上、3質量部以下である。   The content of the polycarbonate resin contained in the methacrylic resin composition of the present invention is 1 part by mass or more and 4 parts by mass or less, more preferably 2 parts by mass or more and 3 parts by mass or less with respect to 100 parts by mass of the methacrylic resin. is there.

本発明のメタクリル樹脂組成物に含有されるメタクリル樹脂とポリカーボネート樹脂との合計量は、80質量%以上、好ましくは90質量%以上、より好ましくは94質量%以上、さらに好ましくは96質量%以上である。なお、係る量の上限については、本発明の効果を得られる範囲で高分子加工助剤を本発明のメタクリル樹脂組成物に含有できれば特に制限はない。   The total amount of the methacrylic resin and the polycarbonate resin contained in the methacrylic resin composition of the present invention is 80% by mass or more, preferably 90% by mass or more, more preferably 94% by mass or more, and further preferably 96% by mass or more. is there. The upper limit of the amount is not particularly limited as long as the polymer processing aid can be contained in the methacrylic resin composition of the present invention as long as the effects of the present invention can be obtained.

本発明のメタクリル樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じてフィラーを含んでいてもよい。フィラーとしては、炭酸カルシウム、タルク、カーボンブラック、酸化チタン、シリカ、クレー、硫酸バリウム、炭酸マグネシウムなどが挙げられる。本発明のメタクリル樹脂組成物に含有し得るフィラーの量は、好ましくは3質量%以下、より好ましくは1.5質量%以下である。   The methacrylic resin composition of the present invention may contain a filler as necessary within a range not impairing the effects of the present invention. Examples of the filler include calcium carbonate, talc, carbon black, titanium oxide, silica, clay, barium sulfate, and magnesium carbonate. The amount of filler that can be contained in the methacrylic resin composition of the present invention is preferably 3% by mass or less, more preferably 1.5% by mass or less.

本発明のメタクリル樹脂組成物には、本発明の効果を損なわない範囲で、他の重合体を含んでいてもよい。他の重合体としては、ポリエチレン、ポリプロピレン、ポリブテン−1、ポリ−4−メチルペンテン−1、ポリノルボルネンなどのポリオレフィン樹脂;エチレン系アイオノマー;ポリスチレン、スチレン−無水マレイン酸共重合体、ハイインパクトポリスチレン、AS樹脂、ABS樹脂、AES樹脂、AAS樹脂、ACS樹脂、MBS樹脂などのスチレン系樹脂;メチルメタクリレート−スチレン共重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル樹脂;ナイロン6、ナイロン66、ポリアミドエラストマーなどのポリアミド;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン−ビニルアルコール共重合体、ポリアセタール、ポリフッ化ビニリデン、ポリウレタン、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、フェノキシ樹脂、シリコーン変性樹脂;アクリルゴム、アクリル系熱可塑性エラストマー、シリコーンゴム;SEPS、SEBS、SISなどのスチレン系熱可塑性エラストマー;IR、EPR、EPDMなどのオレフィン系ゴムなどが挙げられる。本発明に用いられるメタクリル樹脂組成物に含有され得る他の重合体の量は、好ましくは10質量%以下、より好ましくは5質量%以下、最も好ましくは0質量%である。   The methacrylic resin composition of the present invention may contain other polymers as long as the effects of the present invention are not impaired. Other polymers include polyolefin resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, and polynorbornene; ethylene ionomers; polystyrene, styrene-maleic anhydride copolymer, high impact polystyrene, Styrenic resins such as AS resin, ABS resin, AES resin, AAS resin, ACS resin, MBS resin; methyl methacrylate-styrene copolymer; polyester resin such as polyethylene terephthalate and polybutylene terephthalate; nylon 6, nylon 66, polyamide elastomer Polyamide such as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyacetal, polyvinylidene fluoride, polyurethane, modified poly Enylene ether, polyphenylene sulfide, phenoxy resin, silicone modified resin; acrylic rubber, acrylic thermoplastic elastomer, silicone rubber; styrene thermoplastic elastomer such as SEPS, SEBS, SIS; olefin rubber such as IR, EPR, EPDM, etc. Is mentioned. The amount of the other polymer that can be contained in the methacrylic resin composition used in the present invention is preferably 10% by mass or less, more preferably 5% by mass or less, and most preferably 0% by mass.

本発明のメタクリル樹脂組成物には、本発明の効果を損なわない範囲で、酸化防止剤、熱劣化防止剤、紫外線吸収剤、光安定剤、滑剤、離型剤、帯電防止剤、難燃剤、染顔料、光拡散剤、有機色素、艶消し剤、耐衝撃性改質剤、蛍光体などの添加剤を含有していてもよい。   In the methacrylic resin composition of the present invention, an antioxidant, a thermal degradation inhibitor, an ultraviolet absorber, a light stabilizer, a lubricant, a mold release agent, an antistatic agent, a flame retardant, and the like within a range not impairing the effects of the present invention. It may contain additives such as dyes and pigments, light diffusing agents, organic dyes, matting agents, impact resistance modifiers, and phosphors.

酸化防止剤は、酸素存在下においてそれ単体で樹脂の酸化劣化防止に効果を有するものである。例えば、リン系酸化防止剤、ヒンダードフェノール系酸化防止剤、チオエーテル系酸化防止剤などが挙げられる。これらの中、着色による光学特性の劣化防止効果の観点から、リン系酸化防止剤やヒンダードフェノール系酸化防止剤が好ましく、リン系酸化防止剤とヒンダードフェノール系酸化防止剤との併用がより好ましい。
リン系酸化防止剤とヒンダードフェノール系酸化防止剤とを併用する場合、リン系酸化防止剤/ヒンダードフェノール系酸化防止剤を質量比で0.2/1〜2/1で使用するのが好ましく、0.5/1〜1/1で使用するのがより好ましい。
The antioxidant alone has an effect of preventing oxidative deterioration of the resin in the presence of oxygen. Examples thereof include phosphorus antioxidants, hindered phenol antioxidants, and thioether antioxidants. Among these, from the viewpoint of preventing the deterioration of optical properties due to coloring, phosphorus-based antioxidants and hindered phenol-based antioxidants are preferable, and the combined use of phosphorus-based antioxidants and hindered phenol-based antioxidants is more preferable. preferable.
When a phosphorus antioxidant and a hindered phenol antioxidant are used in combination, it is preferable to use a phosphorus antioxidant / hindered phenol antioxidant at a mass ratio of 0.2 / 1 to 2/1. It is preferable to use 0.5 / 1 to 1/1.

リン系酸化防止剤としては、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト(ADEKA社製;商品名:アデカスタブHP−10)、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト(BASF社製;商品名:IRGAFOS168)、3,9−ビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)−2,4,8,10−テトラオキサ−3,9−ジホスファスピロ[5.5]ウンデカン(ADEKA社製;商品名:アデカスタブPEP−36)などが好ましい。   Examples of phosphorus antioxidants include 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite (manufactured by ADEKA; trade name: ADK STAB HP-10), tris (2,4-di-). tert-Butylphenyl) phosphite (manufactured by BASF; trade name: IRGAFOS168), 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa- 3,9-diphosphaspiro [5.5] undecane (manufactured by ADEKA; trade name: ADK STAB PEP-36) is preferred.

ヒンダードフェノール系酸化防止剤としては、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕(BASF社製;商品名IRGANOX1010)、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート(BASF社製;商品名IRGANOX1076)などが好ましい。   As the hindered phenol-based antioxidant, pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF; trade name IRGANOX 1010), octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate (manufactured by BASF; trade name IRGANOX1076) is preferred.

熱劣化防止剤としては、実質上無酸素の状態下で高熱にさらされたときに生じるポリマーラジカルを捕捉することによって樹脂の熱劣化を防止できるものである。
該熱劣化防止剤としては、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−ヒドロキシベンジル)−4−メチルフェニルアクリレート(住友化学社製;商品名スミライザーGM)、2,4−ジtert−アミル−6−(3’,5’−ジ−tert−アミル−2’−ヒドロキシ−α−メチルベンジル)フェニルアクリレート(住友化学社製;商品名スミライザーGS)などが好ましい。
The thermal degradation inhibitor can prevent thermal degradation of the resin by trapping polymer radicals that are generated when exposed to high heat in a substantially oxygen-free state.
As the thermal degradation inhibitor, 2-tert-butyl-6- (3′-tert-butyl-5′-methyl-hydroxybenzyl) -4-methylphenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumilyzer GM), 2,4-ditert-amyl-6- (3 ′, 5′-di-tert-amyl-2′-hydroxy-α-methylbenzyl) phenyl acrylate (manufactured by Sumitomo Chemical Co., Ltd .; trade name Sumitizer GS) is preferable. .

紫外線吸収剤は、紫外線を吸収する能力を有する化合物であり、主に光エネルギーを熱エネルギーに変換する機能を有すると言われるものである。
紫外線吸収剤としては、ベンゾフェノン類、ベンゾトリアゾール類、トリアジン類、ベンゾエート類、サリシレート類、シアノアクリレート類、蓚酸アニリド類、マロン酸エステル類、ホルムアミジン類などが挙げられる。これらの中でも、ベンゾトリアゾール類、トリアジン類、または波長380〜450nmにおけるモル吸光係数の最大値εmaxが100dm3・mol-1cm-1以下である紫外線吸収剤が好ましい。
The ultraviolet absorber is a compound having an ability to absorb ultraviolet rays, and is mainly said to have a function of converting light energy into heat energy.
Examples of the ultraviolet absorber include benzophenones, benzotriazoles, triazines, benzoates, salicylates, cyanoacrylates, succinic anilides, malonic esters, formamidines, and the like. Among these, benzotriazoles, triazines, or ultraviolet absorbers having a maximum molar extinction coefficient ε max at a wavelength of 380 to 450 nm of 100 dm 3 · mol −1 cm −1 or less are preferable.

ベンゾトリアゾール類は紫外線被照による着色などの光学特性低下を抑制する効果が高いので、本発明のフィルムを光学用途に適用する場合に用いる紫外線吸収剤として好ましい。ベンゾトリアゾール類としては、2−(2H−ベンゾトリアゾール−2−イル)−4−(1,1,3,3−テトラメチルブチル)フェノール(BASF社製;商品名TINUVIN329)、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ビス(1−メチル−1−フェニルエチル)フェノール(BASF社製;商品名TINUVIN234)、2,2‘−メチレンビス[6−(2H−ベンゾトリアゾール−2−イル)−4−tert−オクチルフェノール](ADEKA社製;LA−31)、2−(5−オクチルチオ−2H−ベンゾトリアゾール−2−イル)−6−tert−ブチル−4−メチルフェノールなどが好ましい。   Benzotriazoles are preferable as ultraviolet absorbers used when the film of the present invention is applied to optical applications because it has a high effect of suppressing deterioration in optical properties such as coloring due to ultraviolet irradiation. Examples of benzotriazoles include 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol (manufactured by BASF; trade name TINUVIN329), 2- (2H- Benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (manufactured by BASF; trade name TINUVIN234), 2,2′-methylenebis [6- (2H-benzotriazole-2 -Yl) -4-tert-octylphenol] (manufactured by ADEKA; LA-31), 2- (5-octylthio-2H-benzotriazol-2-yl) -6-tert-butyl-4-methylphenol and the like are preferable. .

また、波長380〜450nmにおけるモル吸光係数の最大値εmaxが1200dm3・mol-1cm-1以下である紫外線吸収剤は、得られるフィルムの変色を抑制できる。このような紫外線吸収剤としては、2−エチル−2’−エトキシ−オキサルアニリド(クラリアントジャパン社製;商品名サンデユボアVSU)などが挙げられる。
これら紫外線吸収剤の中、紫外線被照による樹脂劣化が抑えられるという観点からベンゾトリアゾール類が好ましく用いられる。
The maximum value epsilon max UV absorber or less 1200dm 3 · mol -1 cm -1 in molar extinction coefficient at a wavelength of 380~450nm can suppress discoloration of the resulting films. Examples of such an ultraviolet absorber include 2-ethyl-2′-ethoxy-oxalanilide (manufactured by Clariant Japan, trade name: Sundebore VSU).
Of these ultraviolet absorbers, benzotriazoles are preferably used from the viewpoint of suppressing resin degradation due to ultraviolet irradiation.

また、波長380nm付近の波長を効率的に吸収したい場合は、トリアジン類の紫外線吸収剤が好ましく用いられる。このような紫外線吸収剤としては、2,4,6−トリス(2−ヒドロキシ−4−ヘキシルオキシ−3−メチルフェニル)−1,3,5−トリアジン(ADEKA社製;LA−F70)や、その類縁体であるヒドロキシフェニルトリアジン系紫外線吸収剤(BASF社製;TINUVIN477やTINUVIN460)、2,4−ジフェニル−6−(2−ヒドロキシ−4−ヘキシルオキシフェニル)−1,3,5−トリアジンなどが挙げられる。   Further, when it is desired to efficiently absorb a wavelength around 380 nm, a triazine ultraviolet absorber is preferably used. As such an ultraviolet absorber, 2,4,6-tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (made by ADEKA; LA-F70), Hydroxyphenyltriazine-based ultraviolet absorbers (manufactured by BASF; TINUVIN477 and TINUVIN460), 2,4-diphenyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3,5-triazine Is mentioned.

なお、紫外線吸収剤のモル吸光係数の最大値εmaxは、次のようにして測定する。シクロヘキサン1Lに紫外線吸収剤10.00mgを添加し、目視による観察で未溶解物がないように溶解させる。この溶液を1cm×1cm×3cmの石英ガラスセルに注入し、日立製作所社製U−3410型分光光度計を用いて、波長380〜450nm、光路長1cmでの吸光度を測定する。紫外線吸収剤の分子量(MUV)と、測定された吸光度の最大値(Amax)とから次式により計算し、モル吸光係数の最大値εmaxを算出する。
εmax=[Amax/(10×10-3)]×MUV
In addition, the maximum value ε max of the molar extinction coefficient of the ultraviolet absorber is measured as follows. Add 10.00 mg of UV absorber to 1 L of cyclohexane and dissolve it so that there is no undissolved material by visual observation. This solution is poured into a 1 cm × 1 cm × 3 cm quartz glass cell, and the absorbance at a wavelength of 380 to 450 nm and an optical path length of 1 cm is measured using a Hitachi U-3410 spectrophotometer. The maximum value ε max of the molar extinction coefficient is calculated from the molecular weight (M UV ) of the ultraviolet absorber and the maximum value (A max ) of the measured absorbance according to the following formula.
ε max = [A max / (10 × 10 −3 )] × M UV

光安定剤は、主に光による酸化で生成するラジカルを捕捉する機能を有すると言われる化合物である。好適な光安定剤としては、2,2,6,6−テトラアルキルピペリジン骨格を持つ化合物などのヒンダードアミン類が挙げられる。   The light stabilizer is a compound that is said to have a function of capturing radicals generated mainly by oxidation by light. Suitable light stabilizers include hindered amines such as compounds having a 2,2,6,6-tetraalkylpiperidine skeleton.

滑剤としては、例えば、ステアリン酸、ベヘニン酸、ステアロアミド酸、メチレンビスステアロアミド、ヒドロキシステアリン酸トリグリセリド、パラフィンワックス、ケトンワックス、オクチルアルコール、硬化油などが挙げられる。   Examples of the lubricant include stearic acid, behenic acid, stearamic acid, methylene bisstearamide, hydroxystearic acid triglyceride, paraffin wax, ketone wax, octyl alcohol, and hardened oil.

離型剤としては、成形品の金型からの離型を容易にする機能を有する化合物である。離型剤としては、セチルアルコール、ステアリルアルコールなどの高級アルコール類;ステアリン酸モノグリセライド、ステアリン酸ジグリセライドなどのグリセリン高級脂肪酸エステルなどが挙げられる。本発明においては、離型剤として、高級アルコール類とグリセリン脂肪酸モノエステルとを併用することが好ましい。高級アルコール類とグリセリン脂肪酸モノエステルとを併用する場合、高級アルコール類/グリセリン脂肪酸モノエステルの質量比が、2.5/1〜3.5/1の範囲で使用するのが好ましく、2.8/1〜3.2/1の範囲で使用するのがより好ましい。   As a mold release agent, it is a compound which has a function which makes easy mold release from the metal mold | die. Examples of the release agent include higher alcohols such as cetyl alcohol and stearyl alcohol; glycerin higher fatty acid esters such as stearic acid monoglyceride and stearic acid diglyceride. In the present invention, it is preferable to use a higher alcohol and a glycerin fatty acid monoester in combination as a release agent. When higher alcohols and glycerin fatty acid monoester are used in combination, the mass ratio of higher alcohols / glycerin fatty acid monoester is preferably 2.5 / 1 to 3.5 / 1, and preferably 2.8. It is more preferable to use within the range of / 1 to 3.2 / 1.

耐衝撃性改質剤としては、アクリル系ゴムもしくはジエン系ゴムをコア層成分として含むコアシェル型改質剤;ゴム粒子を複数包含した改質剤などが挙げられる。
有機色素としては、樹脂に対しては有害とされている紫外線を可視光線に変換する機能を有する化合物が好ましく用いられる。
光拡散剤や艶消し剤としては、ガラス微粒子、ポリシロキサン系架橋微粒子、架橋ポリマー微粒子、タルク、炭酸カルシウム、硫酸バリウムなどが挙げられる。
蛍光体として、蛍光顔料、蛍光染料、蛍光白色染料、蛍光増白剤、蛍光漂白剤などが挙げられる。
Examples of the impact modifier include a core-shell type modifier containing acrylic rubber or diene rubber as a core layer component; a modifier containing a plurality of rubber particles, and the like.
As the organic dye, a compound having a function of converting ultraviolet rays that are harmful to the resin into visible light is preferably used.
Examples of the light diffusing agent and matting agent include glass fine particles, polysiloxane-based crosslinked fine particles, crosslinked polymer fine particles, talc, calcium carbonate, and barium sulfate.
Examples of the phosphor include a fluorescent pigment, a fluorescent dye, a fluorescent white dye, a fluorescent brightener, and a fluorescent bleach.

これらの添加剤は、1種を単独でまたは2種以上を組み合わせて用いてもよい。また、これらの添加剤は、メタクリル樹脂やポリカーボネート樹脂を製造する際の重合反応液に添加してもよいし、製造されたメタクリル樹脂やポリカーボネート樹脂に添加してもよいし、メタクリル樹脂組成物を調製する際に添加してもよい。本発明に用いられるメタクリル樹脂組成物に含有される添加剤の合計量は、フィルムの外観不良を抑制する観点から、メタクリル樹脂に対して好ましくは7質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下である。   These additives may be used alone or in combination of two or more. Moreover, these additives may be added to the polymerization reaction liquid when producing a methacrylic resin or a polycarbonate resin, or may be added to the produced methacrylic resin or the polycarbonate resin, or a methacrylic resin composition may be added. It may be added during preparation. The total amount of additives contained in the methacrylic resin composition used in the present invention is preferably 7% by mass or less, more preferably 5% by mass or less, based on the methacrylic resin, from the viewpoint of suppressing poor appearance of the film. More preferably, it is 4 mass% or less.

前記メタクリル樹脂組成物の調製方法は特に限定されない。例えば、ポリカーボネート樹脂の存在下にメタクリル酸メチルを含む単量体混合物を重合してメタクリル樹脂を生成させる方法や、メタクリル樹脂およびポリカーボネート樹脂を溶融混練する方法などが挙げられる。これらのうち溶融混練法は工程が単純であるので、好ましい。溶融混練の際に、必要に応じて他の重合体や添加剤を混合してもよいし、メタクリル樹脂を他の重合体および添加剤と混合した後にポリカーボネート樹脂と混合してもよいし、ポリカーボネート樹脂を他の重合体および添加剤と混合した後にメタクリル樹脂と混合してもよい。混練は、例えば、ニーダールーダー、押出機、ミキシングロール、バンバリーミキサーなどの既知の混合装置または混練装置を使用して行なうことができる。これらのうち、二軸押出機が好ましい。混合・混練時の温度は、使用するメタクリル樹脂およびポリカーボネート樹脂の溶融温度などに応じて適宜調節することができるが、好ましくは110〜300℃である。上記のような方法で調製されたメタクリル樹脂組成物は、ペレット、顆粒、粉末などの任意の形態にして、フィルムに成形することができる。   The method for preparing the methacrylic resin composition is not particularly limited. Examples thereof include a method of polymerizing a monomer mixture containing methyl methacrylate in the presence of a polycarbonate resin to produce a methacrylic resin, a method of melt-kneading a methacrylic resin and a polycarbonate resin, and the like. Among these, the melt-kneading method is preferable because the process is simple. When melt-kneading, other polymers and additives may be mixed as necessary, methacrylic resin may be mixed with other polymers and additives, and then mixed with polycarbonate resin. The resin may be mixed with methacrylic resin after being mixed with other polymers and additives. The kneading can be performed using, for example, a known mixing apparatus or kneading apparatus such as a kneader ruder, an extruder, a mixing roll, or a Banbury mixer. Of these, a twin screw extruder is preferred. Although the temperature at the time of mixing and kneading can be suitably adjusted according to the melting temperature of the methacrylic resin and polycarbonate resin to be used, it is preferably 110 to 300 ° C. The methacrylic resin composition prepared by the above method can be formed into a film in any form such as pellets, granules, and powders.

本発明のメタクリル樹脂組成物は、ガラス転移温度が、好ましくは120℃以上、より好ましくは123℃以上、さらに好ましくは124℃以上である。メタクリル樹脂組成物のガラス転移温度の上限は特に制限はないが、好ましくは140℃、より好ましくは130℃である。   The glass transition temperature of the methacrylic resin composition of the present invention is preferably 120 ° C. or higher, more preferably 123 ° C. or higher, and still more preferably 124 ° C. or higher. The upper limit of the glass transition temperature of the methacrylic resin composition is not particularly limited, but is preferably 140 ° C, more preferably 130 ° C.

本発明のメタクリル樹脂組成物をGPCにて測定して決定されるMwは、好ましくは70000〜200000、より好ましくは72000〜160000、さらに好ましくは75000〜120000である。本発明に用いられるメタクリル樹脂組成物をGPCにて測定して決定される分子量分布は、好ましくは1.2〜2.5、より好ましくは1.3〜2.0である。Mwや分子量分布がこの範囲にあると、メタクリル樹脂組成物の成形加工性が良好となり、耐衝撃性や靭性に優れた成形体を得易くなる。   Mw determined by measuring the methacrylic resin composition of the present invention by GPC is preferably 70,000 to 200,000, more preferably 72,000 to 16,000, and even more preferably 75,000 to 120,000. The molecular weight distribution determined by measuring the methacrylic resin composition used in the present invention by GPC is preferably 1.2 to 2.5, more preferably 1.3 to 2.0. When the Mw and molecular weight distribution are in this range, the moldability of the methacrylic resin composition becomes good, and it becomes easy to obtain a molded article excellent in impact resistance and toughness.

本発明のメタクリル樹脂組成物を230℃および3.8kg荷重の条件で測定して決定されるメルトフローレートは、好ましくは0.1〜6g/10分、さらに好ましくは0.5〜5g/10分、最も好ましくは1.0〜3g/10分である。   The melt flow rate determined by measuring the methacrylic resin composition of the present invention under the conditions of 230 ° C. and 3.8 kg load is preferably 0.1 to 6 g / 10 minutes, more preferably 0.5 to 5 g / 10. Min, most preferably 1.0 to 3 g / 10 min.

本発明のメタクリル樹脂組成物は、1.0mm厚さのヘイズが、1.0%以下が好ましく、0.7%以下がより好ましく、0.5%以下がさらに好ましい。   In the methacrylic resin composition of the present invention, the 1.0 mm thickness haze is preferably 1.0% or less, more preferably 0.7% or less, and further preferably 0.5% or less.

本発明のフィルムは、その製法によって特に限定されない。本発明のフィルムは、例えば、前記メタクリル樹脂組成物を、溶液キャスト法、溶融流延法、押出成形法、インフレーション成形法、ブロー成形法などの公知の方法にて製膜することによって得ることができる。これらのうち、押出成形法が好ましい。押出成形法によれば、透明性に優れ、改善された靭性を持ち、取扱い性に優れ、靭性と表面硬度および剛性とのバランスに優れたフィルムを得ることができる。押出機から吐出されるメタクリル樹脂組成物の温度は好ましくは160〜270℃、より好ましくは220〜260℃に設定する。   The film of this invention is not specifically limited by the manufacturing method. The film of the present invention can be obtained, for example, by forming the methacrylic resin composition by a known method such as a solution casting method, a melt casting method, an extrusion molding method, an inflation molding method, or a blow molding method. it can. Of these, the extrusion method is preferred. According to the extrusion method, a film having excellent transparency, improved toughness, excellent handleability, and excellent balance between toughness, surface hardness, and rigidity can be obtained. The temperature of the methacrylic resin composition discharged from the extruder is preferably set to 160 to 270 ° C, more preferably 220 to 260 ° C.

押出成形法のうち、良好な表面平滑性、良好な鏡面光沢、低ヘイズのフィルムが得られるという観点から、前記メタクリル樹脂組成物を溶融状態でTダイから押出し、次いでそれを二つ以上の鏡面ロールまたは鏡面ベルトで挟持して成形することを含む方法が好ましい。鏡面ロールまたは鏡面ベルトは、金属製であることが好ましい。一対の鏡面ロールまたは鏡面ベルトの間の線圧は、好ましくは10N/mm以上、より好ましくは30N/mm以上である。   Among the extrusion molding methods, from the viewpoint of obtaining a film having good surface smoothness, good specular gloss, and low haze, the methacrylic resin composition is extruded from a T-die in a molten state, and then it is applied to two or more specular surfaces. A method including forming by sandwiching with a roll or a mirror belt is preferable. The mirror roll or the mirror belt is preferably made of metal. The linear pressure between the pair of mirror rolls or the mirror belt is preferably 10 N / mm or more, more preferably 30 N / mm or more.

また、鏡面ロールまたは鏡面ベルトの表面温度は共に130℃以下であることが好ましい。また、一対の鏡面ロール若しくは鏡面ベルトは、少なくとも一方の表面温度が60℃以上であることが好ましい。このような表面温度に設定すると、押出機から吐出される前記メタクリル樹脂組成物を自然放冷よりも速い速度で冷却することができ、表面平滑性に優れ且つヘイズの低い本発明のフィルムを製造し易い。   Moreover, it is preferable that the surface temperature of a mirror surface roll or a mirror surface belt is 130 degrees C or less. The pair of mirror rolls or mirror belts preferably have at least one surface temperature of 60 ° C. or higher. When such a surface temperature is set, the methacrylic resin composition discharged from the extruder can be cooled at a faster rate than natural cooling, and the film of the present invention having excellent surface smoothness and low haze is produced. Easy to do.

本発明のフィルムは延伸処理を施したものであってもよい。延伸処理によって、機械的強度が高まり、ひび割れし難いフィルムを得ることができる。延伸方法は特に限定されず、一軸延伸、同時二軸延伸法、逐次二軸延伸法、チュブラー延伸法などが挙げられる。延伸時の温度は、均一に延伸でき、高い強度のフィルムが得られるという観点から、100〜200℃が好ましく、120〜160℃がより好ましい。また特に強度を大きくしたい場合は、低い温度である方が好ましく、例えば110〜150℃が好ましく、125〜140℃がより好ましい。好ましくはメタクリル樹脂組成物のガラス転移温度以上で延伸することが好ましい。延伸は、通常長さ基準で100〜5000%/分で行われる。延伸の後、熱固定を施したり、フィルムを弛緩することにより、より熱収縮の少ないフィルムとすることができる。延伸倍率に制限はないが、通常面積比で1.5〜8倍程度とする。   The film of the present invention may be subjected to a stretching treatment. By the stretching treatment, a film that has high mechanical strength and is difficult to crack can be obtained. The stretching method is not particularly limited, and examples thereof include uniaxial stretching, simultaneous biaxial stretching, sequential biaxial stretching, and tuber stretching. The temperature at the time of stretching is preferably from 100 to 200 ° C, more preferably from 120 to 160 ° C, from the viewpoint that the film can be stretched uniformly and a high-strength film can be obtained. In particular, when it is desired to increase the strength, a lower temperature is preferable, for example, 110 to 150 ° C is preferable, and 125 to 140 ° C is more preferable. It is preferable to stretch at or above the glass transition temperature of the methacrylic resin composition. Stretching is usually performed at 100 to 5000% / min on a length basis. After stretching, a film with less heat shrinkage can be obtained by heat-setting or relaxing the film. Although there is no restriction | limiting in a draw ratio, Usually, it shall be about 1.5 to 8 times by area ratio.

本発明のフィルムは、その中に含まれるメタクリル樹脂の量が、透明性や厚さ方向の位相差が小さいという観点から、好ましくは78〜98.7質量%、より好ましくは85〜97質量%である。
また、本発明のフィルムは、その中に含まれるポリカーボネート樹脂の量が、厚さ方向の位相差が小さいという観点から、好ましくは1〜3.8質量%、より好ましくは2〜2.9質量%である。
また、本発明のフィルムは、その中に含まれる高分子加工助剤の量が、延伸性の観点から、好ましくは0.3〜5.6質量%、より好ましくは0.5〜2.9質量%である。
In the film of the present invention, the amount of methacrylic resin contained therein is preferably 78 to 98.7% by mass, more preferably 85 to 97% by mass, from the viewpoint that transparency and retardation in the thickness direction are small. It is.
The film of the present invention is preferably 1 to 3.8% by mass, more preferably 2 to 2.9% by mass from the viewpoint that the amount of the polycarbonate resin contained therein is small in retardation in the thickness direction. %.
In the film of the present invention, the amount of the polymer processing aid contained therein is preferably 0.3 to 5.6% by mass, more preferably 0.5 to 2.9 from the viewpoint of stretchability. % By mass.

本発明のフィルムの厚さは、特に制限されないが、光学フィルムとして用いる場合、その厚さは、好ましくは1〜300μm、より好ましくは10〜50μm、さらに好ましくは15〜40μmである。   The thickness of the film of the present invention is not particularly limited, but when used as an optical film, the thickness is preferably 1 to 300 μm, more preferably 10 to 50 μm, and still more preferably 15 to 40 μm.

本発明のフィルムは、厚さ50μmにおけるヘイズが、好ましくは0.2%以下、より好ましくは0.1%以下である。これにより、表面光沢や透明性に優れる。また、液晶保護フィルムや導光フィルムなどの光学用途においては、光源の利用効率が高まり好ましい。さらに、表面賦形を行う際の賦形精度に優れるため好ましい。   The film of the present invention has a haze at a thickness of 50 μm, preferably 0.2% or less, more preferably 0.1% or less. Thereby, it is excellent in surface glossiness and transparency. Further, in optical applications such as a liquid crystal protective film and a light guide film, the use efficiency of the light source is preferably increased. Furthermore, it is preferable because it is excellent in shaping accuracy when performing surface shaping.

本発明のフィルムは、波長590nmの光に対する面内方向位相差Reが、フィルムの厚さ40μmの時に、好ましくは5nm以下、より好ましくは4nm以下、さらに好ましくは3nm以下、特に好ましくは2nm以下、最も好ましくは1nm以下である。
本発明のフィルムは、波長590nmの光に対する厚さ方向位相差Rthが、フィルムの厚さ40μmの時に、−10nm以上10nm以下であることが好ましく、より好ましくは−5nm以上、5nm以下、さらに好ましくは−4nm以上、4nm以下、さらにより好ましくは−3nm以上、3nm以下、特に好ましくは−2nm以上、2nm以下、最も好ましくは−1nm以上、1nm以下である。
面内方向位相差および厚さ方向位相差がこのような範囲であれば、位相差に起因する画像表示装置の表示特性への影響が顕著に抑制され得る。より具体的には、干渉ムラや3Dディスプレイ用液晶表示装置に用いる場合の3D像の歪みが顕著に抑制され得る。
なお、面内方向位相差Reおよび厚さ方向位相差Rthは、それぞれ、以下の式で定義される値である。
Re=(nx−ny)×d
Rth=((nx+ny)/2−nz)×d
ここで、nxはフィルムの遅相軸方向の屈折率であり、nyはフィルムの進相軸方向の屈折率であり、nzはフィルムの厚さ方向の屈折率であり、d(nm)はフィルムの厚さである。遅相軸は、フィルム面内の屈折率が最大になる方向をいい、進相軸は、面内で遅相軸に垂直な方向をいう。
When the film of the present invention has an in-plane retardation Re for light having a wavelength of 590 nm and a film thickness of 40 μm, it is preferably 5 nm or less, more preferably 4 nm or less, still more preferably 3 nm or less, particularly preferably 2 nm or less, Most preferably, it is 1 nm or less.
The film of the present invention preferably has a thickness direction retardation Rth for light having a wavelength of 590 nm of −10 nm or more and 10 nm or less, more preferably −5 nm or more and 5 nm or less, even more preferably when the film thickness is 40 μm. Is from −4 nm to 4 nm, even more preferably from −3 nm to 3 nm, particularly preferably from −2 nm to 2 nm, and most preferably from −1 nm to 1 nm.
If the in-plane direction phase difference and the thickness direction phase difference are within such ranges, the influence on the display characteristics of the image display apparatus due to the phase difference can be significantly suppressed. More specifically, interference unevenness and 3D image distortion when used in a liquid crystal display device for 3D display can be significantly suppressed.
The in-plane direction phase difference Re and the thickness direction phase difference Rth are values defined by the following equations, respectively.
Re = (nx−ny) × d
Rth = ((nx + ny) / 2−nz) × d
Here, nx is the refractive index in the slow axis direction of the film, ny is the refractive index in the fast axis direction of the film, nz is the refractive index in the thickness direction of the film, and d (nm) is the film. Is the thickness. The slow axis refers to the direction in which the in-plane refractive index is maximized, and the fast axis refers to the direction perpendicular to the slow axis in the plane.

本発明のフィルムは、透明性が高く、耐熱性が高く、位相差が小さく、薄いため、偏光子保護フィルムや後述する各種フィルム等に好適である。   Since the film of the present invention has high transparency, high heat resistance, small retardation, and thinness, it is suitable for a polarizer protective film, various films described later, and the like.

本発明の偏光板は、本発明のフィルムからなる偏光子保護フィルムを少なくとも1枚積層されたものである。好ましくは、ポリビニルアルコール系樹脂から形成される偏光子と本発明の偏光子保護フィルムが接着剤層を介して積層されてなるものである。   The polarizing plate of the present invention is obtained by laminating at least one polarizer protective film comprising the film of the present invention. Preferably, a polarizer formed from a polyvinyl alcohol-based resin and the polarizer protective film of the present invention are laminated via an adhesive layer.

本発明の好ましい一実施形態に係る偏光板は、図1に示すように、偏光子11の一方の面に、接着剤層12、易接着層13、および本発明の偏光子保護フィルム14がこの順で積層され、偏光子11のもう一方の面に、接着剤層15、および光学フィルム16がこの順で積層されてなるものである。   As shown in FIG. 1, the polarizing plate according to a preferred embodiment of the present invention includes an adhesive layer 12, an easy-adhesion layer 13, and the polarizer protective film 14 of the present invention on one surface of a polarizer 11. The adhesive layer 15 and the optical film 16 are laminated in this order on the other surface of the polarizer 11.

上記ポリビニルアルコール系樹脂から形成される偏光子は、例えば、ポリビニルアルコール系樹脂フィルムを二色性物質(代表的には、ヨウ素、二色性染料)で染色して一軸延伸することによって得られる。ポリビニルアルコール系樹脂フィルムは、ポリビニルアルコール系樹脂を任意の適切な方法(例えば、樹脂を水または有機溶媒に溶解した溶液を流延成膜する流延法、キャスト法、押出法)にて製膜することによって得ることができる。該ポリビニルアルコール系樹脂は、重合度が、好ましくは100〜5000、さらに好ましくは1400〜4000である。また、偏光子に用いられるポリビニルアルコール系樹脂フィルムの厚さは、偏光板が用いられるLCDの目的や用途に応じて適宜設定され得るが、代表的には5〜80μmである。   The polarizer formed from the polyvinyl alcohol-based resin can be obtained, for example, by dyeing a polyvinyl alcohol-based resin film with a dichroic substance (typically iodine or a dichroic dye) and uniaxially stretching. The polyvinyl alcohol-based resin film is formed by any suitable method (for example, casting method, casting method, extrusion method for casting a solution obtained by dissolving a resin in water or an organic solvent). Can be obtained. The degree of polymerization of the polyvinyl alcohol-based resin is preferably 100 to 5000, and more preferably 1400 to 4000. The thickness of the polyvinyl alcohol-based resin film used for the polarizer can be appropriately set according to the purpose and use of the LCD in which the polarizing plate is used, but is typically 5 to 80 μm.

本発明の偏光板に設けることができる接着剤層は光学的に透明であれば特に制限されない。接着剤層を構成する接着剤として、例えば、水系接着剤、溶剤系接着剤、ホットメルト系接着剤、活性エネルギー線硬化型接着剤などを用いることができる。これらのうち、水系接着剤および活性エネルギー線硬化型接着剤が好適である。   The adhesive layer that can be provided on the polarizing plate of the present invention is not particularly limited as long as it is optically transparent. As an adhesive constituting the adhesive layer, for example, a water-based adhesive, a solvent-based adhesive, a hot-melt adhesive, an active energy ray-curable adhesive, or the like can be used. Of these, water-based adhesives and active energy ray-curable adhesives are suitable.

水系接着剤は、その形態が、水溶液であってもよいし、ラテックスであってもよい。水系接着剤としては、特に限定されないが、例えば、ビニルポリマー系、ゼラチン系、ビニル系ラテックス系、ポリウレタン系、イソシアネート系、ポリエステル系、エポキシ系等を例示できる。このような水系接着剤には、必要に応じて、架橋剤や他の添加剤、酸等の触媒も配合することができる。前記水系接着剤としては、ビニルポリマーを含有する接着剤などを用いることが好ましく、ビニルポリマーとしては、ポリビニルアルコール系樹脂が好ましい。またポリビニルアルコール系樹脂には、ホウ酸やホウ砂、グルタルアルデヒドやメラミン、シュウ酸などの水溶性架橋剤を含有することができる。特に偏光子としてポリビニルアルコール系のポリマーフィルムを用いる場合には、ポリビニルアルコール系樹脂を含有する接着剤を用いることが、接着性の点から好ましい。さらには、アセトアセチル基を有するポリビニルアルコール系樹脂を含む接着剤が耐久性を向上させる点からより好ましい。前記水系接着剤は、通常、水溶液からなる接着剤として用いられ、通常、0.5〜60質量%の固形分を含有してなる。   The aqueous adhesive may be in the form of an aqueous solution or latex. Although it does not specifically limit as an aqueous adhesive, For example, a vinyl polymer type | system | group, a gelatin type, a vinyl type latex type, a polyurethane type, an isocyanate type, a polyester type, an epoxy type etc. can be illustrated. In such an aqueous adhesive, a catalyst such as a crosslinking agent, other additives, and an acid can be blended as necessary. As the water-based adhesive, an adhesive containing a vinyl polymer is preferably used, and the vinyl polymer is preferably a polyvinyl alcohol resin. The polyvinyl alcohol-based resin can contain a water-soluble crosslinking agent such as boric acid, borax, glutaraldehyde, melamine, or oxalic acid. In particular, when a polyvinyl alcohol polymer film is used as the polarizer, it is preferable from the viewpoint of adhesiveness to use an adhesive containing a polyvinyl alcohol resin. Furthermore, an adhesive containing a polyvinyl alcohol-based resin having an acetoacetyl group is more preferable from the viewpoint of improving durability. The water-based adhesive is usually used as an adhesive made of an aqueous solution, and usually contains 0.5 to 60% by mass of a solid content.

活性エネルギー線硬化型接着剤としては、単官能および二官能以上の(メタ)アクリロイル基を有する化合物やビニル基を有する化合物を硬化性成分として用いる他、エポキシ化合物やオキセタン化合物と光酸発生剤とを主体とする光カチオン型硬化成分を使用することもできる。活性エネルギー線としては、電子線や紫外線を用いることができる。   As the active energy ray-curable adhesive, a compound having a monofunctional or bifunctional (meth) acryloyl group or a compound having a vinyl group is used as a curable component, and an epoxy compound, an oxetane compound, a photoacid generator, It is also possible to use a photocationic curing component mainly composed of As the active energy ray, an electron beam or an ultraviolet ray can be used.

また前記接着剤には、金属化合物フィラーを含有させることができる。金属化合物フィラーにより、接着剤層の流動性を制御することができ、膜厚を安定化して、良好な外観を有し、面内が均一で接着性のバラツキのない偏光板が得られる。   The adhesive may contain a metal compound filler. With the metal compound filler, the fluidity of the adhesive layer can be controlled, the film thickness can be stabilized, and a polarizing plate having a good appearance, uniform in-plane and no adhesive variation can be obtained.

接着剤層の形成方法は特に制限されない。例えば、上記接着剤を対象物に塗布し、次いで加熱または乾燥することによって形成できる。接着剤の塗布は本発明の偏光子保護フィルムまたは光学フィルムに対して行ってもよいし、偏光子に対して行ってもよい。接着剤層を形成した後、偏光子保護フィルム若しくは光学フィルムと偏光子とを押し合わせることによって両者を積層することができる。積層においてはロールプレス機や平板プレス機などを用いることができる。加熱乾燥温度、乾燥時間は接着剤の種類に応じて適宜決定される。
接着剤層の厚さは、乾燥状態において、好ましくは0.01〜10μm、さらに好ましくは0.03〜5μmである。
The method for forming the adhesive layer is not particularly limited. For example, it can be formed by applying the adhesive to an object and then heating or drying. Application | coating of an adhesive agent may be performed with respect to the polarizer protective film or optical film of this invention, and may be performed with respect to a polarizer. After forming the adhesive layer, the polarizer protective film or the optical film and the polarizer can be pressed together to laminate them. In the lamination, a roll press machine or a flat plate press machine can be used. The heating and drying temperature and drying time are appropriately determined according to the type of adhesive.
The thickness of the adhesive layer is preferably 0.01 to 10 μm, more preferably 0.03 to 5 μm in the dry state.

本発明の偏光板に設けることができる易接着層は、偏光子保護フィルムと偏光子とが接する面の接着性を向上させるものである。易接着層は、易接着処理などによって設けることができる。易接着処理としては、コロナ処理、プラズマ処理、低圧UV処理等の表面処理が挙げられる。また、易接着層は、アンカー層を形成する方法、または前記の表面処理とアンカー層を形成する方法との併用によって設けることができる。これらの中でも、コロナ処理、アンカー層を形成する方法、およびこれらを併用する方法が好ましい。   The easy adhesion layer which can be provided in the polarizing plate of this invention improves the adhesiveness of the surface where a polarizer protective film and a polarizer contact | connect. The easy adhesion layer can be provided by an easy adhesion treatment or the like. Examples of the easy adhesion treatment include surface treatment such as corona treatment, plasma treatment, and low-pressure UV treatment. The easy adhesion layer can be provided by a method of forming an anchor layer or a combination of the surface treatment and the method of forming an anchor layer. Among these, a corona treatment, a method of forming an anchor layer, and a method of using these in combination are preferable.

上記アンカー層としては、例えば、反応性官能基を有するシリコーン層が挙げられる。反応性官能基を有するシリコーン層の材料は、特に制限されないが、例えば、イソシアネート基含有のアルコキシシラノール類、アミノ基含有アルコキシシラノール類、メルカプト基含有アルコキシシラノール類、カルボキシ含有アルコキシシラノール類、エポキシ基含有アルコキシシラノール類、ビニル型不飽和基含有アルコキシシラノール類、ハロゲン基含有アルコキシシラノール類、イソシアネート基含有アルコキシシラノール類が挙げられる。これらのうち、アミノ系シラノールが好ましい。シラノールを効率よく反応させるためのチタン系触媒や錫系触媒を上記シラノールに添加することにより、接着力を強固にすることができる。また上記反応性官能基を有するシリコーンに他の添加剤を加えてもよい。他の添加剤としては、テルペン樹脂、フェノール樹脂、テルペン-フェノール樹脂、ロジン樹脂、キシレン樹脂などの粘着付与剤;紫外線吸収剤、酸化防止剤、耐熱安定剤などの安定剤等を挙げることができる。また、アンカー層として、セルロースアセテートブチレート樹脂をケン化させたものからなる層も挙げられる。   Examples of the anchor layer include a silicone layer having a reactive functional group. The material of the silicone layer having a reactive functional group is not particularly limited. For example, an isocyanate group-containing alkoxysilanol, an amino group-containing alkoxysilanol, a mercapto group-containing alkoxysilanol, a carboxy-containing alkoxysilanol, an epoxy group-containing Examples include alkoxysilanols, vinyl unsaturated group-containing alkoxysilanols, halogen group-containing alkoxysilanols, and isocyanate group-containing alkoxysilanols. Of these, amino silanols are preferred. By adding a titanium-based catalyst or tin-based catalyst for efficiently reacting silanol to the silanol, the adhesive strength can be strengthened. Moreover, you may add another additive to the silicone which has the said reactive functional group. Examples of other additives include tackifiers such as terpene resins, phenol resins, terpene-phenol resins, rosin resins, and xylene resins; stabilizers such as ultraviolet absorbers, antioxidants, and heat stabilizers. . Moreover, the layer which consists of what saponified cellulose acetate butyrate resin as an anchor layer is also mentioned.

上記アンカー層は公知の技術により塗工、乾燥して形成される。アンカー層の厚さは、乾燥状態において、好ましくは1〜100nm、さらに好ましくは10〜50nmである。塗工の際、アンカー層形成用薬液を溶剤で希釈してもよい。希釈溶剤は特に制限されないが、アルコール類が挙げられる。希釈濃度は特に制限されないが、好ましくは1〜5質量%、より好ましくは1〜3質量%である。   The anchor layer is formed by coating and drying by a known technique. The thickness of the anchor layer is preferably 1 to 100 nm, more preferably 10 to 50 nm in a dry state. During coating, the anchor layer forming chemical may be diluted with a solvent. The dilution solvent is not particularly limited, and examples thereof include alcohols. The dilution concentration is not particularly limited, but is preferably 1 to 5% by mass, more preferably 1 to 3% by mass.

光学フィルム16は本発明の偏光子保護フィルムであってもよいし、別の任意の適切な光学フィルムであってもよい。用いられる光学フィルムは、特に制限されず、例えば、セルロース樹脂、ポリカーボネート樹脂、環状ポリオレフィン樹脂、メタクリル樹脂等からなるフィルムが挙げられる。   The optical film 16 may be the polarizer protective film of the present invention, or any other appropriate optical film. The optical film used is not particularly limited, and examples thereof include films made of cellulose resin, polycarbonate resin, cyclic polyolefin resin, methacrylic resin, and the like.

セルロース樹脂は、セルロースと脂肪酸のエステルである。このようセルロースエステル系樹脂の具体例としては、セルローストリアセテート、セルロースジアセテート、セルローストリプロピオネート、セルロースジプロピオネート等が挙げられる。これらのなかでも、セルローストリアセテートが特に好ましい。セルローストリアセテートは多くの製品が市販されており、入手容易性やコストの点でも有利である。セルローストリアセテートの市販品の例としては、富士フイルム社製の商品名「UV−50」、「UV−80」、「SH−80」、「TD−80U」、「TD−TAC」、「UZ−TAC」や、コニカミノルタ社製の「KCシリーズ」等が挙げられる。   Cellulose resin is an ester of cellulose and fatty acid. Specific examples of the cellulose ester resin include cellulose triacetate, cellulose diacetate, cellulose tripropionate, and cellulose dipropionate. Among these, cellulose triacetate is particularly preferable. Many products of cellulose triacetate are commercially available, which is advantageous in terms of availability and cost. Examples of commercially available cellulose triacetate include trade names “UV-50”, “UV-80”, “SH-80”, “TD-80U”, “TD-TAC”, and “UZ-” manufactured by Fujifilm Corporation. TAC ”,“ KC series ”manufactured by Konica Minolta, and the like.

環状ポリオレフィン樹脂は、環状オレフィンを重合単位として重合される樹脂の総称であり、例えば、特開平1−240517号公報、特開平3−14882号公報、特開平3−122137号公報等に記載されている樹脂が挙げられる。具体例としては、環状オレフィンの開環(共)重合体、環状オレフィンの付加重合体、環状オレフィンとエチレン、プロピレン等のα−オレフィンとその共重合体(代表的にはランダム共重合体)、および、これらを不飽和カルボン酸やその誘導体で変性したグラフト重合体、ならびに、それらの水素化物などが挙げられる。環状オレフィンの具体例としては、ノルボルネン系モノマーが挙げられる。   Cyclic polyolefin resin is a general term for resins that are polymerized using cyclic olefin as a polymerization unit, and is described in, for example, JP-A-1-240517, JP-A-3-14882, JP-A-3-122137, and the like. Resins that are included. Specific examples include ring-opening (co) polymers of cyclic olefins, addition polymers of cyclic olefins, cyclic olefins and α-olefins such as ethylene and propylene (typically random copolymers), And graft polymers obtained by modifying them with an unsaturated carboxylic acid or a derivative thereof, and hydrides thereof. Specific examples of the cyclic olefin include norbornene monomers.

環状ポリオレフィン樹脂としては、種々の製品が市販されている。具体例としては、日本ゼオン社製の商品名「ゼオネックス」、「ゼオノア」、JSR社製の商品名「アートン」、ポリプラスチックス社製の商品名「トーパス」、三井化学社製の商品名「APEL」が挙げられる。   Various products are commercially available as the cyclic polyolefin resin. As specific examples, trade names “ZEONEX” and “ZEONOR” manufactured by ZEON Corporation, “ARTON” manufactured by JSR, “TOPAS” manufactured by Polyplastics, and “Product Name” manufactured by Mitsui Chemicals, Inc. APEL ".

光学フィルム16等の光学フィルムに用いられるメタクリル樹脂としては、本発明の効果を損なわない範囲内で、任意の適切なメタクリル樹脂を採用し得る。例えば、ポリメタクリル酸メチルなどのポリメタクリル酸エステル、メタクリル酸メチル−(メタ)アクリル酸共重合、メタクリル酸メチル−(メタ)アクリル酸エステル共重合体、メタクリル酸メチル−アクリル酸エステル−(メタ)アクリル酸共重合体、(メタ)アクリル酸メチル−スチレン共重合体(MS樹脂など)、脂環族炭化水素基を有する重合体(例えば、メタクリル酸メチル− メタクリル酸シクロヘキシル共重合体、メタクリル酸メチル−(メタ)アクリル酸ノルボルニル共重合体など)が挙げられる。   Any appropriate methacrylic resin may be employed as the methacrylic resin used for the optical film such as the optical film 16 as long as the effects of the present invention are not impaired. For example, polymethacrylate such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester- (meth) Acrylic acid copolymer, (meth) acrylic acid methyl-styrene copolymer (MS resin, etc.), polymer having alicyclic hydrocarbon group (for example, methyl methacrylate-cyclohexyl methacrylate copolymer, methyl methacrylate) -(Meth) acrylic acid norbornyl copolymer).

光学フィルム16等の光学フィルムに用いられるメタクリル樹脂の具体例として、例えば、三菱レイヨン社製のアクリペットVHやアクリペットVRL20A 、特開2013−033237やWO2013/005634号公報に記載のメタクリル酸メチルとマレイミド系単量体を共重合したアクリル樹脂、WO2005/108438号公報に記載の分子内に環構造を有するアクリル樹脂、特開2009−197151号公報に記載の分子内に環構造を有するメタクリル樹脂、分子内架橋や分子内環化反応により得られる高ガラス転移温度(Tg)メタクリル樹脂が挙げられる。   Specific examples of the methacrylic resin used in the optical film such as the optical film 16 include, for example, Acrypet VH and Acrypet VRL20A manufactured by Mitsubishi Rayon Co., Ltd. and methyl methacrylate described in JP2013-033237A and WO2013 / 005634. An acrylic resin copolymerized with a maleimide monomer, an acrylic resin having a ring structure in the molecule described in WO 2005/108438, a methacryl resin having a ring structure in the molecule described in JP-A-2009-197151, Examples thereof include a high glass transition temperature (Tg) methacrylic resin obtained by intramolecular crosslinking or intramolecular cyclization reaction.

メタクリル樹脂として、ラクトン環構造を有するメタクリル樹脂を用いることもできる。高い耐熱性、高い透明性、二軸延伸することにより高い機械的強度を有するからである。   As the methacrylic resin, a methacrylic resin having a lactone ring structure can also be used. It is because it has high mechanical strength by high heat resistance, high transparency, and biaxial stretching.

上記ラクトン環構造を有するメタクリル樹脂としては、特開2000−230016号公報、特開2001−151814号公報、特開2002−120326号公報、特開2002−254544号公報、特開2005−146084号公報などに記載の、ラクトン環構造を有するメタクリル樹脂が挙げられる。   Examples of the methacrylic resin having the lactone ring structure include JP 2000-230016, JP 2001-151814, JP 2002-120326, JP 2002-254544, and JP 2005-146084. And a methacrylic resin having a lactone ring structure.

本発明の偏光板は、画像表示装置に使用することができる。画像表示装置の具体例としては、エレクトロルミネッセンス(EL)ディスプレイ、プラズマディスプレイ(PD)、電界放出ディスプレイ(FED:Field Emission Display)のような自発光型表示装置、液晶表示装置が挙げられる。液晶表示装置は、液晶セルと、当該液晶セルの少なくとも片側に配置された上記偏光板とを有する。   The polarizing plate of the present invention can be used for an image display device. Specific examples of the image display device include a self-luminous display device such as an electroluminescence (EL) display, a plasma display (PD), and a field emission display (FED), and a liquid crystal display device. The liquid crystal display device includes a liquid crystal cell and the polarizing plate disposed on at least one side of the liquid crystal cell.

本発明のメタクリル樹脂組成物は、メタクリル樹脂とポリカーボネート樹脂とが均一に相溶するため透明性が高く、また、延伸させても厚さ方向の位相差が小さい。また、得られるフィルムは延伸性が高いものである。故に、本発明のメタクリル樹脂組成物によれば、薄くて、面内均一性に優れ、表面平滑性が高いフィルムを得ることができる。また、低い温度での延伸が可能となり、強度の大きいフィルムが得られる。さらに、メタクリル樹脂のシンジオタクシティティ(rr)を特定値とすることにより、耐熱性を高くし、熱収縮率の小さいフィルムを提供できる。   The methacrylic resin composition of the present invention is highly transparent because the methacrylic resin and the polycarbonate resin are compatible with each other, and the retardation in the thickness direction is small even when stretched. Moreover, the film obtained has a high stretchability. Therefore, according to the methacrylic resin composition of the present invention, a thin film having excellent in-plane uniformity and high surface smoothness can be obtained. In addition, the film can be stretched at a low temperature, and a film having high strength can be obtained. Furthermore, by setting the syndiotacticity (rr) of the methacrylic resin to a specific value, it is possible to provide a film having high heat resistance and a small heat shrinkage rate.

以下、実施例および比較例によって本発明を具体的に説明するが、本発明は下記実施例に限定されない。なお、物性値等の測定は以下の方法によって実施した。また、実施例1〜5は参考例1〜5と読み替えるものとする。 EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to the following Example. The physical property values and the like were measured by the following method. Moreover, Examples 1-5 shall be read as Reference Examples 1-5.

(重合転化率)
島津製作所社製ガスクロマトグラフ GC−14Aに、カラムとしてGL Sciences Inc.社製 Inert CAP 1(df=0.4μm、0.25mmI.D.×60m)を繋ぎ、インジェクション温度を180℃に、検出器温度を180℃に、カラム温度を60℃(5分間保持)から昇温速度10℃/分で200℃まで昇温して、10分間保持する条件に設定して、測定を行い、この結果に基づいて重合転化率を算出した。
(Polymerization conversion)
The gas chromatograph GC-14A manufactured by Shimadzu Corporation was used as a column for GL Sciences Inc. Inert CAP 1 (df = 0.4 μm, 0.25 mm ID × 60 m) manufactured by the company is connected, the injection temperature is 180 ° C., the detector temperature is 180 ° C., and the column temperature is 60 ° C. (held for 5 minutes). The temperature was increased to 200 ° C. at a rate of temperature increase of 10 ° C./min, the conditions were set to hold for 10 minutes, the measurement was performed, and the polymerization conversion rate was calculated based on this result.

(重量平均分子量(Mw)、分子量分布(Mw/Mn))
各製造例、実施例および比較例で得られたメタクリル樹脂およびメタクリル樹脂組成物のMwおよび分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)にて下記の条件でクロマトグラムを測定し、標準ポリスチレンの分子量に換算した値を算出した。ベースラインはGPCチャートの高分子量側のピークの傾きが保持時間の早い方から見てゼロからプラスに変化する点と、低分子量側のピークの傾きが保持時間の早い方から見てマイナスからゼロに変化する点を結んだ線とした。
GPC装置:東ソー社製、HLC−8320
検出器:示差屈折率検出器
カラム:東ソー社製のTSKgel SuperMultipore HZM-Mの2本とSuperhz4000を直列に繋いだものを用いた。
溶離剤: テトラヒドロフラン
溶離剤流量: 0.35mL/分
カラム温度: 40℃
検量線:標準ポリスチレン10点のデータを用いて作成
(Weight average molecular weight (Mw), molecular weight distribution (Mw / Mn))
Mw and molecular weight distribution of the methacrylic resins and methacrylic resin compositions obtained in each of the production examples, examples and comparative examples were measured by gel permeation chromatography (GPC) under the following conditions, and the standard polystyrene. The value converted into molecular weight was calculated. The baseline is that the slope of the peak on the high molecular weight side of the GPC chart changes from zero to positive when viewed from the earlier retention time, and the slope of the peak on the low molecular weight side is from negative to zero when viewed from the earlier retention time. A line connecting the points that change to.
GPC device: manufactured by Tosoh Corporation, HLC-8320
Detector: Differential refractive index detector Column: TSKgel SuperMultipore HZM-M manufactured by Tosoh Corporation and Superhz4000 connected in series were used.
Eluent: Tetrahydrofuran Eluent flow rate: 0.35 mL / min Column temperature: 40 ° C
Calibration curve: Created using 10 standard polystyrene data

(粘度平均分子量(Mv))
ポリカーボネート樹脂の粘度平均分子量は、ウベローデ粘度計を用いてポリカーボネート樹脂0.5gを塩化メチレン100mLに溶解した溶液の比粘度ηspを20℃で測定し、下記のSchnellの式を満足する値として、20℃の塩化メチレン溶液の極限粘度[η]から、算出した。
ηsp/c=[η]+0.45×[η]2
(但し[η]は極限粘度、上記条件ではc=0.5)
[η]=1.23×10- 4 Mv0 . 8 3
(Viscosity average molecular weight (Mv))
The viscosity average molecular weight of the polycarbonate resin was determined by measuring the specific viscosity η sp of a solution obtained by dissolving 0.5 g of the polycarbonate resin in 100 mL of methylene chloride at 20 ° C. using an Ubbelohde viscometer, and satisfying the following Schnell equation: It was calculated from the intrinsic viscosity [η] of a 20 ° C. methylene chloride solution.
η sp /c=[η]+0.45×[η] 2 c
([Η] is intrinsic viscosity, c = 0.5 under the above conditions)
[Η] = 1.23 × 10 - . 4 Mv 0 8 3

(三連子表示のシンジオタクティシティ(rr))
メタクリル樹脂の1H−NMRスペクトルを、核磁気共鳴装置(Bruker社製 ULTRA SHIELD 400 PLUS)を用いて、溶媒として重水素化クロロホルムを用い、室温、積算回数64回の条件にて、測定した。そのスペクトルからTMSを0ppmとした際の0.6〜0.95ppmの領域の面積(X)と、0.6〜1.35ppmの領域の面積(Y)とを計測し、次いで、三連子表示のシンジオタクティシティ(rr)を式:(X/Y)×100にて算出した。
(Syndiotacticity (rr) in triplet display)
The 1 H-NMR spectrum of the methacrylic resin was measured using a nuclear magnetic resonance apparatus (ULTRA SHIELD 400 PLUS manufactured by Bruker) using deuterated chloroform as a solvent at room temperature at a total number of 64 times. From the spectrum, the area (X) of the region of 0.6 to 0.95 ppm when TMS was set to 0 ppm and the area (Y) of the region of 0.6 to 1.35 ppm were measured. The displayed syndiotacticity (rr) was calculated by the formula: (X / Y) × 100.

(ガラス転移温度Tg)
メタクリル樹脂、ポリカーボネート樹脂およびメタクリル樹脂組成物を、JIS K7121に準拠して、示差走査熱量測定装置(島津製作所製、DSC−50(品番))を用いて、230℃まで一度昇温し、次いで室温まで冷却し、その後、室温から230℃までを10℃/分で昇温させる条件にてDSC曲線を測定した。2回目の昇温時に測定されるDSC曲線から求められる中間点ガラス転移温度を本発明におけるガラス転移温度とした。
(Glass transition temperature Tg)
The methacrylic resin, polycarbonate resin and methacrylic resin composition were heated once to 230 ° C. using a differential scanning calorimeter (DSC-50 (product number)) manufactured in accordance with JIS K7121, and then at room temperature. Then, the DSC curve was measured under the condition that the temperature was raised from room temperature to 230 ° C. at a rate of 10 ° C./min. The midpoint glass transition temperature obtained from the DSC curve measured at the second temperature rise was defined as the glass transition temperature in the present invention.

(メルトマスフローレート(MFR))
各実施例および比較例でフィルムの製造に用いたメタクリル樹脂組成物の原料であるメタクリル樹脂を、JIS K7210に準拠して、230℃、3.8kg荷重、10分間の条件で測定した。
(メルトボリュームフローレート(MVR))
各実施例および比較例でフィルムの製造に用いたメタクリル樹脂組成物の原料であるポリカーボネート樹脂を、JIS K7210に準拠して、300℃、1.2kg荷重、10分間の条件で測定した。
(Melt Mass Flow Rate (MFR))
The methacrylic resin, which is the raw material of the methacrylic resin composition used in the production of the film in each Example and Comparative Example, was measured under conditions of 230 ° C., 3.8 kg load, and 10 minutes in accordance with JIS K7210.
(Melt volume flow rate (MVR))
The polycarbonate resin, which is the raw material of the methacrylic resin composition used in the production of the film in each Example and Comparative Example, was measured under the conditions of 300 ° C., 1.2 kg load, and 10 minutes in accordance with JIS K7210.

(表面平滑性)
各実施例および比較例で得られた二軸延伸フィルムの表面を目視により観察し以下の基準で表面平滑性を評価した。
A:表面が平滑である。
B:表面に凹凸がある。
(Surface smoothness)
The surface of the biaxially stretched film obtained in each Example and Comparative Example was visually observed, and the surface smoothness was evaluated according to the following criteria.
A: The surface is smooth.
B: There are irregularities on the surface.

(高分子加工助剤の平均重合度)
自動希釈型毛細管粘度計(ウベローデ型、毛細管内径=0.5mm)を用い、クロロホルムを溶媒として20℃で測定して、PMMA換算重合度で求めた。
(Average polymerization degree of polymer processing aid)
Using an automatic dilution type capillary viscometer (Ubbelohde type, capillary inner diameter = 0.5 mm), chloroform was used as a solvent at 20 ° C., and the degree of polymerization was calculated as PMMA.

(加熱収縮率)
各実施例および比較例で得られた二軸延伸フィルムから100mm×30mmの試験片を切り出し、その表面に70mmの長さの直線を記入し、110℃の温度に保たれた強制温風循環式恒温オーブン内で30分間加熱後、記入した直線の長さ(L(mm))をスケールで読取り、下記式により加熱収縮率を求めた。
加熱収縮率(%)=(70−L)/70×100
(Heat shrinkage)
A test piece of 100 mm × 30 mm was cut out from the biaxially stretched film obtained in each example and comparative example, a straight line having a length of 70 mm was written on the surface, and a forced hot air circulation system maintained at a temperature of 110 ° C. After heating in a thermostatic oven for 30 minutes, the length of the entered straight line (L (mm)) was read on a scale, and the heat shrinkage rate was determined by the following formula.
Heat shrinkage rate (%) = (70−L) / 70 × 100

(全光線透過率)
各実施例および比較例で得られた二軸延伸フィルムから50mm×50mmの試験片を切り出し、JIS K7361−1に準じて、ヘイズメータ(村上色彩研究所製、HM−150)を用いてその全光線透過率を測定した。またメタクリル樹脂組成物の評価は、1.0mm厚の成形体を熱プレスにて成形し、全光線透過率を測定した。
(Total light transmittance)
A test piece of 50 mm × 50 mm was cut out from the biaxially stretched film obtained in each Example and Comparative Example, and its total light was measured using a haze meter (manufactured by Murakami Color Research Laboratory, HM-150) according to JIS K7361-1. The transmittance was measured. The methacrylic resin composition was evaluated by molding a 1.0 mm-thick molded body with a hot press and measuring the total light transmittance.

(ヘイズ)
各実施例および比較例で得られた二軸延伸フィルムから50mm×50mmの試験片を切り出し、JIS K7136に準拠して、ヘイズメータ(村上色彩研究所製、HM−150)を用いてそのヘイズを測定した。またメタクリル樹脂組成物の評価は、1.0mm厚の成形体を熱プレスにて成形し、ヘイズを測定した。
(Haze)
A test piece of 50 mm × 50 mm was cut out from the biaxially stretched film obtained in each Example and Comparative Example, and the haze was measured using a haze meter (manufactured by Murakami Color Research Laboratory, HM-150) according to JIS K7136. did. The methacrylic resin composition was evaluated by molding a 1.0 mm-thick molded body with a hot press and measuring haze.

(厚さ方向位相差Rthおよび面内方向位相差Re)
各実施例および比較例で得られた二軸延伸フィルムから40mm×40mmの試験片を切り出した。この試験片を、自動複屈折計(王子計測社製 KOBRA−WR)を用いて、温度23±2℃、湿度50±5%において、波長590nm、40°傾斜方向の位相差値から3次元屈折率nx、ny、nzを求め、前述した式より厚さ方向位相差Rthおよび面内方向位相差Reを計算した。試験片の厚さd(nm)は、デジマティックインジケータ(ミツトヨ社製)を用いて測定し、屈折率nは、デジタル精密屈折計(カルニュー光学工業社製 KPR−20)で測定した。
(Thickness direction retardation Rth and in-plane direction retardation Re)
A test piece of 40 mm × 40 mm was cut out from the biaxially stretched film obtained in each example and comparative example. This test piece was subjected to three-dimensional refraction using an automatic birefringence meter (KOBRA-WR manufactured by Oji Scientific Co., Ltd.) at a temperature of 23 ± 2 ° C. and a humidity of 50 ± 5% from a phase difference value in a 590 nm wavelength and 40 ° tilt direction. The rates nx, ny, and nz were obtained, and the thickness direction phase difference Rth and the in-plane direction phase difference Re were calculated from the above-described equations. The thickness d (nm) of the test piece was measured using a digimatic indicator (manufactured by Mitutoyo Corporation), and the refractive index n was measured by a digital precision refractometer (KPR-20 manufactured by Kalnew Optical Industry Co., Ltd.).

(延伸性)
各実施例および比較例で得られた未延伸フィルムを二軸延伸する際、以下の基準で延伸性を評価した。延伸は、未延伸フィルムを、100mm×100mmに切り出し、パンタグラフ式二軸延伸試験機(東洋精機社製)により、ガラス転移温度+10℃の延伸温度、一方向120%/分の延伸速度、一方向2倍の延伸倍率で逐次二軸延伸し後(面積比で4倍)、10秒保持し、次いで冷却した。
A:割れやクラックのないフィルムを10サンプル中、5サンプル以上取得できたもの。
B:割れやクラックのないフィルムを10サンプル中、4サンプル以下しか取得できなかったもの。
(Extensible)
When the unstretched films obtained in the examples and comparative examples were biaxially stretched, the stretchability was evaluated according to the following criteria. Stretching is performed by cutting an unstretched film into 100 mm × 100 mm, and using a pantograph type biaxial stretching tester (manufactured by Toyo Seiki Co., Ltd.), a glass transition temperature + 10 ° C. stretching temperature, a unidirectional stretching rate of 120% / min, After sequentially biaxially stretching at a stretch ratio of 2 times (4 times in area ratio), it was held for 10 seconds and then cooled.
A: 5 or more samples could be obtained out of 10 samples without cracks or cracks.
B: The film which was able to acquire only 4 samples or less out of 10 samples without a crack and a crack.

<製造例1> 撹拌翼と三方コックが取り付けられた5Lのガラス製反応容器内を窒素で置換した。これに、室温下にて、トルエン1600g、1,1,4,7,10,10−ヘキサメチルトリエチレンテトラミン2.49g(10.8mmol)、濃度0.45Mのイソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウムのトルエン溶液53.5g(30.9mmol)、および濃度1.3Mのsec−ブチルリチウムの溶液(溶媒:シクロヘキサン95質量%、n−ヘキサン5質量%)6.17g(10.3mmol)を仕込んだ。撹拌しながら、これに、蒸留精製したメタクリル酸メチル550gを−20℃にて30分間かけて滴下した。滴下終了後、−20℃にて180分間撹拌した。溶液の色が黄色から無色に変わった。この時点におけるメタクリル酸メチルの重合転化率は100%であった。
得られた溶液にトルエン1500gを加えて希釈した。次いで、該希釈液をメタノール100kgに注ぎ入れ、沈澱物を得た。得られた沈殿物を80℃、140Paにて24時間乾燥して、Mwが96100で、分子量分布が1.07で、シンジオタクティシティ(rr)が83%で、ガラス転移温度が133℃で、且つメタクリル酸メチルに由来する構造単位の割合が100質量%であるメタクリル樹脂〔PMMA1〕を得た。
<Production Example 1> The inside of a 5 L glass reaction vessel equipped with a stirring blade and a three-way cock was replaced with nitrogen. To this, at room temperature, 1600 g of toluene, 2.49 g (10.8 mmol) of 1,1,4,7,10,10-hexamethyltriethylenetetramine, isobutylbis (2,6-dioxy) having a concentration of 0.45M. -T-Butyl-4-methylphenoxy) 53.5 g (30.9 mmol) of a toluene solution of aluminum and a solution of sec-butyllithium having a concentration of 1.3 M (solvent: cyclohexane 95 mass%, n-hexane 5 mass%) 6.17 g (10.3 mmol) was charged. While stirring, 550 g of distilled and purified methyl methacrylate was added dropwise at −20 ° C. over 30 minutes. After completion of dropping, the mixture was stirred at −20 ° C. for 180 minutes. The color of the solution changed from yellow to colorless. At this time, the polymerization conversion rate of methyl methacrylate was 100%.
The obtained solution was diluted by adding 1500 g of toluene. Next, the diluted solution was poured into 100 kg of methanol to obtain a precipitate. The obtained precipitate was dried at 80 ° C. and 140 Pa for 24 hours. The Mw was 96100, the molecular weight distribution was 1.07, the syndiotacticity (rr) was 83%, and the glass transition temperature was 133 ° C. And the ratio of the structural unit derived from methyl methacrylate was 100 mass%, and the methacryl resin [PMMA1] was obtained.

<製造例2> 撹拌翼と三方コックが取り付けられた5Lのガラス製反応容器内を窒素で置換した。これに、室温下にて、トルエン1600g、1,1,4,7,10,10−ヘキサメチルトリエチレンテトラミン2.49g(10.8mmol)、濃度0.45Mのイソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウムのトルエン溶液53.5g(30.9mmol)、および濃度1.3Mのsec−ブチルリチウムの溶液(溶媒:シクロヘキサン95%、n−ヘキサン5%)6.17g(10.3mmol)を仕込んだ。撹拌しながら、これに、蒸留精製したメタクリル酸メチル550gを20℃にて30分かけて滴下した。滴下終了後、20℃で90分間撹拌した。溶液の色が黄色から無色に変わった。この時点におけるメタクリル酸メチルの重合転化率は100%であった。
得られた溶液にトルエン1500gを加えて希釈した。次いで、希釈液をメタノール100kgに注ぎ入れ、沈澱物を得た。得られた沈殿物を80℃、140Paにて24時間乾燥して、Mwが81400で、分子量分布が1.08で、シンジオタクティシティ(rr)が73%で、ガラス転移温度が131℃で、且つメタクリル酸メチルに由来する構造単位の含有量が100質量%であるメタクリル樹脂〔PMMA2〕を得た。
<Production Example 2> The inside of a 5 L glass reaction vessel equipped with a stirring blade and a three-way cock was replaced with nitrogen. To this, at room temperature, 1600 g of toluene, 2.49 g (10.8 mmol) of 1,1,4,7,10,10-hexamethyltriethylenetetramine, isobutylbis (2,6-dioxy) having a concentration of 0.45M. 5. 53.5 g (30.9 mmol) of a toluene solution of -t-butyl-4-methylphenoxy) aluminum and a solution of sec-butyllithium having a concentration of 1.3 M (solvent: cyclohexane 95%, n-hexane 5%) 17 g (10.3 mmol) was charged. While stirring, 550 g of distilled and purified methyl methacrylate was added dropwise at 20 ° C. over 30 minutes. After completion of dropping, the mixture was stirred at 20 ° C. for 90 minutes. The color of the solution changed from yellow to colorless. At this time, the polymerization conversion rate of methyl methacrylate was 100%.
The obtained solution was diluted by adding 1500 g of toluene. Next, the diluted solution was poured into 100 kg of methanol to obtain a precipitate. The obtained precipitate was dried at 80 ° C. and 140 Pa for 24 hours. The Mw was 81400, the molecular weight distribution was 1.08, the syndiotacticity (rr) was 73%, and the glass transition temperature was 131 ° C. A methacrylic resin [PMMA2] having a content of structural units derived from methyl methacrylate of 100% by mass was obtained.

<製造例3> 攪拌機および採取管が取り付けられたオートクレーブ内を窒素で置換した。これに、精製されたメタクリル酸メチル100質量部、2,2’−アゾビス(2−メチルプロピオニトリル)(水素引抜能:1%、1時間半減期温度:83℃)0.0052質量部、およびn−オクチルメルカプタン0.28質量部を入れ、撹拌して、原料液を得た。かかる原料液中に窒素を送り込み、原料液中の溶存酸素を除去した。
オートクレーブと配管で接続された槽型反応器に容量の2/3まで原料液を入れた。温度を140℃に維持して先ずバッチ方式で重合反応を開始させた。重合転化率が55質量%になったところで、平均滞留時間150分となる流量で、原料液をオートクレーブから槽型反応器に供給し、且つ原料液の供給流量に相当する流量で、反応液を槽型反応器から抜き出して、温度140℃に維持し、連続流通方式の重合反応に切り替えた。切り替え後、定常状態における重合転化率は55質量%であった。
<Production Example 3> The inside of the autoclave to which the stirrer and the sampling tube were attached was replaced with nitrogen. To this, 100 parts by mass of purified methyl methacrylate, 0.002 parts by mass of 2,2′-azobis (2-methylpropionitrile) (hydrogen abstraction ability: 1%, 1 hour half-life temperature: 83 ° C.), Then, 0.28 parts by mass of n-octyl mercaptan was added and stirred to obtain a raw material liquid. Nitrogen was fed into the raw material liquid to remove dissolved oxygen in the raw material liquid.
The raw material liquid was put to 2/3 of the capacity in a tank reactor connected to the autoclave by piping. First, the polymerization reaction was started in a batch mode while maintaining the temperature at 140 ° C. When the polymerization conversion rate reaches 55% by mass, the raw material liquid is supplied from the autoclave to the tank reactor at a flow rate of an average residence time of 150 minutes, and the reaction liquid is supplied at a flow rate corresponding to the supply flow rate of the raw material liquid. It was extracted from the tank reactor, maintained at a temperature of 140 ° C., and switched to a continuous flow polymerization reaction. After switching, the polymerization conversion in the steady state was 55% by mass.

定常状態になった槽型反応器から抜き出される反応液を、平均滞留時間2分間となる流量で内温230℃の多管式熱交換器に供給して加温した。次いで加温された反応液をフラッシュ蒸発器に導入し、未反応単量体を主成分とする揮発分を除去して、溶融樹脂を得た。揮発分が除去された溶融樹脂を内温260℃の二軸押出機に供給してストランド状に吐出し、ペレタイザーでカットして、ペレット状の、Mwが82000で、分子量分布が1.85で、シンジオタクティシティ(rr)が52%で、ガラス転移温度が120℃で、且つメタクリル酸メチルに由来する構造単位の含有量が100質量%であるメタクリル樹脂〔PMMA3〕を得た。   The reaction liquid withdrawn from the tank reactor in a steady state was heated by supplying it to a multi-tubular heat exchanger having an internal temperature of 230 ° C. at a flow rate with an average residence time of 2 minutes. Next, the heated reaction liquid was introduced into a flash evaporator, and volatile components mainly composed of unreacted monomers were removed to obtain a molten resin. The molten resin from which volatile components have been removed is supplied to a twin-screw extruder having an internal temperature of 260 ° C., discharged into a strand shape, cut with a pelletizer, pellet-shaped, Mw is 82,000, and the molecular weight distribution is 1.85. A methacrylic resin [PMMA3] having a syndiotacticity (rr) of 52%, a glass transition temperature of 120 ° C. and a content of structural units derived from methyl methacrylate of 100% by mass was obtained.

<製造例4> n−オクチルメルカプタンの量を0.225質量部に変更した以外は製造例3と同じ操作を行って、Mwが103600で、分子量分布が1.81で、シンジオタクティシティ(rr)が52%で、ガラス転移温度が120℃で、且つメタクリル酸メチルに由来する構造単位の割合が100質量%であるメタクリル樹脂〔PMMA4〕を得た。 <Production Example 4> The same operation as in Production Example 3 was performed except that the amount of n-octyl mercaptan was changed to 0.225 parts by mass, Mw was 103600, molecular weight distribution was 1.81, and syndiotacticity ( A methacrylic resin [PMMA4] having an rr) of 52%, a glass transition temperature of 120 ° C. and a proportion of structural units derived from methyl methacrylate of 100% by mass was obtained.

<製造例5> n−オクチルメルカプタンの量を0.30質量部に変更した以外は製造例3と同じ操作を行って、Mwが76400で、分子量分布が1.81で、シンジオタクティシティ(rr)が53%、ガラス転移温度が119℃で、且つメタクリル酸メチルに由来する構造単位の含有量が100質量%であるメタクリル樹脂〔PMMA5〕を得た。 <Production Example 5> The same operation as in Production Example 3 was performed except that the amount of n-octyl mercaptan was changed to 0.30 parts by mass, Mw was 76400, molecular weight distribution was 1.81, and syndiotacticity ( A methacrylic resin [PMMA5] having an rr) of 53%, a glass transition temperature of 119 ° C., and a content of structural units derived from methyl methacrylate of 100% by mass was obtained.

<製造例6> メタクリル樹脂〔PMMA2〕57質量部およびメタクリル樹脂〔PMMA4〕43質量部を混ぜ合わせ、二軸押出機(テクノベル社製、商品名:KZW20TW-45MG-NH-600)で250℃にて混練押出してメタクリル樹脂〔PMMA6〕を製造した。 <Production Example 6> 57 parts by mass of methacrylic resin [PMMA2] and 43 parts by mass of methacrylic resin [PMMA4] are mixed and heated to 250 ° C. with a twin screw extruder (trade name: KZW20TW-45MG-NH-600). The methacrylic resin [PMMA6] was manufactured by kneading and extrusion.

スミペックスMHF(住友化学社製)をメタクリル樹脂〔PMMA7〕とした。   Sumipex MHF (manufactured by Sumitomo Chemical Co., Ltd.) was used as the methacrylic resin [PMMA7].

上記〔PMMA1〕〜〔PMMA7〕の物性を表1に示す。   Table 1 shows the physical properties of [PMMA1] to [PMMA7].

Figure 0006559656
Figure 0006559656

実施例で使用したポリカーボネート樹脂を以下に記載し、物性を表2に記載した。
PC1:出光興産社製、タフロンLC1700(品番);MVR(300℃、1.2Kg)=40cm3/10分、Mv=16200
PC2:三菱エンジニアリングプラスチックス社製、ユーピロンHL−4000(品番);MVR(300℃、1.2Kg)=60cm3/10分、Mv=15100
PC3:住化スタイロンポリカーボネート社製、SD POLYCA SD−2201
W(品番);MVR(300℃、1.2Kg)=115cm3/10分、Mv=13000
PC4:住化スタイロンポリカーボネート社製、SD POLYCA TR−2001
(品番);MVR(300℃、1.2Kg)=200cm3/10分、Mv=11400
PC5:三菱エンジニアリングプラスチックス社製、AL071;MVR(300℃、1.2Kg)=1000cm3/10分以上(流動性が高く正確な測定が困難であった)、
Mv=5500
PC6:PC4の50質量部とPC5の50質量部を混合したもの;MVR(300℃、1.2kg)=1000cm3/10分以上(流動性が高く正確な測定が困難であった)、Mv=8500
The polycarbonate resins used in the examples are described below, and the physical properties are shown in Table 2.
PC1: Idemitsu Kosan Co., Toughlon LC1700 (Part); MVR (300 ℃, 1.2Kg ) = 40cm 3/10 minutes, Mv = 16200
PC2: Mitsubishi Engineering Plastics Co., IUPILON HL-4000 (product number); MVR (300 ℃, 1.2Kg ) = 60cm 3/10 minutes, Mv = 15100
PC3: Sumika Stylon Polycarbonate, SD POLYCA SD-2201
W (Part); MVR (300 ℃, 1.2Kg ) = 115cm 3/10 min, Mv = 13000
PC4: Sumika Stylon Polycarbonate Company, SD POLYCA TR-2001
(Part); MVR (300 ℃, 1.2Kg ) = 200cm 3/10 min, Mv = 11400
PC 5: Mitsubishi Engineering Plastics Co., Ltd., AL071; MVR (300 ℃, 1.2Kg) = 1000cm 3/10 minutes or more (it was difficult to have high accurate measurement fluidity)
Mv = 5500
PC 6: 50 parts by weight of PC4 as a mixture of 50 parts by weight of PC5; MVR (300 ℃, 1.2kg ) = 1000cm 3/10 minutes or more (it was difficult to have high accurate measurement fluidity), Mv = 8500

Figure 0006559656
Figure 0006559656

実施例で使用した高分子加工助剤を以下に記載した。なお、ここでMMAはメタクリル酸メチルに由来する構造単位を意味し、BAはアクリル酸ブチルに由来する構造単位を意味する。
B1:三菱レイヨン社製メタブレンP570A(平均重合度:2384、MMA53質量%/BA47質量%)
B2:三菱レイヨン社製メタブレンP550A(平均重合度:7734、MMA88質量%/BA12質量%)
B3:クレハ社製パラロイドK125P(平均重合度:19874、MMA79質量%/BA21質量%)
B4:三菱レイヨン社製メタブレンP530A(平均重合度:24455、MMA80質量%/BA20質量%)
B5:三菱レイヨン社製メタブレンP531A(平均重合度:37162、MMA80質量%/BA20質量%)
The polymer processing aids used in the examples are described below. Here, MMA means a structural unit derived from methyl methacrylate, and BA means a structural unit derived from butyl acrylate.
B1: Metablene P570A manufactured by Mitsubishi Rayon Co., Ltd. (average polymerization degree: 2384, MMA 53 mass% / BA 47 mass%)
B2: Metablene P550A manufactured by Mitsubishi Rayon Co., Ltd. (average polymerization degree: 7734, MMA 88 mass% / BA 12 mass%)
B3: Paraloid K125P manufactured by Kureha Co., Ltd. (average polymerization degree: 19874, MMA 79% by mass / BA 21% by mass)
B4: Metablene P530A manufactured by Mitsubishi Rayon Co., Ltd. (average polymerization degree: 24455, MMA 80 mass% / BA 20 mass%)
B5: Metablene P531A manufactured by Mitsubishi Rayon Co., Ltd. (average polymerization degree: 37162, MMA 80 mass% / BA 20 mass%)

紫外線吸収剤として、2,4,6−トリス(2−ヒドロキシ−4−ヘキシルオキシ−3−メチルフェニル)−1,3,5−トリアジン(ADEKA社製;LA−F70)を使用した。   2,4,6-Tris (2-hydroxy-4-hexyloxy-3-methylphenyl) -1,3,5-triazine (manufactured by ADEKA; LA-F70) was used as an ultraviolet absorber.

<実施例1>
メタクリル樹脂〔PMMA1〕100質量部、ポリカーボネート樹脂〔PC1〕2.5質量部および加工助剤〔B2〕2質量部を混ぜ合わせ、二軸押出機(テクノベル社製、商品名:KZW20TW-45MG-NH-600)で250℃にて混練押出してメタクリル樹脂組成物〔1〕を製造した。得られたメタクリル樹脂組成物〔1〕を熱プレス成形して50mm×50mm×1.0mmの板状成形体を成形し、全光線透過率、ヘイズおよびガラス転移温度を測定した。メタクリル樹脂組成物〔1〕の物性を表3に示す。
<Example 1>
100 parts by weight of methacrylic resin [PMMA1], 2.5 parts by weight of polycarbonate resin [PC1] and 2 parts by weight of processing aid [B2] are mixed together and a twin-screw extruder (manufactured by Technobel, trade name: KZW20TW-45MG-NH). -600) and kneaded and extruded at 250 ° C. to produce a methacrylic resin composition [1]. The obtained methacrylic resin composition [1] was subjected to hot press molding to form a plate-like molded body of 50 mm × 50 mm × 1.0 mm, and the total light transmittance, haze and glass transition temperature were measured. Table 3 shows the physical properties of the methacrylic resin composition [1].

メタクリル樹脂組成物〔1〕を、80℃で12時間乾燥させた。20mmφ単軸押出機(OCS社製)を用いて、樹脂温度260℃にて、メタクリル樹脂組成物〔1〕を150mm幅のTダイから押し出し、それを表面温度85℃のロールにて引き取り、幅110mm、厚さ160μmの未延伸フィルムを得た。   The methacrylic resin composition [1] was dried at 80 ° C. for 12 hours. Using a 20 mmφ single-screw extruder (OCS), the methacrylic resin composition [1] is extruded from a 150 mm wide T-die at a resin temperature of 260 ° C., and is taken up by a roll having a surface temperature of 85 ° C. An unstretched film having a thickness of 110 mm and a thickness of 160 μm was obtained.

前記の手法にて得られた未延伸フィルムを、100mm×100mmに切り出し、パンタグラフ式二軸延伸試験機(東洋精機社製)により、ガラス転移温度+10℃の延伸温度、一方向500%/分の延伸速度、一方向2倍の延伸倍率で逐次二軸延伸し(面積比で4倍)、2分かけて100℃以下に冷却して取り出し、厚さ40μmの二軸延伸フィルムを得た。得られた二軸延伸フィルムについての表面平滑性、加熱収縮率、全光線透過率、ヘイズ、面内方向位相差Re、厚さ方向位相差Rthおよび未延伸フィルムから延伸フィルムを作製する際の延伸性の測定結果を表3に示す。   The unstretched film obtained by the above-described method is cut into 100 mm × 100 mm, and stretched at a glass transition temperature + 10 ° C., 500% / min in one direction by a pantograph type biaxial stretching tester (manufactured by Toyo Seiki Co., Ltd.). The film was sequentially biaxially stretched at a stretching speed and a stretching ratio of 2 times in one direction (4 times in area ratio), cooled to 100 ° C. or lower over 2 minutes, and a biaxially stretched film having a thickness of 40 μm was obtained. About the obtained biaxially stretched film, surface smoothness, heat shrinkage rate, total light transmittance, haze, in-plane direction retardation Re, thickness direction retardation Rth, and stretching when producing a stretched film from an unstretched film Table 3 shows the measurement results.

<実施例2〜11、比較例1〜7>
表3および表4に示す配合とする以外は実施例1と同じ方法でメタクリル樹脂組成物〔2〕〜〔18〕を製造した。得られたメタクリル樹脂組成物〔2〕〜〔18〕を熱プレス成形して50mm×50mm×1.0mmの板状成形体を成形し、全光線透過率、ヘイズおよびガラス転移温度を測定した。メタクリル樹脂組成物〔2〕〜〔18〕の物性を表3および表4に示す。
<Examples 2 to 11 and Comparative Examples 1 to 7>
Methacrylic resin compositions [2] to [18] were produced in the same manner as in Example 1 except that the formulations shown in Tables 3 and 4 were used. The obtained methacrylic resin compositions [2] to [18] were hot press molded to form a plate-like molded body of 50 mm × 50 mm × 1.0 mm, and the total light transmittance, haze, and glass transition temperature were measured. Tables 3 and 4 show the physical properties of the methacrylic resin compositions [2] to [18].

メタクリル樹脂組成物〔1〕の代わりにメタクリル樹脂組成物〔2〕〜〔18〕を用いた以外は実施例1と同じ方法で二軸延伸フィルムを得た。評価結果を表3および表4に示す。   A biaxially stretched film was obtained in the same manner as in Example 1 except that the methacrylic resin compositions [2] to [18] were used instead of the methacrylic resin composition [1]. The evaluation results are shown in Table 3 and Table 4.

Figure 0006559656
Figure 0006559656

Figure 0006559656
Figure 0006559656

(偏光子)
平均重合度2400、ケン化度99.9モル%、厚さ75μmのポリビニルアルコールフィルムを、30℃の温水中に60秒間浸漬して膨潤させた。次いで、0.3質量%(重量比:ヨウ素/ヨウ化カリウム=0.5/8)の30℃のヨウ素溶液中で1分間染色しながら、3.5倍まで延伸した。その後、65℃の4質量%のホウ酸水溶液中に0.5分間浸漬しながら総合延伸倍率が6倍になるよう延伸した。延伸後、70℃のオーブンで3分間乾燥を行い、厚さ22μmの偏光子を得た。
(Polarizer)
A polyvinyl alcohol film having an average polymerization degree of 2400, a saponification degree of 99.9 mol%, and a thickness of 75 μm was immersed in warm water at 30 ° C. for 60 seconds to swell. Next, the film was stretched to 3.5 times while being dyed in an iodine solution of 0.3% by mass (weight ratio: iodine / potassium iodide = 0.5 / 8) at 30 ° C. for 1 minute. Thereafter, the film was stretched so that the total stretching ratio was 6 times while being immersed in a 4% by mass boric acid aqueous solution at 65 ° C. for 0.5 minutes. After stretching, the film was dried in an oven at 70 ° C. for 3 minutes to obtain a polarizer having a thickness of 22 μm.

<偏光板Xの作製>
実施例8の二軸延伸フィルムを偏光子保護フィルムAとして用いた。ポリエステルウレタン(第一工業製薬社製、商品名:スーパーフレックス210、固形分:33%)16.8g、架橋剤(オキサゾリン含有ポリマー、日本触媒社製、商品名:エポクロスWS−700、固形分:25%)4.2g、1質量%のアンモニア水2.0g、コロイダルシリカ(扶桑化学工業社製、クォートロンPL−3、固形分:20質量%)0.42gおよび純水76.6gを混合し、易接着剤組成物を得た。
得られた易接着剤組成物を、コロナ放電処理を施した実施例8の二軸延伸フィルムのコロナ放電処理面に、乾燥後の厚さが100nmとなるように、バーコーターで塗布した。その後、フィルムを熱風乾燥機(110℃)に投入し、易接着剤組成物を約5分乾燥させて、実施例8の二軸延伸フィルム上に易接着層を形成した。
<Preparation of polarizing plate X>
The biaxially stretched film of Example 8 was used as the polarizer protective film A. Polyester urethane (Daiichi Kogyo Seiyaku Co., Ltd., trade name: Superflex 210, solid content: 33%) 16.8 g, cross-linking agent (oxazoline-containing polymer, product of Nippon Shokubai Co., Ltd., trade name: Epocross WS-700, solid content: 25%) 4.2 g, 1% by mass of ammonia water 2.0 g, colloidal silica (manufactured by Fuso Chemical Industries, Quartron PL-3, solid content: 20% by mass) 0.42 g and 76.6 g of pure water were mixed. An easy-adhesive composition was obtained.
The resulting easy-adhesive composition was applied to the corona discharge treated surface of the biaxially stretched film of Example 8 subjected to corona discharge treatment with a bar coater so that the thickness after drying was 100 nm. Thereafter, the film was put into a hot air dryer (110 ° C.), and the easy-adhesive composition was dried for about 5 minutes to form an easy-adhesion layer on the biaxially stretched film of Example 8.

次に、N−ヒドロキシエチルアクリルアミド(興人社製)38.3質量部と、トリプロピレングリコールジアクリレート(商品名:アロニックスM−220,東亞合成社製)19.1質量部と、アクリロイルモルホリン(興人社製)38.3部と、光重合開始剤(商品名:KAYACURE DETX−S,ジエチルチオキサントン,日本化薬社製)1.4質量部とを混合して50℃で1時間撹拌して活性エネルギー線硬化型接着剤を得た。   Next, 38.3 parts by mass of N-hydroxyethylacrylamide (manufactured by Kojin Co., Ltd.), 19.1 parts by mass of tripropylene glycol diacrylate (trade name: Aronix M-220, manufactured by Toagosei Co., Ltd.), acryloylmorpholine ( 38.3 parts of Kojin Co., Ltd.) and 1.4 parts by mass of a photopolymerization initiator (trade name: KAYACURE DETX-S, diethylthioxanthone, Nippon Kayaku Co., Ltd.) are mixed and stirred at 50 ° C. for 1 hour. Thus, an active energy ray-curable adhesive was obtained.

上記活性エネルギー線硬化型接着剤を、偏光子保護フィルムAの易接着層側に、乾燥後の厚さが500nmとなるように塗布した。その後、活性エネルギー線硬化型接着剤を介して、前述の偏光子の両側に1枚ずつの偏光子保護フィルムAを、小型ラミネーターを用いて積層した。貼り合わせた偏光子保護フィルムAの両側から、IRヒーターを用いて50℃に加温し、積算照射量1000mJ/cmの紫外線を両面に照射して、活性エネルギー線硬化型接着剤を硬化させ、偏光子の両面に透明な偏光子保護フィルムAを有する偏光板Xを得た。作製した偏光板Xを80℃90%RHの恒温恒湿機に投入して100時間後の偏光子の劣化の程度を目視にて観察したところ劣化は認められなかった。The active energy ray-curable adhesive was applied to the easy-adhesion layer side of the polarizer protective film A so that the thickness after drying was 500 nm. Thereafter, one polarizer protective film A was laminated on each side of the above polarizer using a small laminator via an active energy ray curable adhesive. From both sides of the bonded polarizer protective film A, heat to 50 ° C. using an IR heater and irradiate both sides with ultraviolet rays with an integrated irradiation amount of 1000 mJ / cm 2 to cure the active energy ray-curable adhesive. A polarizing plate X having a transparent polarizer protective film A on both sides of the polarizer was obtained. When the produced polarizing plate X was put into a constant temperature and humidity machine at 80 ° C. and 90% RH and the degree of deterioration of the polarizer after 100 hours was visually observed, no deterioration was observed.

<偏光板Yの作製>
厚さ40μmのトリアセチルセルロースフィルムを、10%の水酸化ナトリウム水溶液(60℃)に30秒間浸漬してケン化した後、60秒間水洗し、偏光子保護フィルムBを得た。
<Preparation of polarizing plate Y>
A 40 μm thick triacetylcellulose film was immersed in a 10% aqueous sodium hydroxide solution (60 ° C.) for 30 seconds to saponify, and then washed with water for 60 seconds to obtain a polarizer protective film B.

アセトアセチル基含有ポリビニルアルコール系樹脂(平均重合度:1200、ケン化度:98.5モル%,アセトアセチル基変性度:5モル%)100質量部に対し、メチロールメラミン20質量部を30℃の温度条件下で純水に溶解し、固形分濃度0.5%の水溶液を得た。得られた水溶液を接着剤組成物として、30℃の温度条件下で用いた。   An acetoacetyl group-containing polyvinyl alcohol resin (average polymerization degree: 1200, saponification degree: 98.5 mol%, acetoacetyl group modification degree: 5 mol%) is 100 parts by mass, and 20 parts by mass of methylolmelamine is 30 ° C. It was dissolved in pure water under temperature conditions to obtain an aqueous solution with a solid content concentration of 0.5%. The obtained aqueous solution was used as an adhesive composition under a temperature condition of 30 ° C.

偏光子保護フィルムBに、調製から30分後の上記接着剤組成物を、乾燥後の厚さが50nmとなるように塗布した。その後、接着剤組成物を介して、前述した偏光子の両側それぞれに偏光子保護フィルムBを、小型ラミネーターを用いて積層し、熱風乾燥機(70℃)に投入して5分間乾燥させて偏光板Yを得た。作製した偏光板Yを80℃90%RHの恒温恒湿機に投入して100時間後の偏光子の劣化の程度を目視にて観察したところ、全面に劣化が認められた。   The adhesive composition 30 minutes after the preparation was applied to the polarizer protective film B so that the thickness after drying was 50 nm. Thereafter, a polarizer protective film B is laminated on each side of the polarizer described above via an adhesive composition using a small laminator, put into a hot air dryer (70 ° C.), dried for 5 minutes, and polarized. Plate Y was obtained. When the produced polarizing plate Y was put into a constant temperature and humidity chamber of 80 ° C. and 90% RH and the degree of deterioration of the polarizer after 100 hours was visually observed, deterioration was recognized on the entire surface.

この出願は、2014年4月23日に出願された日本出願特願2014−88810を基礎とする優先権を主張し、その開示の全てをここに取り込む。   This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2014-88810 for which it applied on April 23, 2014, and takes in those the indications of all here.

本発明のメタクリル樹脂組成物は、透明性が高く、厚さ方向の位相差が小さく、更に耐熱性が高く、薄く延伸できるので、偏光子保護フィルム、位相差フィルム、液晶保護板、携帯型情報端末の表面材、携帯型情報端末の表示窓保護フィルム、導光フィルム、銀ナノワイヤーやカーボンナノチューブを表面に塗布した透明導電フィルム、各種ディスプレイの前面板用途などに好適である。特に本発明のフィルムは位相差が小さいため、偏光子保護フィルムに好適である。
本発明のフィルムは透明性、耐熱性が高いため、光学用途以外の用途として、IRカットフィルムや、防犯フィルム、飛散防止フィルム、加飾フィルム、金属加飾フィルム、太陽電池のバックシート、フレキシブル太陽電池用フロントシート、シュリンクフィルム、インモールドラベル用フィルムに使用することができる。
The methacrylic resin composition of the present invention has high transparency, small retardation in the thickness direction, high heat resistance, and can be stretched thinly. Therefore, a polarizer protective film, a retardation film, a liquid crystal protective plate, and portable information It is suitable for a surface material of a terminal, a display window protective film for a portable information terminal, a light guide film, a transparent conductive film coated with silver nanowires or carbon nanotubes on the surface, and a front plate for various displays. In particular, since the film of the present invention has a small retardation, it is suitable for a polarizer protective film.
Since the film of the present invention has high transparency and heat resistance, IR cut film, crime prevention film, anti-scattering film, decorative film, metal decorative film, solar cell back sheet, flexible solar, etc. can be used for applications other than optical applications. It can be used for a battery front sheet, a shrink film, and an in-mold label film.

11 偏光子
12 接着剤層
13 易接着層
14 偏光子保護フィルム
15 接着剤層
16 光学フィルム
DESCRIPTION OF SYMBOLS 11 Polarizer 12 Adhesive layer 13 Easy-adhesion layer 14 Polarizer protective film 15 Adhesive layer 16 Optical film

Claims (12)

メタクリル樹脂、ポリカーボネート樹脂および高分子加工助剤を含むメタクリル樹脂組成物であって、
前記メタクリル樹脂は、メタクリル酸メチル由来の構造単位の含有量が99質量%以上であって、重量平均分子量が200000以下であって、三連子表示のシンジオタクティシティ(rr)が50%以上である、アニオン重合で製造されたメタクリル樹脂およびラジカル重合で製造されたメタクリル樹脂の混合物からなり、
前記ポリカーボネート樹脂は、1000以上、32000以下の粘度平均分子量を有しており、前記メタクリル樹脂100質量部に対する前記ポリカーボネート樹脂の含有量が1質量部以上、4質量部以下であり、
前記高分子加工助剤は、3,000以上、40,000以下の平均重合度を有しており、
前記メタクリル樹脂100質量部に対する前記高分子加工助剤の含有量が0.3質量部以上、6質量部以下であり、
メタクリル樹脂組成物中に含有される前記メタクリル樹脂と前記ポリカーボネート樹脂との合計量が、80質量%以上であるメタクリル樹脂組成物。
A methacrylic resin composition comprising a methacrylic resin, a polycarbonate resin and a polymer processing aid,
In the methacrylic resin, the content of the structural unit derived from methyl methacrylate is 99% by mass or more, the weight average molecular weight is 200,000 or less, and the triplet syndiotacticity (rr) is 50% or more. der Ru, Ri Do mixtures methacrylic resin produced in a methacrylic resin and a radical polymerization prepared by anionic polymerization,
The polycarbonate resin has a viscosity average molecular weight of 1000 or more and 32000 or less, and the content of the polycarbonate resin with respect to 100 parts by mass of the methacrylic resin is 1 part by mass or more and 4 parts by mass or less.
The polymer processing aid has an average degree of polymerization of 3,000 or more and 40,000 or less,
The content of the polymer processing aid with respect to 100 parts by mass of the methacrylic resin is 0.3 parts by mass or more and 6 parts by mass or less.
The methacrylic resin composition whose total amount of the said methacrylic resin and said polycarbonate resin contained in a methacrylic resin composition is 80 mass% or more.
前記メタクリル樹脂のシンジオタクティシティ(rr)が、58%以上、85%以下である請求項1に記載のメタクリル樹脂組成物。   The methacrylic resin composition according to claim 1, wherein the methacrylic resin has a syndiotacticity (rr) of 58% or more and 85% or less. 前記ポリカーボネート樹脂が、5000以上、18000以下の粘度平均分子量を有する請求項1又は2に記載のメタクリル樹脂組成物。   The methacrylic resin composition according to claim 1 or 2, wherein the polycarbonate resin has a viscosity average molecular weight of 5,000 or more and 18,000 or less. 前記メタクリル樹脂組成物の重量平均分子量が70000〜200000である請求項1〜3のいずれかひとつに記載のメタクリル樹脂組成物。   The methacrylic resin composition according to any one of claims 1 to 3, wherein the methacrylic resin composition has a weight average molecular weight of 70,000 to 200,000. 前記メタクリル樹脂組成物の分子量分布が1.2〜2.5である請求項1〜4のいずれかひとつに記載のメタクリル樹脂組成物。   The methacrylic resin composition according to any one of claims 1 to 4, wherein the molecular weight distribution of the methacrylic resin composition is 1.2 to 2.5. 請求項1〜5のいずれかひとつに記載のメタクリル樹脂組成物からなる成形体。   The molded object which consists of a methacryl resin composition as described in any one of Claims 1-5. 請求項1〜5のいずれかひとつに記載のメタクリル樹脂組成物からなるフィルム。   The film which consists of a methacryl resin composition as described in any one of Claims 1-5. 厚さが10〜50μmである、請求項7に記載のフィルム。   The film of Claim 7 whose thickness is 10-50 micrometers. 面積比で1.5〜8倍に二軸延伸された請求項7又は8に記載のフィルム。   The film of Claim 7 or 8 biaxially stretched 1.5 to 8 times by area ratio. 偏光子保護フィルムとして用いられる請求項7〜9のいずれかひとつに記載のフィルム。   The film as described in any one of Claims 7-9 used as a polarizer protective film. 請求項10に記載のフィルムが少なくとも1枚積層された偏光板。   A polarizing plate in which at least one film according to claim 10 is laminated. メタクリル酸メチル由来の構造単位の含有量が99質量%以上であって、重量平均分子量が200000以下であって、三連子表示のシンジオタクティシティ(rr)が50%以上である、アニオン重合により得られたメタクリル樹脂、およびラジカル重合により得られたメタクリル樹脂を混合することにより得られるメタクリル樹脂100質量部と、
1000以上、32000以下の粘度平均分子量を有するポリカーボネート樹脂1質量部以上、4質量部以下と、
3,000以上、40,000以下の平均重合度を有する高分子加工助剤0.3質量部以上、6質量部以下と、
の少なくとも3成分を混合してなるメタクリル樹脂組成物の製造方法。
Anionic polymerization in which the content of the structural unit derived from methyl methacrylate is 99% by mass or more, the weight average molecular weight is 200,000 or less, and the syndiotacticity (rr) in triplet display is 50% or more. 100 parts by mass of a methacrylic resin obtained by mixing the methacrylic resin obtained by the above and a methacrylic resin obtained by radical polymerization ,
1000 parts by weight or more and 32000 parts by weight or less of a polycarbonate resin having a viscosity average molecular weight of 1 part by weight to 4 parts by weight;
Polymer processing aid having an average degree of polymerization of 3,000 or more and 40,000 or less 0.3 part by mass or more and 6 parts by mass or less,
A method for producing a methacrylic resin composition obtained by mixing at least three components.
JP2016514722A 2014-04-23 2015-04-22 Methacrylic resin composition and method for producing the same, molded product, film, and polarizing plate Active JP6559656B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014088810 2014-04-23
JP2014088810 2014-04-23
PCT/JP2015/002198 WO2015162926A1 (en) 2014-04-23 2015-04-22 Methacrylic resin composition, method for producing same, molded body, film, and polarizing plate

Publications (2)

Publication Number Publication Date
JPWO2015162926A1 JPWO2015162926A1 (en) 2017-04-13
JP6559656B2 true JP6559656B2 (en) 2019-08-14

Family

ID=54332101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016514722A Active JP6559656B2 (en) 2014-04-23 2015-04-22 Methacrylic resin composition and method for producing the same, molded product, film, and polarizing plate

Country Status (5)

Country Link
JP (1) JP6559656B2 (en)
KR (1) KR102275215B1 (en)
CN (1) CN106471055A (en)
TW (1) TWI651355B (en)
WO (1) WO2015162926A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220166586A (en) * 2021-06-10 2022-12-19 주식회사 엘엑스엠엠에이 Pmma light diffusing plate containing organic crosslinked particles and manufacturing method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106661150A (en) * 2014-06-30 2017-05-10 株式会社可乐丽 Methacrylic resin or methacrylic resin composition
CN107109019B (en) * 2014-11-14 2020-04-24 株式会社可乐丽 Methacrylic resin composition and molded article
JP6827272B2 (en) * 2016-03-30 2021-02-10 株式会社クラレ Modified methacrylic resin and molded article
KR20180018334A (en) * 2016-08-09 2018-02-21 주식회사 엘지화학 Resin composition for optical material and optical film comprising the same
KR101934486B1 (en) 2016-09-20 2019-01-02 주식회사 엘지화학 Optical film with high slip property, and polarizing plate comprising the same
KR101960477B1 (en) * 2016-09-20 2019-03-20 주식회사 엘지화학 Optical film with high slip property and excellent property of blocking UV light, and polarizing plate comprising the same
KR101964436B1 (en) 2016-09-20 2019-04-01 주식회사 엘지화학 Optical film with high adhesiveness and excellent property of blocking UV light, and polarizing plate comprising the same
KR102066640B1 (en) * 2016-09-20 2020-01-15 주식회사 엘지화학 Optical film with high adhesiveness, and polarizing plate comprising the same
JP6580769B2 (en) * 2018-02-07 2019-09-25 日東電工株式会社 Polarizing plate and image display device
WO2019155791A1 (en) * 2018-02-07 2019-08-15 日東電工株式会社 Polarizing plate and image display device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732942A (en) 1980-07-28 1982-02-22 Foseco Int Injection pipe for continuous casting and its manufacture
JP3048183B2 (en) 1991-07-30 2000-06-05 株式会社クラレ Low birefringence methacrylic resin composition
JPH0693049A (en) * 1992-09-09 1994-04-05 Mitsubishi Petrochem Co Ltd Methacrylic random copolymer and its production
JP2002327012A (en) * 2001-05-01 2002-11-15 Kuraray Co Ltd Syndiotactic methacrylic ester polymer and polymer composition
JP2003246791A (en) * 2002-02-26 2003-09-02 Nitto Denko Corp Trivalent organic lanthanoid complex, catalyst for manufacturing (meth)acrylic polymer, and (meth)acrylic polymer
JP2009235160A (en) 2008-03-26 2009-10-15 Toray Ind Inc Acrylic resin film
KR101091537B1 (en) 2009-01-06 2011-12-13 주식회사 엘지화학 Optical films and liquid crystal display comprising the sames
JP5846809B2 (en) * 2011-08-26 2016-01-20 株式会社クラレ Film made of acrylic resin composition
JP5600843B2 (en) 2012-01-18 2014-10-08 エルジー・ケム・リミテッド Optical film resin composition, polarizer protective film including the same, and liquid crystal display device
JP6226591B2 (en) 2012-08-09 2017-11-08 住友化学株式会社 Resin composition for optical material and method for producing the same
KR102144131B1 (en) * 2012-08-09 2020-08-12 스미또모 가가꾸 가부시키가이샤 Resin composition for optical material and method for production thereof
US9605121B2 (en) * 2013-05-16 2017-03-28 Kuraray Co., Ltd. Film
TWI612091B (en) * 2013-05-16 2018-01-21 可樂麗股份有限公司 Methacrylic resin composition, manufacturing method thereof, and molded article thereof
TWI651356B (en) * 2014-01-23 2019-02-21 可樂麗股份有限公司 film
CN106232715B (en) * 2014-04-18 2018-06-15 株式会社可乐丽 Methacrylic resin composition, formed body, film and polarization plates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220166586A (en) * 2021-06-10 2022-12-19 주식회사 엘엑스엠엠에이 Pmma light diffusing plate containing organic crosslinked particles and manufacturing method thereof
KR102553243B1 (en) * 2021-06-10 2023-07-07 주식회사 엘엑스엠엠에이 Pmma light diffusing plate containing organic crosslinked particles and manufacturing method thereof

Also Published As

Publication number Publication date
TWI651355B (en) 2019-02-21
WO2015162926A1 (en) 2015-10-29
JPWO2015162926A1 (en) 2017-04-13
KR20160147856A (en) 2016-12-23
KR102275215B1 (en) 2021-07-08
CN106471055A (en) 2017-03-01
TW201544536A (en) 2015-12-01

Similar Documents

Publication Publication Date Title
JP6559656B2 (en) Methacrylic resin composition and method for producing the same, molded product, film, and polarizing plate
JP6470265B2 (en) Methacrylic resin composition, molded article, film and polarizing plate
JP6424084B2 (en) Film and film manufacturing method
JP6407270B2 (en) Methacrylic resin composition
KR102221885B1 (en) Film
JP6412935B2 (en) Methacrylic resin composition
US10526430B2 (en) Methacrylic resin or methacrylic resin composition
JP6649894B2 (en) Methacrylic resin composition and molded article
JP2017040825A (en) Multilayer film, polarizer protective film, and polarizing plate
JP2016048363A (en) Resin film
JPWO2018124007A1 (en) Stretched film and retardation film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190717

R150 Certificate of patent or registration of utility model

Ref document number: 6559656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150