JP6555257B2 - Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element

Info

Publication number
JP6555257B2
JP6555257B2 JP2016523586A JP2016523586A JP6555257B2 JP 6555257 B2 JP6555257 B2 JP 6555257B2 JP 2016523586 A JP2016523586 A JP 2016523586A JP 2016523586 A JP2016523586 A JP 2016523586A JP 6555257 B2 JP6555257 B2 JP 6555257B2
Authority
JP
Japan
Prior art keywords
liquid crystal
component
diamine
group
crystal aligning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016523586A
Other languages
Japanese (ja)
Other versions
JPWO2015182762A1 (en
Inventor
夏樹 佐藤
夏樹 佐藤
謙治 坂本
謙治 坂本
加名子 鈴木
加名子 鈴木
幸司 巴
幸司 巴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2015182762A1 publication Critical patent/JPWO2015182762A1/en
Application granted granted Critical
Publication of JP6555257B2 publication Critical patent/JP6555257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、液晶配向膜を作製するための液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び該液晶配向膜を具備する液晶表示素子に関する。   The present invention relates to a liquid crystal aligning agent for producing a liquid crystal aligning film, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element including the liquid crystal aligning film.

液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。液晶配向膜としては、ポリアミド酸(ポリアミック酸ともいう。)などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向剤をガラス基板等に塗布し、焼成したポリイミド系の液晶配向膜が主として用いられている(特許文献1、2参照)。   A liquid crystal display element used in a liquid crystal television, a liquid crystal display, or the like is usually provided with a liquid crystal alignment film for controlling the alignment state of liquid crystals. As the liquid crystal alignment film, a polyimide liquid crystal alignment film obtained by applying a polyimide precursor such as polyamic acid (also referred to as polyamic acid) or a liquid crystal aligning agent having a soluble polyimide solution as a main component to a glass substrate and baking it is used. Mainly used (see Patent Documents 1 and 2).

日本特開平9−316200号公報Japanese Unexamined Patent Publication No. 9-316200 日本特開平10−104633号公報Japanese Unexamined Patent Publication No. 10-104633

現在、IPS(In Plane Switching)駆動方式やFFS(fringe field switching)駆動方式の液晶表示素子に用いられる液晶配向膜には、優れた液晶配向性や電気特性などの基本特性に加えて、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する長期交流駆動による残像の抑制等の様々な特性を同時に満たすことが必要とされている。
本発明の目的は、優れた液晶配向性や電気特性を有し、長期交流駆動による残像の抑制等が可能な液晶表示素子に用いられる液晶配向膜の形成が可能な液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び該液晶配向膜を具備する液晶表示素子を提供することである。
Currently, liquid crystal alignment films used in liquid crystal display elements of IPS (In Plane Switching) and FFS (fringe field switching) driving methods are IPS driven in addition to basic characteristics such as excellent liquid crystal alignment and electrical characteristics. It is necessary to simultaneously satisfy various characteristics such as suppression of afterimages caused by long-term alternating current driving that occurs in liquid crystal display elements of the system and FFS driving system.
An object of the present invention is to provide a liquid crystal aligning agent capable of forming a liquid crystal alignment film used in a liquid crystal display element having excellent liquid crystal alignment properties and electrical characteristics and capable of suppressing afterimages by long-term alternating current driving, and the liquid crystal alignment It is providing the liquid crystal aligning film obtained from an agent, and the liquid crystal display element which comprises this liquid crystal aligning film.

本発明者等は鋭意研究を進めたところ、特定のジアミンを用いて得られた重合体を混合して含有する液晶配向剤を用いた場合、上記の種々の課題を、同時かつ高い水準で満たすことを見出し、本発明に到達した。本発明は、以下の特徴を有するものである。   As a result of diligent research, the present inventors have met the above-mentioned various problems simultaneously and at a high level when using a liquid crystal aligning agent containing a polymer obtained by using a specific diamine. The present invention has been found. The present invention has the following features.

1.下記の(A)成分、及び(B)成分を含有する液晶配向剤。
(A)成分:下記式[1]の構造を有するジアミンを含むジアミン成分と、下記式[2]の構造を有するテトラカルボン酸ジエステル成分とを反応させて得られるポリアミド酸エステル。
(B)成分:下記式[3]で表されるジアミンを含むジアミン成分と、芳香族系テトラカルボン酸二無水物を含有するテトラカルボン酸二無水物成分とを反応させて得られるポリアミド酸。

Figure 0006555257
(A及びAは、それぞれ独立して、単結合、又は炭素数1〜5のアルキレン基であり、A及びAは、それぞれ独立して、炭素数1〜5のアルキレン基であり、Aは炭素数1〜6のアルキレン基、又はシクロアルキレン基であり、B及びBは、それぞれ独立して、単結合、−O−、 −NH−、 −NMe−、 −C(=O)−、−C(=O)O−、 −C(=O)NH−、 −C(=O)NMe−、 −OC(=O)−、 −NHC(=O)−、又は−N(Me)C(=O)−であり、Dはtert−ブトキシカルボニル基、又は9−フルオレニルメトキシカルボニル基であり、aは0又は1である。)
Figure 0006555257
(R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数2〜6のアルキニル基、又はフェニル基である。)
Figure 0006555257
(Rは水素原子、又は1価の有機基を表す。Q1は、炭素数1〜5のアルキレン基を表し、Cyはアゼチジン、ピロリジン、ピペリジン、又はヘキサメチレンイミン骨格を有する脂肪族へテロ環である2価の基であり、これらの環部分には置換基が結合されていてもよい。R及びRは、それぞれ独立して、1価の有機基であり、q及びrは、それぞれ独立して、0〜4の整数である。但し、qとrの合計が2以上の場合、複数のR及びRは、それぞれ独立して、上記定義を有する。)1. Liquid crystal aligning agent containing the following (A) component and (B) component.
(A) Component: Polyamic acid ester obtained by reacting a diamine component containing a diamine having the structure of the following formula [1] with a tetracarboxylic acid diester component having the structure of the following formula [2].
(B) Component: Polyamic acid obtained by reacting a diamine component containing a diamine represented by the following formula [3] with a tetracarboxylic dianhydride component containing an aromatic tetracarboxylic dianhydride.
Figure 0006555257
(A 1 and A 5 are each independently a single bond or an alkylene group having 1 to 5 carbon atoms, and A 2 and A 4 are each independently an alkylene group having 1 to 5 carbon atoms. , A 3 is an alkylene group having 1 to 6 carbon atoms or a cycloalkylene group, and B 1 and B 2 are each independently a single bond, —O—, —NH—, —NMe—, —C ( = O)-, -C (= O) O-, -C (= O) NH-, -C (= O) NMe-, -OC (= O)-, -NHC (= O)-, or- N (Me) C (═O) —, D 1 is a tert-butoxycarbonyl group, or a 9-fluorenylmethoxycarbonyl group, and a is 0 or 1.)
Figure 0006555257
(R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkynyl group having 2 to 6 carbon atoms. Group or phenyl group.)
Figure 0006555257
(R 5 represents a hydrogen atom or a monovalent organic group. Q 1 represents an alkylene group having 1 to 5 carbon atoms, and Cy represents an aliphatic heterocyclic ring having an azetidine, pyrrolidine, piperidine, or hexamethyleneimine skeleton. A substituent may be bonded to these ring portions, R 6 and R 7 are each independently a monovalent organic group, q and r are And each independently represents an integer of 0 to 4. However, when the sum of q and r is 2 or more, a plurality of R 6 and R 7 each independently have the above definition.)

2.(A)成分及び(B)成分が、下記式[4]の構造を有するジアミンを、ジアミン成分中にさらに含有する、上記1に記載の液晶配向剤。

Figure 0006555257
nは、1〜3の整数である。
3.上記式[1]の構造を有するジアミンが、(A)成分で用いられる全ジアミン成分の1〜60モル%である、上記1又は2に記載の液晶配向剤。
4.上記式[3]で表されるジアミンが、(B)成分で用いられる全ジアミン成分の1〜60モル%である、上記1〜3のいずれかに記載の液晶配向剤。
5.(A)成分と(B)成分とを、10:90〜90:10の質量比で含有する、上記1〜4のいずれかに記載の液晶配向剤。
6.上記1〜5のいずれかに記載の液晶配向剤から得られる液晶配向膜。
7.上記6に記載の液晶配向膜を具備する液晶表示素子。2. The liquid crystal aligning agent of said 1 whose (A) component and (B) component further contain the diamine which has a structure of following formula [4] in a diamine component.
Figure 0006555257
n is an integer of 1 to 3.
3. The liquid crystal aligning agent of said 1 or 2 whose diamine which has the structure of said Formula [1] is 1-60 mol% of all the diamine components used by (A) component.
4). The liquid crystal aligning agent in any one of said 1-3 whose diamine represented by the said Formula [3] is 1-60 mol% of all the diamine components used by (B) component.
5). The liquid crystal aligning agent in any one of said 1-4 containing (A) component and (B) component by mass ratio of 10: 90-90: 10.
6). The liquid crystal aligning film obtained from the liquid crystal aligning agent in any one of said 1-5.
7). 7. A liquid crystal display device comprising the liquid crystal alignment film as described in 6 above.

本発明の液晶配向剤によれば、優れた液晶配向性や電気特性などの基本特性に加えて、IPS駆動方式やFFS駆動方式の液晶表示素子において用いられ、長期交流駆動による残像の抑制等の様々な特性を満たす液晶配向膜の形成が可能となる。   According to the liquid crystal aligning agent of the present invention, in addition to basic characteristics such as excellent liquid crystal alignment and electrical characteristics, it is used in liquid crystal display elements of an IPS driving method and an FFS driving method, such as suppression of afterimages by long-term AC driving. A liquid crystal alignment film satisfying various characteristics can be formed.

本発明の液晶配向剤は、下記の(A)成分、及び(B)成分を含有する液晶配向剤である。
<(A)成分>
(A)成分は、下記式[1]の構造を有するジアミンを含むジアミン成分と、下記式[2]の構造を有するテトラカルボン酸ジエステル成分とを反応させて得られるポリアミド酸エステル(ポリアミック酸エステル)である。

Figure 0006555257
The liquid crystal aligning agent of this invention is a liquid crystal aligning agent containing the following (A) component and (B) component.
<(A) component>
Component (A) is a polyamic acid ester (polyamic acid ester) obtained by reacting a diamine component containing a diamine having the structure of the following formula [1] with a tetracarboxylic acid diester component having the structure of the following formula [2]. ).
Figure 0006555257

及びAは、それぞれ独立して、単結合、又は炭素数1〜5のアルキレン基であり、シール剤中の官能基との反応性の点から、単結合又はメチレン基が好ましい。
及びAは、それぞれ独立して、炭素数1〜5のアルキレン基であり、好ましくは、メチレン基又はエチレン基である。
は炭素数1〜6のアルキレン基、又はシクロアルキレン基であり、シール剤中の官能基との反応性の点から、メチレン基又はエチレン基が好ましい。
A 1 and A 5 are each independently a single bond or an alkylene group having 1 to 5 carbon atoms, and a single bond or a methylene group is preferable from the viewpoint of reactivity with a functional group in the sealant.
A 2 and A 4 are each independently an alkylene group having 1 to 5 carbon atoms, preferably a methylene group or an ethylene group.
A 3 is an alkylene group having 1 to 6 carbon atoms or a cycloalkylene group, and a methylene group or an ethylene group is preferable from the viewpoint of reactivity with a functional group in the sealant.

及びBは、それぞれ独立して、単結合、−O−、 −NH−、 −NMe−、 −C(=O)−、−C(=O)O−、 −C(=O)NH−、 −C(=O)NMe−、 −OC(=O)−、 −NHC(=O)−、 又は−N(Me)C(=O)−であり、得られる液晶配向膜の液晶配向性の点から、単結合又は−O−が好ましい。
は、tert−ブトキシカルボニル基、又は9−フルオレニルメトキシカルボニル基であり、脱保護する温度の点から、tert−ブトキシカルボニル基が好ましい。
aは0又は1である。
上記式[1]で表されるジアミンの具体例としては、下記の式(1−1)〜式(1−21)が挙げられる。

Figure 0006555257
Figure 0006555257
B 1 and B 2 are each independently a single bond, —O—, —NH—, —NMe—, —C (═O) —, —C (═O) O—, —C (═O) NH—, —C (═O) NMe—, —OC (═O) —, —NHC (═O) —, or —N (Me) C (═O) —, and the liquid crystal of the obtained liquid crystal alignment film From the viewpoint of orientation, a single bond or —O— is preferable.
D 1 is a tert-butoxycarbonyl group or a 9-fluorenylmethoxycarbonyl group, and a tert-butoxycarbonyl group is preferred from the viewpoint of deprotection temperature.
a is 0 or 1;
Specific examples of the diamine represented by the above formula [1] include the following formulas (1-1) to (1-21).
Figure 0006555257
Figure 0006555257

式(1−1)〜(1−21)において、Meはメチル基を表し、Dはtert−ブトキシカルボニル基を表す。
中でも、式(1−1)〜(1−4)がより好ましく、式(1−2)が特に好ましい。
In formulas (1-1) to (1-21), Me represents a methyl group, and D 2 represents a tert-butoxycarbonyl group.
Among these, formulas (1-1) to (1-4) are more preferable, and formula (1-2) is particularly preferable.

Figure 0006555257
、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数2〜6のアルキニル基、又はフェニル基である。その中でも、ラビング耐性の観点から、水素原子であることが好ましい。
上記式[1]の構造を有するジアミンは、(A)成分の重合に用いる全ジアミン成分の1〜60モル%であることが好ましく、5〜40モル%がさらに好ましい。
Figure 0006555257
R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkynyl group having 2 to 6 carbon atoms. Or a phenyl group. Among these, a hydrogen atom is preferable from the viewpoint of rubbing resistance.
The diamine having the structure of the above formula [1] is preferably 1 to 60 mol%, more preferably 5 to 40 mol%, based on the total diamine components used for the polymerization of the component (A).

(A)成分に用いられる第2のジアミンとして、下記式[4]の構造を有するジアミンを用いると、液晶配向性の観点から好ましい。

Figure 0006555257
nは、1〜3の整数である。
式[4]の構造を有するジアミンは、(A)成分の重合に用いる全ジアミン成分の1〜90モル%であることが好ましく、20〜90モル%がさらに好ましい。As the second diamine used for the component (A), a diamine having the structure of the following formula [4] is preferably used from the viewpoint of liquid crystal alignment.
Figure 0006555257
n is an integer of 1 to 3.
The diamine having the structure of the formula [4] is preferably 1 to 90 mol%, more preferably 20 to 90 mol%, based on the total diamine components used for the polymerization of the component (A).

(A)成分に用いられるその他のジアミンは、下記式[5]で表される。

Figure 0006555257
Yとしては、以下の構造が例示されるが、これに限定されるものではない。The other diamine used for the component (A) is represented by the following formula [5].
Figure 0006555257
Examples of Y include the following structures, but are not limited thereto.

Figure 0006555257
Figure 0006555257

Figure 0006555257
Figure 0006555257

Figure 0006555257
Figure 0006555257

Figure 0006555257
Figure 0006555257

Figure 0006555257
Figure 0006555257

Figure 0006555257
Figure 0006555257

Figure 0006555257
Figure 0006555257

Figure 0006555257
Figure 0006555257

Figure 0006555257
Figure 0006555257

Figure 0006555257
Figure 0006555257

Figure 0006555257
Figure 0006555257

Figure 0006555257
なかでも、液晶配向性とラビング耐性の観点から、YがY−4、Y−65、Y−66、Y−67又はY−83の構造を有するジアミンがより好ましい。
Figure 0006555257
Among these, from the viewpoint of liquid crystal alignment and rubbing resistance, a diamine having a Y structure of Y-4, Y-65, Y-66, Y-67 or Y-83 is more preferable.

テトラカルボン酸ジエステルの一般式は、下記式(18)で表され、Xの構造が上記式[2]の構造のテトラカルボン酸ジエステルが、本発明の液晶配向剤の(A)成分に用いられる。

Figure 0006555257
及びRは、それぞれ独立して、炭素数1〜5のアルキル基であり、好ましくは炭素数1〜2のアルキル基、さらに好ましくはメチル基である。The general formula of the tetracarboxylic acid diester is represented by the following formula (18), and the tetracarboxylic acid diester in which the structure of X 1 is the structure of the above formula [2] is used as the component (A) of the liquid crystal aligning agent of the present invention. It is done.
Figure 0006555257
R 5 and R 6 are each independently an alkyl group having 1 to 5 carbon atoms, preferably an alkyl group having 1 to 2 carbon atoms, and more preferably a methyl group.

<(B)成分>
(B)成分は、下記式[3]で表されるジアミンを含むジアミン成分と、芳香族系テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分とを反応させて得られるポリアミド酸である。

Figure 0006555257
<(B) component>
The component (B) is a polyamic acid obtained by reacting a diamine component containing a diamine represented by the following formula [3] with a tetracarboxylic dianhydride component containing an aromatic tetracarboxylic dianhydride. is there.
Figure 0006555257

は、水素原子又は1価の有機基を表し、好ましくは、水素原子、炭素数1〜3の直鎖アルキル基であり、より好ましくは水素原子、又はメチル基である。また、Rは、熱による脱離反応により水素原子に置き換わる保護基であってもよく、液晶配向剤の保存安定性の点から、室温において脱離せず、好ましくは、80℃以上の熱で脱離する保護基であり、より好ましくは、100℃以上の熱で脱離する保護基である。例えば、1,1−ジメチル−2−クロロエトキシカルボニル基、1,1−ジメチル−2−シアノエトキシカルボニル基、tert−ブトキシカルボニル基等が挙げられ、好ましくはtert−ブトキシカルボニル基である。R 5 represents a hydrogen atom or a monovalent organic group, preferably a hydrogen atom or a linear alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom or a methyl group. R 5 may be a protective group that can be replaced by a hydrogen atom by a heat elimination reaction. From the viewpoint of the storage stability of the liquid crystal aligning agent, R 5 does not desorb at room temperature, preferably at a temperature of 80 ° C. or higher. It is a protecting group that is eliminated, and more preferably a protecting group that is eliminated by heat at 100 ° C. or higher. Examples include a 1,1-dimethyl-2-chloroethoxycarbonyl group, a 1,1-dimethyl-2-cyanoethoxycarbonyl group, a tert-butoxycarbonyl group, and the like, and a tert-butoxycarbonyl group is preferable.

は、炭素数1〜5のアルキレン基を表し、合成の簡便さから、好ましくは炭素数1〜5の直鎖アルキレン基である。
Cyは、アゼチジン、ピロリジン、ピペリジン、又はヘキサメチレンイミン骨格を有する脂肪族へテロ環である2価の基であり、合成の簡便さから、アゼチジン、ピロリジン又はピペリジンが好ましい。また、これらの環部分には、置換基が結合されていてもよい。
Q 1 represents an alkylene group having 1 to 5 carbon atoms, and is preferably a linear alkylene group having 1 to 5 carbon atoms from the viewpoint of ease of synthesis.
Cy is a divalent group that is an aliphatic heterocyclic ring having an azetidine, pyrrolidine, piperidine, or hexamethyleneimine skeleton, and azetidine, pyrrolidine, or piperidine is preferable from the viewpoint of ease of synthesis. In addition, a substituent may be bonded to these ring portions.

及びRは、それぞれ独立して、1価の有機基である。
q及びrは、それぞれ独立して、0〜4の整数である。但し、qとrの合計が2以上の場合、複数のR及びRは、それぞれ独立して、上記定義を有する。
及びRは、合成の簡便さから、好ましくはメチル基である。
また、上記ジアミンを構成するベンゼン環におけるアミノ基の結合位置は限定されないが、アミノ基がそれぞれ、Cy上の窒素原子に対して、3位又は4位、QとRが結合する窒素原子に対して、3位又は4位の位置にあることが好ましく、Cy上の窒素原子に対して4位、QとRが結合する窒素原子に対して4位の位置にあることがより好ましい。
R 6 and R 7 are each independently a monovalent organic group.
q and r are each independently an integer of 0 to 4. However, when the sum of q and r is 2 or more, the plurality of R 6 and R 7 each independently have the above definition.
R 6 and R 7 are preferably a methyl group for the convenience of synthesis.
In addition, although the bonding position of the amino group in the benzene ring constituting the diamine is not limited, the amino group is the 3rd or 4th position with respect to the nitrogen atom on Cy, and the nitrogen atom to which Q 1 and R 5 are bonded. In contrast, it is preferably in the 3rd or 4th position, more preferably in the 4th position with respect to the nitrogen atom on Cy and in the 4th position with respect to the nitrogen atom to which Q 1 and R 5 are bonded. preferable.

本発明の上記式[3]で表されるジアミンは、下記式(6)であることが好ましい。

Figure 0006555257
は、水素原子、メチル基、又はtert−ブトキシカルボニル基である。Rは、水素原子又はメチル基である。Qは、炭素数1〜5の直鎖アルキレン基である。The diamine represented by the above formula [3] of the present invention is preferably the following formula (6).
Figure 0006555257
R 8 is a hydrogen atom, a methyl group, or a tert-butoxycarbonyl group. R 9 is a hydrogen atom or a methyl group. Q 1 is a linear alkylene group having 1 to 5 carbon atoms.

上記式(6)で表されるジアミンの具体例としては、下記式(6−1)〜(6−10)を挙げることができる。下記式において、Bocはtert−ブトキシカルボニル基を表す。

Figure 0006555257
式(3)で表されるジアミンを製造する方法は特に限定されないが、好ましい方法としては、日本特願2014−025438に記載の通りである。
上記式[3]の構造を有するジアミンは、(B)成分の重合に用いる全ジアミン成分の1〜60モル%であることが好ましく、5〜40モル%がさらに好ましい。Specific examples of the diamine represented by the above formula (6) include the following formulas (6-1) to (6-10). In the following formula, Boc represents a tert-butoxycarbonyl group.
Figure 0006555257
The method for producing the diamine represented by the formula (3) is not particularly limited, but a preferred method is as described in Japanese Patent Application No. 2014-025438.
The diamine having the structure of the above formula [3] is preferably 1 to 60 mol%, more preferably 5 to 40 mol%, based on the total diamine components used for the polymerization of the component (B).

(B)成分に用いられるその他のジアミンは、上記式[5]で表され、Yの具体的な構造も上記に例示する通りであるが、これに限定されるものではない。
なかでも、直流電圧により液晶表示素子内に蓄積した残留電荷の緩和がより早い液晶配向膜を得るためには、YがY−68、Y−69、Y−70、Y−71、Y−72、Y−73、Y−74、Y−75、Y−76、Y−77、Y−78、Y−79、Y−80、Y−81、Y−82、又は上記式[4]の構造を有するジアミンが好ましい。
上記式[4]、又は[5]式の構造を有するジアミンは、(B)成分の重合に用いる全ジアミン成分の1〜90モル%であることが好ましく、5〜70モル%がさらに好ましい。
The other diamine used for the component (B) is represented by the above formula [5], and the specific structure of Y is as exemplified above, but is not limited thereto.
In particular, in order to obtain a liquid crystal alignment film in which the residual charges accumulated in the liquid crystal display element by the direct current voltage can be relaxed faster, Y is Y-68, Y-69, Y-70, Y-71, Y-72. Y-73, Y-74, Y-75, Y-76, Y-77, Y-78, Y-79, Y-80, Y-81, Y-82, or the structure of the above formula [4] The diamine it has is preferred.
The diamine having the structure of the above formula [4] or [5] is preferably 1 to 90 mol%, more preferably 5 to 70 mol% of the total diamine component used for the polymerization of the component (B).

(B)成分に用いられるテトラカルボン酸二無水物成分は、芳香族系テトラカルボン酸二無水物を含有する。芳香族系テトラカルボン酸二無水物とは、酸無水物構造と芳香族環が直接結合しているテトラカルボン酸二無水物を指す。
テトラカルボン酸二無水物の一般式は、下記式(17)のように表される。

Figure 0006555257
The tetracarboxylic dianhydride component used for the component (B) contains an aromatic tetracarboxylic dianhydride. The aromatic tetracarboxylic dianhydride refers to a tetracarboxylic dianhydride in which an acid anhydride structure and an aromatic ring are directly bonded.
The general formula of tetracarboxylic dianhydride is represented by the following formula (17).
Figure 0006555257

Xの構造としては、以下の構造が例示されるが、これに限定されるものではない。

Figure 0006555257
Examples of the structure of X include the following structures, but are not limited thereto.
Figure 0006555257

Figure 0006555257
Figure 0006555257

Figure 0006555257
Figure 0006555257

Figure 0006555257
上記に例示した構造のうち、芳香族系酸二無水物は、Xの構造が、X−26〜X−41のものを指す。
直流電圧により液晶表示素子内に蓄積した残留電荷の緩和がより早い液晶配向膜を得るためには、(B)成分に用いられるテトラカルボン酸二無水物成分中、芳香族系テトラカルボン酸二無水物は20〜100モル%が好ましく、50〜100モル%がより好ましい。
Figure 0006555257
Among the structures exemplified above, the aromatic acid dianhydride indicates that the structure of X is X-26 to X-41.
In order to obtain a liquid crystal alignment film in which the residual charge accumulated in the liquid crystal display element by DC voltage is more quickly relaxed, among the tetracarboxylic dianhydride components used for the component (B), aromatic tetracarboxylic dianhydride The product is preferably 20 to 100 mol%, more preferably 50 to 100 mol%.

<ポリアミド酸の製造>
本発明の液晶配向剤中に含まれるポリアミド酸は、テトラカルボン酸二無水物成分と、ジアミン成分とを、有機溶媒の存在下で、−20〜150℃、好ましくは0〜50℃において、30分〜24時間、好ましくは1〜12時間重縮合反応させることによって製造される。
<Production of polyamic acid>
The polyamic acid contained in the liquid crystal aligning agent of the present invention comprises a tetracarboxylic dianhydride component and a diamine component in the presence of an organic solvent at −20 to 150 ° C., preferably 0 to 50 ° C., 30 It is produced by a polycondensation reaction for min to 24 hours, preferably 1 to 12 hours.

ジアミン成分とテトラカルボン酸二無水物成分との反応は、通常、有機溶媒中で行う。その際に用いる有機溶媒としては、生成したポリアミド酸が溶解するものであれば特に限定されない。反応に用いる有機溶媒の具体例を挙げるが、これらの例に限定されるものではない。
例えば、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、γ−ブチロラクトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド又は1,3−ジメチル−イミダゾリジノンが挙げられる。また、ポリアミド酸の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4−ヒドロキシ−4−メチル−2−ペンタノン又は下記の式[D−1]〜式[D−3]で示される有機溶媒を用いることができる。
Reaction of a diamine component and a tetracarboxylic dianhydride component is normally performed in an organic solvent. The organic solvent used at that time is not particularly limited as long as the produced polyamic acid is soluble. Although the specific example of the organic solvent used for reaction is given, it is not limited to these examples.
Examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinone. It is done. When the solvent solubility of the polyamic acid is high, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formula [D-1] to formula [D-3]. An organic solvent can be used.

Figure 0006555257
式[D−1]中、Dは炭素数1〜3のアルキル基を示し、式[D−2]中、Dは炭素数1〜3のアルキル基を示し、式[D−3]中、Dは炭素数1〜4のアルキル基を示す。
Figure 0006555257
In the formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms. In the formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms. The formula [D-3] Among them, D 3 represents an alkyl group having 1 to 4 carbon atoms.

有機溶媒は単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記有機溶媒に混合して使用してもよい。
また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。
反応系中におけるポリアミド酸ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1〜30質量%が好ましく、5〜20質量%がより好ましい。
The organic solvent may be used alone or in combination. Further, even a solvent that does not dissolve the polyimide precursor may be used by mixing with the organic solvent as long as the generated polyimide precursor does not precipitate.
Moreover, since the water | moisture content in an organic solvent inhibits a polymerization reaction, and also causes the produced polyimide precursor to hydrolyze, it is preferable to use what dehydrated and dried the organic solvent.
The concentration of the polyamic acid polymer in the reaction system is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight body is easily obtained.

上記のようにして得られたポリアミド酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマー(ポリアミド酸)を析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで、精製されたポリアミド酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。   The polyamic acid obtained as described above can be recovered by precipitating the polymer (polyamic acid) by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the precipitation of the polyamic acid refined | purified can be obtained by performing precipitation several times, washing | cleaning with a poor solvent, and carrying out normal temperature or heat drying. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.

<ポリアミド酸エステルの製造>
本発明の液晶配向剤に含まれるポリアミド酸エステルは、以下に示す(A)、(B)又は(C)の製法で製造することができる。
(A)ポリアミド酸から製造する場合
ポリアミド酸エステルは、前記のように製造されたポリアミド酸をエステル化することによって製造できる。具体的には、ポリアミド酸とエステル化剤を、有機溶媒の存在下、−20〜150℃、好ましくは0〜50℃において、30分〜24時間、好ましくは1〜4時間反応させることによって製造することができる。
<Production of polyamic acid ester>
The polyamic acid ester contained in the liquid crystal aligning agent of this invention can be manufactured with the manufacturing method of (A), (B) or (C) shown below.
(A) In the case of producing from polyamic acid The polyamic acid ester can be produced by esterifying the polyamic acid produced as described above. Specifically, it is produced by reacting a polyamic acid and an esterifying agent in the presence of an organic solvent at −20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. can do.

エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N−ジメチルホルムアミドジメチルアセタール、N,N−ジメチルホルムアミドジエチルアセタール、N,N−ジメチルホルムアミドジプロピルアセタール、N,N−ジメチルホルムアミドジネオペンチルブチルアセタール、N,N−ジメチルホルムアミドジ−t−ブチルアセタール、1−メチル−3−p−トリルトリアゼン、1−エチル−3−p−トリルトリアゼン、1−プロピル−3−p−トリルトリアゼン、4−(4,6−ジメトキシ−1,3,5−トリアジンー2−イル)−4−メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミド酸の繰り返し単位1モルに対して、2〜6モル当量が好ましく、2〜4モル当量がより好ましい。   As the esterifying agent, those that can be easily removed by purification are preferred, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The addition amount of the esterifying agent is preferably 2 to 6 molar equivalents, more preferably 2 to 4 molar equivalents, per 1 mol of the polyamic acid repeating unit.

上記の反応に用いる有機溶媒は、ポリマー(ポリアミド酸エステル)の溶解性から、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、又はγ−ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1〜30質量%が好ましく、5〜20質量%がより好ましい。   The organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone from the solubility of the polymer (polyamic acid ester), and these are one or more. May be used in combination. The polymer concentration during production is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight body is easily obtained.

(B)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により製造する場合
ポリアミド酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから製造することができる。
具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを、塩基と有機溶媒の存在下、−20〜150℃、好ましくは0〜50℃において、30分〜24時間、好ましくは1〜4時間反応させることによって製造することができる。
(B) When manufacturing by reaction with tetracarboxylic-acid diester dichloride and diamine Polyamic acid ester can be manufactured from tetracarboxylic-acid diester dichloride and diamine.
Specifically, tetracarboxylic acid diester dichloride and diamine are reacted in the presence of a base and an organic solvent at -20 to 150 ° C, preferably at 0 to 50 ° C, for 30 minutes to 24 hours, preferably for 1 to 4 hours. Can be manufactured.

前記塩基は、ピリジン、トリエチルアミン、4−ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行することから、ピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという点から、テトラカルボン酸ジエステルジクロリドに対して、2〜4倍モルであることが好ましく、2〜3倍モルがより好ましい。
上記の反応に用いる有機溶媒は、モノマー及びポリマー(ポリアミド酸エステル)の溶解性から、N−メチル−2−ピロリドン、又はγ−ブチロラクトンが好ましく、これらは1種又は2種を混合して用いてもよい。製造時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1〜30質量%が好ましく、5〜20質量%がより好ましい。
また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、用いる有機溶媒は、できるだけ脱水されていることが好ましく、反応は窒素雰囲気中で、外気の混入を防ぐのが好ましい。
As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 times mol, preferably 2 to 3 times mol with respect to tetracarboxylic acid diester dichloride, in terms of easy removal and high molecular weight. More preferred.
The organic solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or γ-butyrolactone from the solubility of the monomer and polymer (polyamic acid ester), and these may be used alone or in combination. Also good. The polymer concentration during production is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight body is easily obtained.
In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the organic solvent to be used is preferably dehydrated as much as possible, and the reaction is preferably prevented from mixing outside air in a nitrogen atmosphere.

(C)テトラカルボン酸ジエステルとジアミンから製造する場合
ポリアミド酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより製造することができる。
具体的には、テトラカルボン酸ジエステルとジアミンを、縮合剤、塩基、及び有機溶媒の存在下で、0〜150℃、好ましくは0〜100℃において、30分〜24時間、好ましくは3〜15時間反応させることによって製造することができる。
前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’−カルボニルジイミダゾール、ジメトキシ−1,3,5−トリアジニルメチルモルホリニウム、O−(ベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウム テトラフルオロボラート、O−(ベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウムヘキサフルオロホスファート、(2,3−ジヒドロ−2−チオキソ−3−ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2〜3倍モルが好ましく、2〜2.5倍モルがより好ましい。
(C) When producing from tetracarboxylic acid diester and diamine Polyamic acid ester can be produced by polycondensation of tetracarboxylic acid diester and diamine.
Specifically, tetracarboxylic acid diester and diamine are added in the presence of a condensing agent, a base, and an organic solvent at 0 to 150 ° C., preferably at 0 to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. It can manufacture by making it react for time.
Examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazi Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, diphenyl (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate, and the like. The addition amount of the condensing agent is preferably 2 to 3 times mol, more preferably 2 to 2.5 times mol based on the tetracarboxylic acid diester.

前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという点から、ジアミンに対して2〜4倍モルが好ましく、2〜3倍モルがより好ましい。
また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミンに対して0〜1.0倍モルが好ましく、2.0〜3.0倍モルがより好ましい。
As the base, tertiary amines such as pyridine and triethylamine can be used. The addition amount of the base is preferably 2 to 4 times mol, more preferably 2 to 3 times mol with respect to the diamine, in terms of easy removal and high molecular weight.
In the above reaction, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0 times mol, more preferably 2.0 to 3.0 times mol based on the diamine.

上記3つのポリアミド酸エステルの製造方法の中でも、高分子量のポリアミド酸エステルが得られるため、上記(A)又は上記(B)の製造法が特に好ましい。
上記のようにして得られるポリアミド酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマー(ポリアミド酸エステル)を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して、精製されたポリアミド酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
Among the three methods for producing a polyamic acid ester, since a high molecular weight polyamic acid ester is obtained, the production method (A) or (B) is particularly preferred.
The solution of the polyamic acid ester obtained as described above can be precipitated into a poor solvent while being well stirred, so that a polymer (polyamic acid ester) can be precipitated. Precipitation is performed several times, washed with a poor solvent, and then dried at room temperature or by heating to obtain a purified polyamic acid ester powder. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.

<液晶配向剤>
本発明の液晶配向剤は、(A)成分であるポリアミド酸エステルと、(B)成分であるポリアミド酸とが有機溶媒中に溶解された溶液の形態を有する。
特定構造重合体の分子量は、重量平均分子量で2,000〜500,000が好ましく、より好ましくは5,000〜300,000であり、さらに好ましくは、10,000〜100,000である。また、数平均分子量は、好ましくは、1,000〜250,000であり、より好ましくは、2,500〜150,000であり、さらに好ましくは、5,000〜50,000である。
なお、本発明の特定構造重合体とは、(A)成分であるポリアミド酸エステルと(B)成分であるポリアミド酸等の重合体を意味する。
液晶配向剤における特定重合体(B)の割合は、特定重合体(A)100質量部に対して、10〜900質量部が好ましい。なかでも、25〜700質量部が好ましく、より好ましいのは、50〜500質量部である。最も好ましいのは、100〜400質量部である。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this invention has the form of the solution in which the polyamic acid ester which is (A) component, and the polyamic acid which is (B) component were melt | dissolved in the organic solvent.
The molecular weight of the specific structure polymer is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000. The number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
The specific structure polymer of the present invention means a polymer such as a polyamic acid ester as the component (A) and a polyamic acid as the component (B).
As for the ratio of the specific polymer (B) in a liquid crystal aligning agent, 10-900 mass parts is preferable with respect to 100 mass parts of specific polymers (A). Especially, 25-700 mass parts is preferable, and 50-500 mass parts is more preferable. Most preferred is 100 to 400 parts by weight.

本発明に用いられる液晶配向剤に含有される有機溶媒(以下、良溶媒ともいう)は、特定構造重合体が均一に溶解するものであれば特に限定されない。
例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、ジメチルスルホキシド、γ−ブチロラクトン、1,3−ジメチル−イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4−ヒドロキシ−4−メチル−2−ペンタノンなどを挙げることができる。
なかでも、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、又はγ−ブチロラクトンを用いることが好ましい。
さらに、本発明の特定構造重合体の溶媒への溶解性が高い場合は、前記式[D−1]〜式[D−3]で示される溶媒を用いることが好ましい。
本発明の液晶配向剤における良溶媒は、液晶配向剤に含まれる溶媒全体の20〜99質量%であることが好まく、20〜90質量%であることがより好ましく、30〜80質量%であることが特に好ましい。
The organic solvent (hereinafter also referred to as a good solvent) contained in the liquid crystal aligning agent used in the present invention is not particularly limited as long as the specific structure polymer is uniformly dissolved.
For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone , Cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, and the like.
Among these, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or γ-butyrolactone is preferably used.
Furthermore, when the solubility of the specific structure polymer of the present invention in a solvent is high, it is preferable to use a solvent represented by the formula [D-1] to the formula [D-3].
The good solvent in the liquid crystal aligning agent of the present invention is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and more preferably 30 to 80% by mass with respect to the total solvent contained in the liquid crystal aligning agent. It is particularly preferred.

本発明の液晶配向剤は、本発明の効果を損なわない限り、液晶配向剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を用いることができる。かかる貧溶媒の具体例としては、1−ヘキサノール、シクロヘキサノール、1,2−エタンジオール、1,2−プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル又はジプロピレングリコールジメチルエーテルなど、特許文献PCT/JP2015/059476に記載が挙げられるが、これらの例に限定されるものではない。   As long as the effects of the present invention are not impaired, the liquid crystal aligning agent of the present invention uses a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied. it can. Specific examples of such poor solvents include 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, and dipropylene glycol dimethyl ether. JP2015 / 059476 includes the description, but is not limited to these examples.

これら貧溶媒は、液晶配向剤に含まれる溶媒全体の1〜80質量%であることが好ましく、10〜80質量%であることがより好ましく、20〜70質量%であることが特に好ましい。   These poor solvents are preferably 1 to 80% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass of the total solvent contained in the liquid crystal aligning agent.

本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、上記特定構造重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。   In the liquid crystal aligning agent of the present invention, in addition to the above, as long as the effects of the present invention are not impaired, polymers other than the specific structure polymer, electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film are provided. A dielectric or conductive material for the purpose of changing, a silane coupling agent for the purpose of improving the adhesion between the liquid crystal alignment film and the substrate, a crosslinkable compound for the purpose of increasing the hardness and density of the film when the liquid crystal alignment film is formed, Furthermore, when the coating film is baked, an imidization accelerator for the purpose of efficiently progressing imidization by heating of the polyimide precursor may be added.

<液晶配向膜の製造方法>
本発明の液晶配向膜は、液晶配向剤を基板に塗布し、乾燥、焼成する工程、得られた膜に偏光された紫外線を照射する工程、紫外線を照射した膜を、水、又は水と有機溶媒との混合溶媒で接触処理する工程、を含む製造方法によって製造されることが好ましい。
水と有機溶媒との混合溶媒において、水と有機溶媒との混合比は、質量比で、20/80〜80/20、好ましくは40/60〜60/40、特に好ましくは50/50である。
有機溶媒の具体例としては、2−プロパノール、メタノール、エタノール、1−メトキシ−2−プロパノール、乳酸エチル、ジアセトンアルコール、3−メトキシプロピオン酸メチル、又は3−エトキシプロピオン酸エチルが挙がられる。なかでも、紫外線照射によって生じる分解生成物の溶解性の点から、有機溶媒としては、2−プロパノール、メタノール又はエタノールが好ましく、2−プロパノールが特に好ましい。
<Method for producing liquid crystal alignment film>
The liquid crystal alignment film of the present invention comprises a step of applying a liquid crystal aligning agent to a substrate, drying and baking, a step of irradiating the obtained film with polarized ultraviolet light, a film irradiated with ultraviolet light, water or water and organic It is preferable to manufacture by the manufacturing method including the process of carrying out contact processing with the mixed solvent with a solvent.
In the mixed solvent of water and organic solvent, the mixing ratio of water and organic solvent is 20/80 to 80/20, preferably 40/60 to 60/40, and particularly preferably 50/50 in terms of mass ratio. .
Specific examples of the organic solvent include 2-propanol, methanol, ethanol, 1-methoxy-2-propanol, ethyl lactate, diacetone alcohol, methyl 3-methoxypropionate, and ethyl 3-ethoxypropionate. Of these, 2-propanol, methanol, or ethanol is preferable as the organic solvent, and 2-propanol is particularly preferable from the viewpoint of the solubility of the decomposition product generated by ultraviolet irradiation.

液晶配向剤を基板に塗布し、焼成する工程では、本発明の液晶配向剤を基板に塗布し、乾燥し、焼成することにより、ポリイミド膜、又はポリイミド前駆体がイミド化した膜が得られる。
液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができる。特に、液晶駆動のためのITO(Indium Tin Oxide)電極等が形成された基板を用いることが、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極は、アルミ等の光を反射する材料も使用できる。本発明に用いられる液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。
本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために、50〜120℃で、1〜10分焼成し、その後、150〜300℃で5〜120分間焼成する条件が挙げられる。
焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5〜300nm、好ましくは10〜200nmである。
In the step of applying the liquid crystal aligning agent to the substrate and baking, the polyimide film or the polyimide precursor film is obtained by applying the liquid crystal aligning agent of the present invention to the substrate, drying and baking.
The substrate on which the liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. In particular, it is preferable to use a substrate on which an ITO (Indium Tin Oxide) electrode or the like for driving a liquid crystal is formed from the viewpoint of simplification of the process. In the reflective liquid crystal display element, an opaque object such as a silicon wafer can be used as long as it is only on one side of the substrate. In this case, a material that reflects light such as aluminum can be used for the electrode. Examples of the method for applying the liquid crystal aligning agent used in the present invention include a spin coating method, a printing method, and an ink jet method.
Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention. Usually, in order to fully remove the organic solvent contained, conditions of baking at 50 to 120 ° C. for 1 to 10 minutes and then baking at 150 to 300 ° C. for 5 to 120 minutes can be mentioned.
Although the thickness of the coating film after baking is not specifically limited, Since the reliability of a liquid crystal display element may fall when too thin, it is 5-300 nm, Preferably it is 10-200 nm.

<液晶表示素子>
本発明の液晶表示素子は、前記液晶配向膜の製造方法によって得られた液晶配向膜を具備することを特徴とする。本発明の液晶表示素子は、前記液晶配向膜の製造方法によって液晶配向膜付きの基板を得た後、公知の方法で液晶セルを作製し、該液晶セルを使用して液晶表示素子としたものである。
液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、本作製方法は、画像表示を構成する各画素部分に、TFT(thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子への適用も可能である。
<Liquid crystal display element>
The liquid crystal display element of this invention comprises the liquid crystal aligning film obtained by the manufacturing method of the said liquid crystal aligning film. In the liquid crystal display element of the present invention, after obtaining a substrate with a liquid crystal alignment film by the method for producing a liquid crystal alignment film, a liquid crystal cell is prepared by a known method, and the liquid crystal cell is used as a liquid crystal display element. It is.
As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example. Note that this manufacturing method can also be applied to an active matrix liquid crystal display element in which a switching element such as a TFT (thin film transistor) is provided in each pixel portion constituting an image display.

まず、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えば、ITO電極とすることができ、所望の画像表示ができるようパターニングされる。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル−ゲル法によって形成されたSiO−TiOからなる膜とすることができる。
次に、各基板の上に、本発明の液晶配向膜を形成する。次に、一方の基板に他方の基板を互いの配向膜面が対向するようにして重ね合わせ、周辺をシール剤で接着する。シール剤には、基板間隙を制御するために、通常、スペーサーを混入しておく。また、シール剤を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール剤の一部には、外部から液晶を充填可能な開口部を設けておく。
First, a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate. These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image. Next, an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode. The insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
Next, the liquid crystal alignment film of the present invention is formed on each substrate. Next, the other substrate is superposed on one substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant. In order to control the substrate gap, a spacer is usually mixed in the sealant. Further, it is preferable that spacers for controlling the gap between the substrates are also sprayed on the in-plane portion where no sealant is provided. A part of the sealant is provided with an opening that can be filled with liquid crystal from the outside.

次に、シール剤に設けた開口部を通じて、2枚の基板とシール剤で包囲された空間内に液晶材料を注入する。その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に、一対の偏光板を貼り付ける。以上の工程を経ることにより、本発明の液晶表示素子が得られる。
本発明において、シール剤としては、例えば、エポキシ基、アクリロイル基、メタアクリロイル基、ヒドロキシル基、アリル基、アセチル基などの反応性基を有する紫外線照射や加熱によって硬化する樹脂が用いられる。特に、エポキシ基と(メタ)アクリロイル基の両方の反応性基を有する硬化樹脂系を用いるのが好ましい。
Next, a liquid crystal material is injected into a space surrounded by the two substrates and the sealant through an opening provided in the sealant. Thereafter, the opening is sealed with an adhesive. For the injection, a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used. Next, a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer. By passing through the above process, the liquid crystal display element of this invention is obtained.
In the present invention, as the sealant, for example, a resin that is cured by ultraviolet irradiation or heating having a reactive group such as an epoxy group, an acryloyl group, a methacryloyl group, a hydroxyl group, an allyl group, or an acetyl group is used. In particular, it is preferable to use a cured resin system having reactive groups of both an epoxy group and a (meth) acryloyl group.

本発明のシール剤には、接着性、耐湿性等の向上を目的として、無機充填剤を配合してもよい。使用しうる無機充填剤としては特に限定されないが、具体的には、球状シリカ、溶融シリカ、結晶シリカ、酸化チタン、チタンブラック、シリコンカーバイド、窒化珪素、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウム、珪酸リチウムアルミニウム、珪酸ジルコニウム、チタン酸バリウム、硝子繊維、炭素繊維、二硫化モリブデン、アスベスト等が挙げられる。好ましくは、球状シリカ、溶融シリカ、結晶シリカ、酸化チタン、チタンブラック、窒化珪素、窒化ホウ素、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウム等である。無機充填剤は、2種以上を混合して用いても良い。   In the sealing agent of the present invention, an inorganic filler may be blended for the purpose of improving adhesiveness, moisture resistance and the like. Although it does not specifically limit as an inorganic filler which can be used, Specifically, spherical silica, fused silica, crystalline silica, titanium oxide, titanium black, silicon carbide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, barium sulfate , Calcium sulfate, mica, talc, clay, alumina, magnesium oxide, zirconium oxide, aluminum hydroxide, calcium silicate, aluminum silicate, lithium aluminum silicate, zirconium silicate, barium titanate, glass fiber, carbon fiber, molybdenum disulfide, asbestos Etc. Preferably, spherical silica, fused silica, crystalline silica, titanium oxide, titanium black, silicon nitride, boron nitride, calcium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, aluminum hydroxide, calcium silicate, aluminum silicate Etc. Two or more inorganic fillers may be mixed and used.

以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されない。
以下における略号は以下のとおりである。
NMP:N−メチル−2−ピロリドン
BCS:ブチルセロソルブ
テトラカルボン酸誘導体A〜C:それぞれ、下記式(A)〜(C)で表される化合物
The present invention will be described in more detail with reference to examples below, but the present invention is not limited thereto.
Abbreviations in the following are as follows.
NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve tetracarboxylic acid derivative A to C: Compounds represented by the following formulas (A) to (C), respectively

DA−1〜DA−6:それぞれ、下記式(DA−1)〜式(DA−6)で表される化合物
DBOP:ジフェニル(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホナート
DA-1 to DA-6: Compounds DBOP represented by the following formulas (DA-1) to (DA-6) respectively: Diphenyl (2,3-dihydro-2-thioxo-3-benzoxazolyl) Phosphonate

Figure 0006555257
Figure 0006555257

(DA−5の合成)
第1ステップ:N−2−(4−ニトロフェニル)エチル−N−(4−ニトロベンジル)アミン(DA−5−1)の合成

Figure 0006555257
2−(4−ニトロフェニル)エチルアミン塩酸塩(50.0g,247mmol)を水(300g)及びDMF(50.0g)に溶解し、炭酸ナトリウム(78.4g,740mmol)を加え、4−ニトロベンジルブロミド(53.3g,247mmol)のDMF溶液(200g)を、25℃で1時間かけて滴下した。滴下中、DMF/水=1/1(w/w、100g)を追加し、析出物による撹拌不良を解消した。そのまま室温で20時間撹拌し、さらに、40℃で4時間撹拌した後、HPLCで原料の消失を確認した。その後、反応液を室温に放冷し、析出物をろ取した。次いで、析出物を水(150g)で2回、2−プロパノール(50.0g)で2回洗浄し、50℃で減圧乾燥して、N−2−(4−ニトロフェニル)エチル−N−(4−ニトロベンジル)アミン(DA−5−1)を得た(白色固体、収量:73g、収率:99%)。(Synthesis of DA-5)
First step: Synthesis of N-2- (4-nitrophenyl) ethyl-N- (4-nitrobenzyl) amine (DA-5-1)
Figure 0006555257
2- (4-Nitrophenyl) ethylamine hydrochloride (50.0 g, 247 mmol) was dissolved in water (300 g) and DMF (50.0 g), sodium carbonate (78.4 g, 740 mmol) was added, and 4-nitrobenzyl was added. A DMF solution (200 g) of bromide (53.3 g, 247 mmol) was added dropwise at 25 ° C. over 1 hour. During the dropwise addition, DMF / water = 1/1 (w / w, 100 g) was added to eliminate poor stirring due to precipitates. The mixture was stirred at room temperature for 20 hours and further stirred at 40 ° C. for 4 hours, and then disappearance of raw materials was confirmed by HPLC. Thereafter, the reaction solution was allowed to cool to room temperature, and the precipitate was collected by filtration. The precipitate was then washed twice with water (150 g), twice with 2-propanol (50.0 g), dried under reduced pressure at 50 ° C., and N-2- (4-nitrophenyl) ethyl-N- ( 4-Nitrobenzyl) amine (DA-5-1) was obtained (white solid, yield: 73 g, yield: 99%).

以下、得られた化合物の確認は、H−NMR分析及び13C{H}−NMR分析により、以下のスペクトルデータを得て行なった。
なお、H−NMRは、Varian社製のフーリエ変換型超伝導核磁気共鳴装置(FT−NMR)INOVA−400(400MHz)を用いて測定し、テトラメチルシランを内部標準としたシグナルの化学シフトδ(単位:ppm)(分裂パターン、積分値)を表す。「s」はシングレット、「d」はダブレット、「t」はトリプレット、「q」はカルテット、「m」はマルチプレット、「br」はブロード、「J」はカップリング定数、「DMSO-d6」は重ジメチルスルホキシドを意味する。
また、13C{H}−NMRは、Varian社製のフーリエ変換型超伝導核磁気共鳴装置(FT−NMR)INOVA−400(400MHz)を用いて測定し、テトラメチルシランを内部標準としたシグナルの化学シフトδ(単位:ppm)を表す。
Hereinafter, confirmation of the obtained compound was performed by obtaining the following spectral data by 1 H-NMR analysis and 13 C { 1 H} -NMR analysis.
1 H-NMR was measured using a Fourier transform superconducting nuclear magnetic resonance apparatus (FT-NMR) INOVA-400 (400 MHz) manufactured by Varian, and signal chemical shift using tetramethylsilane as an internal standard. It represents δ (unit: ppm) (fission pattern, integral value). “S” is singlet, “d” is doublet, “t” is triplet, “q” is quartet, “m” is multiplet, “br” is broad, “J” is coupling constant, “DMSO-d 6 "Means deuterated dimethyl sulfoxide.
13 C { 1 H} -NMR was measured using a Fourier transform superconducting nuclear magnetic resonance apparatus (FT-NMR) INOVA-400 (400 MHz) manufactured by Varian, and tetramethylsilane was used as an internal standard. It represents the chemical shift δ (unit: ppm) of the signal.

1H NMR (DMSO-d6):δ 8.18 (d, J = 8.8 Hz, 2H, C6H4), 8.15 (d, J = 8.8 Hz, 2H, C6H4), 7.59, (d, J = 8.8 Hz, 2H, C6H4), 7.52 (d, J = 8.8 Hz, 2H, C6H4), 3.87 (s, 2H, CH2), 2.91 (t, J = 7.0 Hz, 2H, CH2), 2.80 (t, J = 7.0 Hz, 2H, CH2), 2.46 (s, 1H, NH).
13C{1H} NMR (DMSO-d6):δ 149.8, 149.5, 146.6, 146.3, 130.3, 129.2, 123.7, 123.6, 52.4, 50.0, 36.0 (each s).
融点(DSC):123℃
1 H NMR (DMSO-d 6 ): δ 8.18 (d, J = 8.8 Hz, 2H, C 6 H 4 ), 8.15 (d, J = 8.8 Hz, 2H, C 6 H 4 ), 7.59, (d, J = 8.8 Hz, 2H, C 6 H 4 ), 7.52 (d, J = 8.8 Hz, 2H, C 6 H 4 ), 3.87 (s, 2H, CH 2 ), 2.91 (t, J = 7.0 Hz, 2H , CH 2 ), 2.80 (t, J = 7.0 Hz, 2H, CH 2 ), 2.46 (s, 1H, NH).
13 C { 1 H} NMR (DMSO-d 6 ): δ 149.8, 149.5, 146.6, 146.3, 130.3, 129.2, 123.7, 123.6, 52.4, 50.0, 36.0 (each s).
Melting point (DSC): 123 ° C

第2ステップ:N−tert−ブトキシカルボニル−N−(2−(4−ニトロフェニル)エチル)−N−(4−ニトロベンジル)アミン(DA−5−2)の合成

Figure 0006555257
N−2−(4−ニトロフェニル)エチル−N−4−ニトロベンジルアミン(73g,0.24mol)をDMF(371g)に溶解し、二炭酸ジtert−ブチル(54g,0.24mol)を2〜8℃で10分かけて滴下した。その後、20℃で4時間撹拌し、原料の消失をHPLCで確認した。続いて、DMFを減圧留去し、反応液に酢酸エチル(371g)を加え、水(371g)で3回洗浄した。その後、有機相を濃縮し、オレンジ色オイルを得た(粗収量:96g,粗収率:97%)。この粗物を、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=7/3(v/v,Rf値=0.3)で精製して黄色オイルを得た。(粗収量:82.0g、粗収率:82.8%(2ステップ))。この黄色オイルにメタノール(118g)を加え、50℃で溶解させた後、撹拌しながら冷却し、0〜5℃で30分撹拌した。その後、析出した固体をろ取し、乾燥することで、N−tert−ブトキシカルボニル−N−2−(4−ニトロフェニル)エチル−N−4−ニトロベンジルアミン(DA−5−2)を得た(白色粉末, 収量:74.5 g, 収率:78%(2ステップ))。Second Step: Synthesis of N-tert-butoxycarbonyl-N- (2- (4-nitrophenyl) ethyl) -N- (4-nitrobenzyl) amine (DA-5-2)
Figure 0006555257
N-2- (4-nitrophenyl) ethyl-N-4-nitrobenzylamine (73 g, 0.24 mol) was dissolved in DMF (371 g), and ditert-butyl dicarbonate (54 g, 0.24 mol) was dissolved in 2 parts. It dripped over 10 minutes at -8 degreeC. Then, it stirred at 20 degreeC for 4 hours, and the loss | disappearance of the raw material was confirmed by HPLC. Subsequently, DMF was distilled off under reduced pressure, ethyl acetate (371 g) was added to the reaction solution, and the mixture was washed 3 times with water (371 g). Thereafter, the organic phase was concentrated to obtain an orange oil (crude yield: 96 g, crude yield: 97%). This crude product was purified by silica gel column chromatography (hexane / ethyl acetate = 7/3 (v / v, Rf value = 0.3)) to obtain a yellow oil (crude yield: 82.0 g, crude yield). Rate: 82.8% (2 steps)) Methanol (118 g) was added to this yellow oil, dissolved at 50 ° C., cooled with stirring, and stirred at 0-5 ° C. for 30 minutes. The obtained solid was collected by filtration and dried to obtain N-tert-butoxycarbonyl-N-2- (4-nitrophenyl) ethyl-N-4-nitrobenzylamine (DA-5-2) (white) Powder, yield: 74.5 g, yield: 78% (2 steps)).

1H NMR (DMSO-d6):δ 8.22 (d, J = 8.4 Hz, 2H, C6H4), 8.18-8.16 (br, 2H, C6H4), 7.51 (d, J = 8.4 Hz, 2H, C6H4), 7.48 (br, 2H, C6H4), 4.57-4.54 (br, 2H, CH2), 3.55-3.49 (br, 2H, CH2), 2.97 (br, 2H, CH2), 1.36-1.32 (br, 9H, tert-Bu).
13C{1H} NMR (DMSO-d6):δ 155.2, 154.8, 147.9, 147.5, 147.1, 147.0, 146.5, 130.6, 128.7, 128.4, 124.0, 123.8, 79.7, 50.3, 49.2, 48.4, 34.3, 34.0, 28.2 (each s).
融点(DSC):77℃
1 H NMR (DMSO-d 6 ): δ 8.22 (d, J = 8.4 Hz, 2H, C 6 H 4 ), 8.18-8.16 (br, 2H, C 6 H 4 ), 7.51 (d, J = 8.4 Hz , 2H, C 6 H 4 ), 7.48 (br, 2H, C 6 H 4 ), 4.57-4.54 (br, 2H, CH 2 ), 3.55-3.49 (br, 2H, CH 2 ), 2.97 (br, 2H , CH 2 ), 1.36-1.32 (br, 9H, tert-Bu).
13 C { 1 H} NMR (DMSO-d 6 ): δ 155.2, 154.8, 147.9, 147.5, 147.1, 147.0, 146.5, 130.6, 128.7, 128.4, 124.0, 123.8, 79.7, 50.3, 49.2, 48.4, 34.3, 34.0 , 28.2 (each s).
Melting point (DSC): 77 ° C

第3ステップ:N−tert−ブトキシカルボニル−N−(2−(4−アミノフェニル)エチル)−N−(4−アミノベンジル)アミン(DA−5)の合成

Figure 0006555257
N−tert−ブトキシカルボニル−N−2−(4−ニトロフェニル)エチル−N−4−ニトロベンジルアミン(74g,0.18mol)をテトラヒドロフラン(370g)に溶解し、3質量%白金−炭素(7.4g)を加え、水素雰囲気下、室温で72時間撹拌した。原料の消失をHPLCで確認し、ろ過により触媒を除去した。その後、ろ液を濃縮し、乾燥することで、DA−5の粗物を薄黄色オイルとして得た(粗収量:66g、粗収率:105%)。得られた粗物をトルエン(198g)に80℃で溶解した後、2℃で1時間撹拌して結晶を析出させた。析出した固体をろ取し、乾燥することでDA−5を得た(白色粉末、収量:56g、収率:90%)。Third Step: Synthesis of N-tert-butoxycarbonyl-N- (2- (4-aminophenyl) ethyl) -N- (4-aminobenzyl) amine (DA-5)
Figure 0006555257
N-tert-butoxycarbonyl-N-2- (4-nitrophenyl) ethyl-N-4-nitrobenzylamine (74 g, 0.18 mol) was dissolved in tetrahydrofuran (370 g), and 3% by mass platinum-carbon (7 4 g) was added and stirred at room temperature for 72 hours under a hydrogen atmosphere. The disappearance of the raw materials was confirmed by HPLC, and the catalyst was removed by filtration. Thereafter, the filtrate was concentrated and dried to obtain a DA-5 crude product as a pale yellow oil (crude yield: 66 g, crude yield: 105%). The obtained crude product was dissolved in toluene (198 g) at 80 ° C., and then stirred at 2 ° C. for 1 hour to precipitate crystals. The precipitated solid was collected by filtration and dried to obtain DA-5 (white powder, yield: 56 g, yield: 90%).

1H NMR (DMSO-d6):δ 6.92 (d, J = 8.0 Hz, 2H, C6H4), 6.84-6.76 (br, 2H, C6H4), 6.54 (d, J = 8.0 Hz, 2H, C6H4), 6.50 (d, J = 8.0 Hz, 2H, C6H4), 4.98 (s, 2H, NH2), 4.84 (s, 2H, NH2), 4.16 (br, 2H, CH2), 3.13 (br, 2H, CH2), 2.51 (br, 2H, CH2), 1.41 (s, 9H, tert-Bu).
13C{1H} NMR (DMSO-d6):δ 155.4, 154.9, 148.2, 147.2, 129.5, 129.3, 129.1, 128.9, 126.6, 125.7, 114.5, 114.3, 78.9, 78.8, 50.2, 49.2, 48.4, 33.9, 33.3, 28.5 (each s).
融点(DSC):103℃
1 H NMR (DMSO-d 6 ): δ 6.92 (d, J = 8.0 Hz, 2H, C 6 H 4 ), 6.84-6.76 (br, 2H, C 6 H 4 ), 6.54 (d, J = 8.0 Hz , 2H, C 6 H 4 ), 6.50 (d, J = 8.0 Hz, 2H, C 6 H 4 ), 4.98 (s, 2H, NH 2 ), 4.84 (s, 2H, NH 2 ), 4.16 (br, 2H, CH 2 ), 3.13 (br, 2H, CH 2 ), 2.51 (br, 2H, CH 2 ), 1.41 (s, 9H, tert-Bu).
13 C { 1 H} NMR (DMSO-d 6 ): δ 155.4, 154.9, 148.2, 147.2, 129.5, 129.3, 129.1, 128.9, 126.6, 125.7, 114.5, 114.3, 78.9, 78.8, 50.2, 49.2, 48.4, 33.9 , 33.3, 28.5 (each s).
Melting point (DSC): 103 ° C

(DA−6の合成)
第1ステップ:DA−6−1の合成

Figure 0006555257
窒素雰囲気下、4口フラスコに、ジメチルホルムアミド(390g)、4−フルオロニトロベンゼン(65.01g、0.4607mol)、4―アミノメチルピペリジン(25.00g、0.2189mol)、及び炭酸カリウム(90.89g、0.6576mol)を加え、60℃で撹拌反応させた。22時間加熱攪拌した後に、中間体の消失をHPLCで確認した。その後、室温まで冷却して、ろ過により炭酸カリウムを除去し、さらに、炭酸カリウムをジメチルホルムアミド250gで2回洗浄した。集めた溶液を、内容物が295gになるまで減圧留去し、次いで、水1500gを加えて、黄色固体を析出させた。その後、析出物をろ過により回収し、乾燥して、DA−6−1の粗物を得た。得られた粗物をテトラヒドロフランにて再結晶して精製し、黄色固体のDA−6−1を得た(58.75g、0.1649mol、収率75.3%)。(Synthesis of DA-6)
First step: Synthesis of DA-6-1
Figure 0006555257
In a four-necked flask under a nitrogen atmosphere, dimethylformamide (390 g), 4-fluoronitrobenzene (65.01 g, 0.4607 mol), 4-aminomethylpiperidine (25.00 g, 0.2189 mol), and potassium carbonate (90. 89 g, 0.6576 mol) was added and the reaction was stirred at 60 ° C. After stirring for 22 hours, the disappearance of the intermediate was confirmed by HPLC. Then, it cooled to room temperature, the potassium carbonate was removed by filtration, and potassium carbonate was further washed twice with 250 g of dimethylformamide. The collected solution was distilled off under reduced pressure until the content became 295 g, and then 1500 g of water was added to precipitate a yellow solid. Thereafter, the precipitate was collected by filtration and dried to obtain a DA-6-1 crude product. The obtained crude product was purified by recrystallization from tetrahydrofuran to obtain DA-6-1 as a yellow solid (58.75 g, 0.1649 mol, yield 75.3%).

H−NMR(DMSO-d6):δ=8.05-7.98(m,4H), 7.41(t,1H J=6.8), 7.02(d,2H, J=9.6), 6.68(d,2H, J=9.2), 4.09(d,2H, J=13.6), 3.10(t,2H, J=6.0), 2.98(t,2H, J=12.0), 1.91−1.89(m,1H), 1.89−1.83(m,2H), 1.29−1.19(m,2H). 1 H-NMR (DMSO-d 6 ): δ = 8.05-7.98 (m, 4H), 7.41 (t, 1H J = 6.8), 7.02 (d, 2H, J = 9.6), 6.68 (d, 2H, J = 9.2), 4.09 (d, 2H, J = 13.6), 3.10 (t, 2H, J = 6.0), 2.98 (t, 2H, J = 12.0), 1.91-1.89 (m, 1H), 1.89-1.83 (m, 2H), 1.29-1.19 (m , 2H).

第2ステップ:DA−6−2の合成

Figure 0006555257

窒素雰囲気下、4口フラスコに、テトラヒドロフラン(400g)、DA−6−1(19.99g、0.0561mol)、及びN、N―ジメチル−4−アミノピリジン(77.44mg、0.634mmol)を加え、50℃に加熱した。その溶液へ、二炭酸ジ-tert−ブチル(15.26g、0.0699mol)とテトラヒドロフラン15gの混合液を滴下し、24時間反応させた後、HPLCにて原料が消失したことを確認した。内容物を減圧留去した後、トルエンで再結晶を行い、析出した結晶をろ取し、乾燥させて、黄色固体の化合物DA−6−2を収率87.3%で得た(22.34g、0.0489mol)。Second step: Synthesis of DA-6-2
Figure 0006555257

Under a nitrogen atmosphere, tetrahydrofuran (400 g), DA-6-1 (19.99 g, 0.0561 mol), and N, N-dimethyl-4-aminopyridine (77.44 mg, 0.634 mmol) were added to a four-necked flask. In addition, it was heated to 50 ° C. A mixed solution of di-tert-butyl dicarbonate (15.26 g, 0.0699 mol) and tetrahydrofuran 15 g was dropped into the solution and reacted for 24 hours, and then it was confirmed by HPLC that the raw material had disappeared. After the content was distilled off under reduced pressure, recrystallization was performed with toluene, and the precipitated crystals were collected by filtration and dried to obtain a yellow solid compound DA-6-2 in a yield of 87.3% (22. 34 g, 0.0489 mol).

H−NMR(DMSO-d6):δ=8.21(d,2H, J=8.8), 8.01(d,2H J=9.2), 7.61(d,2H, J=9.2), 6.98(d,2H, J=9.6), 4.02(d,2H, J=13.6), 3.69(d,2H,J=7.2), 2.91(t,2H, J=11.6),1.86−1.70(m,1H), 1.66(d,2H, J=11.2), 1.42(s,9H), 1.22−1.10(m,2H). 1 H-NMR (DMSO-d 6 ): δ = 8.21 (d, 2H, J = 8.8), 8.01 (d, 2H J = 9.2), 7.61 (d, 2H, J = 9.2), 6.98 (d, 2H, J = 9.6), 4.02 (d, 2H, J = 13.6), 3.69 (d, 2H, J = 7.2) ), 2.91 (t, 2H, J = 11.6), 1.86-1.70 (m, 1H), 1.66 (d, 2H, J = 11.2), 1.42 (s) , 9H), 1.22-1.10 (m, 2H).

ステップ3:DA−6の合成

Figure 0006555257
窒素雰囲気下、4口フラスコに、テトラヒドロフラン(447g)、DA−6−2(22.34g、0.0489mol)、及びパラジウムカーボン粉末(1.156g)を入れた後、系内を水素雰囲気に置換し、室温で23時間攪拌した。HPLCにて原料が消失したことを確認した後、パラジウムカーボンをろ過し、得られた溶液を減圧留去して粗物を得た。得られた粗物にクロロホルム(206g)を加え、60℃に加温した後、60℃の水(100g)で2回分液操作を繰り返した。次いで、得られた有機層に活性炭(0.754g)を加え、攪拌した後、ろ過により活性炭を除去した。内容物を減圧濃縮し、得られた固体をトルエンで再結晶を行った。その後、得られた結晶を乾燥させて、薄クリーム色固体の目的物、(DA−6)を収率71.3%で得た(13.83g、0.0349mol)。Step 3: Synthesis of DA-6
Figure 0006555257
In a nitrogen atmosphere, tetrahydrofuran (447 g), DA-6-2 (22.34 g, 0.0489 mol), and palladium carbon powder (1.156 g) were placed in a four-necked flask, and the system was replaced with a hydrogen atmosphere. And stirred at room temperature for 23 hours. After confirming disappearance of the raw material by HPLC, palladium carbon was filtered, and the resulting solution was distilled off under reduced pressure to obtain a crude product. Chloroform (206 g) was added to the resulting crude product and heated to 60 ° C., and then the liquid separation operation was repeated twice with 60 ° C. water (100 g). Next, activated carbon (0.754 g) was added to the obtained organic layer and stirred, and then the activated carbon was removed by filtration. The contents were concentrated under reduced pressure, and the resulting solid was recrystallized from toluene. Thereafter, the obtained crystals were dried to obtain a light cream solid target product (DA-6) in a yield of 71.3% (13.83 g, 0.0349 mol).

H−NMR(DMSO-d6):δ=6.83(d,2H, J=8.0), 6.65(d,2H J=8.4), 6.50(d,2H, J=8.4), 6.45(d,2H, J=8.4), 5.05(br, 2H), 4.54(br,2H), 3.41(d,2H, J=6.8), 3.29(d,2H,J=12.4), 2.36(t,2H, J=10.8), 1.64(d,2H, J=11.6), 1.42−1.19(br,12H). 1 H-NMR (DMSO-d 6 ): δ = 6.83 (d, 2H, J = 8.0), 6.65 (d, 2H J = 8.4), 6.50 (d, 2H, J = 8.4), 6.45 (d, 2H, J = 8.4), 5.05 (br, 2H), 4.54 (br, 2H), 3.41 (d, 2H, J = 6.8), 3.29 (d, 2H, J = 12.4), 2.36 (t, 2H, J = 10.8), 1.64 (d, 2H, J = 11.6), 1.42-1.19 (br, 12H).

以下に、粘度、固形分濃度、及び分子量の測定方法を示す。
[粘度]
ポリアミド酸溶液又はポリアミド酸エステル溶液の粘度は、E型粘度計TVE−22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE−1(1°34’、R24)、温度25℃で測定した。
Below, the measuring method of a viscosity, solid content concentration, and molecular weight is shown.
[viscosity]
As for the viscosity of the polyamic acid solution or the polyamic acid ester solution, an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) was used, a sample amount of 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24), temperature Measured at 25 ° C.

[分子量]
ポリアミド酸及びポリアミド酸エステルの分子量は、GPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として、数平均分子量(以下、Mnとも言う。)と重量平均分子量(以下、Mwとも言う。)を算出した。
GPC装置:Shodex社製(GPC−101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N−ジメチルホルムアミド(添加剤として、臭化リチウム−水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o−リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製TSK(標準ポリエチレンオキサイド(重量平均分子量(Mw)が、約900,000、150,000、100,000、及び30,000))、及び、ポリマーラボラトリー社製ポリエチレングリコール(ピークトップ分子量(Mp)が、約12,000、4,000、及び1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、及び1,000の4種類を混合したサンプルと、150,000、30,000、及び4,000の3種類を混合したサンプルの2サンプルを別々にして行った。
[Molecular weight]
The molecular weights of the polyamic acid and the polyamic acid ester are measured by a GPC (room temperature gel permeation chromatography) apparatus, and the number average molecular weight (hereinafter also referred to as Mn) and the weight average molecular weight (hereinafter, referred to as Mn) as polyethylene glycol and polyethylene oxide equivalent values. Mw.) Was calculated.
GPC device: manufactured by Shodex (GPC-101)
Column: manufactured by Shodex (series of KD803 and KD805)
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF ) Is 10ml / L)
Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK manufactured by Tosoh Corporation (standard polyethylene oxide (weight average molecular weight (Mw) is about 900,000, 150,000, 100,000, and 30,000)) and polyethylene manufactured by Polymer Laboratory Glycol (peak top molecular weight (Mp) of about 12,000, 4,000, and 1,000). In order to avoid overlapping peaks, the measurement was performed separately for two samples: 900,000, 100,000, 12,000, and 1,000 mixed samples, and 150,000, 30,000, and 4,000 mixed samples. .

(合成例1)
撹拌子を入れた四つ口フラスコに、(A)を11.22g(43.1mmol)投入した後、NMP265gを加えて撹拌して溶解させた。次いで、トリエチルアミンを13.36g(132mmol)、DA−1を5.57g(24.2mmol)、DA−3を1.97g(6.6mmol)、及びDA−5を9.02g(26.4mmol)加えて、撹拌して溶解させた。
この溶液を撹拌しながら、DBOPを33.9g(88.4mmol)添加し、更にNMPを36.4g加え、室温で12時間撹拌してポリアミド酸エステルの溶液を得た。このポリアミド酸エステル溶液の温度25℃における粘度は42.6mPa・sであった。
(Synthesis Example 1)
After putting 11.22 g (43.1 mmol) of (A) into a four-necked flask containing a stirring bar, 265 g of NMP was added and stirred to dissolve. Then, 13.36 g (132 mmol) of triethylamine, 5.57 g (24.2 mmol) of DA-1, 1.97 g (6.6 mmol) of DA-3, and 9.02 g (26.4 mmol) of DA-5 In addition, it was dissolved by stirring.
While stirring this solution, 33.9 g (88.4 mmol) of DBOP was added, and 36.4 g of NMP was further added, followed by stirring at room temperature for 12 hours to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 42.6 mPa · s.

このポリアミド酸エステル溶液をメタノール2260g中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度100℃で減圧乾燥し、ポリアミド酸エステルの粉末を得た。このポリアミド酸エステルの分子量はMn=12,601、Mw=29,033であった。
得られたポリアミド酸エステルの粉末にNMPを加えて、50℃にて30hr攪拌して溶解させた後、NMP及びBCSを加え、ポリアミド酸エステルが6質量%、NMPが69質量%、BCSが25質量%になるよう、ポリアミド酸エステル溶液(A)を調製した。
This polyamic acid ester solution was put into 2260 g of methanol, and the resulting precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 12,601 and Mw = 29,033.
NMP was added to the obtained polyamic acid ester powder and dissolved by stirring at 50 ° C. for 30 hours, and then NMP and BCS were added. The polyamic acid ester was 6% by mass, NMP was 69% by mass, and BCS was 25%. The polyamic acid ester solution (A) was prepared so that it might become mass%.

(合成例2)
撹拌子を入れた四つ口フラスコに、(A)を2.55g(9.80mmol)投入した後、NMP45.0gを加えて撹拌して溶解させた。次いで、トリエチルアミンを2.13g(21.0mmol)、DA−1を1.96g(8.50mmol)、及びDA−3を0.45g(1.50mmol)加えて、撹拌して溶解させた。
この溶液を撹拌しながら、DBOPを8.05g(21.0mmol)添加し、更にNMPを7.94g加え、室温で12時間撹拌してポリアミド酸エステルの溶液を得た。このポリアミド酸エステル溶液の温度25℃における粘度は50.0mPa・sであった。
このポリアミド酸エステル溶液をメタノール408g中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後、温度100℃で減圧乾燥し、ポリアミド酸エステルの粉末を得た。このポリアミド酸エステルの分子量はMn=12,542、Mw=35,098であった。
得られたポリアミド酸エステルの粉末にNMPを加えて、50℃にて30hr攪拌して溶解させた後、NMP及びBCSを加え、ポリアミド酸エステルが6質量%、NMPが69質量%、BCSが25質量%になるよう、ポリアミド酸エステル溶液(B)を調製した。
(Synthesis Example 2)
After adding 2.55 g (9.80 mmol) of (A) to a four-necked flask containing a stir bar, 45.0 g of NMP was added and stirred to dissolve. Next, 2.13 g (21.0 mmol) of triethylamine, 1.96 g (8.50 mmol) of DA-1, and 0.45 g (1.50 mmol) of DA-3 were added and dissolved by stirring.
While stirring this solution, 8.05 g (21.0 mmol) of DBOP was added, and 7.94 g of NMP was further added, followed by stirring at room temperature for 12 hours to obtain a polyamic acid ester solution. The viscosity of this polyamic acid ester solution at a temperature of 25 ° C. was 50.0 mPa · s.
This polyamic acid ester solution was put into 408 g of methanol, and the resulting precipitate was separated by filtration. The precipitate was washed with methanol and then dried under reduced pressure at a temperature of 100 ° C. to obtain a polyamic acid ester powder. The molecular weight of this polyamic acid ester was Mn = 12,542 and Mw = 35,098.
NMP was added to the obtained polyamic acid ester powder and dissolved by stirring at 50 ° C. for 30 hours, and then NMP and BCS were added. The polyamic acid ester was 6% by mass, NMP was 69% by mass, and BCS was 25%. The polyamic acid ester solution (B) was prepared so that it might become mass%.

(合成例3)
撹拌子を入れた四つ口フラスコに、DA−2を3.52g(12.0mmol)、DA−4を0.96g(5.00mmol)、及びDA−6を1.90g(4.8mmol)投入した後、NMP67.8gを加えて、撹拌し溶解させた。次いで、(C)を1.13g(5.30mmol)添加し、2時間室温で攪拌した。その後、(B)を3.66g(16.8mmol)添加し、次いで、NMPを22.60g加えて、50℃で15時間反応させ、ポリアミド酸の溶液を得た。このポリアミド酸の溶液の温度25℃における粘度は152mPa・sであった。このポリアミド酸の分子量はMn=13,100、Mw=34,500であった。
得られたポリアミド酸の溶液に、ポリアミド酸が6質量%、NMPが69質量%、BCSが25質量%になるよう、NMP及びBCSを加え、ポリアミド酸溶液(A)を調製した。
(Synthesis Example 3)
In a four-necked flask containing a stir bar, DA-2 was 3.52 g (12.0 mmol), DA-4 was 0.96 g (5.00 mmol), and DA-6 was 1.90 g (4.8 mmol). After charging, 67.8 g of NMP was added and stirred to dissolve. Next, 1.13 g (5.30 mmol) of (C) was added, and the mixture was stirred at room temperature for 2 hours. Thereafter, 3.66 g (16.8 mmol) of (B) was added, and then 22.60 g of NMP was added and reacted at 50 ° C. for 15 hours to obtain a polyamic acid solution. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 152 mPa · s. The molecular weight of this polyamic acid was Mn = 13,100 and Mw = 34,500.
NMP and BCS were added to the obtained polyamic acid solution so that the polyamic acid was 6% by mass, NMP was 69% by mass, and BCS was 25% by mass to prepare a polyamic acid solution (A).

(合成例4)
撹拌子を入れた四つ口フラスコに、DA−2を2.05g(8.4mmol)、DA−4を0.84g(4.20mmol)、及びDA−6を0.55g(1.4mmol)投入した後、NMP33.87gを加えて、撹拌し溶解させた。次いで、(C)を0.66g(3.40mmol)添加し、2時間室温で攪拌した。その後、(B)を2.13g(9.8mmol)添加し、次いで、NMPを11.29g加えて、50℃で15時間反応させ、ポリアミド酸の溶液を得た。このポリアミド酸の溶液の温度25℃における粘度は172mPa・sであった。このポリアミド酸の分子量はMn=13,800、Mw=35,800であった。
得られたポリアミド酸の溶液に、ポリアミド酸が6質量%、NMPが69質量%、BCSが25質量%になるよう、NMP及びBCSを加え、ポリアミド酸溶液(B)を調製した。
(Synthesis Example 4)
In a four-necked flask containing a stir bar, DA-2 2.05 g (8.4 mmol), DA-4 0.84 g (4.20 mmol), and DA-6 0.55 g (1.4 mmol). After charging, 33.87 g of NMP was added and stirred to dissolve. Next, 0.66 g (3.40 mmol) of (C) was added, and the mixture was stirred at room temperature for 2 hours. Thereafter, 2.13 g (9.8 mmol) of (B) was added, and then 11.29 g of NMP was added and reacted at 50 ° C. for 15 hours to obtain a polyamic acid solution. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 172 mPa · s. The molecular weight of this polyamic acid was Mn = 13,800 and Mw = 35,800.
NMP and BCS were added to the obtained polyamic acid solution so that the polyamic acid was 6% by mass, NMP was 69% by mass, and BCS was 25% by mass to prepare a polyamic acid solution (B).

(合成例5)
撹拌子を入れた四つ口フラスコに、DA−2を3.66g(15.0mmol)、及びDA−4を1.99g(10.0mmol)投入した後、NMP69.24gを加えて、撹拌し溶解させた。次いで、(C)を1.18g(6.0mmol)添加し、2時間室温で攪拌した。その後、(B)を3.82g(17.5mmol)添加し、次いで、NMPを23.08g加えて、50℃で15時間反応させ、ポリアミド酸の溶液を得た。このポリアミド酸の溶液の温度25℃における粘度は105mPa・sであった。このポリアミド酸の分子量はMn=11,300、Mw=28,600であった。
得られたポリアミド酸の溶液に、ポリアミド酸が6質量%、NMPが69質量%、BCSが25質量%になるよう、NMP及びBCSを加え、ポリアミド酸溶液(C)を調製した。
(Synthesis Example 5)
After adding 4.66 g (15.0 mmol) of DA-2 and 1.99 g (10.0 mmol) of DA-4 to a four-necked flask containing a stirring bar, 69.24 g of NMP was added and stirred. Dissolved. Next, 1.18 g (6.0 mmol) of (C) was added, and the mixture was stirred at room temperature for 2 hours. Then, 3.82 g (17.5 mmol) of (B) was added, then 23.08 g of NMP was added and reacted at 50 ° C. for 15 hours to obtain a polyamic acid solution. The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 105 mPa · s. The molecular weight of this polyamic acid was Mn = 11,300 and Mw = 28,600.
NMP and BCS were added to the obtained polyamic acid solution so that the polyamic acid was 6% by mass, NMP was 69% by mass, and BCS was 25% by mass to prepare a polyamic acid solution (C).

(実施例1)
攪拌子の入った三角フラスコに、合成例1で得られたポリアミド酸エステル溶液(A)8.10gと、合成例3で得られたポリアミド酸溶液(A)12.1gとを入れて、室温で3時間攪拌し、液晶配向剤(A−1)を得た。
Example 1
In a conical flask containing a stirrer, 8.10 g of the polyamic acid ester solution (A) obtained in Synthesis Example 1 and 12.1 g of the polyamic acid solution (A) obtained in Synthesis Example 3 were placed at room temperature. Was stirred for 3 hours to obtain a liquid crystal aligning agent (A-1).

(実施例2)
攪拌子の入った三角フラスコに、合成例1で得られたポリアミド酸エステル溶液(A)8.00gと、合成例4で得られたポリアミド酸溶液(B)12.1gとを入れて、室温で3時間攪拌し、液晶配向剤(A−2)を得た。
(Example 2)
In a conical flask containing a stirrer, 8.00 g of the polyamic acid ester solution (A) obtained in Synthesis Example 1 and 12.1 g of the polyamic acid solution (B) obtained in Synthesis Example 4 were placed at room temperature. And stirred for 3 hours to obtain a liquid crystal aligning agent (A-2).

(比較例1)
攪拌子の入った三角フラスコに、合成例2で得られたポリアミド酸エステル溶液(B)7.99gと、合成例5で得られたポリアミド酸溶液(C)12.1gとを入れて、室温で3時間攪拌し、液晶配向剤(B−1)を得た。
(Comparative Example 1)
In a conical flask containing a stirrer, 7.99 g of the polyamic acid ester solution (B) obtained in Synthesis Example 2 and 12.1 g of the polyamic acid solution (C) obtained in Synthetic Example 5 were placed at room temperature. And stirred for 3 hours to obtain a liquid crystal aligning agent (B-1).

(比較例2)
攪拌子の入った三角フラスコに、合成例1で得られたポリアミド酸エステル溶液(A)8.01gと、合成例5で得られたポリアミド酸溶液(C)12.0gとを入れて、室温で3時間攪拌し、液晶配向剤(B−2)を得た。
(Comparative Example 2)
In a conical flask containing a stirrer, 8.01 g of the polyamic acid ester solution (A) obtained in Synthesis Example 1 and 12.0 g of the polyamic acid solution (C) obtained in Synthesis Example 5 were placed at room temperature. And stirred for 3 hours to obtain a liquid crystal aligning agent (B-2).

<液晶セルの作製>
FFS方式の液晶表示素子の構成を備えた液晶セルの作製は、以下のように行った。
初めに、電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたIZO(Indium Zinc Oxide)電極が形成されている。第1層目の対向電極の上には、第2層目として、CVD(化学気相蒸着)法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてIZO膜をパターニングして形成された、櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
<Production of liquid crystal cell>
A liquid crystal cell having the configuration of the FFS mode liquid crystal display element was manufactured as follows.
First, a substrate with electrodes was prepared. The substrate is a glass substrate having a size of 30 mm × 35 mm and a thickness of 0.7 mm. On the substrate, an IZO (Indium Zinc Oxide) electrode having a solid pattern, which forms a counter electrode as a first layer, is formed. On the counter electrode of the first layer, a SiN (silicon nitride) film formed by a CVD (chemical vapor deposition) method is formed as the second layer. The second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film. On the second SiN film, a comb-like pixel electrode formed by patterning an IZO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. doing. The size of each pixel is 10 mm long and about 5 mm wide. At this time, the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.

第3層目の画素電極は、中央部分が屈曲したくの字形状の電極要素を、複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を、複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。さらに、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。
各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では、画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では、画素電極の電極要素が−10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される、液晶の基板面内での回転動作(インプレーン・スイッチング)の方向が、互いに逆方向となるように構成されている。
The pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of electrode elements having a dogleg shape whose central portion is bent. The width in the short direction of each electrode element is 3 μm, and the distance between the electrode elements is 6 μm. Since the pixel electrode forming each pixel is configured by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but the central portion is similar to the electrode element. It has a shape similar to that of a bold-faced koji that bends at Furthermore, each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film to be described later is used as a reference, in the first region of the pixel, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise), and in the second region of the pixel The electrode elements of the pixel electrode are formed at an angle of −10 ° (clockwise). That is, in the first region and the second region of each pixel, the direction of the rotation operation (in-plane switching) in the substrate surface of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode is It is comprised so that it may become a mutually reverse direction.

次に、得られた液晶配向剤を、1.0μmのフィルターで濾過した後、準備された上記電極付き基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚60nmのポリイミド膜を得た。このポリイミド膜を、レーヨン布でラビング(ローラー直径:120mm、ローラー回転数:500rpm、移動速度:30mm/sec、押し込み長:0.3mm、ラビング方向:3層目IZO櫛歯電極に対して10°傾いた方向)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した。その後、80℃で15分間乾燥して、液晶配向膜付き基板を得た。また、対向基板として、裏面にITO電極が形成されている、高さ4μmの柱状スペーサーを有するガラス基板にも、上記と同様にして、ポリイミド膜を形成し、上記と同様の手順で、配向処理が施された液晶配向膜付き基板を得た。   Next, after filtering the obtained liquid crystal aligning agent with a 1.0 micrometer filter, it apply | coated to the prepared said board | substrate with an electrode by spin coat application | coating. After drying on an 80 ° C. hot plate for 5 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 30 minutes to obtain a polyimide film having a thickness of 60 nm. This polyimide film is rubbed with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 500 rpm, moving speed: 30 mm / sec, indentation length: 0.3 mm, rubbing direction: 10 ° with respect to the third-layer IZO comb-teeth electrode (Inclined direction), and then washed by irradiating with ultrasonic waves in pure water for 1 minute to remove water droplets by air blow. Then, it dried for 15 minutes at 80 degreeC, and obtained the board | substrate with a liquid crystal aligning film. Also, as a counter substrate, a polyimide film is formed on a glass substrate having a columnar spacer with a height of 4 μm on which an ITO electrode is formed on the back surface in the same manner as described above. A substrate with a liquid crystal alignment film to which was applied was obtained.

これら2枚の液晶配向膜付き基板を1組とし、基板上に液晶注入口を残した形でシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い、ラビング方向が逆平行になるようにして張り合わせた後、シール剤を硬化させて、セルギャップが4μmの空セルを作製した。この空セルに減圧注入法によって、液晶MLC−2041(メルク社製)を注入し、注入口を封止して、FFS方式の液晶セルを得た。その後、得られた液晶セルを、110℃で1時間加熱し、23℃で一晩放置してから各評価に使用した。
以下に、蓄積電荷の緩和特性、交流駆動時の正負電圧の非対称化による蓄積電荷量、電圧保持率(VHR)バックライトエージング耐性、及びラビング耐性の評価法を示す。
One set of these two substrates with a liquid crystal alignment film is printed, and the sealant is printed on the substrate leaving the liquid crystal injection port. The other substrate has the liquid crystal alignment film surface facing and the rubbing direction is antiparallel. Then, the sealing agent was cured to produce an empty cell having a cell gap of 4 μm. Liquid crystal MLC-2041 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and left at 23 ° C. overnight before being used for each evaluation.
The following are evaluation methods for the accumulated charge relaxation characteristics, the accumulated charge amount due to the asymmetry of the positive and negative voltages during AC driving, the voltage holding ratio (VHR) backlight aging resistance, and the rubbing resistance.

<蓄積電荷の緩和特性の評価>
上記液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、画素電極と対向電極とを短絡して同電位にした状態で、2枚の偏光板の下からLEDバックライトを照射しておき、2枚の偏光板の上で測定するLEDバックライト透過光の輝度が最小となるように、液晶セルの角度を調節した。
次に、この液晶セルに周波数30Hzの矩形波を印加しながら、23℃の温度下でのV−T特性(電圧−透過率特性)を測定し、相対透過率が23%となる交流電圧を算出した。
次に、相対透過率が23%となる交流電圧で、なおかつ周波数30Hzの矩形波を5分間印加した後、+1.0Vの直流電圧を重畳し、30分間駆動させた。その後、直流電圧を切り、再び相対透過率が23%となる交流電圧で、なおかつ周波数30Hzの矩形波のみを20分間印加した。
蓄積した電荷の緩和が速いほど、直流電圧を重畳したときの液晶セルへの電荷蓄積も速いことから、蓄積電荷の緩和特性は、直流電圧を重畳した直後の相対透過率が30%以上の状態から30分が経過するまでに、相対透過率が28%未満に低下した場合は、「良好」と定義して評価した。直流電圧を重畳してから30分が経過しても、相対透過率が28%未満に低下しなかった場合は、「不良」と定義して評価した。
<Evaluation of relaxation characteristics of accumulated charge>
The liquid crystal cell is placed between two polarizing plates arranged so that their polarization axes are orthogonal to each other, and the pixel electrode and the counter electrode are short-circuited to be at the same potential, and the LED is displayed from under the two polarizing plates. The angle of the liquid crystal cell was adjusted so that the brightness of the LED backlight transmitted light measured on the two polarizing plates was minimized by irradiating the backlight.
Next, while applying a rectangular wave with a frequency of 30 Hz to this liquid crystal cell, the VT characteristics (voltage-transmittance characteristics) at a temperature of 23 ° C. are measured, and an AC voltage with a relative transmittance of 23% is measured. Calculated.
Next, a rectangular wave having a relative transmittance of 23% and a frequency of 30 Hz was applied for 5 minutes, and then a +1.0 V DC voltage was superimposed and driven for 30 minutes. Thereafter, the DC voltage was turned off, and only an AC voltage with a relative transmittance of 23% and a rectangular wave with a frequency of 30 Hz was applied for 20 minutes.
The faster the accumulated charge is relaxed, the faster the charge accumulation in the liquid crystal cell when the DC voltage is superimposed. Therefore, the accumulated charge relaxation characteristic is a state where the relative transmittance immediately after the DC voltage is superimposed is 30% or more. In the case where the relative transmittance decreased to less than 28% by the time 30 minutes passed, the evaluation was defined as “good”. When the relative transmittance did not decrease to less than 28% even after 30 minutes had elapsed since the DC voltage was superimposed, the evaluation was defined as “defective”.

<交流駆動時の正負電圧の非対称化による蓄積電荷量の評価>
上記液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、画素電極と対向電極とを短絡して同電位にした状態で、2枚の偏光板の下からLEDバックライトを照射しておき、2枚の偏光板の上で測定するLEDバックライト透過光の輝度が最小となるように、液晶セルの角度を調節した。
次に、この液晶セルに周波数30Hzの矩形波を印加しながら、60℃の温度下でのV−T特性(電圧−透過率特性)を測定し、相対透過率が23%及び100%となる交流電圧を算出した。その後、画素電極と対向電極とを短絡して同電位にした状態で60分間以上放置し、液晶セルに蓄積した電荷を放出した。
次に、相対透過率が100%となる交流電圧で、なおかつ周波数30Hzの矩形波を30分間印加した。但し、その30分間のうち、3分間おきに20秒間のみ相対透過率が23%となる交流電圧に切り替えた。相対透過率が23%となる交流電圧に切り替えている20秒間の間に、V−F特性(直流電圧−フリッカ特性)を測定し、相対透過率が100%となる交流電圧で駆動した際の、正負電圧の非対称化による蓄積電荷を打ち消す直流電圧値を記録した。この蓄積電荷を打ち消す直流電圧値の絶対値が小さければ小さいほど、交流電圧駆動による電荷が蓄積しづらいことを示すため、残像特性が良好であると考えられる。
<Evaluation of accumulated charge by asymmetry of positive and negative voltages during AC drive>
The liquid crystal cell is placed between two polarizing plates arranged so that their polarization axes are orthogonal to each other, and the pixel electrode and the counter electrode are short-circuited to be at the same potential, and the LED is displayed from under the two polarizing plates. The angle of the liquid crystal cell was adjusted so that the brightness of the LED backlight transmitted light measured on the two polarizing plates was minimized by irradiating the backlight.
Next, VT characteristics (voltage-transmittance characteristics) at a temperature of 60 ° C. are measured while applying a rectangular wave having a frequency of 30 Hz to the liquid crystal cell, and the relative transmittance becomes 23% and 100%. AC voltage was calculated. Thereafter, the pixel electrode and the counter electrode were short-circuited and kept at the same potential and left for 60 minutes or more, and the charge accumulated in the liquid crystal cell was released.
Next, a rectangular wave having an AC voltage with a relative transmittance of 100% and a frequency of 30 Hz was applied for 30 minutes. However, in the 30 minutes, the AC voltage was switched to an AC voltage at which the relative transmittance was 23% only for 20 seconds every 3 minutes. VF characteristics (DC voltage-flicker characteristics) are measured during 20 seconds when the AC voltage is switched to an AC voltage at which the relative transmittance is 23%, and driving is performed at an AC voltage at which the relative transmittance is 100%. The DC voltage value that cancels the accumulated charge due to the asymmetry of the positive and negative voltages was recorded. Since the smaller the absolute value of the DC voltage value that cancels this accumulated charge, the less the charge is accumulated due to the AC voltage drive, the afterimage characteristics are considered to be better.

<電圧保持率(VHR)バックライトエージング耐性の評価>
VHRのバックライトエージング耐性(電圧保持率1)は以下のようにして評価した。
初めに、電極付きの基板を準備した。基板は、30mm×40mmの大きさで、厚さが1.1mmのガラス基板である。基板上には膜厚35nmのITO電極が形成されており、電極は縦40mm、横10mmのストライプパターンである。次に、液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板に、スピンコート塗布にて塗布した。50℃のホットプレート上で5分間乾燥させた後、230℃のIR式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させて液晶配向膜付き基板を得た。この液晶配向膜を、レーヨン布でラビング(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.4mm)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した。その後、80℃で15分間乾燥して、液晶配向膜付き基板を得た。この液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に4μmのスペーサーを散布した後、その上からシール剤を印刷し、もう1枚の基板をラビング方向が逆方向、かつ膜面が向き合うようにして張り合わせた後、シール剤を硬化させて空セルを作製した。
<Evaluation of Voltage Holding Ratio (VHR) Backlight Aging Resistance>
The backlight aging resistance (voltage holding ratio 1) of VHR was evaluated as follows.
First, a substrate with electrodes was prepared. The substrate is a glass substrate having a size of 30 mm × 40 mm and a thickness of 1.1 mm. An ITO electrode having a film thickness of 35 nm is formed on the substrate, and the electrode is a stripe pattern having a length of 40 mm and a width of 10 mm. Next, the liquid crystal aligning agent was filtered through a 1.0 μm filter, and then applied to the prepared substrate with electrodes by spin coating. After drying on a hot plate at 50 ° C. for 5 minutes, baking was performed in an IR oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm to obtain a substrate with a liquid crystal alignment film. This liquid crystal alignment film is rubbed with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.4 mm), and then irradiated with ultrasonic waves in pure water for 1 minute. Then, washing was performed and water droplets were removed by air blow. Then, it dried for 15 minutes at 80 degreeC, and obtained the board | substrate with a liquid crystal aligning film. Prepare two substrates with this liquid crystal alignment film, spray 4μm spacers on the surface of one liquid crystal alignment film, print the sealant from the top, and rub the other substrate in the reverse direction. And after bonding together so that the film surfaces face each other, the sealing agent was cured to produce an empty cell.

この空セルに減圧注入法によって、液晶ZLI−4792(メルク社製)を注入し、注入口を封止して液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、23℃で一晩放置し、VHR測定用の液晶セルを得た。次いで、本セルを、70℃オーブン中、LED光源(1000cd)下で、72時間エージングを行った。
72時間のバックライトエージング後、本セルに、60℃の温度下で1Vの電圧を60μsec印加し、100msec後の電圧を測定して、電圧がどのくらい保持できているかをVHRとし、その値の大小で、VHRバックライトエージング耐性を評価した。即ち、このVHRの値が大きければ、VHRバックライトエージング耐性は良好である。
Liquid crystal ZLI-4792 (manufactured by Merck) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and left at 23 ° C. overnight to obtain a liquid crystal cell for VHR measurement. The cell was then aged for 72 hours in a 70 ° C. oven under an LED light source (1000 cd).
After backlight aging for 72 hours, a voltage of 1V was applied to the cell at a temperature of 60 ° C. for 60 μsec, the voltage after 100 msec was measured, and how much the voltage was maintained was defined as VHR. The VHR backlight aging resistance was evaluated. That is, if the value of VHR is large, the VHR backlight aging resistance is good.

<ラビング耐性>
液晶配向剤を、全面にITO電極が付いたガラス基板のITO面にスピンコートし、50℃のホットプレート上で5分間乾燥させた。その後、230℃のIR式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させて、液晶配向膜付き基板を得た。この液晶配向膜を、レーヨン布でラビング(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.4mm)した。本基板を顕微鏡にて観察を行ない、膜面にラビングによるスジがみられなかったものを「良好」、スジがみられたものを「不良」として評価した。
<Rubbing resistance>
The liquid crystal aligning agent was spin-coated on the ITO surface of a glass substrate having an ITO electrode on the entire surface, and dried on a hot plate at 50 ° C. for 5 minutes. Thereafter, baking was performed in an IR oven at 230 ° C. for 20 minutes to form a coating film having a film thickness of 100 nm to obtain a substrate with a liquid crystal alignment film. This liquid crystal alignment film was rubbed with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.4 mm). The substrate was observed with a microscope, and the film surface was evaluated as “good” when no rubbing streaks were observed on the film surface, and “bad” when streaks were observed.

Figure 0006555257
Figure 0006555257

本発明の液晶配向剤から得られる液晶配向膜を有する液晶表示素子は、長期交流駆動による残像の抑制等に優れ、IPSやFFS駆動方式の液晶表示素子として有用である。
なお、2014年5月30日に出願された日本特許出願2014−113191号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
A liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention is excellent in suppression of afterimages by long-term alternating current driving, and is useful as a liquid crystal display element of an IPS or FFS driving system.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2014-113191 filed on May 30, 2014 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (8)

下記の(A)成分、及び(B)成分を含有する液晶配向剤。
(A)成分:下記式[1]の構造を有するジアミンを含むジアミン成分と、下記式[2]の構造を有するテトラカルボン酸ジエステル成分とを反応させて得られるポリアミド酸エステル。
(B)成分:下記式[3]で表されるジアミンを含むジアミン成分と、芳香族系テトラカルボン酸二無水物を含有するテトラカルボン酸二無水物成分とを反応させて得られるポリアミド酸。
Figure 0006555257

(A及びAは、それぞれ独立して、単結合、又は炭素数1〜5のアルキレン基であり、A及びAは、それぞれ独立して、炭素数1〜5のアルキレン基であり、Aは炭素数1〜6のアルキレン基、又はシクロアルキレン基であり、B及びBは、それぞれ独立して、単結合、−O−、 −NH−、 −NMe−、 −C(=O)−、−C(=O)O−、 −C(=O)NH−、 −C(=O)NMe−、 −OC(=O)−、 −NHC(=O)−、 又は−N(Me)C(=O)−であり、Dはtert−ブトキシカルボニル基、又は9−フルオレニルメトキシカルボニル基であり、aは0又は1である。)
Figure 0006555257
(R、R、R及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数2〜6のアルキニル基、又はフェニル基である。)
Figure 0006555257
(Rは水素原子、又は1価の有機基を表す。Q1は、炭素数1〜5のアルキレン基を表し、Cyはアゼチジン、ピロリジン、ピペリジン、又はヘキサメチレンイミン骨格を有する脂肪族へテロ環である2価の基であり、これらの環部分には置換基が結合されていてもよい。R及びRは、それぞれ独立して、1価の有機基であり、q及びrは、それぞれ独立して、0〜4の整数である。但し、qとrの合計が2以上の場合、複数のR及びRは、それぞれ独立して、上記定義を有する。)
Liquid crystal aligning agent containing the following (A) component and (B) component.
(A) Component: Polyamic acid ester obtained by reacting a diamine component containing a diamine having the structure of the following formula [1] with a tetracarboxylic acid diester component having the structure of the following formula [2].
(B) Component: Polyamic acid obtained by reacting a diamine component containing a diamine represented by the following formula [3] with a tetracarboxylic dianhydride component containing an aromatic tetracarboxylic dianhydride.
Figure 0006555257

(A 1 and A 5 are each independently a single bond or an alkylene group having 1 to 5 carbon atoms, and A 2 and A 4 are each independently an alkylene group having 1 to 5 carbon atoms. , A 3 is an alkylene group having 1 to 6 carbon atoms or a cycloalkylene group, and B 1 and B 2 are each independently a single bond, —O—, —NH—, —NMe—, —C ( = O)-, -C (= O) O-, -C (= O) NH-, -C (= O) NMe-, -OC (= O)-, -NHC (= O)-, or- N (Me) C (═O) —, D 1 is a tert-butoxycarbonyl group, or a 9-fluorenylmethoxycarbonyl group, and a is 0 or 1.)
Figure 0006555257
(R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkynyl group having 2 to 6 carbon atoms. Group or phenyl group.)
Figure 0006555257
(R 5 represents a hydrogen atom or a monovalent organic group. Q 1 represents an alkylene group having 1 to 5 carbon atoms, and Cy represents an aliphatic heterocyclic ring having an azetidine, pyrrolidine, piperidine, or hexamethyleneimine skeleton. A substituent may be bonded to these ring portions, R 6 and R 7 are each independently a monovalent organic group, q and r are And each independently represents an integer of 0 to 4. However, when the sum of q and r is 2 or more, a plurality of R 6 and R 7 each independently have the above definition.)
(A)成分及び(B)成分を得るためのジアミン成分が、下記式[4]の構造を有するジアミンをさらに含有する、請求項1に記載の液晶配向剤。
Figure 0006555257
(nは、1〜3の整数である。)
The liquid crystal aligning agent of Claim 1 in which the diamine component for obtaining (A) component and (B) component further contains the diamine which has a structure of following formula [4].
Figure 0006555257
(N is an integer of 1 to 3)
上記式[1]の構造を有するジアミンが、(A)成分を得るために用いられる全ジアミン成分中、1〜60モル%含有される、請求項1又は2に記載の液晶配向剤。   The liquid crystal aligning agent of Claim 1 or 2 with which the diamine which has a structure of the said Formula [1] is contained 1-60 mol% in all the diamine components used in order to obtain (A) component. 上記式[3]で表されるジアミンが、(B)成分を得るための用いられる全ジアミン成分中、1〜60モル%含有される、請求項1〜3のいずれか1項に記載の液晶配向剤。   The liquid crystal according to any one of claims 1 to 3, wherein the diamine represented by the formula [3] is contained in an amount of 1 to 60 mol% in all diamine components used for obtaining the component (B). Alignment agent. (A)成分と(B)成分とを、10:90〜90:10の質量比で含有する、請求項1〜4のいずれか1項に記載の液晶配向剤。   The liquid crystal aligning agent of any one of Claims 1-4 which contains (A) component and (B) component by mass ratio of 10: 90-90: 10. 上記式[4]の構造を有するジアミンが、(A)成分又は(B)成分を得るために用いられる全ジアミン成分中、1〜90モル%含有される、請求項1〜5のいずれか1項に記載の液晶配向剤。   The diamine having the structure of the formula [4] is contained in an amount of 1 to 90 mol% in all diamine components used for obtaining the component (A) or the component (B). A liquid crystal aligning agent according to item. 請求項1〜6のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。   The liquid crystal aligning film obtained from the liquid crystal aligning agent of any one of Claims 1-6. 請求項7に記載の液晶配向膜を具備する液晶表示素子。   A liquid crystal display device comprising the liquid crystal alignment film according to claim 7.
JP2016523586A 2014-05-30 2015-05-29 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element Active JP6555257B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014113191 2014-05-30
JP2014113191 2014-05-30
PCT/JP2015/065634 WO2015182762A1 (en) 2014-05-30 2015-05-29 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Publications (2)

Publication Number Publication Date
JPWO2015182762A1 JPWO2015182762A1 (en) 2017-05-25
JP6555257B2 true JP6555257B2 (en) 2019-08-07

Family

ID=54699082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016523586A Active JP6555257B2 (en) 2014-05-30 2015-05-29 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element

Country Status (3)

Country Link
JP (1) JP6555257B2 (en)
TW (1) TWI673301B (en)
WO (1) WO2015182762A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170056654A (en) * 2014-09-18 2017-05-23 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406385B (en) * 2015-03-09 2021-01-26 日产化学工业株式会社 Process for producing diamine compound and intermediate thereof
JP6747452B2 (en) * 2015-11-25 2020-08-26 日産化学株式会社 Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device
CN109923469B (en) * 2016-09-13 2022-06-28 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2019189637A1 (en) * 2018-03-30 2019-10-03 日産化学株式会社 Novel liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102893209B (en) * 2010-03-15 2015-05-06 日产化学工业株式会社 Liquid crystal alignment agent containing polyamic acid ester, and liquid crystal alignment film
JP2012155311A (en) * 2011-01-05 2012-08-16 Jnc Corp Liquid crystal aligning agent for forming photo-aligning liquid crystal alignment layer, liquid crystal alignment layer and liquid crystal display element using the same
TWI515260B (en) * 2011-01-28 2016-01-01 Nissan Chemical Ind Ltd A liquid crystal aligning agent containing polyacidic acid and polyamic acid
WO2013039168A1 (en) * 2011-09-15 2013-03-21 日産化学工業株式会社 Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP5874590B2 (en) * 2011-12-26 2016-03-02 Jsr株式会社 Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, polymer and compound
KR102241786B1 (en) * 2013-10-23 2021-04-16 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent containing polyimide precursor having thermally cleavable group and/or polyimide
KR102241784B1 (en) * 2013-10-23 2021-04-16 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170056654A (en) * 2014-09-18 2017-05-23 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2020021081A (en) * 2014-09-18 2020-02-06 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR102367765B1 (en) 2014-09-18 2022-02-24 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Also Published As

Publication number Publication date
TWI673301B (en) 2019-10-01
WO2015182762A1 (en) 2015-12-03
TW201609864A (en) 2016-03-16
JPWO2015182762A1 (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6711443B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal alignment element
JP6669161B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device
JP6638396B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
CN105659155B (en) Liquid crystal aligning agent containing polyimide precursor and/or polyimide having thermally-releasable group
JP7259328B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6638398B2 (en) Novel liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP6187457B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element for photo-alignment method
JP6555257B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JPWO2014084364A1 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
WO2015141598A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2018135657A1 (en) Liquid crystal aligning agent and method for producing liquid crystal aligning film
JP2024037908A (en) Compound
JPWO2018124140A1 (en) Novel polymer and diamine compound, liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display element
JP7089227B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JPWO2015119168A1 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the same
JP7318826B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7311047B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7334722B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190624

R151 Written notification of patent or utility model registration

Ref document number: 6555257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151