JP2011009703A - Power consumption device using property of vector quantity - Google Patents

Power consumption device using property of vector quantity Download PDF

Info

Publication number
JP2011009703A
JP2011009703A JP2010081157A JP2010081157A JP2011009703A JP 2011009703 A JP2011009703 A JP 2011009703A JP 2010081157 A JP2010081157 A JP 2010081157A JP 2010081157 A JP2010081157 A JP 2010081157A JP 2011009703 A JP2011009703 A JP 2011009703A
Authority
JP
Japan
Prior art keywords
coil
magnetic flux
magnetic
alternating current
induced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010081157A
Other languages
Japanese (ja)
Inventor
Shinichiro Takeuchi
眞一郎 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009146974A external-priority patent/JP2010034531A/en
Application filed by Individual filed Critical Individual
Priority to JP2010081157A priority Critical patent/JP2011009703A/en
Priority to JP2010279599A priority patent/JP2011228629A/en
Publication of JP2011009703A publication Critical patent/JP2011009703A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ac-Ac Conversion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology for mainly linking magnetic flux and a coil, and secondarily, to provide a technology for the use of a current source.SOLUTION: A magnetic core 100 includes separate magnetic-flux paths which are a path from a first coil 10, a path 24 from a second coil 20, and a path 34 from a third coil 30. The second coil 20 and the third coil 30 constitute a non-inductive winding. Consequently, when an electric field generated from the first coil 10 is applied to the non-inductive winding, the second coil 20 and the third coil constituting the non-inductive winding serve as power supplies.

Description

本発明は、交流電力に関する。       The present invention relates to AC power.

第1に時間的に強さが変化する磁場は時間的に強さが変化する電場を誘起する。第2に時間的に強さが変化する電場は時間的に強さが変化する磁場を誘起する。第3に電荷は磁場を空間に生み出す。電荷の無い空間では電気力線の増減はない。第4に磁場を作り出す源は電流(動く電荷)である。第5に時間的に強さが変化しようがしまいが磁力線は例外なく常に閉じている。以上の5点が4つの数式から成るマックスウェルの方程式として1873年から知られている。ストークスの定理を用いて面積分に変換した後に、磁場が時間的に変化する場合のマックスウェルの方程式を用いるとファラデーの法則とレンツの法則が導かれる。只、単純に第1点と第2点が繰返せる場合は電波や電磁波になる。商用周波数の場合にそれが起きるとすれば電場も磁場も電気回路の導線内や変圧器の鉄芯内を通過する事無く空中に拡がる。従って全く異なる繰返しが起きる。
磁場は動いている電荷である電流によって作り出される。この現象がエルステッドにより発見された1820年。同年、ビオとサバールは電流により作り出される磁場の大きさを測定しビオサバールの法則とした。逆に与えられた磁場から電流を求めるのがアンペールの法則。
ファラデーが電磁誘導を発見した時に用いた電気回路、この実験装置の中に、ファラデーの法則とアンペールの法則が存在し、一次コイルに電流を流すとリング状になっている軟鉄の内部を磁界が通過する。この部分がアンペールの法則に対応する。磁界はリング状の軟鉄を介して2次コイルの中心を通過し、この時、2次コイルに電流が発生する。この部分がファラデーの法則に対応する。
電池とはどんな種類のものでも、そのプラス端子とマイナス端子の間に常に一定の電位差を生じさせておく装置である。銅線と豆電球とから成る電池の外部回路を流れる電流は閉じた回路を循環する為には電池内部の電池のマイナス側(低電位)からプラス側(高電位)に向かって電位の坂道を昇らなければならない。
所が、考えている電場(電界)が電荷によって作り上げられた物では無く、時間的に変化する磁場によって誘発されたものならば、磁場によって誘起された電場は「電位勾配」によって表す事が出来ない。つまり、電位の坂道がない。磁場と言うものは空間的に渦巻状に変化するベクトルポテンシャルとして表され、時間的に変化する磁場によって誘起された電場はベクトルポテンシャルの時間的変化として表される。重要な事はこのような電場に付随する電気力線は輪ゴムのように閉じている事である(電池では閉じていない事との比較に意味がある)。電荷によって生じたのではないので、当然その出発点も終点も無い。二次コイルは閉じた回路を成している。二次コイル内の自由電子はこの誘起された電場によって動かされ、閉じた回路に沿ってぐるぐる回る。回路に電流を流す限り、誘起された電場は電場以外の何者でもない。導体に電圧が加わりそれによって電流が流れる時電圧によって電界、電流によって磁界が出来る。そして、それぞれの空間がエネルギーを持つ。従ってエネルギーの輸送の本体は電界と磁界(つまり導体を取り巻く空間)にあって、導体はエネルギーの流れのガイド(レール)に成っているに過ぎない。
交流電気回路の解析は直流回路に比べて複雑である。レンツは誘導電流がインダクタンスに作用する現象を1847年発見し、1887年ヤブロチコフは交流回路における静電容量の機能を見出し、マックスウェルはインダクタンス・静電容量・抵抗を持つ交流回路で全抵抗、今で言うインピーダンスの概念を示したが、これらは個々に独立したもので交流回路を全体的に把握するまでに至らなかった。イギリスのケネリーは1893年複素数を用いれば抵抗・インダクタンス・静電容量を組合わせた交流回路の計算は正弦波交流の場合、オームの法則やキルヒホッフの法則が適用できる事を示し、同年8月アメリカのスタインメッツは交流の実効値の概念を導入し交流現象を含めた形でキルヒホッフの法則を一般化した。
1891年フランクフルト博覧会で三相交流発電機を据付し、三相変圧器で8000Vまで電圧を上げて送電し、送電された三相交流電圧を変圧器で下げ三相誘導電動機を回転させた。送電効率は70%であった。高圧長距離送電を実現する為には変圧器は大きな要素であり、珪素鋼の変圧器が1903年に作られた。
磁性体は磁界の中に入れた時磁気モーメントを生ずるような物質である。その現象を磁気誘導という。磁気誘導により磁気を帯びる事を磁化するという。特に大きい磁気誘導を受ける物質が強磁性体である。強磁性体を磁界の中に入れた時に生ずる磁束密度は外部磁界による磁束密度に磁化による磁束密度を加えたものになる。強磁性体に、外部の電流による磁束密度を与えると外部からの磁束密度を無視できる位大きな磁束密度になり、そのほとんどが磁性体中にあり形の曲がった強磁性体では磁界の方向は強磁性体中にある方が安定である。その為曲げた形の強磁性体は磁界の方向を曲げて伝えるのに利用できる。強磁性体の磁区の大きさ・形・位置・方向は結晶に存在する全ての力によって決まる。これはエネルギーを最小にする配置に全ての力が同じ様に関与するからである。実際の磁区の大きさとその磁化の方向は磁壁中の磁気双極子の角度を広げる力と交換力による揃える力と外部磁界の作用を最小にする力の三者の釣合いで決まる。磁壁の移動は外部磁界の作用を最小にしようとする力によって生じる。磁化した物体は磁場中で磁場強度を強め合う位置から磁場を弱める位置へと動こうとする、全ての系はエネルギー最小の状態になろうとする原理の一例である。一個の荷電粒子が多くの荷電粒子にぎっしりと囲まれている場合、これらの全ての粒子を近接させて結び付けているのは電荷と磁場を最小にしようとする力である。これらの運動は単位体積あたりの電荷量と磁場を最小にしようとしている。

熱力学において第1種及第2種の永久機関更に入力が継続して得られる場合は出力がその入力を超える事が可能であるとの知見が同時に得られ、ニュートン力学に一部がエネルギー保存則として取り入れら、保存則は更に相対性理論に取り入れられている事が知られている。
ダムの水から位置エネルギーを引き出すのに、水門を開閉するための僅かのエネルギーを要す。化学的エネルギーを引き出すのに、石油を燃やすための火花を飛ばすエネルギーを要す。ウランから核エネルギーを引き出すのに、核分裂を起こしてから引き出せるエネルギーに比べて僅かのエネルギーを要す。
ダムからの水や、石油を燃やす又は核分裂によって得られる熱で作られる蒸気を発電機の軸に取り付けられたタービンにぶつけると、発電機の軸が回る。その結果、発電機のコイルの両端子間に電位差が生じる。
発電機の負荷が静電容量のみの時は、静電容量が充電する時は電力を消費し、放電する時は電力を発生して電源に返している。充電量と放電量とは等しいから静電容量の消費電力は発生電力に等しく平均すれば消費電力は0になる。自己インダクタンスのみの時は各瞬間の電力はコイル中の磁束によって生ずる電磁エネルギーとして蓄積されたり放出されたりする。同様に平均した交流電力は0である。結局交流回路で電力を消費するのは抵抗だけである。
一般に法則とは「いつでもどこでも一定の条件の基に成り立つ恒久的でしかも必然的な関係である」と定義され、理論とは「個々の事実とか認識などを説明できる統一的な知識」と定義される。この事から電気理論は電気に関するすべての現象及び法則を統一的に説明できる知識ではあるが、交流商用電力が実際に消費出来るのは二次電気回路のみで有り、直接的には一次負荷電流から誘導される磁束が電力消費を可能にしている。商用電力系統の全体を観れば、必須の目的は工場や家庭内の交流電気回路を働かせる事である。発電機を必須とし、変圧器や原子力が使われているのが現状である。
電磁誘導は発電機や変圧器以外でも新たに応用が為されるであろう。
特願昭63−128648号 特許第3554850号 特許願2005−113855号
First, a magnetic field whose strength changes over time induces an electric field whose strength changes over time. Secondly, an electric field whose strength changes over time induces a magnetic field whose strength changes over time. Third, the charge creates a magnetic field in space. There is no increase or decrease in the lines of electric force in a space without charge. Fourth, the source that creates the magnetic field is the current (the moving charge). Fifth, although the strength may change with time, the magnetic field lines are always closed without exception. These five points have been known since 1873 as Maxwell's equations consisting of four equations. Faraday's law and Lenz's law can be derived by using Maxwell's equations when the magnetic field changes with time after conversion to the area using Stokes' theorem.只 If the first point and the second point can be repeated simply, it becomes radio waves or electromagnetic waves. If this occurs in the case of commercial frequencies, both the electric and magnetic fields spread into the air without passing through the conductors of the electrical circuit or the iron core of the transformer. A completely different repetition therefore occurs.
A magnetic field is created by a current that is a moving charge. 1820 when this phenomenon was discovered by Oersted. In the same year, Bio and Sabar measured the magnitude of the magnetic field created by the current and made Biosavart's law. Conversely, Ampere's law is to find the current from a given magnetic field.
The Faraday's law and Ampere's law exist in the electric circuit and experimental equipment used when Faraday discovered electromagnetic induction, and when a current is passed through the primary coil, a magnetic field is generated inside the soft iron that forms a ring. pass. This part corresponds to Ampere's law. The magnetic field passes through the center of the secondary coil via the ring-shaped soft iron, and at this time, a current is generated in the secondary coil. This part corresponds to Faraday's law.
A battery is a device that always generates a certain potential difference between its positive terminal and negative terminal, regardless of the type of battery. In order to circulate through the closed circuit, the current flowing through the external circuit of the battery consisting of a copper wire and a miniature light bulb has a potential slope from the negative side (low potential) to the positive side (high potential) of the battery inside the battery. I have to rise.
If, however, the electric field (electric field) we are thinking of is not an object created by electric charge but is induced by a time-varying magnetic field, the electric field induced by the magnetic field can be represented by a “potential gradient”. Absent. In other words, there is no potential slope. The magnetic field is expressed as a vector potential that spatially changes in a spiral shape, and the electric field induced by the temporally changing magnetic field is expressed as a temporal change in the vector potential. The important thing is that the electric lines of force associated with such an electric field are closed like a rubber band (it is meaningful in comparison with not closing with a battery). Since it was not caused by an electric charge, it naturally has neither a starting point nor an ending point. The secondary coil forms a closed circuit. Free electrons in the secondary coil are moved by this induced electric field and rotate around the closed circuit. As long as current flows through the circuit, the induced electric field is nothing else than the electric field. When voltage is applied to the conductor and current flows through it, an electric field is generated by the voltage, and a magnetic field is generated by the current. And each space has energy. Therefore, the main body of energy transport is an electric field and a magnetic field (that is, the space surrounding the conductor), and the conductor is merely a guide (rail) for energy flow.
The analysis of an AC electrical circuit is more complicated than a DC circuit. In 1847, Lenz discovered the phenomenon that the induced current acts on the inductance. In 1887, Yablochikov discovered the function of the electrostatic capacity in the AC circuit, and Maxwell was the total resistance in the AC circuit with inductance, capacitance, and resistance. The concept of impedance was shown, but these were independent of each other and did not lead to an overall understanding of the AC circuit. Kennelly in the UK showed that if the complex number is used in 1893, the calculation of the AC circuit combining resistance, inductance, and capacitance can be applied to Ohm's law and Kirchhoff's law in the case of sinusoidal AC. Steinmetz introduced the concept of the effective value of alternating current and generalized Kirchhoff's law in a form that included alternating current phenomena.
At the 1891 Frankfurt Exposition, a three-phase AC generator was installed, and a three-phase transformer increased the voltage to 8000 V for transmission, and the transmitted three-phase AC voltage was lowered with a transformer to rotate the three-phase induction motor. The power transmission efficiency was 70%. Transformers are a major factor in realizing high-voltage, long-distance transmission, and a silicon steel transformer was created in 1903.
A magnetic substance is a substance that generates a magnetic moment when placed in a magnetic field. This phenomenon is called magnetic induction. It is said that magnetism is caused by magnetic induction. A substance that receives a particularly large magnetic induction is a ferromagnetic substance. The magnetic flux density generated when the ferromagnetic material is placed in the magnetic field is obtained by adding the magnetic flux density due to magnetization to the magnetic flux density due to the external magnetic field. When a magnetic flux density due to an external current is applied to a ferromagnetic material, the magnetic flux density becomes so large that the magnetic flux density from the outside can be ignored. Most of the magnetic material is in a magnetic material and the direction of the magnetic field is strong in a bent magnetic material. It is more stable in the magnetic material. Therefore, the bent ferromagnet can be used to bend and transmit the direction of the magnetic field. The size, shape, position and direction of the magnetic domain of a ferromagnetic material are determined by all the forces present in the crystal. This is because all forces are equally involved in an arrangement that minimizes energy. The actual size of the magnetic domain and the direction of magnetization are determined by a balance between the force that expands the angle of the magnetic dipole in the domain wall, the force that aligns with the exchange force, and the force that minimizes the action of the external magnetic field. The domain wall motion is caused by a force that attempts to minimize the action of the external magnetic field. A magnetized object tries to move from a position where the magnetic field strength is strengthened to a position where the magnetic field is weakened in the magnetic field. When a single charged particle is tightly surrounded by many charged particles, it is the force that tries to minimize the charge and magnetic field that binds all these particles in close proximity. These movements try to minimize the amount of charge and magnetic field per unit volume.

In the case of thermodynamics, the first and second kind of permanent engine, and if the input is obtained continuously, the knowledge that the output can exceed the input is obtained at the same time, and part of the energy is preserved in Newtonian mechanics. It is known that the conservation law is further incorporated into the theory of relativity.
It takes a little energy to open and close the sluice to extract the potential energy from the dam water. In order to extract chemical energy, it takes energy to fly a spark for burning oil. Extracting nuclear energy from uranium requires a little energy compared to the energy that can be extracted after fission.
When the water from the dam or the steam produced by the heat from burning oil or fission hits the turbine attached to the generator shaft, the generator shaft rotates. As a result, a potential difference is generated between both terminals of the generator coil.
When the load of the generator is only electrostatic capacity, power is consumed when the electrostatic capacity is charged, and electric power is generated and returned to the power source when discharged. Since the amount of charge and the amount of discharge are equal, the power consumption of the capacitance is equal to the generated power, and the power consumption becomes zero. When there is only self-inductance, the electric power at each moment is stored or released as electromagnetic energy generated by the magnetic flux in the coil. Similarly, the averaged AC power is zero. In the end, it is only resistors that consume power in an AC circuit.
In general, a law is defined as “a permanent and inevitable relationship based on a certain condition anytime and anywhere”, and a theory is defined as “a unified knowledge that can explain individual facts and perceptions” The From this, the theory of electricity is knowledge that can explain all phenomena and laws related to electricity in a unified way, but AC commercial power can actually be consumed only by the secondary electric circuit, directly from the primary load current. The induced magnetic flux enables power consumption. If you look at the entire commercial power system, the essential purpose is to operate AC electrical circuits in factories and homes. Currently, generators are essential, and transformers and nuclear power are used.
Electromagnetic induction will be newly applied to other than generators and transformers.
Japanese Patent Application No. 63-128648 Japanese Patent No. 3554850 Patent application 2005-113855

特願昭63−128648号は一次超伝導コイルに超伝導体の中空円筒体を一体化し、二次コイルの負荷電流からの磁束を超伝導中空円筒体に流れる遮蔽電流によって相殺し、二次コイルに誘導される逆起電力を現れなくしたものである。その結果、遮蔽電流が一次負荷電流の換わりとなって電力消費が実現できるものであるが、超伝導状態は多種の原因によりクウェンチし易く、超伝導状態を保ちにくい欠陥がある。特許第3554850号は上述の技術を常伝導で実現しようとするものである。特許願2005−113855号ではその解決が磁石を利用して図られる。本発明は主として磁束とコイルを鎖交する技術を提供し、副次的には電流源の利用で上述の技術を提供しようとするものである。   In Japanese Patent Application No. 63-128648, a superconducting hollow cylinder is integrated with a primary superconducting coil, and a magnetic flux from a load current of the secondary coil is canceled by a shielding current flowing through the superconducting hollow cylinder. The back electromotive force induced in the circuit is eliminated. As a result, the shielding current becomes a substitute for the primary load current and power consumption can be realized. However, the superconducting state is easy to quench due to various causes and has a defect that it is difficult to maintain the superconducting state. Japanese Patent No. 3554850 intends to realize the above-described technique in normal conduction. In Japanese Patent Application No. 2005-113855, the solution is achieved using a magnet. The present invention mainly provides a technique for interlinking a magnetic flux and a coil, and, secondarily, intends to provide the above technique by using a current source.

具体的には、第1のコイルと、
前記第1のコイルに流れる第1の交番電流と、
前記第1の交番電流に応じて誘導される第1の磁束と、
前記第1の磁束と鎖交する第2のコイルと、
前記第1の磁束と鎖交する第3のコイルと、
前記第2のコイルに流れる第2の交番電流と、
前記第3のコイルに流れる第3の交番電流と、
前記第2の交番電流に応じて誘導される第2の磁束と、
前記第3の交番電流に応じて誘導される第3の磁束と、
前記第1の磁束と前記第2の磁束及前記第3の磁束が前記第2のコイルと前記第3のコイルとの結合係数より前記第2のコイル又は前記第3のコイルと前記第1のコイルとの方の結合係数を低められてかつ前記第2の磁束と前記第3の磁束がほぼ同じ大きさで互いに反対方向に電磁的な結合を為して誘導される経路を有する磁性芯材とを具備する様な手段によって達成する事ができる。
Specifically, the first coil,
A first alternating current flowing through the first coil;
A first magnetic flux induced in response to the first alternating current;
A second coil interlinking with the first magnetic flux;
A third coil interlinking with the first magnetic flux;
A second alternating current flowing in the second coil;
A third alternating current flowing in the third coil;
A second magnetic flux induced in response to the second alternating current;
A third magnetic flux induced in response to the third alternating current;
The first magnetic flux, the second magnetic flux, and the third magnetic flux are determined based on a coupling coefficient between the second coil and the third coil, and the second coil or the third coil and the first magnetic flux. A magnetic core material having a path in which the coupling coefficient of the coil is lowered and the second magnetic flux and the third magnetic flux are substantially the same in size and are induced by electromagnetic coupling in opposite directions. It can be achieved by means including:

変圧器と違って、磁性芯材において第1のコイルからの磁束の経路と、第2のコイルと第3のコイルからの磁束の経路に分かれる構成とし、第2と第3のコイルで無誘導巻線構造が実現する構成としたので、第1のコイルからの電場が既無誘導巻線構造に与えられると、既第2、第3のコイルは無誘導巻線でありながら電源となる。この電源で構成される交流電気回路に負荷電流が流れても負荷電流からの逆起電力が生じないので既第1のコイルからの電場が継続して誘導される間は負荷電流も継続して流れる事が可能になる。   Unlike the transformer, the magnetic core material is divided into a magnetic flux path from the first coil and a magnetic flux path from the second coil and the third coil, and the second and third coils are non-inductive. Since the winding structure is realized, when the electric field from the first coil is applied to the non-inductive winding structure, the second and third coils serve as a power source while being non-inductive windings. Since no back electromotive force is generated from the load current even if the load current flows through the AC electric circuit composed of this power source, the load current also continues while the electric field from the first coil is continuously induced. It becomes possible to flow.

第1図において、第1のコイル10と第2のコイル20及び第3のコイル30と磁性芯材100が鎖交する。前記第1のコイル10に交番電流12が流れると前記交番電流12の作る磁界に応じて前記磁性芯材100に第1の磁束14が誘導される。前記第1の磁束14は前記第1のコイル10と第2のコイル20及第3のコイル30と鎖交する。前記第2のコイルと第3のコイルが接続されて交流電気回路が構成される。既電気回路に電流が生まれ、前記第2のコイル及第3のコイル部分に交番電流22及32が流れると前記交番電流22及第32の作る磁界に応じて前記磁性芯材100に第2の磁束24及第3の磁束34が誘導される。前記第2の磁束24と第3の磁束34とはほぼ同じ大きさで反対方向に誘導されるので、これらの磁束からの逆起電力は作用としては現れない。既電気回路には電流が流れても逆起電力が無いので、前記磁束14が前記第2のコイル及第3のコイル周りに作る電場に応じて既電気回路には電流が流れ続ける。
尚、形状、大きさ、作動及び構造上の細部については変更しても良く、前述の具体例は専ら解説の為のものであって、本発明の範囲を限定するものではない。
In FIG. 1, the first coil 10, the second coil 20, the third coil 30, and the magnetic core material 100 are linked. When an alternating current 12 flows through the first coil 10, a first magnetic flux 14 is induced in the magnetic core material 100 according to the magnetic field generated by the alternating current 12. The first magnetic flux 14 is linked to the first coil 10, the second coil 20, and the third coil 30. The second coil and the third coil are connected to form an AC electric circuit. When an electric current is generated in the existing electric circuit and alternating currents 22 and 32 flow in the second coil and the third coil portion, the second magnetic core 100 has a second current corresponding to the magnetic field generated by the alternating currents 22 and 32. A magnetic flux 24 and a third magnetic flux 34 are induced. Since the second magnetic flux 24 and the third magnetic flux 34 are almost the same size and are induced in opposite directions, the counter electromotive force from these magnetic fluxes does not appear as an action. Since there is no back electromotive force even if a current flows in the existing electrical circuit, the current continues to flow in the existing electrical circuit according to the electric field generated by the magnetic flux 14 around the second coil and the third coil.
It should be noted that details on shape, size, operation and structure may be changed, and the specific examples described above are for illustrative purposes only and do not limit the scope of the present invention.

第2図において、第1のコイル10と第2のコイル20及び第3のコイル30と磁性芯材100が鎖交する。前記第1のコイル10に交番電流12が流れると前記交番電流12の作る磁界に応じて前記磁性芯材100に第1の磁束14が誘導される。前記第1の磁束14は前記第1のコイル10と第2のコイル20と鎖交する。前記第2のコイルと第3のコイルが接続されて交流電気回路が構成される。既電気回路に電流が生まれ、前記第2のコイル及第3のコイル部分に交番電流22及32が流れると前記交番電流22及第32の作る磁界に応じて前記磁性芯材100に第2の磁束24及第3の磁束34が誘導される。前記第2の磁束24と第3の磁束34とはほぼ同じ大きさで反対方向に誘導されるので、これらの磁束からの逆起電力は作用としては現れない。既電気回路には電流が流れても逆起電力が無いので、前記磁束14が前記第2のコイル及第3のコイル周りに作る電場に応じて既電気回路には電流が流れ続ける。
内鉄形と外鉄形の違いで特徴的な現象は一次コイルに大電流が流れる場合に内鉄形は漏れ磁束が多くなり続けるが外鉄形は漏れ磁束がほぼ一定に保たれる事である。本発明には変圧器起電力は利用するがJEC−204に定義される変圧器としては組み込まれてはいない。磁性芯材の構造が漏れ磁束が大きくなる内鉄形と同様であれば、負荷電気回路の電源コイルであっても同様であり、負荷電気回路の電圧は下がり続ける事になる。上述の第2のコイルが中央脚に巻回されると、内鉄形よりは漏れ磁束はやや抑えられていく。更に中央脚に人が脚を背負って腹を向けで抱きついたとすると中央脚の左右の脚と上下の継鉄が人の背の脚にまでのびて、背中の後ろで立体的に一体化する様な磁性芯材にすると2脚しかないがどちらの脚も中央脚と同様となるので漏れ磁束が一定に保たれる。その様な漏れ磁束の対応技術のベースとなる技術を提供するものである。
尚、形状、大きさ、作動及び構造上の細部については変更しても良く、前述の具体例は専ら解説の為のものであって、本発明の範囲を限定するものではない。
In FIG. 2, the first coil 10, the second coil 20, the third coil 30, and the magnetic core material 100 are linked. When an alternating current 12 flows through the first coil 10, a first magnetic flux 14 is induced in the magnetic core material 100 according to the magnetic field generated by the alternating current 12. The first magnetic flux 14 is linked to the first coil 10 and the second coil 20. The second coil and the third coil are connected to form an AC electric circuit. When an electric current is generated in the existing electric circuit and alternating currents 22 and 32 flow in the second coil and the third coil portion, the second magnetic core 100 has a second current corresponding to the magnetic field generated by the alternating currents 22 and 32. A magnetic flux 24 and a third magnetic flux 34 are induced. Since the second magnetic flux 24 and the third magnetic flux 34 are almost the same size and are induced in opposite directions, the counter electromotive force from these magnetic fluxes does not appear as an action. Since there is no back electromotive force even if a current flows in the existing electrical circuit, the current continues to flow in the existing electrical circuit according to the electric field generated by the magnetic flux 14 around the second coil and the third coil.
A characteristic phenomenon due to the difference between the inner iron type and outer iron type is that when a large current flows through the primary coil, the inner iron type continues to increase the leakage flux, but the outer iron type maintains the leakage flux almost constant. is there. The present invention uses a transformer electromotive force, but is not incorporated as a transformer defined in JEC-204. If the structure of the magnetic core is the same as that of the inner iron type in which leakage magnetic flux increases, the same applies to the power supply coil of the load electric circuit, and the voltage of the load electric circuit continues to decrease. When the above-described second coil is wound around the center leg, the leakage magnetic flux is somewhat suppressed as compared with the inner iron type. Furthermore, if a person holds his / her legs on the center leg and hugs his / her belly, the left and right legs of the center leg and the upper and lower yokes extend to the person's back legs and are three-dimensionally integrated behind the back. If the magnetic core material is used, there are only two legs, but both legs are the same as the center leg, so that the leakage flux is kept constant. The present invention provides a technology that serves as a base for such a leakage flux countermeasure technology.
It should be noted that details on shape, size, operation and structure may be changed, and the specific examples described above are for illustrative purposes only and do not limit the scope of the present invention.

コイルと新たな磁性芯材を鎖交する事により、副次的に電流源が得られる技術の実施形態を示した説明図である。It is explanatory drawing which showed embodiment of the technique in which a current source is obtained by secondary by interlinking a coil and a new magnetic core material. 漏れ磁束の対応技術のベースとなる技術の実施例を示した説明図である。It is explanatory drawing which showed the Example of the technique used as the base of the countermeasure technique of a leakage magnetic flux.

図1 10 第1のコイル 12 交番電流
14 第1の磁束 20 第2のコイル
22 交番電流 24 第2の磁束
30 第3のコイル 32 交番電流
34 第3の磁束 100 磁性芯材
図2 10 第1のコイル 12 交番電流
14 第1の磁束 20 第2のコイル
22 交番電流 24 第2の磁束
30 第3のコイル 32 交番電流
34 第3の磁束 100 磁性芯材
FIG. 1 10 First coil 12 Alternating current 14 First magnetic flux 20 Second coil
22 alternating current 24 second magnetic flux 30 third coil 32 alternating current 34 third magnetic flux 100 magnetic core material FIG. 2 10 first coil 12 alternating current 14 first magnetic flux 20 second coil 22 alternating current 24 second 2 magnetic flux 30 3rd coil 32 alternating current 34 3rd magnetic flux 100 magnetic core material

Claims (2)

磁束とコイルを鎖交する電磁誘導用鎖交具であって、
第1のコイルと、
前記第1のコイルに流れる第1の交番電流と、
前記第1の交番電流に応じて誘導される第1の磁束と、
前記第1の磁束と鎖交する第2のコイルと、
前記第1の磁束と鎖交する第3のコイルと、
前記第2のコイルに流れる第2の交番電流と、
前記第3のコイルに流れる第3の交番電流と、
前記第2の交番電流に応じて誘導される第2の磁束と、
前記第3の交番電流に応じて誘導される第3の磁束と、
前記第1の磁束と前記第2の磁束及前記第3の磁束が前記第2のコイルと前記第3のコイルとの結合係数より前記第2のコイル又は前記第3のコイルと前記第1のコイルとの方の結合係数を低められてかつ前記第2の磁束と前記第3の磁束がほぼ同じ大きさで互いに反対方向に電磁的な結合を為して誘導される経路を有する磁性芯材とを具備する電磁誘導用鎖交具。
An electromagnetic induction linkage that links a magnetic flux and a coil,
A first coil;
A first alternating current flowing through the first coil;
A first magnetic flux induced in response to the first alternating current;
A second coil interlinking with the first magnetic flux;
A third coil interlinking with the first magnetic flux;
A second alternating current flowing in the second coil;
A third alternating current flowing in the third coil;
A second magnetic flux induced in response to the second alternating current;
A third magnetic flux induced in response to the third alternating current;
The first magnetic flux, the second magnetic flux, and the third magnetic flux are determined based on a coupling coefficient between the second coil and the third coil, and the second coil or the third coil and the first magnetic flux. A magnetic core material having a path in which the coupling coefficient of the coil is lowered and the second magnetic flux and the third magnetic flux are substantially the same in size and are induced by electromagnetic coupling in opposite directions. An electromagnetic induction linkage comprising:
前記第1の磁束に換わって前記第2の磁束と前記第3のコイルが鎖交する、請求項1記載の電磁誘導用鎖交具。   The linkage for electromagnetic induction according to claim 1, wherein the second magnetic flux and the third coil are linked in place of the first magnetic flux.
JP2010081157A 2009-05-29 2010-03-31 Power consumption device using property of vector quantity Pending JP2011009703A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010081157A JP2011009703A (en) 2009-05-29 2010-03-31 Power consumption device using property of vector quantity
JP2010279599A JP2011228629A (en) 2010-03-31 2010-12-15 Power consumption device using property of vector quantity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009146974A JP2010034531A (en) 2008-05-30 2009-05-29 Power consumption device using property of vector quantity
JP2010081157A JP2011009703A (en) 2009-05-29 2010-03-31 Power consumption device using property of vector quantity

Publications (1)

Publication Number Publication Date
JP2011009703A true JP2011009703A (en) 2011-01-13

Family

ID=43566641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081157A Pending JP2011009703A (en) 2009-05-29 2010-03-31 Power consumption device using property of vector quantity

Country Status (1)

Country Link
JP (1) JP2011009703A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142565A (en) * 2010-12-15 2012-07-26 Shinichiro Takeuchi Power unit utilizing nature of vector quantity
JP2017135259A (en) * 2016-01-28 2017-08-03 眞一郎 竹内 Power device effective to suppress electromagnetic induction action

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142565A (en) * 2010-12-15 2012-07-26 Shinichiro Takeuchi Power unit utilizing nature of vector quantity
JP2017135259A (en) * 2016-01-28 2017-08-03 眞一郎 竹内 Power device effective to suppress electromagnetic induction action

Similar Documents

Publication Publication Date Title
Cai et al. Resonant wireless charging system design for 110-kV high-voltage transmission line monitoring equipment
Grandi et al. Model of laminated iron-core inductors for high frequencies
Yashima et al. Leakage magnetic field reduction from wireless power transfer system embedding new eddy current-based shielding method
JP6665454B2 (en) Coil device and coil system
Zhang et al. Analysis of magnetic circuit and leakage magnetic field of a saturated iron-core superconducting fault current limiter
JP2011009703A (en) Power consumption device using property of vector quantity
Kiran et al. Increase in the power transfer capability of advanced magnetic material based high frequency transformer by using a novel distributed winding topology
JP3566481B2 (en) Eddy current shield device and three-phase transformer
Mgunda Optimization of Power Transformer Design: Losses, Voltage Regulation and Tests
Hu et al. Analysis of excitation characteristics of transformers with different core shapes under severe DC bias
Wright et al. Inductive power line harvester with flux guidance for self-powered sensors
Salam Fundamentals of electrical machines
Xu et al. Design of magnetic shielding structure for wireless charging coupler
Li et al. HTS axial flux induction motor with analytic and FEA modeling
Yuan et al. Development and analysis of bridge-type saturated-core fault current limiter
Rauff et al. Construction of a Simple Transformer to Illustrate Faraday’s Law of Electromagnetic Induction along Side Mutual Inductance
Ibrahim et al. Reducing Extended Magnetic Stray Field in Wireless Charging Systems of Electric Vehicles
Carcangiu et al. Assessment of the machine parameters affecting the overall performance of an inductive MHD generator
Williams et al. Electricity and magnetism
CN215988359U (en) Electricity saver of power distribution system
TWI721524B (en) Resonant generator
Lebedev Transformer basics
JPH11204353A (en) Static-magnet type generator
JP2011228629A (en) Power consumption device using property of vector quantity
Zheng et al. Study on the influence of amorphous debris on the magnetic field distribution of amorphous alloy transformer