JP6555770B1 - Method and apparatus for producing a novel biomagnetic serum site filler for water treatment - Google Patents

Method and apparatus for producing a novel biomagnetic serum site filler for water treatment Download PDF

Info

Publication number
JP6555770B1
JP6555770B1 JP2019052023A JP2019052023A JP6555770B1 JP 6555770 B1 JP6555770 B1 JP 6555770B1 JP 2019052023 A JP2019052023 A JP 2019052023A JP 2019052023 A JP2019052023 A JP 2019052023A JP 6555770 B1 JP6555770 B1 JP 6555770B1
Authority
JP
Japan
Prior art keywords
serum site
serum
filler
chamber
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2019052023A
Other languages
Japanese (ja)
Other versions
JP2020142227A (en
Inventor
許柯
朱遠墨
任洪強
耿金菊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Application granted granted Critical
Publication of JP6555770B1 publication Critical patent/JP6555770B1/en
Publication of JP2020142227A publication Critical patent/JP2020142227A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/342Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the enzymes used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5183Metallising, e.g. infiltration of sintered ceramic preforms with molten metal inorganic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F2003/001Biological treatment of water, waste water, or sewage using granular carriers or supports for the microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

【課題】廃水排出基準を満たす、高アンモニア態窒素廃水処理用の生体磁性セラムサイトフィラーの製造方法を提供する。【解決手段】磁性粉末を活性化した後、セラマイト、ホウ砂および二酸化チタンと一定の比率で混合し、次いで水と混合して造粒し、乾燥させ、焼成し、洗浄し、再び乾燥させ、磁化し、磁性セラムサイトフィラー基質を得て、さらに磁性セラムサイトフィラー基質の表面に、木炭、粘土、ネオジム鉄ボロンおよび水からなる表面層材料をロードした後、二次乾燥および焼成し、冷却させた後に生体磁性セラムサイトフィラーを得る。本発明によって製造された生体磁性セラムサイトフィラーはアンモニア態窒素の除去効率を大幅に向上でき、下水の実際の生物学的処理における促進および適用に役立つ。【選択図】なしA method for producing a biomagnetic serum site filler for high ammonia nitrogen wastewater treatment that satisfies wastewater discharge standards is provided. After activating the magnetic powder, it is mixed with ceramite, borax and titanium dioxide in a certain ratio, then mixed with water, granulated, dried, fired, washed, dried again, Magnetized to obtain a magnetic serum site filler substrate, and after loading a surface layer material consisting of charcoal, clay, neodymium iron boron and water on the surface of the magnetic serum site filler substrate, secondary drying and firing, and cooling. After that, a biomagnetic serum site filler is obtained. The biomagnetic serum site filler produced by the present invention can greatly improve the removal efficiency of ammonia nitrogen, which is useful for promotion and application in actual biological treatment of sewage. [Selection figure] None

Description

本発明は、廃水処理の技術分野に関し、具体的には水処理用の新規生体磁性セラムサイ
トフィラーの製造方法および装置に関する。
The present invention relates to the technical field of wastewater treatment, and more specifically to a method and apparatus for producing a novel biomagnetic serum site filler for water treatment.

高アンモニア態窒素廃水の強化された生物学的処理は常に環境保護分野のホットスポット
と難点であり、通常の高アンモニア態窒素廃水の生物学的処理は従来の廃水排出基準の要
件を満たすことができない。磁気−バイオ複合廃水処理技術は、新たなバイオ強化技術で
あり、磁場の存在は微生物の代謝と微生物活性に様々な影響を及ぼす可能性があることが
研究により示され、これは磁場を廃水の生物学的処理に適用するための理論的基礎である
。しかしながら、現在のところ、磁場による生分解の強化に関する報告は実験室での研究
に限られ、それは主に現在の研究では主に外部静磁場の作用方式を使用するためであり、
実際の適用では、廃水処理施設は体積が大きく、長期間安定した定強度磁場を形成しにく
いため、実際の適用に適している磁界適用方法を探求することが緊急に必要とされる。
Enhanced biological treatment of high ammonia nitrogen wastewater has always been a hot spot and difficulty in the environmental protection field, and biological treatment of normal high ammonia nitrogen wastewater can meet the requirements of conventional wastewater discharge standards Can not. Magnetic-biocombined wastewater treatment technology is a new bio-enhanced technology, and studies have shown that the presence of a magnetic field can have various effects on microbial metabolism and microbial activity, It is a theoretical basis for application to biological processing. However, at present, reports on the enhancement of biodegradation by magnetic fields are limited to laboratory studies, mainly because current studies mainly use the mode of action of external static magnetic fields,
In actual applications, wastewater treatment facilities are large in volume and difficult to form long-term stable constant-strength magnetic fields, so it is urgently required to search for magnetic field application methods suitable for actual applications.

本発明によって解決される技術的問題は、従来の生物学的方法による高アンモニア態窒
素廃水の処理は従来の廃水排出基準の要件を満たすことができないことである。
The technical problem solved by the present invention is that the treatment of high ammonia nitrogen wastewater by conventional biological methods cannot meet the requirements of conventional wastewater discharge standards.

本発明の技術的解決手段は、以下のとおりである。 The technical solution of the present invention is as follows.

水処理用の新規生体磁性セラムサイトフィラーの製造方法であって、以下のステップを
含む。
S1、磁性粉末の活性化:磁性粉末をグルタルアルデヒドに浸漬して活性化させ、活性
化磁性粉末を得る。
S2、成分:セラムサイト、活性化磁性粉末、ホウ砂、二酸化チタンを、35〜45部
のセラムサイト、20〜40部の磁性粉末、1〜5部のホウ砂、1〜3部の二酸化チタン
の比率で混合し、均一に撹拌し、混合物Aを得る。
S3、造粒および乾燥:S2中の混合物Aを磁気マイクロバブル撹拌混合装置に入れ、
水と混合して混合物Bを得て、次に前記混合物Bを造粒機に入れ、直径が6〜8mmの球
状混合物を製造し、次いで前記球状混合物を乾燥ボックスに入れ、105℃で1〜2h乾
燥させ、セラムサイト基材を得る。
S4、焼成:S3で製造されたセラムサイト基材を保護ガス雰囲気下、高温焼成炉で2
00℃/hの昇温速度で600℃まで加熱し、かつ600℃で8h焼成し、一定の機械的
強度を有するセラムサイトフィラー基質を得て、窒素雰囲気は主に高温での四酸化三鉄の
酸化的変性を防止し、フィラーの最終磁化後の磁場強度を低減させるために使用され、6
00℃の温度を取り、高すぎる焼成温度は四酸化三鉄粉末の磁化率を低減させる。
S5、洗浄および乾燥:洗浄溶液が透明になり、濁りおよび変色がなくなるまで、S4
の焼成により得られたセラムサイトフィラー基質を水で洗浄し、次いで洗浄したセラムサ
イトを105℃のオーブンに入れ、12h乾燥させ、洗浄により基質中に残っている分子
水を除去する。
S6、磁化:S5の処理後に得られたセラムサイトフィラー基質を磁化装置で磁化し、
最終的に磁性セラムサイトフィラー基質を得る。
S7、ロード表面層:S6で製造した磁性セラムサイトフィラー基質を回転スプレーロ
ード装置に供給し、前記回転スプレーロード装置により磁性セラムサイトフィラー基質の
表面に表面層材料を均一にロードさせ、磁性混合セラムサイトフィラーを得て、ここで、
前記表面層材料は、木炭、粘土、ネオジム鉄ホウ素および水の混合物であり、木炭、粘土
、ネオジム鉄ホウ素と水の重量比は1:1:1:3であり、表面層材料の製造方法は、木
炭、粘土、ネオジム鉄ホウ素をそれぞれ1〜500μmに粉砕し、水と混合してスラリー
とすることである。
S8、二次乾燥焼成:S7で製造された磁性混合セラムサイトフィラーを乾燥ボックス
に入れ、95℃で0.5〜1h乾燥させ、保護ガス雰囲気下の高温焼成炉中で150℃/
hの昇温速度で400℃まで昇温し、かつ400℃で0.5h焼成し、冷却させた後に生
体磁性セラムサイトフィラーを得る。表面層材料中の木炭は焼成によりバイオマス活性炭
になり、表面層材料全体も緩い気孔構造が発生し、磁性セラムサイトフィラー基質中のミ
クロ孔を塞がない。
A method for producing a novel biomagnetic serum site filler for water treatment, comprising the following steps.
S1, Activation of magnetic powder: The magnetic powder is immersed in glutaraldehyde and activated to obtain an activated magnetic powder.
S2, component: serum site, activated magnetic powder, borax, titanium dioxide, 35-45 parts of serum site, 20-40 parts of magnetic powder, 1-5 parts of borax, 1-3 parts of titanium dioxide The mixture A is mixed uniformly and stirred to obtain a mixture A.
S3, granulation and drying: put the mixture A in S2 into a magnetic microbubble stirring and mixing device,
Mix with water to obtain a mixture B, then put the mixture B in a granulator to produce a spherical mixture with a diameter of 6-8 mm, then put the spherical mixture in a drying box, Dry for 2 h to obtain a serum site substrate.
S4, calcination: The ceramsite base material produced in S3 is 2 in a high-temperature calcination furnace in a protective gas atmosphere.
Heating up to 600 ° C. at a temperature rising rate of 00 ° C./h and firing at 600 ° C. for 8 h to obtain a serum site filler substrate having a certain mechanical strength, and the nitrogen atmosphere is mainly ferric tetroxide at high temperature Used to prevent oxidative modification of the filler and to reduce the magnetic field strength after the final magnetization of the filler, 6
Taking a temperature of 00 ° C. and a firing temperature that is too high reduces the magnetic susceptibility of the ferric tetroxide powder.
S5, washing and drying: S4 until the washing solution is clear and free of turbidity and discoloration
The serum site filler substrate obtained by calcination is washed with water, then the washed serum site is placed in an oven at 105 ° C. and dried for 12 hours, and molecular water remaining in the substrate is removed by washing.
S6, magnetization: the serum site filler substrate obtained after the treatment of S5 is magnetized with a magnetizing device,
Finally, a magnetic serum site filler substrate is obtained.
S7, Load surface layer: The magnetic serum site filler substrate produced in S6 is supplied to the rotary spray load device, and the surface layer material is uniformly loaded on the surface of the magnetic serum site filler substrate by the rotary spray load device, and the magnetic mixed serum Get a site filler, where
The surface layer material is a mixture of charcoal, clay, neodymium iron boron and water, and the weight ratio of charcoal, clay, neodymium iron boron and water is 1: 1: 1: 3. Charcoal, clay and neodymium iron boron are each pulverized to 1 to 500 μm and mixed with water to form a slurry.
S8, secondary dry firing: The magnetic mixed serum site filler produced in S7 is placed in a drying box, dried at 95 ° C. for 0.5 to 1 h, and 150 ° C./high temperature in a high-temperature firing furnace under a protective gas atmosphere.
After raising the temperature to 400 ° C. at a rate of h and baking for 0.5 h at 400 ° C. and cooling, a biomagnetic serum site filler is obtained. The charcoal in the surface layer material becomes biomass activated carbon by firing, and the entire surface layer material also forms a loose pore structure and does not block the micropores in the magnetic serum site filler matrix.

本発明の一態様によれば、前記セラムサイトは、ボーキサイト、粘土、副粘土、頁岩、
スレート、海泥粘土、泥岩、フライアッシュ、石炭脈石のうちの1つまたは複数の混合物
で製造される。
According to one aspect of the present invention, the serum site is bauxite, clay, secondary clay, shale,
Manufactured with a mixture of one or more of slate, sea mud clay, mudstone, fly ash, coal gangue.

本発明の一態様によれば、前記磁性粉末は、四酸化三鉄、三酸化二鉄、酸化鉄、および
バリウムフェライトのうちの1つまたは複数の混合物である。
According to one aspect of the invention, the magnetic powder is a mixture of one or more of triiron tetroxide, ferric trioxide, iron oxide, and barium ferrite.

本発明の一態様によれば、S4およびS8で使用される保護ガスは窒素または不活性ガ
スであり、例えば、ヘリウム、ネオン、アルゴン、ヘリウム、ネオン、キセノンなどは高
温での四酸化三鉄などの磁性粉末の酸化変性を防止するために使用される。
According to one aspect of the present invention, the protective gas used in S4 and S8 is nitrogen or an inert gas, for example, helium, neon, argon, helium, neon, xenon, etc., such as triiron tetroxide at high temperatures, etc. It is used to prevent oxidative modification of the magnetic powder.

本発明の一態様によれば、前記磁気マイクロバブル撹拌混合装置は、
可変断面水分子破壊チャンバと、その内部に水が通過する通路および通路外側に設けら
れた磁石が設けられ、前記通路断面は可変断面であり、前記磁石は水を磁化させることが
でき、前記可変断面水分子破壊チャンバの一端に入水管が設けられ、他端に排水管が設け
られ、前記入水管は水ポンプに接続され、
可変断面気液混合チャンバと、その内部に気液混合用のチャンバが設けられ、前記チャ
ンバは可変断面であり、その上部は排水管および第一吸気管に接続され、その底部にチャ
ンバ内の気体および液体を撹拌することができる磁気撹拌機が設けられ、
液体混合チャンバと、その一端は気液管路を介して前記可変断面気液混合チャンバに接
続され、他端に排出管が設けられ、その上部には第二吸気管を介してエアポンプが接続さ
れ、そして供給管を介して供給ポンプに接続され、液体混合チャンバの内部にタービンミ
キサーが設けられ、
分流器と、前記分流器は内部に密な気孔を有する管状構造であり、分流器は2つであり
、第一吸気管と可変断面気液混合チャンバとの接続部および第二吸気管と液体混合チャン
バとの接続部にそれぞれ設けられ、
第一吸気管および第二吸気管は、いずれも主吸気管を介してエアポンプに接続され、か
つ主吸気管にはエアコンプレッサが設けられ、
それぞれ入水管および供給管上に設けられた2つの流量制御弁と、を含む。
According to one aspect of the present invention, the magnetic microbubble stirring and mixing device comprises:
A variable cross-section water molecule destruction chamber, a passage through which water passes and a magnet provided outside the passage are provided, the cross section of the passage is a variable cross section, the magnet can magnetize water, and the variable A water inlet pipe is provided at one end of the cross-section water molecule destruction chamber, a drain pipe is provided at the other end, the water inlet pipe is connected to a water pump,
A variable cross-section gas-liquid mixing chamber and a gas-liquid mixing chamber are provided therein, and the chamber has a variable cross-section, the upper part of which is connected to the drain pipe and the first intake pipe, and the gas in the chamber is connected to the bottom of the chamber. And a magnetic stirrer capable of stirring the liquid,
The liquid mixing chamber, one end of which is connected to the variable cross-section gas-liquid mixing chamber via a gas-liquid conduit, the other end is provided with a discharge pipe, and an upper portion thereof is connected to an air pump via a second intake pipe. , And connected to a supply pump via a supply pipe, a turbine mixer is provided inside the liquid mixing chamber,
The flow divider and the flow divider have a tubular structure having dense pores therein, the number of flow dividers is two, the connection between the first intake pipe and the variable cross-section gas-liquid mixing chamber, the second intake pipe and the liquid Provided at the connection with the mixing chamber,
The first intake pipe and the second intake pipe are both connected to the air pump via the main intake pipe, and the main intake pipe is provided with an air compressor.
And two flow control valves respectively provided on the water inlet pipe and the supply pipe.

流量制御弁により、水と材料との間の適切な比率を達成するように水流および供給量を制
御することができる。
The flow control valve allows the water flow and feed rate to be controlled to achieve the proper ratio between water and material.

本発明の磁性マイクロバブル撹拌混合装置は、水に対して水分子破壊を行い、かつ水を磁
化させた後、ガスと混合してマイクロバブルを含有するガスと水との混合物を得て、次い
でセラムサイト、活性化磁性粉末、ホウ砂、二酸化チタンからなる混合物Aを供給管によ
り液体混合チャンバにポンピングし、さらにガスと水との混合物と混合し、セラムサイト
、活性化磁性粉末、ホウ砂、二酸化チタンを水と均一に混合させ、均一な材料を形成し、
さらに後の段階で製造される生体磁性セラムサイトが良好な調理特性を有することをさら
に確実にし、堆積密度および体積密度が比較的大きく、圧縮強度が高く、そして破壊率が
低いという利点を有する。
The magnetic microbubble stirring and mixing device of the present invention performs water molecule destruction on water and magnetizes the water, then mixes with gas to obtain a mixture of gas and water containing microbubbles, and then A mixture A consisting of ceramsite, activated magnetic powder, borax and titanium dioxide is pumped into a liquid mixing chamber by a supply pipe, and further mixed with a mixture of gas and water, and ceramsite, activated magnetic powder, borax, Titanium dioxide is mixed uniformly with water to form a uniform material,
Furthermore, it further ensures that the biomagnetic serum site produced at a later stage has good cooking properties, has the advantages of relatively high deposition density and volume density, high compressive strength and low fracture rate.

従来の一般的な多孔質セラムサイトフィラーとの比較結果を表1に示した。
表1:本発明の生体磁性セラムサイトフィラーと一般的な多孔質セラムサイトフィラーと
の物理化学性質の比較
Table 1 shows a comparison result with a conventional general porous ceramsite filler.
Table 1: Comparison of physicochemical properties between the biomagnetic serum site filler of the present invention and a general porous serum site filler

本発明の一態様によれば、前記回転スプレーロード装置は、
メインチャンバと、その上部はアーチ形であり、前記メインチャンバの一端に第一供給口
が設けられ、他端に排出口が設けられ、
メインチャンバの内部の螺旋供給撹拌機構と、前記螺旋供給撹拌機構は前記メインチャン
バの長さ方向に沿ってメインチャンバの底部に水平に配置され、供給口から供給された材
料を排出口に搬送するために使用され、
メインチャンバの上方に配置された複数の弓形トラックと、各前記弓形レール上に配置さ
れたマイクロモータと、を含む。
According to one aspect of the invention, the rotary spray load device comprises:
The main chamber and its upper part are arched, the first supply port is provided at one end of the main chamber, the discharge port is provided at the other end,
The spiral supply stirring mechanism inside the main chamber and the spiral supply stirring mechanism are horizontally disposed at the bottom of the main chamber along the length direction of the main chamber, and convey the material supplied from the supply port to the discharge port. Used for and
A plurality of arcuate tracks disposed above the main chamber and a micromotor disposed on each arcuate rail.

前記マイクロモータの下に回転スプレーヘッドが設けられ、各回転スプレーヘッドはいず
れもマイクロモータによって駆動され、かつ対応するそれぞれの弓形トラック上で前後に
往復運動することができ、かつ前記回転スプレーヘッドはそれぞれ管路を介して第二供給
口に接続される。
A rotary spray head is provided under the micromotor, each rotary spray head is driven by the micromotor, and can reciprocate back and forth on the corresponding arcuate track, Each is connected to the second supply port via a pipeline.

本発明の回転スプレーロード装置に使用される各マイクロモータおよび螺旋供給撹拌機構
はそれぞれ外部電源から給電し、図中に示されない。
Each micromotor and spiral feed stirring mechanism used in the rotary spray load device of the present invention are supplied with power from an external power source and are not shown in the figure.

本発明の回転スプレーロード装置は、表面層材料を磁性セラムサイトフィラー基質の表面
上に均一にスプレーすることができ、表面層材料のロード効果を良くなるようにし、かつ
製造された生体磁性セラムサイトフィラーの形態が均一であり、省エネルギーおよび高効
率である。
The rotary spray load device of the present invention can uniformly spray the surface layer material on the surface of the magnetic serum site filler substrate, improves the loading effect of the surface layer material, and is manufactured biomagnetic serum site. The form of the filler is uniform, energy saving and high efficiency.

本発明は、さらに、水処理用の新規生体磁性セラムサイトフィラーを製造する装置を提供
し、それは、
磁性粉末を活性化するための活性化タンクと、
セラムサイト、活性化磁性粉末、ホウ砂、二酸化チタンを水とガスと混合して混合物Bを
得るための磁気マイクロバブル撹拌混合装置と、
混合物Bを造粒して球状混合物を得るための造粒機と、
球状混合物を乾燥させてセラムサイト基質を得るための第一乾燥室と、
セラムサイト基質を焼成してセラムサイトフィラー基質を得るための第一高温焼成炉と、
セラムサイトフィラー基質を冷却させるための第一冷却室と、
冷却されたセラムサイトフィラー基質を洗浄するための洗浄タンクと、
洗浄されたセラムサイトフィラー基質を二次乾燥させるための第二乾燥室と、
二次乾燥後のセラムサイトフィラー基質を磁化させるための磁化装置と、
磁化させた磁性セラムサイトフィラー基質に表面層材料をロードして磁性混合セラムサイ
トフィラーを得るための回転スプレーロード装置と、
磁性混合セラムサイトフィラーを乾燥させるための第三乾燥室と、
乾燥後の磁性混合セラムサイトフィラーを二次焼成させるための第二高温焼成炉と、
二次焼成後の磁性混合セラムサイトフィラーを二次冷却させるための第二冷却室と、を含
む。
The present invention further provides an apparatus for producing a novel biomagnetic serum site filler for water treatment,
An activation tank for activating the magnetic powder;
Magnetic microbubble stirring and mixing device for mixing the serum site, activated magnetic powder, borax, titanium dioxide with water and gas to obtain a mixture B;
A granulator for granulating the mixture B to obtain a spherical mixture;
A first drying chamber for drying the spherical mixture to obtain a serum site substrate;
A first high temperature firing furnace for firing the serum site substrate to obtain a serum site filler substrate;
A first cooling chamber for cooling the serum site filler substrate;
A wash tank for washing the cooled serum site filler substrate;
A second drying chamber for secondary drying of the washed serum site filler substrate;
A magnetizing device for magnetizing the serum site filler substrate after secondary drying;
A rotary spray loading device for loading a surface layer material onto a magnetized magnetic serum site filler substrate to obtain a magnetic mixed serum site filler;
A third drying chamber for drying the magnetic mixed serum site filler;
A second high-temperature firing furnace for secondary firing of the magnetic mixed serum site filler after drying;
A second cooling chamber for secondary cooling of the magnetic mixed serum site filler after the secondary firing.

本発明は、さらに、水処理用の新規生体磁性セラムサイトフィラーの適用を提供し、具体
的には、それを高アンモニア態窒素廃水の処理に適用される。
The present invention further provides for the application of a novel biomagnetic serum site filler for water treatment, which is specifically applied to the treatment of high ammonia nitrogen wastewater.

本発明は従来の技術と比べると、以下の利点を有する。
第一、本発明により製造された生体磁性セラムサイトフィラーはフィルムを掛けやすい。
第二、一般的なセラムサイトフィラーと比べて、本発明により製造された生体磁性セラム
サイトフィラーはバイオフィルムの微生物凝集に対して促進効果を有し、バイオフィルム
表面の比表面積を増加させ、そして汚染物に対するバイオフィルムの除去効果を向上させ
る。
第三、本発明により製造された生体磁性セラムサイトフィラーを採用すると、同じ形状と
仕様の一般的なセラムサイトフィラーと比べて、アンモニア態窒素の除去効率を大幅に向
上させ、特に高アンモニア態窒素廃水を処理するために使用される場合には効果が顕著で
ある。
第四、本発明により製造された生体磁性セラムサイトフィラーは、各フィラーが1つの微
小付加磁場の生物学的処理反応器と同等であり、それにより、下水(廃水)の実際の生物
学的処理における磁気物理化学的生物効率の促進と適用を実現しやすい。
The present invention has the following advantages over the prior art.
First, the biomagnetic serum site filler produced according to the present invention is easy to apply a film.
Second, compared with general serum site filler, the biomagnetic serum site filler produced according to the present invention has a promoting effect on the biofilm microbial aggregation, increases the specific surface area of the biofilm surface, and Improve biofilm removal effect against contaminants.
Third, the use of the biomagnetic serum site filler produced according to the present invention greatly improves the removal efficiency of ammonia nitrogen compared to general serum site filler of the same shape and specifications, especially high ammonia nitrogen. When used to treat wastewater, the effect is significant.
Fourth, the biomagnetic serum site filler produced according to the present invention is equivalent to a biological treatment reactor in which each filler is one minute added magnetic field, so that the actual biological treatment of sewage (waste water). It is easy to realize the promotion and application of magneto-physicochemical biological efficiency in

図1は本発明における磁気マイクロバブル撹拌混合装置の概略図である。FIG. 1 is a schematic view of a magnetic microbubble stirring and mixing apparatus according to the present invention. 図2は本発明における回転スプレーロード装置の概略図である。FIG. 2 is a schematic view of a rotary spray loading apparatus according to the present invention. 図3は本発明における設備全体の概略図である。FIG. 3 is a schematic view of the entire facility according to the present invention. 図4はアンモニア態窒素の除去効果の比較図である。FIG. 4 is a comparative view of the removal effect of ammonia nitrogen. 図5は反応器が53日間運転した後のセラムサイトフィラー表面のバイオフィルムの電子顕微鏡図であり、(a)一般的なセラムサイトフィラー、(b)実施例1で製造された生体磁性セラムサイトフィラー、(c)実施例3で製造された生体磁性セラムサイトフィラーである。FIG. 5 is an electron micrograph of the biofilm on the surface of the serum site filler after the reactor has been operated for 53 days. Filler, (c) biomagnetic serum site filler produced in Example 3. 図6は反応器が53日間運転したフィラー表面バイオフィルムのアンモニア酸化率である。FIG. 6 shows the ammonia oxidation rate of the filler surface biofilm that the reactor was operated for 53 days. 図7は反応器が53日間運転したフィラー表面バイオフィルムの比酸素消費率である。FIG. 7 is the specific oxygen consumption rate of the filler surface biofilm that the reactor was operated for 53 days. 図8は反応器が53日間運転したフィラー表面バイオフィルムの窒素除去酵素活性である。FIG. 8 shows the nitrogen-removing enzyme activity of the filler surface biofilm that the reactor was operated for 53 days. 図9は反応器が53日間運転したフィラー表面バイオフィルムの窒素除去遺伝子量である。このうち、1−活性化タンク、2−磁気マイクロバブル撹拌混合装置、3−造粒機、4−第一乾燥室、5−第一高温焼成炉、6−第一冷却室、7−洗浄室、8−第二乾燥室、9−磁化装置、10−回転スプレーロード装置、11−第三乾燥室、12−第二高温焼成炉、13−第二冷却室、2−1−可変断面水分子破壊チャンバ、2−2−入水管、2−4−水ポンプ、2−5−可変断面気液混合チャンバ、2−6−第一吸気管、2−7−磁気撹拌機、2−8−液体混合チャンバ、2−9−気液配管、2−10−排出管、2−11−第二吸気管、2−12−エアポンプ、2−13−供給管、2−14−供給ポンプ、2−15−分流器、2−16−主吸気管、2−17−エアコンプレッサ、2−18−流量制御弁、10−1−メインチャンバ、10−2−第一供給口、10−3−排出口、10−4−螺旋供給撹拌機構、10−5−弓形トラック、10−6−マイクロモータ、10−7−回転スプレーヘッド。FIG. 9 shows the nitrogen removal gene amount of the filler surface biofilm that the reactor was operated for 53 days. Among these, 1-activation tank, 2-magnetic microbubble stirring and mixing apparatus, 3-granulator, 4-first drying chamber, 5-first high-temperature firing furnace, 6-first cooling chamber, 7-cleaning chamber , 8-second drying chamber, 9-magnetization device, 10-rotary spray load device, 11-third drying chamber, 12-second high-temperature firing furnace, 13-second cooling chamber, 2-1 variable cross-section water molecule Destruction chamber, 2-2 water intake pipe, 2-4-water pump, 2-5 variable cross-section gas-liquid mixing chamber, 2-6 first intake pipe, 2-7-magnetic stirrer, 2-8-liquid Mixing chamber, 2-9-gas-liquid piping, 2-10-exhaust pipe, 2-11-second intake pipe, 2-12-air pump, 2-13 supply pipe, 2-14 supply pump, 2-15 -Shunt, 2-16-main intake pipe, 2-17-air compressor, 2-18-flow control valve, 10-1- main chamber, 10 2 first supply port, 10-3- outlet, 10-4- spiral supply stirring mechanism, 10-5- arcuate track, 10-6- micromotor, 10-7- rotating spray head.

以下は、図面および具体的な実施例を参照して本発明をさらに説明するが、本発明の保護
範囲をこれに限定するものではない。
The present invention will be further described below with reference to the drawings and specific examples, but the scope of protection of the present invention is not limited thereto.

実施例1
水処理用の新規生体磁性セラムサイトフィラーの製造は、以下のステップを含む。
S1、磁性粉末の活性化:磁性粉末をグルタルアルデヒドに浸漬して活性化させ、活性
化磁性粉末を得る。
S2、成分:セラムサイト、活性化磁性粉末、ホウ砂、二酸化チタンを、35〜45部
のセラムサイト、20〜40部の磁性粉末、1〜5部のホウ砂、1〜3部の二酸化チタン
の比率で混合し、均一に撹拌し、混合物Aを得る。
S3、造粒および乾燥:S2中の混合物Aを磁気マイクロバブル撹拌混合装置に入れ、
水と混合して混合物Bを得て、次に前記混合物Bを造粒機に入れ、直径が6〜8mmの球
状混合物を製造し、次いで前記球状混合物を乾燥ボックスに入れ、105℃で1〜2h乾
燥させ、セラムサイト基材を得る。
S4、焼成:S3で製造されたセラムサイト基材を保護ガス雰囲気下、高温焼成炉で2
00℃/hの昇温速度で600℃まで加熱し、かつ600℃で8h焼成し、一定の機械的
強度を有するセラムサイトフィラー基質を得て、窒素雰囲気は主に高温での四酸化三鉄の
酸化的変性を防止し、フィラーの最終磁化後の磁場強度を低減させるために使用され、6
00℃の温度を取り、高すぎる焼成温度は四酸化三鉄粉末の磁化率を低減させる。
S5、洗浄および乾燥:洗浄溶液が透明になり、濁りおよび変色がなくなるまで、S4
の焼成により得られたセラムサイトフィラー基質を水で洗浄し、次いで洗浄したセラムサ
イトを105℃のオーブンに入れ、12h乾燥させ、洗浄により基質中に残っている分子
水を除去する。
S6、磁化:S5の処理後に得られたセラムサイトフィラー基質を磁化装置で磁化し、
最終的に磁性セラムサイトフィラー基質を得る。
S7、ロード表面層:S6で製造した磁性セラムサイトフィラー基質を回転スプレーロ
ード装置に供給し、前記回転スプレーロード装置により磁性セラムサイトフィラー基質の
表面に表面層材料を均一にロードさせ、磁性混合セラムサイトフィラーを得て、ここで、
前記表面層材料は、木炭、粘土、ネオジム鉄ホウ素および水の混合物であり、木炭、粘土
、ネオジム鉄ホウ素と水の重量比は1:1:1:3であり、表面層材料の製造方法は、木
炭、粘土、ネオジム鉄ホウ素をそれぞれ1〜500μmに粉砕し、水と混合してスラリー
とすることである。
S8、二次乾燥焼成:S7で製造された磁性混合セラムサイトフィラーを乾燥ボックス
に入れ、95℃で0.5h乾燥させ、保護ガス雰囲気下の高温焼成炉中で150℃/hの
昇温速度で400℃まで昇温し、かつ400℃で0.5h焼成し、冷却させた後に生体磁
性セラムサイトフィラーを得る。
Example 1
The production of a novel biomagnetic serum site filler for water treatment includes the following steps.
S1, Activation of magnetic powder: The magnetic powder is immersed in glutaraldehyde and activated to obtain an activated magnetic powder.
S2, component: serum site, activated magnetic powder, borax, titanium dioxide, 35-45 parts of serum site, 20-40 parts of magnetic powder, 1-5 parts of borax, 1-3 parts of titanium dioxide The mixture A is mixed uniformly and stirred to obtain a mixture A.
S3, granulation and drying: put the mixture A in S2 into a magnetic microbubble stirring and mixing device,
Mix with water to obtain a mixture B, then put the mixture B in a granulator to produce a spherical mixture with a diameter of 6-8 mm, then put the spherical mixture in a drying box, Dry for 2 h to obtain a serum site substrate.
S4, calcination: The ceramsite base material produced in S3 is 2 in a high-temperature calcination furnace in a protective gas atmosphere.
Heating up to 600 ° C. at a temperature rising rate of 00 ° C./h and firing at 600 ° C. for 8 h to obtain a serum site filler substrate having a certain mechanical strength, and the nitrogen atmosphere is mainly ferric tetroxide at high temperature Used to prevent oxidative modification of the filler and to reduce the magnetic field strength after the final magnetization of the filler, 6
Taking a temperature of 00 ° C. and a firing temperature that is too high reduces the magnetic susceptibility of the ferric tetroxide powder.
S5, washing and drying: S4 until the washing solution is clear and free of turbidity and discoloration
The serum site filler substrate obtained by calcination is washed with water, then the washed serum site is placed in an oven at 105 ° C. and dried for 12 hours, and molecular water remaining in the substrate is removed by washing.
S6, magnetization: the serum site filler substrate obtained after the treatment of S5 is magnetized with a magnetizing device,
Finally, a magnetic serum site filler substrate is obtained.
S7, Load surface layer: The magnetic serum site filler substrate produced in S6 is supplied to the rotary spray load device, and the surface layer material is uniformly loaded on the surface of the magnetic serum site filler substrate by the rotary spray load device, and the magnetic mixed serum Get a site filler, where
The surface layer material is a mixture of charcoal, clay, neodymium iron boron and water, and the weight ratio of charcoal, clay, neodymium iron boron and water is 1: 1: 1: 3. Charcoal, clay and neodymium iron boron are each pulverized to 1 to 500 μm and mixed with water to form a slurry.
S8, secondary dry calcination: put the magnetic mixed ceramsite filler produced in S7 into a drying box, dry at 95 ° C. for 0.5 h, and heat-up rate of 150 ° C./h in a high-temperature calcination furnace under protective gas atmosphere And then calcining at 400 ° C. for 0.5 h and cooling to obtain a biomagnetic serum site filler.

実施例2
実施例1との違いは、
S2中の磁性粉末は、四酸化三鉄と三酸化二鉄が等しい重量比で混合する。
S2中の混合物Aの成分は、ボーキサイト22部、海泥粘土18部、磁性粉末30部、ホ
ウ砂3部、二酸化チタン2部である。
S3中の混合物Bを7mmの球状混合物に造粒し、乾燥時間は1.5hである。
Example 2
The difference from Example 1 is
In the magnetic powder in S2, triiron tetroxide and ferric trioxide are mixed in an equal weight ratio.
The components of the mixture A in S2 are 22 parts of bauxite, 18 parts of sea mud clay, 30 parts of magnetic powder, 3 parts of borax, and 2 parts of titanium dioxide.
The mixture B in S3 is granulated into a 7 mm spherical mixture and the drying time is 1.5 h.

実施例3
実施例1との違いは、
S2中の磁性粉末は、四酸化三鉄と三酸化二鉄が3:1の重量比で混合する。
S2中の混合物Aの成分は、副粘土25部、泥岩20部、磁性粉末40部、ホウ砂5部、
二酸化チタン3部である。
S3中の混合物Bを8mmの球状混合物に造粒し、乾燥時間は2hである。
S3中の乾燥時間は2hである。
上記実施例1〜3に使用される磁気マイクロバブル撹拌混合装置は、
可変断面水分子破壊チャンバ2−1と、その内部に水が通過する通路および通路外側に
設けられた磁石が設けられ、前記通路断面は可変断面であり、前記磁石は水を磁化させる
ことができ、前記可変断面水分子破壊チャンバ2−1の一端に入水管2−2が設けられ、
他端に排水管2−3が設けられ、前記入水管2−2は水ポンプ2−4に接続され、
可変断面気液混合チャンバ2−5と、その内部に気液混合用のチャンバが設けられ、前
記チャンバは可変断面であり、その上部は排水管2−3および第一吸気管2−6に接続さ
れ、その底部にチャンバ内の気体および液体を撹拌することができる磁気撹拌機2−7が
設けられ、
液体混合チャンバ2−8と、その一端は気液管路2−9を介して前記可変断面気液混合
チャンバ2−5に接続され、他端に排出管2−10が設けられ、その上部には第二吸気管
2−11を介してエアポンプ2−12が接続され、そして供給管2−13を介して供給ポ
ンプ2−14に接続され、液体混合チャンバ2−8の内部にタービンミキサーが設けられ

分流器2−15と、前記分流器2−15は内部に密な気孔を有する管状構造であり、分
流器2−15は2つであり、第一吸気管2−6と可変断面気液混合チャンバ2−5との接
続部および第二吸気管2−11と液体混合チャンバ2−8との接続部にそれぞれ設けられ

第一吸気管2−6および第二吸気管2−11は、いずれも主吸気管2−16を介してエ
アポンプ2−12に接続され、かつ主吸気管2−16にはエアコンプレッサ2−17が設
けられ、
それぞれ入水管2−2および供給管2−13上に設けられた2つの流量制御弁2−18
と、を含む。
Example 3
The difference from Example 1 is
In the magnetic powder in S2, triiron tetroxide and diiron trioxide are mixed at a weight ratio of 3: 1.
The components of the mixture A in S2 are: sub-clay 25 parts, mudstone 20 parts, magnetic powder 40 parts, borax 5 parts,
3 parts of titanium dioxide.
The mixture B in S3 is granulated into an 8 mm spherical mixture, and the drying time is 2 h.
The drying time in S3 is 2h.
The magnetic microbubble stirring and mixing device used in Examples 1-3 above is
A variable cross-section water molecule destruction chamber 2-1, a passage through which water passes and a magnet provided outside the passage are provided, the cross section of the passage is a variable cross section, and the magnet can magnetize water. , A water inlet pipe 2-2 is provided at one end of the variable cross-section water molecule destruction chamber 2-1.
A drain pipe 2-3 is provided at the other end, and the water inlet pipe 2-2 is connected to a water pump 2-4.
A variable cross-section gas-liquid mixing chamber 2-5 and a gas-liquid mixing chamber are provided therein, and the chamber has a variable cross-section, and the upper portion thereof is connected to the drain pipe 2-3 and the first intake pipe 2-6. A magnetic stirrer 2-7 capable of stirring the gas and liquid in the chamber is provided at the bottom,
A liquid mixing chamber 2-8, one end of which is connected to the variable cross-section gas-liquid mixing chamber 2-5 via a gas-liquid pipe line 2-9, and a discharge pipe 2-10 is provided at the other end. Is connected to an air pump 2-12 via a second intake pipe 2-11 and to a supply pump 2-14 via a supply pipe 2-13, and a turbine mixer is provided inside the liquid mixing chamber 2-8. And
The flow divider 2-15 and the flow divider 2-15 have a tubular structure having dense pores therein, and there are two flow dividers 2-15. The first intake pipe 2-6 and the variable cross-section gas-liquid mixture Provided in the connecting portion between the chamber 2-5 and the connecting portion between the second intake pipe 2-11 and the liquid mixing chamber 2-8,
The first intake pipe 2-6 and the second intake pipe 2-11 are both connected to the air pump 2-12 via the main intake pipe 2-16, and the main intake pipe 2-16 includes an air compressor 2-17. Is provided,
Two flow control valves 2-18 provided on the water inlet pipe 2-2 and the supply pipe 2-13, respectively.
And including.

上記実施例1〜3に使用される回転スプレーロード装置は、
メインチャンバ10−1と、その上部はアーチ形であり、前記メインチャンバ10−1の
一端に第一供給口10−2が設けられ、他端に排出口10−3が設けられ、
メインチャンバ10−1の内部の螺旋供給撹拌機構10−4と、前記螺旋供給撹拌機構1
0−4は前記メインチャンバ10−1の長さ方向に沿ってメインチャンバ10−1の底部
に水平に配置され、供給口10−2から供給された材料を排出口10−3に搬送するため
に使用され、
メインチャンバ10−1の上方に配置された複数の弓形トラック10−5と、各前記弓形
レール10−5上に配置されたマイクロモータ10−6と、を含む。
前記マイクロモータ10−6の下に回転スプレーヘッド10−7が設けられ、各回転スプ
レーヘッド10−7はいずれもマイクロモータ10−6によって駆動され、かつ対応する
それぞれの弓形トラック10−5上で前後に往復運動することができ、かつ前記回転スプ
レーヘッド10−7はそれぞれ管路を介して第二供給口に接続される。
The rotary spray load device used in Examples 1-3 above is
The main chamber 10-1 and its upper part are arched, the first supply port 10-2 is provided at one end of the main chamber 10-1, and the discharge port 10-3 is provided at the other end.
The spiral supply stirring mechanism 10-4 inside the main chamber 10-1 and the spiral supply stirring mechanism 1
0-4 is disposed horizontally at the bottom of the main chamber 10-1 along the length direction of the main chamber 10-1, and transports the material supplied from the supply port 10-2 to the discharge port 10-3. Used for
A plurality of arcuate tracks 10-5 disposed above the main chamber 10-1 and a micro motor 10-6 disposed on each arcuate rail 10-5.
A rotary spray head 10-7 is provided under the micromotor 10-6, and each rotary spray head 10-7 is driven by the micromotor 10-6 and on a corresponding arcuate track 10-5. The rotary spray head 10-7 can reciprocate back and forth, and is connected to the second supply port via a pipe line.

上記実施例1〜3に使用される水処理用の新規生体磁性セラムサイトフィラーを製造する
装置は、
磁性粉末を活性化するための活性化タンク1と、
セラムサイト、活性化磁性粉末、ホウ砂、二酸化チタンを水とガスと混合して混合物Bを
得るための磁気マイクロバブル撹拌混合装置2と、
混合物Bを造粒して球状混合物を得るための造粒機3と、
球状混合物を乾燥させてセラムサイト基質を得るための第一乾燥室4と、
セラムサイト基質を焼成してセラムサイトフィラー基質を得るための第一高温焼成炉5と

セラムサイトフィラー基質を冷却させるための第一冷却室6と、
冷却されたセラムサイトフィラー基質を洗浄するための洗浄タンク7と、
洗浄されたセラムサイトフィラー基質を二次乾燥させるための第二乾燥室8と、
二次乾燥後のセラムサイトフィラー基質を磁化させるための磁化装置9と、
磁化させた磁性セラムサイトフィラー基質に表面層材料をロードして磁性混合セラムサイ
トフィラーを得るための回転スプレーロード装置10と、
磁性混合セラムサイトフィラーを乾燥させるための第三乾燥室11と、
乾燥後の磁性混合セラムサイトフィラーを二次焼成させるための第二高温焼成炉12と、
二次焼成後の磁性混合セラムサイトフィラーを二次冷却させるための第二冷却室13と、
を含む。
An apparatus for producing a novel biomagnetic serum site filler for water treatment used in Examples 1-3 above,
An activation tank 1 for activating the magnetic powder;
Magnetic microbubble stirring and mixing device 2 for mixing a serum site, activated magnetic powder, borax, titanium dioxide with water and gas to obtain a mixture B;
A granulator 3 for granulating the mixture B to obtain a spherical mixture;
A first drying chamber 4 for drying the spherical mixture to obtain a serum site substrate;
A first high temperature firing furnace 5 for firing the serum site substrate to obtain a serum site filler substrate;
A first cooling chamber 6 for cooling the serum site filler substrate;
A wash tank 7 for washing the cooled serum site filler substrate;
A second drying chamber 8 for secondary drying of the washed serum site filler substrate;
A magnetizing device 9 for magnetizing the serum site filler substrate after secondary drying;
A rotary spray loading device 10 for loading a magnetized magnetic serum site filler substrate with a surface layer material to obtain a magnetic mixed serum site filler;
A third drying chamber 11 for drying the magnetic mixed serum site filler;
A second high-temperature firing furnace 12 for secondary firing of the magnetic mixed serum site filler after drying;
A second cooling chamber 13 for secondary cooling of the magnetic mixed serum site filler after secondary firing;
including.

フィルム掛け効果の比較:
本発明の実施例1と実施例2により製造された生体磁性セラムサイトフィラーを一般的な
セラムサイトフィラーと比較実験を行い、初期流入アンモニア態窒素濃度は100mg/
Lであり、反応器中のフィラー充填率は70%であった。図4に示すように、100mg
/Lの流入アンモニア態窒素濃縮段階の初期で、各反応器は、フィルム掛け初期にあり、
その中に本発明によって製造された水処理用の生体磁性セラムサイトフィラーが充填され
た反応器(R2およびR3)はフィルム掛け段階の6日目に95%以上のアンモニア態窒
素除去率を達成し、一般的なセラムサイトフィラーが充填された反応器(R1)は16日
間の運転後アンモニア態窒素除去率は基本的に90%で安定し、結果は、一般的なセラム
サイトフィラーと比べて、磁性セラムサイトフィラーはフィルム掛けやすい。
Comparison of filming effect:
The biomagnetic serum site filler prepared according to Example 1 and Example 2 of the present invention was compared with a general serum site filler, and the initial inflow ammonia nitrogen concentration was 100 mg /
L, and the filler filling rate in the reactor was 70%. As shown in FIG.
Each reactor is in the initial stage of filming, at the beginning of the influent ammonia nitrogen enrichment stage of / L
The reactors (R2 and R3) filled with the biomagnetic serum site filler for water treatment produced according to the present invention achieved an ammonia nitrogen removal rate of 95% or more on the sixth day of the film application stage. The reactor (R1) filled with a general serum site filler is stable at 90% ammonia nitrogen removal rate after 16 days of operation. Magnetic serum site filler is easy to lay on film.

汚染物質除去効果の比較:
本発明の実施例1および実施例3で製造された生体磁性セラムサイトフィラーを一般的な
セラムサイトフィラーと比較し、実験53日後に3つの反応器内部のセラムサイトフィラ
ー表面のバイオフィルムの表面形態を電子顕微鏡で走査し、図5(a)に示すように、一
般的なセラムサイトフィラーの表面バイオフィルムには主に球菌および桿菌であり、球菌
および桿菌は細胞外ポリマーによって凝集され、より大きな細菌集団を形成する。図5(
b)および(c)から、磁性セラムサイトフィラー表面の球菌と桿菌はより密接に凝集し
、細菌集団を大量に形成する。結果は、一般的なセラムサイトフィラーと比較して、磁性
セラムサイトフィラーはバイオフィルム微生物凝集に促進効果を有し、バイオフィルム表
面の比表面積を増加させ、汚染物質に対するバイオフィルムの除去効果を向上させること
を示した。
Comparison of pollutant removal effects:
The biomagnetic serum site filler produced in Example 1 and Example 3 of the present invention was compared with a general serum site filler, and the surface morphology of the biofilm on the surface of the serum site filler in the three reactors 53 days after the experiment. As shown in FIG. 5 (a), the surface biofilm of a general serum site filler is mainly cocci and bacilli, which are agglutinated by extracellular polymers and are larger. Form a bacterial population. FIG.
From b) and (c), the cocci and bacilli on the surface of the magnetic serum site filler aggregate more closely, forming a large amount of bacterial population. The results show that compared to general serum site fillers, magnetic serum site fillers have an effect of promoting biofilm microbial aggregation, increase the specific surface area of the biofilm surface, and improve the removal effect of biofilm against pollutants Showed that

アンモニア態窒素除去効率の効果比較
磁化後の磁性セラムサイトフィラーの周囲に弱い磁場を有し、酸素分子が常磁性体として
作用するため、水中の溶存酸素は磁気誘導線に沿って磁性セラムサイトフィラーに引き寄
せられ、それによって水中の溶存酸素の利用率を向上させる。さらに、磁性セラムサイト
フィラーは、磁気結合、磁力、ローレンツ力および磁気コロイド効果などの作用によって
、水中の汚染物質などを磁気濃縮、吸着によってフィラーの表面に濃縮される。同時に、
水が磁化された後、その浸透圧が上昇し、下水中の有機物および溶存酸素のバイオフィル
ムを通じた微生物細胞質への物質移動抵抗を低減させ、拡散係数を増加させ、フィルム内
の生化学反応を強化する。そして弱い磁場の存在はまた生体細胞の成長と代謝を促進し、
かつ酵素の合成と活性を誘導し、酵素反応を加速させる。図4に示すように、本発明によ
って製造された生体磁性セラムサイトフィラーを採用し、アンモニア態窒素除去効率は、
同じ形状および仕様の一般的なセラムサイトフィラーと比較して大きく向上できる。
Comparison of the effect of ammonia nitrogen removal efficiency Since there is a weak magnetic field around the magnetic serum site filler after magnetization, and oxygen molecules act as paramagnetic substances, dissolved oxygen in the water follows the magnetic induction line. To increase the utilization of dissolved oxygen in the water. Further, the magnetic serum site filler is concentrated on the surface of the filler by magnetic concentration and adsorption of contaminants in water by actions such as magnetic coupling, magnetic force, Lorentz force and magnetic colloid effect. at the same time,
After the water is magnetized, its osmotic pressure increases, reducing the mass transfer resistance of organic matter and dissolved oxygen in the sewage through the biofilm to the microbial cytoplasm, increasing the diffusion coefficient, and biochemical reactions in the film Strengthen. And the presence of a weak magnetic field also promotes the growth and metabolism of living cells,
It also induces enzyme synthesis and activity to accelerate the enzyme reaction. As shown in FIG. 4, adopting the biomagnetic serum site filler produced by the present invention, ammonia nitrogen removal efficiency,
Compared to general serum site filler of the same shape and specifications, it can be greatly improved.

実験例1
上記実施例1で製造された生体磁性セラムサイトフィラーを70%の充填率でBAFに
置き、反応器の内部に2.5mT磁場強度の一定の磁場を形成させる。
それを一般的なセラムサイトフィラーが充填されたBAFと比較実験を行い、実験を5
3日間続け、流入アンモニア態窒素濃度を最初の100mg/Lから200mg/L、4
00mg/Lまで徐々に増加した。図4に示すように、磁性セラムサイトフィラーで充填
された反応器(R2)は12日目に、アンモニア態窒素除去率が95%で安定し、一般的
なセラムサイトフィラーで充填された反応器(R1)は、16日間の運転後にアンモニア
態窒素除去率が基本的に90%で安定した。結果は、流入アンモニア態窒素濃度が100
mg/Lであるとき、一般的なフィラーと比較して、磁性フィラーがフィルム掛けやすく
、同時にNH Nに対する除去効果を効果的に向上できることを示した。流入アンモ
ニア態窒素濃度を200mg/Lの10日目まで上昇させると、R1反応器のアンモニア
態窒素除去率は90%に低下した。これは、R1中のバイオフィルムが長期間にわたって
高いアンモニア態窒素濃度条件にあるとき、微生物硝化機能が抑制され、それによって、
アンモニア態窒素除去率が低下し、R2反応器のアンモニア態窒素除去率が依然として9
9%に維持されることを示した。流入アンモニア態窒素濃度が400mg/Lまでさらに
増加するにつれて、R2反応器のアンモニア態窒素除去率は約95%に維持され、運転は
安定した。R1反応器は流入アンモニア態窒素濃度の上昇の影響を大きく受け、流入アン
モニア態窒素濃度が400mg/Lまで上昇すると、そのアンモニア態窒素除去率は90
%以下に低下した。
53日間の運転後、2群の反応器のアンモニア酸化率と比酸素消費率を調べ、図6に示
すように、R2反応器中のフィラー表面に付着したバイオフィルムのアンモニア酸化率は
R1反応器の1.61倍であり、結果は、磁性フィラーがフィラー表面のバイオフィルム
のアンモニア酸化率を増加できることを示した。図7に示すように、R2反応器中のフィ
ラー表面に付着したバイオフィルムの比酸素消費率はR1反応器の1.64倍であり、結
果は、磁性フィラーの表面に付着したバイオフィルムの比酸素消費率がより高いことを示
し、本発明が微生物の活性を増加させるのに有益であることを示した。
本実験はさらに、2群の反応器における微生物硝化と脱窒作用酵素の活性および対応す
る機能的遺伝子量の違いを調査した。図8に示すように、酵素活性の結果は、R2反応器
中の2.5mT磁性セラムサイトフィラーの表面に付着したバイオフィルム中の様々な硝
化と脱窒酵素の活性は一般的なセラムサイトフィラーより高いことを示した。図9に示す
ように、遺伝子量の結果は、R2反応器中の2.5mT磁性セラムサイトフィラーがバイ
オフィルム中の脱窒遺伝子量への促進作用が高く、主にamoA、nxrA、nirSお
よびnirK遺伝子量の増加を促進することを示した。
Experimental example 1
The biomagnetic serum site filler produced in Example 1 is placed in the BAF at a filling rate of 70%, and a constant magnetic field of 2.5 mT magnetic field strength is formed inside the reactor.
A comparative experiment was conducted with a BAF filled with a general serum site filler.
Continue for 3 days and adjust the influent ammonia nitrogen concentration from the first 100 mg / L to 200 mg / L, 4
It gradually increased to 00 mg / L. As shown in FIG. 4, the reactor (R2) filled with the magnetic serum site filler is stable at 95% ammonia nitrogen removal rate on the 12th day, and is filled with a general serum site filler. In (R1), the ammonia nitrogen removal rate was basically stable at 90% after 16 days of operation. As a result, the inflow ammonia nitrogen concentration was 100.
When a mg / L, compared with common fillers, magnetic fillers is easily multiplied film, NH 4 + simultaneously - have shown that can effectively improve the removal effect against N. When the inflow ammonia nitrogen concentration was increased to the 10th day of 200 mg / L, the ammonia nitrogen removal rate of the R1 reactor decreased to 90%. This is because when the biofilm in R1 is in high ammonia nitrogen concentration conditions over a long period of time, the microbial nitrification function is suppressed, thereby
Ammonia nitrogen removal rate decreased and ammonia nitrogen removal rate of R2 reactor was still 9
It was shown to be maintained at 9%. As the influent ammonia nitrogen concentration further increased to 400 mg / L, the ammonia nitrogen removal rate of the R2 reactor was maintained at about 95% and the operation was stable. The R1 reactor is greatly affected by the increase in inflow ammonia nitrogen concentration. When the inflow ammonia nitrogen concentration rises to 400 mg / L, the ammonia nitrogen removal rate is 90%.
% Or less.
After 53 days of operation, the ammonia oxidation rate and specific oxygen consumption rate of the two groups of reactors were examined. As shown in FIG. 6, the ammonia oxidation rate of the biofilm attached to the filler surface in the R2 reactor was determined as R1 reactor. The results show that the magnetic filler can increase the ammonia oxidation rate of the biofilm on the filler surface. As shown in FIG. 7, the specific oxygen consumption rate of the biofilm attached to the filler surface in the R2 reactor is 1.64 times that of the R1 reactor, and the result is the ratio of the biofilm attached to the surface of the magnetic filler. The higher oxygen consumption rate indicates that the present invention is beneficial for increasing the activity of microorganisms.
This experiment further investigated the differences in microbial nitrification and denitrifying enzyme activities and the corresponding functional gene dosage in the two groups of reactors. As shown in FIG. 8, the results of the enzyme activity show that the activity of various nitrification and denitrification enzymes in the biofilm attached to the surface of the 2.5 mT magnetic serum site filler in the R2 reactor is a general serum site filler. Showed higher. As shown in FIG. 9, the gene dosage results show that the 2.5 mT magnetic serum site filler in the R2 reactor has a high promoting effect on the denitrification gene quantity in the biofilm, mainly amoA, nxrA, nirS and mirK. It was shown to promote the increase of gene dosage.

実験例2
上記実施例2で製造された生体磁性セラムサイトフィラーを70%の充填率でBAFに
置き、反応器の内部に5mT磁場強度の一定の磁場を形成させる。
それを一般的なセラムサイトフィラーが充填されたBAFと比較実験を行い、実験を5
3日間続け、流入アンモニア態窒素濃度を最初の100mg/Lから200mg/L、4
00mg/Lまで徐々に増加した。図4に示すように、磁性セラムサイトフィラーで充填
された反応器(R3)は12日目に、アンモニア態窒素除去率が95%で安定し、一般的
なセラムサイトフィラーで充填された反応器(R1)は、16日間の運転後にアンモニア
態窒素除去率が基本的に90%で安定した。結果は、流入アンモニア態窒素濃度が100
mg/Lであるとき、一般的なフィラーと比較して、磁性フィラーがフィルム掛けやすく
、同時にNH Nに対する除去効果を効果的に向上できることを示した。流入アンモ
ニア態窒素濃度を200mg/Lの10日目まで上昇させると、R1反応器のアンモニア
態窒素除去率は90%に低下した。これは、R1中のバイオフィルムが長期間にわたって
高いアンモニア態窒素濃度条件にあるとき、微生物硝化機能が抑制され、それによって、
アンモニア態窒素除去率が低下し、R3反応器のアンモニア態窒素除去率が依然として9
9%に維持されることを示した。流入アンモニア態窒素濃度が400mg/Lまでさらに
増加するにつれて、R3反応器のアンモニア態窒素除去率は約95%に維持され、運転は
安定した。R1反応器は流入アンモニア態窒素濃度の上昇の影響を大きく受け、流入アン
モニア態窒素濃度が400mg/Lまで上昇すると、そのアンモニア態窒素除去率は90
%以下に低下した。
53日間の運転後、2群の反応器のアンモニア酸化率と比酸素消費率を調べ、図6に示
すように、R3反応器中のフィラー表面に付着したバイオフィルムのアンモニア酸化率は
R1反応器の1.24倍であり、結果は、磁性フィラーがフィラー表面のバイオフィルム
のアンモニア酸化率を増加できることを示した。図7に示すように、R3反応器中のフィ
ラー表面に付着したバイオフィルムの比酸素消費率はR1反応器の1.34倍であり、結
果は、磁性フィラーの表面に付着したバイオフィルムの比酸素消費率がより高いことを示
し、本発明が微生物の活性を増加させるのに有益であることを示した。
本実験はさらに、2群の反応器における微生物硝化と脱窒作用酵素の活性および対応す
る機能的遺伝子量の違いを調査した。図8に示すように、酵素活性の結果は、R3反応器
中の5mT磁性セラムサイトフィラーの表面に付着したバイオフィルム中の様々な硝化と
脱窒酵素の活性は一般的なセラムサイトフィラーより高いことを示した。図9に示すよう
に、遺伝子量の結果は、R3反応器中の5mT磁性セラムサイトフィラーがバイオフィル
ム中の脱窒遺伝子量への促進作用が高く、主にamoA、nxrA、nirSおよびni
rK遺伝子量の増加を促進することを示した。
Experimental example 2
The biomagnetic serum site filler produced in Example 2 above is placed in the BAF at a filling rate of 70%, and a constant magnetic field of 5 mT magnetic field strength is formed inside the reactor.
A comparative experiment was conducted with a BAF filled with a general serum site filler.
Continue for 3 days and adjust the influent ammonia nitrogen concentration from the first 100 mg / L to 200 mg / L, 4
It gradually increased to 00 mg / L. As shown in FIG. 4, the reactor (R3) filled with magnetic serum site filler was stable at 95% ammonia nitrogen removal rate on the 12th day, and was filled with a general serum site filler. In (R1), the ammonia nitrogen removal rate was basically stable at 90% after 16 days of operation. As a result, the inflow ammonia nitrogen concentration was 100.
When a mg / L, compared with common fillers, magnetic fillers is easily multiplied film, NH 4 + simultaneously - have shown that can effectively improve the removal effect against N. When the inflow ammonia nitrogen concentration was increased to the 10th day of 200 mg / L, the ammonia nitrogen removal rate of the R1 reactor decreased to 90%. This is because when the biofilm in R1 is in high ammonia nitrogen concentration conditions over a long period of time, the microbial nitrification function is suppressed, thereby
Ammonia nitrogen removal rate decreased and ammonia nitrogen removal rate of R3 reactor was still 9
It was shown to be maintained at 9%. As the influent ammonia nitrogen concentration further increased to 400 mg / L, the ammonia nitrogen removal rate of the R3 reactor was maintained at about 95% and the operation was stable. The R1 reactor is greatly affected by the increase in inflow ammonia nitrogen concentration. When the inflow ammonia nitrogen concentration rises to 400 mg / L, the ammonia nitrogen removal rate is 90%.
% Or less.
After 53 days of operation, the ammonia oxidation rate and specific oxygen consumption rate of the two groups of reactors were examined, and as shown in FIG. 6, the ammonia oxidation rate of the biofilm attached to the filler surface in the R3 reactor was R1 reactor. The result showed that the magnetic filler can increase the ammonia oxidation rate of the biofilm on the filler surface. As shown in FIG. 7, the specific oxygen consumption rate of the biofilm attached to the filler surface in the R3 reactor is 1.34 times that of the R1 reactor, and the result is the ratio of the biofilm attached to the surface of the magnetic filler. The higher oxygen consumption rate indicates that the present invention is beneficial for increasing the activity of microorganisms.
This experiment further investigated the differences in microbial nitrification and denitrifying enzyme activities and the corresponding functional gene dosage in the two groups of reactors. As shown in FIG. 8, the results of enzyme activity show that the activity of various nitrification and denitrification enzymes in biofilm attached to the surface of 5mT magnetic serum site filler in R3 reactor is higher than that of general serum site filler. Showed that. As shown in FIG. 9, the gene dosage results show that the 5 mT magnetic serum site filler in the R3 reactor has a high promoting effect on the denitrification gene quantity in the biofilm, mainly amoA, nxrA, irrS and ni
It was shown to promote an increase in rK gene dosage.

Claims (7)

水処理用の新規生体磁性セラムサイトフィラーの製造方法であって、
S1、磁性粉末の活性化:磁性粉末をグルタルアルデヒドに浸漬して活性化させ、活性
化磁性粉末を得る磁性粉末の活性化ステップと、
S2、成分:セラムサイト、活性化磁性粉末、ホウ砂、二酸化チタンを、35〜45部
のセラムサイト、20〜40部の磁性粉末、1〜5部のホウ砂、1〜3部の二酸化チタン
の比率で混合し、均一に撹拌し、混合物Aを得る成分混合ステップと、
S3、造粒および乾燥:S2中の混合物Aを磁気マイクロバブル撹拌混合装置に入れ、
水と混合して混合物Bを得て、次に前記混合物Bを造粒機に入れ、直径が6〜8mmの球
状混合物を製造し、次いで前記球状混合物を乾燥ボックスに入れ、105℃で1〜2h乾
燥させ、セラムサイト基材を得る造粒および乾燥ステップと、
S4、焼成:S3で製造されたセラムサイト基材を保護ガス雰囲気下、高温焼成炉で2
00℃/hの昇温速度で600℃まで加熱し、かつ600℃で8h焼成し、一定の機械的
強度を有するセラムサイトフィラー基質を得る焼成ステップと、
S5、洗浄および乾燥:洗浄溶液が透明になり、濁りおよび変色がなくなるまで、S4
の焼成により得られたセラムサイトフィラー基質を水で洗浄し、次いで洗浄したセラムサ
イトを105℃のオーブンに入れ、12h乾燥させ、洗浄により基質中に残っている分子
水を除去する洗浄および乾燥ステップと、
S6、磁化:S5の処理後に得られたセラムサイトフィラー基質を磁化装置で磁化し、
最終的に磁性セラムサイトフィラー基質を得る磁化ステップと、
S7、ロード表面層:S6で製造した磁性セラムサイトフィラー基質を回転スプレーロ
ード装置に供給し、前記回転スプレーロード装置により磁性セラムサイトフィラー基質の
表面に表面層材料を均一にロードさせ、磁性混合セラムサイトフィラーを得て、ここで、
前記表面層材料は、木炭、粘土、ネオジム鉄ホウ素および水の混合物であり、木炭、粘土
、ネオジム鉄ホウ素と水の重量比は1:1:1:3である表面層ロードステップと、
S8、二次乾燥焼成:S7で製造された磁性混合セラムサイトフィラーを乾燥ボックス
に入れ、95℃で0.5〜1h乾燥させ、保護ガス雰囲気下の高温焼成炉中で150℃/
hの昇温速度で400℃まで昇温し、かつ400℃で0.5h焼成し、冷却させた後に生
体磁性セラムサイトフィラーを得る二次乾燥焼成ステップと、
を含み、
前記磁気マイクロバブル撹拌混合装置は、
可変断面水分子磁化チャンバ(2−1)と、その内部に水が通過する通路および通路外側
に磁石が設けられ、前記通路断面は可変断面であり、前記磁石は水を磁化させることがで
き、前記可変断面水分子磁化チャンバ(2−1)の一端に入水管(2−2)が設けられ、
他端に排水管(2−3)が設けられ、前記入水管(2−2)は水ポンプ(2−4)に接続
され、
可変断面気液混合チャンバ(2−5)と、その内部に気液混合用のチャンバが設けられ
、前記チャンバは可変断面であり、その上部は排水管(2−3)および第一吸気管(2−
6)に接続され、その底部にチャンバ内の気体および液体を撹拌することができる磁気撹
拌機(2−7)が設けられ、
液体混合チャンバ(2−8)と、その一端は気液管路(2−9)を介して前記可変断面
気液混合チャンバ(2−5)に接続され、他端に排出管が設けられ、その上部には第二吸
気管(2−11)を介してエアポンプ(2−12)が接続され、そして供給管(2−13
)を介して供給ポンプ(2−14)に接続され、液体混合チャンバ(2−8)の内部にタ
ービンミキサーが設けられ、
分流器(2−15)と、前記分流器(2−15)は内部に密な気孔を有する管状構造で
あり、分流器(2−15)は2つであり、第一吸気管(2−6)と可変断面気液混合チャ
ンバ(2−5)との接続部および第二吸気管(2−11)と液体混合チャンバ(2−8)
との接続部にそれぞれ設けられ、
第一吸気管(2−6)および第二吸気管(2−11)は、いずれも主吸気管(2−16
)を介してエアポンプ(2−12)に接続され、かつ主吸気管(2−16)にはエアコン
プレッサ(2−17)が設けられ、
それぞれ入水管(2−2)および供給管(2−13)上に設けられた2つの流量制御弁(
2−18)と、を含む、
ことを特徴とする水処理用の新規生体磁性セラムサイトフィラーの製造方法。
A method for producing a novel biomagnetic serum site filler for water treatment,
S1, activation of magnetic powder: activating magnetic powder by immersing and activating magnetic powder in glutaraldehyde to obtain activated magnetic powder;
S2, component: serum site, activated magnetic powder, borax, titanium dioxide, 35-45 parts of serum site, 20-40 parts of magnetic powder, 1-5 parts of borax, 1-3 parts of titanium dioxide Ingredient mixing step for mixing at a ratio of
S3, granulation and drying: put the mixture A in S2 into a magnetic microbubble stirring and mixing device,
Mix with water to obtain a mixture B, then put the mixture B in a granulator to produce a spherical mixture with a diameter of 6-8 mm, then put the spherical mixture in a drying box, Granulation and drying steps to dry for 2 h to obtain a serum site substrate;
S4, calcination: The ceramsite base material produced in S3 is 2 in a high-temperature calcination furnace in a protective gas atmosphere.
A heating step of heating to 600 ° C. at a temperature rising rate of 00 ° C./h and baking at 600 ° C. for 8 h to obtain a serum site filler substrate having a certain mechanical strength;
S5, washing and drying: S4 until the washing solution is clear and free of turbidity and discoloration
A washing and drying step of washing the serum site filler substrate obtained by calcination of water with water, then placing the washed serum site in an oven at 105 ° C., drying for 12 hours, and removing molecular water remaining in the substrate by washing When,
S6, magnetization: the serum site filler substrate obtained after the treatment of S5 is magnetized with a magnetizing device,
A magnetization step to finally obtain a magnetic serum site filler substrate;
S7, Load surface layer: The magnetic serum site filler substrate produced in S6 is supplied to the rotary spray load device, and the surface layer material is uniformly loaded on the surface of the magnetic serum site filler substrate by the rotary spray load device, and the magnetic mixed serum Get a site filler, where
The surface layer material is a mixture of charcoal, clay, neodymium iron boron and water, and the weight ratio of charcoal, clay, neodymium iron boron and water is 1: 1: 1: 3,
S8, secondary dry firing: The magnetic mixed serum site filler produced in S7 is placed in a drying box, dried at 95 ° C. for 0.5 to 1 h, and 150 ° C./high temperature in a high-temperature firing furnace under a protective gas atmosphere.
a secondary drying firing step of heating to 400 ° C. at a heating rate of h and firing for 0.5 h at 400 ° C. and obtaining a biomagnetic serum site filler after cooling;
Including
The magnetic microbubble stirring and mixing device is:
Variable cross section water molecule magnetization chamber (2-1), passage through which water passes and the outside of the passage
The passage has a variable cross section, and the magnet can magnetize water.
An inlet pipe (2-2) is provided at one end of the variable cross-section water molecule magnetization chamber (2-1),
A drain pipe (2-3) is provided at the other end, and the water inlet pipe (2-2) is connected to a water pump (2-4).
And
A variable cross-section gas-liquid mixing chamber (2-5) and a gas-liquid mixing chamber are provided inside it.
The chamber has a variable cross section, and the upper part thereof has a drain pipe (2-3) and a first intake pipe (2-
6) is connected to the bottom, and the bottom of the magnetic stirrer is capable of stirring the gas and liquid in the chamber.
A stirrer (2-7) is provided,
The liquid mixing chamber (2-8) and one end of the liquid mixing chamber (2-9) via the gas-liquid conduit (2-9)
It is connected to the gas-liquid mixing chamber (2-5), and a discharge pipe is provided at the other end.
The air pump (2-12) is connected via the trachea (2-11) and the supply pipe (2-13)
) Through the liquid mixing chamber (2-8).
-Bin mixer is provided,
The flow divider (2-15) and the flow divider (2-15) are tubular structures having dense pores inside.
Yes, there are two flow dividers (2-15), first intake pipe (2-6) and variable cross-section gas-liquid mixing chamber
Connected to the chamber (2-5), the second intake pipe (2-11) and the liquid mixing chamber (2-8)
And is provided at each connection part,
The first intake pipe (2-6) and the second intake pipe (2-11) are both main intake pipes (2-16).
) To the air pump (2-12) through the main intake pipe (2-16)
A presser (2-17) is provided,
Two flow control valves (2) provided on the inlet pipe (2-2) and the supply pipe (2-13), respectively.
2-18), and
A method for producing a novel biomagnetic serum site filler for water treatment.
前記セラムサイトは、ボーキサイト、粘土、頁岩、スレート、海泥粘土、泥岩、フライア
ッシュ、石炭脈石のうちの1つまたは複数の混合物で製造される、ことを特徴とする、
請求項1に記載の水処理用の新規生体磁性セラムサイトフィラーの製造方法。
The serum site, bauxite, clay, shale, slate, sea mud clay, mudstone, fly ash is produced in one or more of a mixture of coal gangue, characterized in that,
The manufacturing method of the novel biomagnetic serum site filler for water treatment of Claim 1.
前記磁性粉末は、四酸化三鉄、三酸化二鉄、酸化鉄、およびバリウムフェライトのうち
の1つまたは複数の混合物である、ことを特徴とする、
請求項1に記載の水処理用の新規生体磁性セラムサイトフィラーの製造方法。
The magnetic powder is a mixture of one or more of triiron tetroxide, ferric trioxide, iron oxide, and barium ferrite,
The manufacturing method of the novel biomagnetic serum site filler for water treatment of Claim 1.
前記S4および前記S8で使用される保護ガスは窒素または不活性ガスである、ことを
特徴とする、
請求項1に記載の水処理用の新規生体磁性セラムサイトフィラーの製造方法。
The protective gas used in S4 and S8 is nitrogen or an inert gas,
The manufacturing method of the novel biomagnetic serum site filler for water treatment of Claim 1.
前記回転スプレーロード装置は、
メインチャンバ(10−1)と、その上部はアーチ形であり、前記メインチャンバ(10
−1)の一端に第一供給口(10−2)が設けられ、他端に排出口(10−3)が設けら
れ、
メインチャンバ(10−1)の内部の螺旋供給撹拌機構(10−4)と、前記螺旋供給撹
拌機構(10−4)は前記メインチャンバ(10−1)の長さ方向に沿ってメインチャン
バ(10−1)の底部に水平に配置され、供給口(10−2)から供給された材料を排出
口(10−3)に搬送するために使用され、
メインチャンバ(10−1)の上方に配置された複数の弓形トラック(10−5)と、各
前記弓形レール(10−5)上に配置されたマイクロモータ(10−6)と、を含み、
前記マイクロモータ(10−6)の下に回転スプレーヘッド(10−7)が設けられ、各
回転スプレーヘッド(10−7)はいずれもマイクロモータ(10−6)によって駆動さ
れ、かつ対応するそれぞれの弓形トラック(10−5)上で前後に往復運動することがで
き、かつ前記回転スプレーヘッド(10−7)はそれぞれ管路を介して第二供給口に接続
される、ことを特徴とする、
請求項1に記載の水処理用の新規生体磁性セラムサイトフィラーの製造方法。
The rotary spray load device is:
The main chamber (10-1) and its upper part are arched, and the main chamber (10-1)
-1) is provided with a first supply port (10-2) at one end and a discharge port (10-3) at the other end,
The spiral supply stirring mechanism (10-4) inside the main chamber (10-1) and the spiral supply stirring mechanism (10-4) are arranged along the length of the main chamber (10-1). 10-1) is arranged horizontally at the bottom and is used to convey the material supplied from the supply port (10-2) to the discharge port (10-3),
A plurality of arcuate tracks (10-5) disposed above the main chamber (10-1) and a micromotor (10-6) disposed on each arcuate rail (10-5);
A rotary spray head (10-7) is provided under the micromotor (10-6), and each rotary spray head (10-7) is driven by the micromotor (10-6) and each corresponding one. And the rotary spray head (10-7) is connected to the second supply port via a pipe line. ,
The manufacturing method of the novel biomagnetic serum site filler for water treatment of Claim 1.
水処理用の新規生体磁性セラムサイトフィラーを製造する装置であって、
磁性粉末を活性化するための活性化タンク(1)と、
セラムサイト、活性化磁性粉末、ホウ砂、二酸化チタンを水とガスと混合して混合物Bを
得るための磁気マイクロバブル撹拌混合装置(2)と、
混合物Bを造粒して球状混合物を得るための造粒機(3)と、
球状混合物を乾燥させてセラムサイト基質を得るための第一乾燥室(4)と、
セラムサイト基質を焼成してセラムサイトフィラー基質を得るための第一高温焼成炉(5
)と、
セラムサイトフィラー基質を冷却させるための第一冷却室(6)と、
冷却されたセラムサイトフィラー基質を洗浄するための洗浄タンク(7)と、
洗浄されたセラムサイトフィラー基質を二次乾燥させるための第二乾燥室(8)と、
二次乾燥後のセラムサイトフィラー基質を磁化させるための磁化装置(9)と、
磁化させた磁性セラムサイトフィラー基質に表面層材料をロードして磁性混合セラムサイ
トフィラーを得るための回転スプレーロード装置(10)と、
磁性混合セラムサイトフィラーを乾燥させるための第三乾燥室(11)と、
乾燥後の磁性混合セラムサイトフィラーを二次焼成させるための第二高温焼成炉(12)
と、
二次焼成後の磁性混合セラムサイトフィラーを二次冷却させるための第二冷却室(13)
と、
を含み、
前記磁気マイクロバブル撹拌混合装置は、
可変断面水分子磁化チャンバ(2−1)と、その内部に水が通過する通路および通路外側
に設けられた磁石が設けられ、前記通路断面は可変断面であり、前記磁石は水を磁化させ
ることができ、前記可変断面水分子磁化チャンバ(2−1)の一端に入水管(2−2)が
設けられ、他端に排水管(2−3)が設けられ、前記入水管(2−2)は水ポンプ(2−
4)に接続され、
可変断面気液混合チャンバ(2−5)と、その内部に気液混合用のチャンバが設けられ
、前記チャンバは可変断面であり、その上部は排水管(2−3)および第一吸気管(2−
6)に接続され、その底部にチャンバ内の気体および液体を撹拌することができる磁気撹
拌機(2−7)が設けられ、
液体混合チャンバ(2−8)と、その一端は気液管路(2−9)を介して前記可変断面
気液混合チャンバ(2−5)に接続され、他端に排出管が設けられ、その上部には第二吸
気管(2−11)を介してエアポンプ(2−12)が接続され、そして供給管(2−13
)を介して供給ポンプ(2−14)に接続され、液体混合チャンバ(2−8)の内部にタ
ービンミキサーが設けられ、
分流器(2−15)と、前記分流器(2−15)は内部に密な気孔を有する管状構造で
あり、分流器(2−15)は2つであり、第一吸気管(2−6)と可変断面気液混合チャ
ンバ(2−5)との接続部および第二吸気管(2−11)と液体混合チャンバ(2−8)
との接続部にそれぞれ設けられ、
第一吸気管(2−6)および第二吸気管(2−11)は、いずれも主吸気管(2−16
)を介してエアポンプ(2−12)に接続され、かつ主吸気管(2−16)にはエアコン
プレッサ(2−17)が設けられ、
それぞれ入水管(2−2)および供給管(2−13)上に設けられた2つの流量制御弁(
2−18)と、を含む、
ことを特徴とする、水処理用の新規生体磁性セラムサイトフィラーを製造する装置。
An apparatus for producing a novel biomagnetic serum site filler for water treatment,
An activation tank (1) for activating the magnetic powder;
Magnetic microbubble stirring and mixing device (2) for mixing the serum site, activated magnetic powder, borax and titanium dioxide with water and gas to obtain a mixture B;
A granulator (3) for granulating the mixture B to obtain a spherical mixture;
A first drying chamber (4) for drying the spherical mixture to obtain a serum site substrate;
First high-temperature firing furnace (5) for obtaining a serum site filler substrate by firing a serum site substrate
)When,
A first cooling chamber (6) for cooling the serum site filler substrate;
A wash tank (7) for washing the cooled serum site filler substrate;
A second drying chamber (8) for secondary drying of the washed serum site filler substrate;
A magnetizing device (9) for magnetizing the serum site filler substrate after secondary drying;
A rotary spray loading device (10) for loading a magnetized magnetic serum site filler substrate with a surface layer material to obtain a magnetic mixed serum site filler;
A third drying chamber (11) for drying the magnetic mixed serum site filler;
Second high-temperature firing furnace for secondary firing of the magnetic mixed serum site filler after drying (12)
When,
Second cooling chamber (13) for secondary cooling of the magnetic mixed serum site filler after secondary firing
When,
Including
The magnetic microbubble stirring and mixing device is:
Variable cross section water molecule magnetization chamber (2-1), passage through which water passes and the outside of the passage
The passage section is a variable section, and the magnet magnetizes water.
A water inlet pipe (2-2) is provided at one end of the variable cross-section water molecule magnetization chamber (2-1).
The drain pipe (2-3) is provided at the other end, and the water inlet pipe (2-2) is connected to the water pump (2-
4)
A variable cross-section gas-liquid mixing chamber (2-5) and a gas-liquid mixing chamber are provided inside it.
The chamber has a variable cross section, and the upper part thereof has a drain pipe (2-3) and a first intake pipe (2-
6) is connected to the bottom, and the bottom of the magnetic stirrer is capable of stirring the gas and liquid in the chamber.
A stirrer (2-7) is provided,
The liquid mixing chamber (2-8) and one end of the liquid mixing chamber (2-9) via the gas-liquid conduit (2-9)
It is connected to the gas-liquid mixing chamber (2-5), and a discharge pipe is provided at the other end.
The air pump (2-12) is connected via the trachea (2-11) and the supply pipe (2-13)
) Through the liquid mixing chamber (2-8).
-Bin mixer is provided,
The flow divider (2-15) and the flow divider (2-15) are tubular structures having dense pores inside.
Yes, there are two flow dividers (2-15), first intake pipe (2-6) and variable cross-section gas-liquid mixing chamber
Connected to the chamber (2-5), the second intake pipe (2-11) and the liquid mixing chamber (2-8)
And is provided at each connection part,
The first intake pipe (2-6) and the second intake pipe (2-11) are both main intake pipes (2-16).
) To the air pump (2-12) through the main intake pipe (2-16)
A presser (2-17) is provided,
Two flow control valves (2) provided on the inlet pipe (2-2) and the supply pipe (2-13), respectively.
2-18), and
An apparatus for producing a novel biomagnetic serum site filler for water treatment.
高アンモニア態窒素廃水の処理における請求項1に記載の水処理用の新規生体磁性セラム
サイトフィラーの製造方法によって製造される水処理用の新規生体磁性セラムサイトフィ
ラーの適用。
Application of a novel biomagnetic serum site filler for water treatment produced by the method for producing a novel biomagnetic serum site filler for water treatment according to claim 1 in the treatment of high ammonia nitrogen wastewater.
JP2019052023A 2019-03-04 2019-03-19 Method and apparatus for producing a novel biomagnetic serum site filler for water treatment Expired - Fee Related JP6555770B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910161361.7A CN109678472B (en) 2019-03-04 2019-03-04 Preparation method and equipment of biological magnetic ceramsite filler for water treatment
CN201910161361.7 2019-03-04

Publications (2)

Publication Number Publication Date
JP6555770B1 true JP6555770B1 (en) 2019-08-07
JP2020142227A JP2020142227A (en) 2020-09-10

Family

ID=66197588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019052023A Expired - Fee Related JP6555770B1 (en) 2019-03-04 2019-03-19 Method and apparatus for producing a novel biomagnetic serum site filler for water treatment

Country Status (2)

Country Link
JP (1) JP6555770B1 (en)
CN (1) CN109678472B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109628309A (en) * 2018-12-28 2019-04-16 江苏大学 A kind of separation method of saline-alkali tolerant denitrifying microorganism bacterial strain
CN110606563A (en) * 2019-10-17 2019-12-24 浙江工业大学 Slow-release carbon source filler for enhancing denitrification and preparation method thereof
CN110980934A (en) * 2019-12-19 2020-04-10 内蒙古圣清科技有限公司 Suspended filler and preparation method thereof
CN112390478A (en) * 2020-12-28 2021-02-23 昆明理工大学 Device for efficiently treating aged landfill leachate through biological membrane and electric flocculation
CN112520839A (en) * 2020-12-23 2021-03-19 内蒙古科技大学 Magnetic electrophilic suspended biological carrier and preparation method thereof
CN113354077A (en) * 2021-01-13 2021-09-07 南京富磁仪器设备有限公司 Low-concentration ammonia nitrogen sewage nitrosification device based on magnetic induction heat effect and application thereof
CN113735231A (en) * 2021-09-18 2021-12-03 中国林业科学研究院林产化学工业研究所 Method for reducing ammonia nitrogen in wastewater by using ferrite permanent magnet material
CN114455711A (en) * 2022-02-10 2022-05-10 江西省生态环境科学研究与规划院 Filler and application thereof
CN114538613A (en) * 2022-01-28 2022-05-27 长安大学 Double-filler denitrification biological method for reducing nitrous oxide emission and application device
CN114920353A (en) * 2022-06-01 2022-08-19 镇江市水业总公司 Peacock feather type biological nest filler reinforced by magnetic field
CN115367864A (en) * 2022-09-15 2022-11-22 无锡金洁环保技术有限公司 Flexible biofilm reactor
CN115624929A (en) * 2022-12-16 2023-01-20 山东广浦生物科技有限公司 Preparation device and preparation process of guar gum plant capsules
CN115925441A (en) * 2022-12-22 2023-04-07 无锡惠联资源再生科技有限公司 Magnetized organic modified mullite-based porous filler for enriching efficient denitrifying bacteria

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111252903A (en) * 2020-01-16 2020-06-09 浙江永续环境工程有限公司 Biological filler, preparation method thereof and composite denitrifying bacteria two-phase flow biological bed

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2113108U (en) * 1991-08-02 1992-08-19 王光伦 Concrete spray nozzle
CN2159750Y (en) * 1993-05-24 1994-03-30 李勇 Magnetic shower nozzle
JP3539650B2 (en) * 1995-10-05 2004-07-07 ゴールド興産株式会社 Ceramics for water treatment
AUPO887597A0 (en) * 1997-08-29 1997-09-25 Separation Technologies Group Pty Ltd Mixing apparatus
JP2001025786A (en) * 1999-07-13 2001-01-30 Nagao Kk Surface modified porous ceramic and concentration method for concentrating heavy metal using the same
JP2003193449A (en) * 2001-12-27 2003-07-09 Kenji Shinohara Sea-bottom conditioner marine earth for water quality improving concrete block in harmony with nature
JP2004137593A (en) * 2002-10-17 2004-05-13 Kenji Shinohara Porous ceramic-water electrode
CN1285517C (en) * 2003-09-03 2006-11-22 华南理工大学 Method for preparing magnetic filling with biological affinity, hydrophilicity and activity for water treatment
JP4831313B2 (en) * 2006-01-18 2011-12-07 富士紡ホールディングス株式会社 Carrier for immobilizing chitosan-based microorganisms having magnetism and method for producing the same
CN101648745B (en) * 2009-09-04 2012-01-11 宇星科技发展(深圳)有限公司 Magnetic seed filler taking sludge as main raw material and preparation method thereof
CN102225806A (en) * 2011-05-24 2011-10-26 合肥工业大学 Magnetic biological carrier and preparation method thereof
CN102258913B (en) * 2011-06-10 2013-07-17 谭海燕 Low-density ceramsite filter material for biological aerated filter, and preparation method thereof
CN102351306B (en) * 2011-07-25 2013-03-27 南京大学 Mangneto modified ceramsite filler, preparation method thereof and application of modified filler in wastewater processing
CN102923866A (en) * 2012-11-22 2013-02-13 南京大学 Device for implementing strengthened treatment for sewage through changing magnetic field and sewage treatment method
CN104261553A (en) * 2014-08-25 2015-01-07 河海大学 Magnetic fly ash ceramsite and preparation method thereof
CN104230301B (en) * 2014-09-18 2016-03-23 河海大学 A kind of biocompatible hydrophilic magnetic sludge pottery sand carrier and preparation method thereof
CN205398432U (en) * 2016-03-03 2016-07-27 重庆交通大学 Utilize chemical industry sludge drying conveying equipment that steam sprayed
CN205710463U (en) * 2016-06-08 2016-11-23 中国葛洲坝集团三峡建设工程有限公司 A kind of autotrophic type concrete watering device
CN107668749A (en) * 2017-10-26 2018-02-09 郑州艾莫弗信息技术有限公司 A kind of fermented feed humidification device for being easy to discharge
CN107626728A (en) * 2017-10-26 2018-01-26 郑州天舜电子技术有限公司 A kind of contaminated soil remediation device for being capable of automatic charging
CN207861975U (en) * 2017-12-28 2018-09-14 安徽清普环保装备有限公司 A kind of sewage magnetization treatment pond
CN208200758U (en) * 2018-04-18 2018-12-07 洛阳钙丰工贸有限公司 A kind of three-level limeslaker with rotary water jet device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109628309A (en) * 2018-12-28 2019-04-16 江苏大学 A kind of separation method of saline-alkali tolerant denitrifying microorganism bacterial strain
CN110606563A (en) * 2019-10-17 2019-12-24 浙江工业大学 Slow-release carbon source filler for enhancing denitrification and preparation method thereof
CN110606563B (en) * 2019-10-17 2024-04-16 浙江工业大学 Sustained-release carbon source filler for strengthening denitrification and preparation method thereof
CN110980934A (en) * 2019-12-19 2020-04-10 内蒙古圣清科技有限公司 Suspended filler and preparation method thereof
CN112520839A (en) * 2020-12-23 2021-03-19 内蒙古科技大学 Magnetic electrophilic suspended biological carrier and preparation method thereof
CN112390478A (en) * 2020-12-28 2021-02-23 昆明理工大学 Device for efficiently treating aged landfill leachate through biological membrane and electric flocculation
CN113354077B (en) * 2021-01-13 2022-10-04 南京富磁仪器设备有限公司 Low-concentration ammonia nitrogen sewage nitrosification device based on magnetic induction heat effect and application thereof
CN113354077A (en) * 2021-01-13 2021-09-07 南京富磁仪器设备有限公司 Low-concentration ammonia nitrogen sewage nitrosification device based on magnetic induction heat effect and application thereof
CN113735231A (en) * 2021-09-18 2021-12-03 中国林业科学研究院林产化学工业研究所 Method for reducing ammonia nitrogen in wastewater by using ferrite permanent magnet material
CN114538613A (en) * 2022-01-28 2022-05-27 长安大学 Double-filler denitrification biological method for reducing nitrous oxide emission and application device
CN114538613B (en) * 2022-01-28 2023-10-27 长安大学 Double-filler denitrification biological method for reducing nitrous oxide emission and application device
CN114455711A (en) * 2022-02-10 2022-05-10 江西省生态环境科学研究与规划院 Filler and application thereof
CN114920353A (en) * 2022-06-01 2022-08-19 镇江市水业总公司 Peacock feather type biological nest filler reinforced by magnetic field
CN115367864A (en) * 2022-09-15 2022-11-22 无锡金洁环保技术有限公司 Flexible biofilm reactor
CN115367864B (en) * 2022-09-15 2023-09-08 无锡金洁环保技术有限公司 Flexible biomembrane reactor
CN115624929A (en) * 2022-12-16 2023-01-20 山东广浦生物科技有限公司 Preparation device and preparation process of guar gum plant capsules
CN115925441A (en) * 2022-12-22 2023-04-07 无锡惠联资源再生科技有限公司 Magnetized organic modified mullite-based porous filler for enriching efficient denitrifying bacteria
CN115925441B (en) * 2022-12-22 2023-07-07 无锡惠联资源再生科技有限公司 Magnetized organic modified mullite-based porous filler for enriching high-efficiency denitrifying bacteria

Also Published As

Publication number Publication date
JP2020142227A (en) 2020-09-10
CN109678472A (en) 2019-04-26
CN109678472B (en) 2021-05-28

Similar Documents

Publication Publication Date Title
JP6555770B1 (en) Method and apparatus for producing a novel biomagnetic serum site filler for water treatment
CN101759289A (en) Method for culturing aerobic granular sludge for treating biological nutrients in municipal sewage
CN110028158A (en) The method and apparatus of the endogenous short-cut denitrification coupling Anammox denitrogenation dephosphorizing of city domestic sewage
CN102849849B (en) Method for treating urban domestic sewage based on magnetic nanomaterial reinforced activated sludge
CN103058460A (en) A/O (anoxic/oxic) flow separation and magnetic flocculation integrated sewage treatment device and method
CN107523560B (en) Immobilized carrier for removing nitrate nitrogen in low-concentration iron ion underground water and preparation method thereof
Xu et al. Denitrification potential of sodium alginate gel beads immobilized iron–carbon, Zoogloea sp. L2, and riboflavin: performance optimization and mechanism
CN104176833A (en) Preparation method of magnetic microbial carrier
CN110668578B (en) Application of aerobic pre-film modified material
CN103613196B (en) Integrated biological denitrification device and method for treating wastewater by using same
Ouyang et al. Positive effects of magnetic Fe3O4@ polyaniline on aerobic granular sludge: Aerobic granulation, granule stability and pollutants removal performance
CN110217888A (en) A kind of the nitrosation-anaerobic ammoxidation processing unit and method of municipal sewage
CN107235552B (en) Method for promoting granulation of flocculent activated sludge by applying nano magnet
CN102417226A (en) Flocculant for simultaneously removing iron-manganese, ammonia-nitrogen, organic matter and preparation method
CN102259977A (en) Denitrification method of wastewater containing ammonia nitrogen
WO2013063727A1 (en) Process for increasing activity of nitrification microorganism in active sludge by in-situ preparation and addition of iron hydroxide
CN114873720A (en) Method for improving denitrification performance of sulfur autotrophic denitrification filter
CN113860488B (en) Anaerobic ammonia oxidizing bacteria particle culture method and device
CN106186365B (en) A kind of biological sponge iron and its application in sewage treatment
CN113371826B (en) Low-temperature low-ammonia nitrogen sewage denitrification device based on magnetic thermal effect coupling carrier
CN113800651A (en) Method for realizing rapid start of anaerobic ammonia oxidation reactor through immobilization of anaerobic ammonia oxidation microorganisms
CN203833702U (en) Bioaugmentation treatment device for medium- and low-concentration ammonia nitrogen wastewater
CN112850884A (en) Short fiber immobilization carrier of activated sludge, and preparation method and application thereof
CN116239224B (en) Constructed wetland composite material and preparation method and application thereof
WO2024124925A1 (en) Iron-carbon composite conductive particle having core-shell structure, preparation method, and use of iron-carbon composite conductive particle in wastewater anaerobic treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190402

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190402

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190704

R150 Certificate of patent or registration of utility model

Ref document number: 6555770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees