JP6558715B2 - Electric power device effective in suppressing electromagnetic induction action - Google Patents

Electric power device effective in suppressing electromagnetic induction action Download PDF

Info

Publication number
JP6558715B2
JP6558715B2 JP2016013953A JP2016013953A JP6558715B2 JP 6558715 B2 JP6558715 B2 JP 6558715B2 JP 2016013953 A JP2016013953 A JP 2016013953A JP 2016013953 A JP2016013953 A JP 2016013953A JP 6558715 B2 JP6558715 B2 JP 6558715B2
Authority
JP
Japan
Prior art keywords
leg
magnetic flux
load current
counterclockwise
closed curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016013953A
Other languages
Japanese (ja)
Other versions
JP2017135259A (en
Inventor
眞一郎 竹内
眞一郎 竹内
Original Assignee
眞一郎 竹内
眞一郎 竹内
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 眞一郎 竹内, 眞一郎 竹内 filed Critical 眞一郎 竹内
Priority to JP2016013953A priority Critical patent/JP6558715B2/en
Publication of JP2017135259A publication Critical patent/JP2017135259A/en
Application granted granted Critical
Publication of JP6558715B2 publication Critical patent/JP6558715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、交流電力に関する。       The present invention relates to AC power.

初め、直流を振動的に断続して、棒状の鉄心に巻いた一次コイルに電流を流して、二次コイルに高電圧を発生させる誘導コイルが真空放電の研究に用いられていたが、交流を一次に用いた初期の変圧器は磁気回路が別々で棒状の鉄心に巻いた一次コイルと同じく棒状の鉄心に巻いた二次コイルとは木版で独立して固定されていた。その後、これらの鉄芯に鉄板を上側同士及び下側同士に積み重ねて閉じた磁路にし、一つの磁気回路にして、交流電源に変圧器として接続して高電圧が得られる様になった。
起電力とは、面の縁の様な閉じた曲線に沿って1Cの電荷を1周させた時に与える仕事量である。電荷に仕事を与えると言う事は、移動方向を向いた電界が発生し、これによって電荷に力が働く事を示す。電磁誘導により発生する起電力の方向に電流が流れると、その電流が作る磁束は、面を貫く磁束の変化を妨げようとする。
電磁誘導でコイルに発生する起電力を利用すれば第1の発電機となり、これに負荷を接続すれば発生した電気エネルギーを利用する事が出来る。
しかし、多くの交流発電機では磁石を動かす替りに、磁石を固定してコイルの方を動かす仕組みになっている。
この場合、実はこの現象は電磁誘導ではない。磁界は一定でありどこにも電磁誘導電界は発生していない。電磁誘導とは、磁束の変化に応じて起電力が生じる現象である。
磁束密度の一様磁界中にある長方形あるいは円形コイルが磁界に垂直な回転軸で回転している時に起電力が発生する。第2の発電機はこの原理の応用で、磁界と回転力が必要である。回転力を水力、火力、原子力による発電を水力発電、火力発電、原子力発電と呼んでいる。
磁界中の導体あるいはコイルに電流が流れると磁力が発生する。この磁力によって生ずるトルクの方向は発電機の回転を止めようとする方向の、所謂、逆トルクである。発電機のコイルに一次負荷電流が流れる際には、必ずこの逆トルクに丁度釣り合うだけのトルクを回転軸に供給してやらなければ、回転を一定に維持する事が出来ない。回転を一定に維持する事で一定電圧での供給が可能になる。電気設備は一定の周波数で一定の電圧が継続して供給される事を前提にして正常な働きが見込める設計がなされている。
第1の発電機には新たに応用が為されるであろう。
At first, an induction coil that vibrates intermittently a direct current and causes a current to flow through a primary coil wound around a rod-shaped iron core to generate a high voltage in a secondary coil was used for research on vacuum discharge. The primary transformer used in the primary was fixed separately with a wooden block from the primary coil wound around the rod-shaped iron core as well as the primary coil with a separate magnetic circuit. After that, iron plates were stacked on top and bottom of these iron cores to form a closed magnetic circuit, which was connected to an AC power source as a transformer to obtain a high voltage.
The electromotive force is a work amount given when a charge of 1 C is made to make one turn along a closed curve such as an edge of a surface. Giving work to an electric charge indicates that an electric field directed in the direction of movement is generated, thereby causing a force to act on the electric charge. When a current flows in the direction of an electromotive force generated by electromagnetic induction, the magnetic flux generated by the current tends to hinder changes in the magnetic flux penetrating the surface.
If the electromotive force generated in the coil by electromagnetic induction is used, it becomes the first generator, and if the load is connected to this, the generated electric energy can be used.
However, in many AC generators, instead of moving the magnet, the magnet is fixed and the coil is moved.
In this case, this phenomenon is not actually electromagnetic induction. The magnetic field is constant and no electromagnetic induction field is generated anywhere. Electromagnetic induction is a phenomenon in which an electromotive force is generated according to a change in magnetic flux.
An electromotive force is generated when a rectangular or circular coil in a uniform magnetic field having a magnetic flux density is rotated about a rotation axis perpendicular to the magnetic field. The second generator is an application of this principle and requires a magnetic field and rotational force. Rotational power is called hydropower, thermal power, and nuclear power generation is called hydropower, thermal power generation, and nuclear power generation.
When a current flows through a conductor or coil in a magnetic field, a magnetic force is generated. The direction of the torque generated by this magnetic force is a so-called reverse torque in a direction that tries to stop the rotation of the generator. When the primary load current flows through the coil of the generator, the rotation cannot be kept constant unless a torque sufficient to balance the reverse torque is supplied to the rotating shaft. A constant voltage can be supplied by keeping the rotation constant. The electrical equipment is designed so that normal operation can be expected on the assumption that a constant voltage is continuously supplied at a constant frequency.
New applications will be made for the first generator.

従来の技術では、電流には磁界を作る働きと磁界から力を受ける働きがある為、一次負荷電流を利用して負荷電流からの磁束を相殺すると、発電機を止める逆トルクが発生する点で問題がある。
コイルに電流を流すと磁束ができ、この磁束はコイルと鎖交する事になる。もしコイルを流れる電流が変化すると、コイルと鎖交する磁束も変化し、コイルには電流の変化を妨げる方向の起電力即ち逆起電力が発生する。自己の回路を流れる電流の変化によって起電力を誘導する現象を自己誘導と言う。
二つの回路を接近して置き回路Aに電流を流すと回路Aによってできた磁束の一部は回路Bと鎖交する。回路Aの電流Iが変化すれば、回路Bの鎖交磁束数も変化するので回路Bには誘導起電力が生ずる。この様に一つの回路を流れる電流の変化により他の回路に起電力を誘導する現象を相互誘導と言う。
電荷には、電界を作る事と電界に反応して力を受ける事の二つの働きがある。
電磁誘導では、コイルを貫く磁束量に時間変化があるとコイルに電流が流れる。磁束が変化していない時には電流は流れないでコイル内の電荷は止まっていて、磁束が変化すると止まっている電荷が動き出す。これは電荷を動かそうとする力がコイルに沿って発生している為である。力が働いて電流が流れる、即ち電荷が移動すれば電荷に仕事を与える。この仕事が磁束の変化で決まるというのが電磁誘導である。磁束の変化で生じる起電力の大きさは磁束の時間変化率に等しい。
時間変化している磁束を取り囲む閉曲線の位置に電線があれば、電磁誘導の法則により誘導電流が生じる。電線がその位置にない場合には何が生じるのかは、誘導電流は電線の中に生じた電界によって生ずると考えられる事から閉曲線の位置に電線が無くとも電界が生まれると予想される。電界エネルギーによる静電界での電荷移動は蓄えられた電気エネルギーの消費になる。静電界の電束密度Dと電荷とは、ガウスの法則で結ばれている。ガウスの法則の左辺のDの代わりに磁束密度Bを代入し、電荷の場合の真電荷に相当する真磁荷は存在しないので右辺をゼロと置くと次式(1)が得られる。

Figure 0006558715
(1) (1)式は任意の領域を出入りする磁束が連続である事を意味し、磁界のガウスの法則とも呼ばれているが、磁束は切れないと言う磁束の性質を述べているだけになる。逆に、電磁誘導電界での電荷移動は電気エネルギーの生成であり、電磁誘導電界から得る仕事は磁界の変化によるもので、磁石をコイルに近付けると電流が流れてそれを妨げる様な磁界を作る。この電流の電荷の速度をV〔m/S〕とすると抵抗を通過する時間は抵抗長L/速度Vで、この間にW〔J〕のエネルギーを発生する。電荷が抵抗に入ってから出る迄に電磁誘導電界が抵抗に与える仕事は、抵抗内部を流れる電荷が失ったエネルギーで、抵抗が消費したエネルギーの使い道こそが電気の応用で照明や暖房等に抵抗が使われる。
起電力を発生する電源と、電源から電流の供給を受けて電気的働きをする負荷とを導体で接続してスイッチを入れると、この環状の通路を、絶え間なく電流が流れる。この様な電流の通路を電気回路又は単に回路と言う。
電流の通路は一つの閉路で、閉曲線である。磁束も至る所連続であり、閉曲線を作る。今、電流と磁束の二つの閉曲線をとってその相互の関係を考えると、二つの場合が考えられる。一つは、磁束は電流を通り抜けるが、互いに絡み合っていない。他は互いに絡み合っている。互いに絡み合った時、2閉曲線は鎖交すると言う。電磁誘導は電流或いはコイルと磁束が鎖交した時のみに生じる。
コイルに鎖交する磁束が増加する時は、磁束の増加を打ち消す様な磁束をつくるべく起電力を生じ、電流が流れる。即ち電磁誘導によって生ずる起電力は、コイルと鎖交する磁束の変化を妨げる電流を生ずる様な向きに発生すると言っても良い。これをレンツの法則という。磁石から出る磁束は磁石から離れるにつれて広がるため、磁石を近付けるとコイルを貫く磁束が増加し、遠ざけると減少する。同様に、磁石の代わりに別のコイルを近くにおいて、そのコイルに流す電流を変化させる事で貫く磁束を変化させても同じ現象が起こる。これはファラデーの実験である。
ファラデーは一つの回路に電磁誘導により生じる起電力はこの回路と鎖交する磁束数の減少の割合に比例する。ノイマンは電磁誘導によって生ずる起電力の大きさは鎖交磁束数の減少の割合に等しい事を明らかにした。又、一つの回路に鎖交する磁束φに鎖交する回数を掛けた値を鎖交磁束数と言い、例えば、巻き数Nのコイルに磁束φが鎖交すると鎖交磁束数Φは、Φ=Nφ である。
一つの回路と鎖交する磁束φが時間tと共に変化している時、時刻tにおける鎖交磁束数をΦとし、時刻t+Δtにおける鎖交磁束数を Φ=Φ+ΔΦ とすれば、鎖交磁束数の増加の割合は、
Figure 0006558715
又、鎖交磁束数の減少と言うのは、起電力の向きと、磁束の向きをアンペアの右ねじの法則によって決めた時の事である。例えば、電流と逆方向の電流を生ずる起電力、つまり負の起電力を誘導する事を意味している。
Figure 0006558715
磁束密度について、コイルを流れる電流によってコイルの中心に生じる磁界の強さHは同じ筈なのにコイルの中に鉄の棒を入れると磁力が強くなる事が分かった為に鉄の棒の端に現れている磁力の強さはHでは表現できない別の量であることになる。
そこで、この磁力の強さを表す量として磁束密度と言う物理量が考え出された。コイルが作り出す磁界の強さHと磁束密度Bの間には、B=μH の関係が成り立つと定義し、μには真空の透磁率と言う名を付け、μ=4π×10−7〔N/A〕 と決める事となった。真空での磁界の強さHと磁束密度Bは真空中ではμ倍だけ大きさが違うと決め、コイルの中心に鉄の棒がある時は、磁束密度と磁界の強さの関係は、B=μH の関係が成り立つと考える。このμはその物質固有の透磁率で鉄の場合は真空の透磁率μの約5000〜1万倍に達する。このμで、電流が流されているソレノイドコイルだけでソレノイドの中心に作られる磁界の強さがHであるのに、コイルの中心に鉄の棒を入れるだけで磁力の強さが5000〜1万倍になるという変化を表現する。
鉄の棒の代わりに木の棒を入れたとしたら、磁力の強さは入れても入れなくても変化が無い。
内鉄形単相積鉄心の第1の単相2脚の左脚に一次巻線、右脚に二次巻線とする二つの電気回路で、二次巻線に流れる負荷電流が鉄芯に作る第2の磁束と一次巻線に流れる一次負荷電流が鉄芯に作る第1の磁束とは互いに鉄芯を逆向きで周回する。一次巻線や二次巻線はソレノイドコイルに構成される。
ソレノイドコイルの断面積の半分だけが磁性芯材で満たされた場合の磁束密度は磁性芯材がある方だけ磁束密度が透磁率(=μ)倍に増える。残りの断面積の半分のみに磁性芯材を満たし直しても磁性芯材がある方だけ磁束密度が透磁率倍に増える。磁性芯材となる強磁性体にソレノイドコイルに流される外部の電流による磁束密度を与えると外部からの磁束密度が無視できる位の大きな磁束密度になり、その殆どが磁性体中にある。
内鉄形単相積鉄心の単相2脚を磁性芯材にしてソレノイドコイル内に収めてソレノイドコイルに電流を流しても、磁束同士が互いに磁性芯材を逆向きに周回する。この場合はソレノイドコイルと磁束が鎖交しないのでソレノイドコイルとの間に電磁誘導は生じない。磁性芯材をソレノイドコイル内に収めて電流を流すのであれば、ソレノイドコイルは磁性芯材の外周に配置出来るので、単相2脚の磁性芯材の窓は出来るだけ少ない断面積を持たせる事が出来る。
内鉄形三相積鉄心の三相3脚を利用して単相100Vを左脚にコイルを巻回し、中央脚に巻回されるコイルに100Vを誘導しようとすると中央脚コイルに97V、右脚コイルに3Vが得られる。右脚に単相100Vでも同様である。磁束密度は岐路のある場合には最短経路に殆どが集中して現れる。磁力線は自分自身は短くなろうとし、隣とは互いに押し合うと表現される。磁界に対してマクスウェルの応力が考えられ、磁界と平行な面には(1/2)HB〔Pa〕の圧力が、直角な面には強さが同じで張力が作用する。
中央脚コイルに負荷を接続して回路を閉じ、同時に、3Vの脚のコイルが開放したままであると、3Vの脚を周回する磁束と鎖交する中央脚コイルに磁束の変化による自己誘導が生じ、負荷回路の起電力は略失われ、負荷電流は流れない。負荷電流が流れない場合には、負荷電流に起因する電磁誘導を電源コイルに誘発できないので、電源コイルに流される一次負荷電流も誘発されない。一方、3Vの脚のコイルを短絡してしまうと、既コイルに流れる電流に起因して直ぐ様発生する磁束が中央脚コイルに相互誘導を生じさせて、中央脚コイルに逆起電力が重層し、既自己誘導は解消される。負荷電流が流れ、100Vコイルに一次負荷電流が流されると、100V脚を周回する互いに反対方向の磁束が現れてそれらの磁束の作用は略相殺され、既磁束は作用を殆ど現さない。
電流の流れるソレノイドコイルを外部に巻回される磁性芯材のある所は外部からの磁束密度が無視できる位の大きな磁束密度になり、その殆どが磁性体中にある。形の曲がった強磁性体では、磁化の方向は強磁性体中の方が安定である。その為、曲がった形の強磁性体は、磁化の方向を曲げて伝えるのに利用できる。磁性芯材は強磁性体であり、磁場についての導体の様に使用できる。更に磁界中の強磁性体は磁界中の磁束を強磁性体中に吸い寄せる。
内鉄形単相積鉄心の単相2脚の左脚を中央脚に見立てて、更に左側に窓を設けて磁性芯材を周回させて閉じ、この脚に電源コイルを巻回して励磁電流に相当する電流が流れると、見立てた中央脚と右脚を内側に収めたソレノイドコイルと中央脚を変化しながら周回する第1の磁束とは鎖交し、ソレノイドコイルに起電力が得られる。ソレノイドコイルに負荷を接続して回路を閉じると負荷電流が流れる。ソレノイドコイルに流される外部の負荷電流による磁束密度が磁性芯材に与えられると外部からの磁束密度が無視できる位の大きな磁束密度がソレノイドコイルの内側に収められた見立てた中央脚と右脚の上下を継鉄で継いで閉じた磁性芯材に生じて、互いに反対方向の磁束が磁性芯材を周回しその殆どが磁性体中にある。この場合、ソレノイドコイルと既磁性芯材中の磁束とは鎖交しないのでソレノイドコイルとの間に電磁誘導は生じない。
即ち電流と逆方向の電流を生ずる起電力、つまり負の起電力は生じない。既ソレノイドコイルと鎖交する第1の磁束が見立てた中央脚又は右脚或いはその両方に安定的に供給され続ける限り、一次負荷電流を誘発しないで済む第1の発電機として役立つ。負荷回路の起電力を得るための磁束の変化に動的磁気回路を使う事も望まれる。 In the conventional technology, the current has a function to generate a magnetic field and a function to receive a force from the magnetic field. Therefore, if the magnetic flux from the load current is canceled using the primary load current, a reverse torque that stops the generator is generated. There's a problem.
When a current is passed through the coil, a magnetic flux is generated, and this magnetic flux is linked to the coil. If the current flowing through the coil changes, the magnetic flux interlinking with the coil also changes, and an electromotive force, that is, a counter electromotive force is generated in the coil in a direction that prevents the current from changing. A phenomenon in which an electromotive force is induced by a change in current flowing through its own circuit is called self-induction.
When two circuits are placed close to each other and a current is passed through circuit A, a part of the magnetic flux generated by circuit A is linked to circuit B. If the current I of the circuit A changes, the number of flux linkages in the circuit B also changes, so that an induced electromotive force is generated in the circuit B. A phenomenon in which an electromotive force is induced in another circuit due to a change in current flowing in one circuit is called mutual induction.
Electric charges have two functions: creating an electric field and receiving a force in response to the electric field.
In electromagnetic induction, when there is a time change in the amount of magnetic flux passing through the coil, a current flows through the coil. When the magnetic flux does not change, no current flows and the charge in the coil stops. When the magnetic flux changes, the stopped charge starts moving. This is because a force for moving the electric charge is generated along the coil. If a force works and current flows, that is, if the charge moves, it gives work to the charge. It is electromagnetic induction that this work is determined by changes in magnetic flux. The magnitude of the electromotive force generated by the change of the magnetic flux is equal to the time change rate of the magnetic flux.
If there is an electric wire at the position of a closed curve surrounding the magnetic flux changing with time, an induced current is generated according to the law of electromagnetic induction. What happens when the electric wire is not in that position is that the induced current is considered to be generated by the electric field generated in the electric wire, so it is expected that an electric field will be generated even if there is no electric wire at the position of the closed curve. Charge transfer in an electrostatic field due to electric field energy results in consumption of stored electrical energy. Electrostatic flux density D of electrostatic field and electric charge are connected by Gauss's law. Substituting the magnetic flux density B in place of D on the left side of Gauss's law, and there is no true magnetic charge corresponding to the true charge in the case of a charge, the following equation (1) is obtained by setting the right side to zero.
Figure 0006558715
(1) Equation (1) means that the magnetic flux entering and exiting an arbitrary region is continuous, and is also called Gauss's law of magnetic field, but it only describes the property of magnetic flux that it does not break. become. Conversely, the charge transfer in the electromagnetic induction field is the generation of electrical energy, and the work gained from the electromagnetic induction field is due to the change in the magnetic field. When the magnet is moved closer to the coil, a current flows and prevents the magnetic field. . If the speed of charge of this current is V [m / S], the time for passing through the resistor is the resistance length L / speed V, and energy of W [J] is generated during this time. The work that the electromagnetic induction electric field gives to the resistance before the charge enters the resistance is the energy that the charge flowing inside the resistance is lost, and the use of the energy consumed by the resistance is the resistance to lighting and heating etc. with the application of electricity Is used.
When a power source that generates an electromotive force and a load that receives an electric current from the power source and performs an electrical function are connected by a conductor and switched on, a current flows continuously through the annular passage. Such a current path is called an electric circuit or simply a circuit.
The current path is a closed circuit and is a closed curve. Magnetic flux is continuous everywhere, creating a closed curve. If we take the two closed curves of current and magnetic flux and consider the relationship between them, there are two cases. For one, the magnetic flux passes through the current but is not entangled with each other. Others are intertwined with each other. When intertwined, the two closed curves are said to be linked. Electromagnetic induction occurs only when the current or coil and magnetic flux are linked.
When the magnetic flux linked to the coil increases, an electromotive force is generated to create a magnetic flux that cancels the increase in the magnetic flux, and a current flows. That is, it can be said that the electromotive force generated by electromagnetic induction is generated in such a direction as to generate a current that hinders a change in magnetic flux interlinking with the coil. This is called Lenz's law. Since the magnetic flux from the magnet spreads away from the magnet, the magnetic flux passing through the coil increases when the magnet is moved closer, and decreases when the magnet is moved away from the magnet. Similarly, the same phenomenon occurs even if another magnetic coil is used instead of the magnet and the magnetic flux penetrating is changed by changing the current passed through the coil. This is Faraday's experiment.
In Faraday, the electromotive force generated by electromagnetic induction in one circuit is proportional to the rate of decrease in the number of magnetic fluxes linked to this circuit. Neumann clarified that the magnitude of the electromotive force generated by electromagnetic induction is equal to the rate of decrease in the number of flux linkages. A value obtained by multiplying the magnetic flux φ interlinked with one circuit by the number of interlinkages is referred to as the number of interlinkage magnetic fluxes. For example, when the magnetic flux φ interlinks with a coil having N turns, the number of interlinkage magnetic fluxes Φ is Φ = Nφ.
When the magnetic flux φ interlinking with one circuit changes with time t, if the number of interlinkage magnetic fluxes at time t is Φ 1 and the number of interlinkage magnetic fluxes at time t + Δt is Φ 2 = Φ 1 + ΔΦ, The rate of increase in the number of magnetic flux changes is
Figure 0006558715
The decrease in the number of flux linkages is when the direction of electromotive force and the direction of magnetic flux are determined by the ampere right-handed screw law. For example, this means that an electromotive force that generates a current in the opposite direction to the current, that is, a negative electromotive force is induced.
Figure 0006558715
Regarding the magnetic flux density, the strength H of the magnetic field generated at the center of the coil by the current flowing through the coil is the same, but it turns out that the magnetic force becomes stronger when an iron rod is inserted into the coil, so it appears at the end of the iron rod. The strength of the magnetic force is another amount that cannot be expressed in H.
Therefore, a physical quantity called magnetic flux density has been devised as an amount representing the strength of the magnetic force. Between the strength H and the magnetic flux density B of the magnetic field coil produces, defined as B = mu 0 H relationship holds, with a name called vacuum magnetic permeability to μ 0, μ 0 = 4π × 10 It was decided to be -7 [N / A 2 ]. The magnetic field strength H and magnetic flux density B in vacuum are determined to differ by a factor of 0 in vacuum, and when there is an iron bar at the center of the coil, the relationship between magnetic flux density and magnetic field strength is The relationship B = μH is considered to hold. This μ is a magnetic permeability inherent to the substance, and in the case of iron, it reaches about 5000 to 10,000 times the vacuum permeability μ 0 . With this μ, the strength of the magnetic field created at the center of the solenoid by only the solenoid coil through which a current is passed is H, but the strength of the magnetic force is 5000-1 by simply inserting an iron rod at the center of the coil. Expresses the change of 10,000 times.
If you put a wooden stick instead of an iron stick, the strength of the magnetic force will not change whether you put it or not.
Two electric circuits with a primary winding on the left leg and a secondary winding on the right leg of the first single-phase two legs of the inner iron type single-phase core. The load current flowing in the secondary winding is applied to the iron core. The second magnetic flux to be produced and the first magnetic flux produced to the iron core by the primary load current flowing in the primary winding circulate around the iron core in opposite directions. The primary winding and the secondary winding are configured as solenoid coils.
When only half of the cross-sectional area of the solenoid coil is filled with the magnetic core material, the magnetic flux density increases by a permeability (= μ) times as long as the magnetic core material is present. Even if only half of the remaining cross-sectional area is filled with the magnetic core material, the magnetic flux density is increased by a factor of the permeability only for the magnetic core material. When a magnetic flux density caused by an external current flowing through the solenoid coil is applied to the ferromagnetic material serving as the magnetic core material, the magnetic flux density from the outside becomes a negligible magnetic flux density, most of which is in the magnetic material.
Even if a single-phase two-legged core of an inner iron type single-phase core is made into a magnetic core material and housed in a solenoid coil and current is passed through the solenoid coil, magnetic fluxes circulate around the magnetic core material in opposite directions. In this case, electromagnetic induction does not occur between the solenoid coil and the magnetic flux between the solenoid coil and the solenoid coil. If the magnetic core material is housed in the solenoid coil and the current flows, the solenoid coil can be placed on the outer periphery of the magnetic core material, so that the single-phase two-legged magnetic core window should have as little cross-sectional area as possible. I can do it.
Using a three-phase tripod of an inner iron-type three-phase core, a single-phase 100V coil is wound around the left leg, and when trying to induce 100V into the coil wound around the center leg, the center leg coil is 97V, right 3V is obtained for the leg coil. The same applies to single-phase 100V on the right leg. The magnetic flux density appears mostly concentrated on the shortest path when there is a branch. Lines of magnetic force are expressed as trying to shorten themselves and pushing against each other. Maxwell's stress is considered for the magnetic field, and a pressure of (1/2) HB [Pa] is applied to a plane parallel to the magnetic field, and tension is applied to a plane perpendicular to the same strength.
If the load is connected to the center leg coil and the circuit is closed, and at the same time, the coil of the 3V leg is left open, self-induction due to the change of the magnetic flux will occur in the center leg coil interlinked with the magnetic flux circulating around the 3V leg. As a result, the electromotive force of the load circuit is substantially lost and no load current flows. When the load current does not flow, electromagnetic induction due to the load current cannot be induced in the power supply coil, so that the primary load current that is passed through the power supply coil is not induced. On the other hand, if the 3V leg coil is short-circuited, the magnetic flux immediately generated due to the current flowing in the existing coil causes mutual induction in the central leg coil, and the counter electromotive force is superimposed on the central leg coil. , Already self-guided is resolved. When the load current flows and the primary load current flows through the 100V coil, magnetic fluxes in opposite directions that circulate around the 100V leg appear, and the effects of these magnetic fluxes are substantially cancelled, and the existing magnetic flux exhibits little effect.
Where there is a magnetic core wound around a solenoid coil through which a current flows, the magnetic flux density from the outside is negligible, and most of it is in the magnetic material. In a ferromagnet with a curved shape, the direction of magnetization is more stable in the ferromagnet. Therefore, the bent ferromagnet can be used to bend and transmit the direction of magnetization. The magnetic core is a ferromagnetic material and can be used like a conductor for a magnetic field. Further, the ferromagnetic material in the magnetic field attracts the magnetic flux in the magnetic field into the ferromagnetic material.
Assume that the left leg of the single-phase two-leg iron core of the inner iron type single-phase core is the center leg, and further provide a window on the left side to wrap the magnetic core and close it. When a corresponding current flows, the solenoid coil having the center leg and the right leg that are estimated inside and the first magnetic flux that circulates while changing the center leg are linked, and an electromotive force is obtained in the solenoid coil. When a load is connected to the solenoid coil and the circuit is closed, a load current flows. When magnetic flux density due to external load current flowing in the solenoid coil is given to the magnetic core, a large magnetic flux density that can ignore the external magnetic flux density is stored inside the solenoid coil. Magnetic flux is generated in the magnetic core material closed by connecting the upper and lower portions with yokes, and magnetic fluxes in opposite directions circulate around the magnetic core material, and most of them are in the magnetic material. In this case, no electromagnetic induction occurs between the solenoid coil and the solenoid coil because the magnetic flux in the magnetic core material is not linked.
That is, an electromotive force that generates a current in the opposite direction to the current, that is, a negative electromotive force does not occur. As long as the first magnetic flux interlinking with the existing solenoid coil continues to be stably supplied to the center leg or the right leg or both, it serves as a first generator that does not induce a primary load current. It is also desirable to use a dynamic magnetic circuit to change the magnetic flux to obtain the electromotive force of the load circuit.

コイルに負荷電流が流されてもコイルと鎖交する磁束が生じる事を阻止出来る機能が組み込まれる装置。 A device that incorporates a function that can prevent magnetic flux interlinking with a coil from being generated even when a load current is passed through the coil.

従来技術では負荷電流からの起磁力と一次負荷電流からの起磁力が相殺されて、作用に現れず、負荷時も無負荷時も二次コイルと鎖交する磁束は励磁電流からの磁束のみが現れている状態が維持されていたが、本発明でも、その状態が維持される。
負荷電流が流れても一次コイルと鎖交する磁束が現れないので、一次コイルには自己誘導が生じたままの状態が継続される。従って、僅少電流となる励磁電流しか流れ得ない。一次負荷電流の様な大電流は流れなくとも、負荷電流は流れ続けられる
In the prior art, the magnetomotive force from the load current and the magnetomotive force from the primary load current are offset and do not appear in the action, and the magnetic flux interlinked with the secondary coil is only the magnetic flux from the excitation current when loaded or unloaded. Although the appearing state has been maintained, this state is also maintained in the present invention.
Since no magnetic flux interlinking with the primary coil appears even when the load current flows, the state where self-induction occurs in the primary coil is continued. Therefore, only an exciting current that is a small current can flow. Even if a large current like the primary load current does not flow, the load current continues to flow.

第1図において、第1のコイル10に交番電流12が流れると前記交番電流12の作る磁界に応じて磁性芯材100に第1の磁束14が誘導される。前記第1の磁束14は前記第1のコイル10と第2のコイル20とに鎖交する。前記第1のコイル10と前記第1の磁束14は鎖交すると自己誘導によって前記第1のコイル10に逆起電力を生じるので前記交番電流12は僅少電流に留まる。一方、前記第2のコイル20と前記第1の磁束14は鎖交すると相互誘導によって前記第2のコイル20に起電力を生じる。前記第2のコイル20と負荷が接続され、開閉器を備えた交流電気回路が構成される。交流電気回路に負荷電流22が流れ、前記負荷電流22に応じて前記磁性芯材100に誘導される第2の磁束24と第3の磁束26が窓を挟んで閉じる。前記第2の磁束24と前記第3の磁束26は前記第2のコイル20とは鎖交する事が阻止されている状態なので、電磁誘導作用は現れない。定電圧定周波数で前記交番電流12が供給され続けられるならば、交流電気回路も応じて安定して起電力が維持され続ける。負荷電流が大電流になると生じる漏れ磁束を吸い寄せる働きを持たせたもの磁路長を短くする事で磁性芯材に生じる鉄損の低減になるもの損失の低減に資する為のものの形状、大きさ、作動及び構造上の細部については変更しても良く、前述の具体例は専ら解説の為のものであって、本発明の範囲を限定するものではない。     In FIG. 1, when an alternating current 12 flows through the first coil 10, a first magnetic flux 14 is induced in the magnetic core material 100 in accordance with the magnetic field generated by the alternating current 12. The first magnetic flux 14 is linked to the first coil 10 and the second coil 20. When the first coil 10 and the first magnetic flux 14 are interlinked, a back electromotive force is generated in the first coil 10 by self-induction, so that the alternating current 12 remains at a small current. On the other hand, when the second coil 20 and the first magnetic flux 14 are linked, an electromotive force is generated in the second coil 20 by mutual induction. The second coil 20 and a load are connected to form an AC electric circuit including a switch. A load current 22 flows through the AC electric circuit, and the second magnetic flux 24 and the third magnetic flux 26 induced in the magnetic core material 100 according to the load current 22 are closed with a window interposed therebetween. Since the second magnetic flux 24 and the third magnetic flux 26 are prevented from interlinking with the second coil 20, no electromagnetic induction effect appears. If the alternating current 12 is continuously supplied at a constant voltage and a constant frequency, the electromotive force is stably maintained in accordance with the AC electric circuit. A function that absorbs the leakage magnetic flux generated when the load current becomes large. A magnetic path length that is shortened by reducing the magnetic path length. A shape and size that contributes to a reduction in loss. The details of operation and structure may be varied, and the specific examples described above are for illustrative purposes only and do not limit the scope of the invention.

コイルに負荷電流が流されてもコイルと鎖交する磁束が生じる事を阻止出来る技術の実施形態を示した説明図である。It is explanatory drawing which showed embodiment of the technique which can prevent that the magnetic flux which links with a coil arises even if load current is sent through a coil.

図1 10 第1のコイル 12 交番電流
14 第1の磁束 20 第2のコイル
22 負荷電流 24 第2の磁束
26 第3の磁束 100 磁性芯材
Fig. 1 10 First coil 12 Alternating current
14 First magnetic flux 20 Second coil
22 Load current 24 Second magnetic flux
26 Third magnetic flux 100 Magnetic core material

Claims (1)

磁性芯材(100)中に交番変化している第1の磁束(14)を誘導する手段と、
時間変化している前記第1の磁束(14)を取り囲む第1の閉曲線の第1の位置にあるソレノイドコイル(20)と、
前記第1の磁束(14)の交番変化に応じて、右回りに周回して閉じると、左回りに周回して閉じるとを交番して、前記ソレノイドコイル(20)中の前記第1の閉曲線に流される負荷電流(22)と、
前記ソレノイドコイル(20)の内側に収められる前記磁性芯材(100)中にある、窓を挟んだ第1の複数脚の上下を継鉄で継いで、岐路伝いに周回して閉じるように、前記磁性芯材(100)中に第2の位置を占める第2の閉曲線と、
前記負荷電流(22)の右回りに応じて、前記第1の複数脚のうち、前記窓を右にする一方の第1の脚を貫通し、通り抜けて、前記継鉄を右回りに出て行き、右回りに周回して、前記岐路伝いに、前記窓を左にする他方の第2の脚に入り、前記第2の脚を貫通し、通り抜けて再び、前記継鉄を今度も右回りに出て行き、更に、右回りに周回して、前記岐路伝いに、前記第1の脚に入り込み、前記第1の閉曲線と前記第2の閉曲線とが絡むことを阻止するように、前記負荷電流(22)に取り囲まれて、前記負荷電流(22)の内側に閉じると、
交番した前記負荷電流(22)の左回りに応じて、前記第1の脚を貫通し、通り抜けて、前記継鉄を左回りに出て行き、左回りに周回して、前記岐路伝いに、前記第2の脚に入り、前記第2の脚を貫通し、通り抜けて再び、前記継鉄を今度も左回りに出て行き、更に、左回りに周回して、前記岐路伝いに、前記第1の脚に入り込み、前記第1の閉曲線と前記第2の閉曲線とが絡むことを阻止するように、前記負荷電流(22)に取り囲まれて、前記負荷電流(22)の内側に閉じるとをして、前記磁性芯材(100)中の前記第2の閉曲線に時間変化して現れる第2の磁束(24)と、
前記負荷電流(22)の右回りに応じて、前記第2の脚を貫通し、通り抜けて、前記継鉄を左回りに出て行き、左回りに周回して、前記岐路伝いに、前記第1の脚に入り、前記第1の脚を貫通し、通り抜けて再び、前記継鉄を今度も左回りに出て行き、更に、左回りに周回して、前記岐路伝いに、前記第2の脚に入り込み、前記第1の閉曲線と前記第2の閉曲線とが絡むことを阻止するように、前記負荷電流(22)に取り囲まれて、前記負荷電流(22)の内側に閉じると、
交番した前記負荷電流(22)の左回りに応じて、前記第2の脚を貫通し、通り抜けて、前記継鉄を右回りに出て行き、右回りに周回して、前記岐路伝いに、前記第1の脚に入り、前記第1の脚を貫通し、通り抜けて再び、前記継鉄を今度も右回りに出て行き、更に、右回りに周回して、前記岐路伝いに、前記第2の脚に入り込み、前記第1の閉曲線と前記第2の閉曲線と絡むことを阻止するように、前記負荷電流(22)に取り囲まれて、前記負荷電流(22)の内側に閉じるとをして、前記磁性芯材(100)中の前記第2の閉曲線に時間変化して現れる第3の磁束(26)とを有し、
磁性芯材(100)中にある、窓を挟んだ第1の複数脚の上下を継鉄で継ぎ、該窓を挟んだ第1の複数脚を取り囲むように該ソレノイドコイル(20)が配置される電力装置。
Means for inducing a first magnetic flux (14) alternating in the magnetic core (100);
A solenoid coil (20) in a first position of a first closed curve surrounding the first magnetic flux (14) changing in time;
According to the alternating change of the first magnetic flux (14), the first closed curve in the solenoid coil (20) alternates between rotating clockwise and closing and rotating counterclockwise. Load current (22) applied to
In the magnetic core material (100) housed inside the solenoid coil (20), the upper and lower portions of the first plurality of legs sandwiching the window are connected with yokes so as to go around the crossroads and close. A second closed curve occupying a second position in the magnetic core (100);
According to the clockwise rotation of the load current (22), the first plurality of legs are passed through one first leg that turns the window to the right, passed through, and the yoke is released clockwise. Go around, turn clockwise, enter the second leg on the other side with the window to the left along the crossroads, pass through the second leg, pass through again, and again turn the yoke clockwise The load further so as to prevent the entanglement of the first closed curve and the second closed curve by turning clockwise and entering the first leg along the crossroads. Surrounded by a current (22) and closed inside the load current (22),
According to the counterclockwise of the alternating load current (22), it passes through the first leg, passes through, goes out the yoke counterclockwise, circulates counterclockwise, along the crossroads, Enter the second leg, pass through the second leg, pass through again, and again go out the yoke counterclockwise, and further turn counterclockwise to the crossroads, 1 so as to enter the leg 1 and be surrounded by the load current (22) so as to prevent the first closed curve and the second closed curve from being entangled and closed inside the load current (22). A second magnetic flux (24) appearing with time change in the second closed curve in the magnetic core (100);
In response to the clockwise rotation of the load current (22), it passes through the second leg, passes through the yoke, goes out counterclockwise, turns counterclockwise, and passes along the crossroads. Enter the leg 1, pass through the first leg, pass through again, go out the yoke again counterclockwise, and further turn counterclockwise, along the crossroads, the second Enclosed by the load current (22) and closed inside the load current (22) so as to enter the leg and prevent the first closed curve and the second closed curve from being entangled,
In response to the counterclockwise load current (22) counterclockwise, it passes through the second leg, passes through, goes out the yoke clockwise, turns clockwise, and travels along the crossroads. Enter the first leg, pass through the first leg, pass through, and again go out the yoke again clockwise, and further wrap around clockwise, along the crossroads, 2 so as to prevent it from entering the legs and entangled with the first closed curve and the second closed curve, and surrounded by the load current (22) and closed inside the load current (22). And a third magnetic flux (26) appearing with time change in the second closed curve in the magnetic core (100),
The solenoid coil (20) is arranged so as to connect the top and bottom of the first plurality of legs sandwiching the window with yokes in the magnetic core (100) and surround the first plurality of legs sandwiching the window. Power equipment.
JP2016013953A 2016-01-28 2016-01-28 Electric power device effective in suppressing electromagnetic induction action Active JP6558715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016013953A JP6558715B2 (en) 2016-01-28 2016-01-28 Electric power device effective in suppressing electromagnetic induction action

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016013953A JP6558715B2 (en) 2016-01-28 2016-01-28 Electric power device effective in suppressing electromagnetic induction action

Publications (2)

Publication Number Publication Date
JP2017135259A JP2017135259A (en) 2017-08-03
JP6558715B2 true JP6558715B2 (en) 2019-08-14

Family

ID=59504994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016013953A Active JP6558715B2 (en) 2016-01-28 2016-01-28 Electric power device effective in suppressing electromagnetic induction action

Country Status (1)

Country Link
JP (1) JP6558715B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115173664A (en) * 2022-07-15 2022-10-11 东南大学 Power generation device and method based on time-varying magnetic induction principle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009703A (en) * 2009-05-29 2011-01-13 Shinichiro Takeuchi Power consumption device using property of vector quantity

Also Published As

Publication number Publication date
JP2017135259A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
US5926083A (en) Static magnet dynamo for generating electromotive force based on changing flux density of an open magnetic path
JPS60240111A (en) Transformer
JP6558715B2 (en) Electric power device effective in suppressing electromagnetic induction action
US2324634A (en) Electromagnetic inductance apparatus
US20060202583A1 (en) Power consumption apparatus making use of vector quantity
WO2015184793A1 (en) Permanent magnet power-increasing transformer
US20200304000A1 (en) Generator with reduced magnetic resistance
JP2016100410A (en) Variable inductor
JP2007185002A (en) Permanent magnet generator
Bilgin Electromagnetic principles of switched reluctance machines
JP2011146526A (en) Magnetic flux control type variable transformer
US20170323717A1 (en) Gapless core reactor
JPH097862A (en) Power consumption device taking advantage of property of vector
WO2019182470A1 (en) Static electric generator
KR102475461B1 (en) Electric energy conversion device and system using permanent magnet
RU2585279C1 (en) Magnetoelectric machine
JPH1070876A (en) Power equipment utilizing property of vector quantity
JP3220511U (en) Low voltage generator
US10547218B2 (en) Variable magnetic monopole field electro-magnet and inductor
UA8941U (en) Power voltage transformer
RU2647658C1 (en) Magnetic amplifier
RU2124776C1 (en) Multifunctional transformer
JP2012142565A (en) Power unit utilizing nature of vector quantity
JP2016100441A (en) Magnetization device and magnet manufacturing method
Choudhry et al. Effects of magnetic bypass on performance of distribution transformers

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180104

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180201

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190706

R150 Certificate of patent or registration of utility model

Ref document number: 6558715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250