JP6553157B2 - Method of manufacturing multi-functional polarization lens - Google Patents

Method of manufacturing multi-functional polarization lens Download PDF

Info

Publication number
JP6553157B2
JP6553157B2 JP2017232721A JP2017232721A JP6553157B2 JP 6553157 B2 JP6553157 B2 JP 6553157B2 JP 2017232721 A JP2017232721 A JP 2017232721A JP 2017232721 A JP2017232721 A JP 2017232721A JP 6553157 B2 JP6553157 B2 JP 6553157B2
Authority
JP
Japan
Prior art keywords
lens
resin
polarizing film
polarizing
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017232721A
Other languages
Japanese (ja)
Other versions
JP2018072851A (en
Inventor
皖一 田村
皖一 田村
祥一 光内
祥一 光内
憲三 和田
憲三 和田
竜午 新田
竜午 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Talex Optical Co Ltd
Original Assignee
Talex Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Talex Optical Co Ltd filed Critical Talex Optical Co Ltd
Priority to JP2017232721A priority Critical patent/JP6553157B2/en
Publication of JP2018072851A publication Critical patent/JP2018072851A/en
Application granted granted Critical
Publication of JP6553157B2 publication Critical patent/JP6553157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Optical Filters (AREA)

Description

この発明は、偏光機能に加えて、他の特定機能を併有する複合機能性偏光レンズの製造方法に関する。   The present invention relates to a method of manufacturing a multi-functional polarization lens having other specific functions in addition to the polarization function.

一般に、偏光眼鏡用のレンズ基材は、偏光膜(フィルム)を有する偏光素子を眼鏡用レンズ基材と一体化したものであり、偏光膜は、ポリビニルアルコール等の樹脂フィルムを一軸延伸し、ヨウ素等を含浸して調製されたものである。   In general, a lens substrate for polarizing glasses is one in which a polarizing element having a polarizing film (film) is integrated with the lens substrate for glasses, and the polarizing film is formed by uniaxially stretching a resin film such as polyvinyl alcohol and iodine Etc. were prepared by impregnating them.

視力矯正用の眼鏡用レンズ基材は、注型重合により片側の表面に凸レンズ面が形成されていると共に、裏面は凹面状や平面状などに形成されており、眼鏡レンズとして需要者に適切なレンズ度数に調整する際に、裏面を研削し、表面は研削せずに何らかの機能性成分を含有するコーティングが施される場合がある。   The eyeglass lens base for vision correction has a convex lens surface formed on the surface on one side by cast polymerization, and a back surface formed in a concave shape or a planar shape, and is suitable for the consumer as an eyeglass lens. When adjusting to the lens power, the back surface may be ground, and the surface may not be ground and a coating containing some functional component may be applied.

偏光眼鏡用のレンズ基材を注型(キャスト)法によって製造するには、レンズ基材と同径のリング状のガスケットの内周側に、予め半球面状に加圧成形された偏光フィルムの周縁を保持し、この偏光フィルムの表裏面から所定間隔を開けて一対の凹・凸形のレンズ面形成用のモールドをガスケットと一体に固定し、前記一対のモールド間のレンズ厚みを設定する空隙(キャビティー)にモノマーを注入し、所用温度に所要時間保持して重合反応させ、さらに硬化した樹脂と偏光素子とを一体化して成形する製造法が周知である(特許文献1等)。   In order to manufacture a lens substrate for polarizing glasses by a casting method, it is possible to use a polarizing film which has been formed into a hemispherical surface by pressure molding in advance on the inner peripheral side of a ring gasket having the same diameter as the lens substrate. A gap for holding the peripheral edge, leaving a predetermined distance from the front and back surfaces of the polarizing film, integrally fixing a pair of concave / convex lens surface forming molds with the gasket, and setting the lens thickness between the pair of molds There is known a manufacturing method in which a monomer is injected into a (cavity), polymerization is carried out by maintaining the temperature at a required temperature for a required time, and a cured resin and a polarizing element are integrated and molded (Patent Document 1 etc.).

また、眼鏡用レンズ基材に機能性成分を保持するには、例えば赤外線吸収剤をバインダー樹脂に分散させたコーティング液をレンズ表面に層状に塗布し、これを乾燥させて赤外線吸収層を形成する方法が知られている(特許文献2)   Moreover, in order to hold | maintain a functional component to the lens base material for spectacles, for example, the coating liquid which disperse | distributed the infrared rays absorber to binder resin is apply | coated on the lens surface in a layer form, this is dried, and an infrared rays absorption layer is formed. A method is known (Patent Document 2)

しかし、上記した従来の眼鏡用レンズの技術では、赤外線吸収剤をレンズの表面にコーティングするときに、レンズ基材の光学的特性を低下させないようにしなければならず、そのためにコーティングの層の厚さをできるだけ薄く形成すると、所望の赤外線吸収性能などの所要機能を充分に発揮できなかった。   However, in the above-described conventional spectacle lens technology, when the infrared absorbent is coated on the surface of the lens, the optical properties of the lens substrate must not be degraded, and the thickness of the layer of the coating is therefore required. If the thickness is made as thin as possible, the required functions such as the desired infrared absorption performance can not be sufficiently exhibited.

また、近眼などに対応する視力矯正用のレンズ基材に、紫外線や赤外線の吸収剤などの高価な機能性付与剤を分散保持させるとき、所要のレンズ度数を得るための研削作業によってレンズ基材の大部分が廃棄されてしまうので、これでは添加した機能性付与剤の大部分が機能を果たすことなく廃棄されてしまい、機能性付与剤の添加効率が悪く、製造コストの高騰要因になるという問題点がある。   In addition, when an expensive functional imparting agent such as an ultraviolet or infrared absorber is dispersedly held on a lens substrate for vision correction corresponding to myopia etc., the lens substrate is obtained by a grinding operation for obtaining a required lens power. Since most of the added is discarded, most of the added functionalizing agent is discarded without fulfilling its function, and the efficiency of adding the functionalizing agent is poor, which causes a rise in manufacturing costs. There is a problem.

このような問題に対し、本願の発明者らは、先の特許出願において赤外線吸収剤を含有するポリウレタン樹脂で偏光フィルムの両面を被覆して形成される偏光素子と、赤外線吸収剤の含まれていないポリウレタン樹脂で形成されてレンズ度数調整の研削に用いる眼鏡用レンズ基材とを、ポリウレタン樹脂材料のインサート成形により形成し、前記眼鏡用レンズ基材の片面に前記偏光素子を重ねたように一体化して赤外線吸収性偏光眼鏡用レンズ基材を構成した(特許文献3)。   To address such problems, the inventors of the present application have included in the earlier patent application a polarizing element formed by covering both sides of a polarizing film with a polyurethane resin containing an infrared absorber, and an infrared absorber. And the lens base material for eyeglasses used for grinding of lens power adjustment, which is formed by insert molding of polyurethane resin material, and the polarizing element is integrally formed on one side of the lens base material for eyeglasses To prepare a lens substrate for infrared absorbing polarizing glasses (Patent Document 3).

特開2001−311804号公報JP 2001-311804 A 特開2005− 43921号公報JP, 2005-43921, A 特許第5075080号公報Patent No. 5075080

しかし、前記したように偏光フィルムの両面を赤外線吸収剤を含有する樹脂で被覆して形成される偏光素子と、レンズ度数調整の研削に用いる眼鏡用レンズ基材とを、インサート成形して偏光眼鏡用レンズ基材を製造すると、偏光素子の表裏面を形成する樹脂は予め硬化されており、その上に重ねて未硬化の樹脂層を形成するので、樹脂の種類によっては積層一体化が充分に良好でない場合があり、特にジエチレングリコールビスアリルカーボネート(CR−39)は積層による一体化が不確実になりやすいという問題点がある。   However, as described above, the polarizing element is formed by covering the both sides of the polarizing film with the resin containing the infrared ray absorbing agent, and the lens base material for eyeglasses used for grinding for adjusting the lens power is inserted and molded. When lens base materials for lenses are manufactured, the resins for forming the front and back surfaces of the polarizing element are hardened in advance, and an uncured resin layer is formed on them, so that depending on the type of resin, lamination and integration may be sufficient. In some cases, it is not good, and in particular, diethylene glycol bisallyl carbonate (CR-39) has a problem that integration by lamination tends to be uncertain.

また、予め作成した偏光素子の表面の樹脂層と、インサート成形時に前記樹脂層上に重ねて形成された樹脂層との境には、成形時の樹脂の流動方向の相異や、1回以上受ける成形熱による熱履歴の相異などに起因して光学的に識別可能な界面が形成されてしまう。そして、このような眼鏡レンズを、いわゆる「度付き加工」のために前記界面に交差する研磨面を形成すると、研磨面に前記界面に沿った薄い影(レンズ全周にリング状の薄い影)が視認されてしまい、眼鏡用レンズの均一な透明感などの品質が損なわれるという問題点がある。   In addition, at the boundary between the resin layer on the surface of the polarizing element prepared in advance and the resin layer formed by being superimposed on the resin layer at the time of insert molding, the difference in the flow direction of the resin at the time of molding An optically distinguishable interface is formed due to a difference in thermal history due to the heat of molding received. Then, when such a spectacle lens forms a polished surface that intersects the interface for so-called “degree processing”, a thin shadow along the interface on the polished surface (ring-shaped thin shadow around the entire lens) Is visually recognized, and the quality such as uniform transparency of the lens for glasses is impaired.

そこで、この発明の課題は、上記した問題点を解決して、偏光レンズに積層されるレンズ基材の境界に光学的な斑が現れず界面の接着性が良好であり、しかもサーモクロミック、フォトクロミック、紫外線や赤外線の吸収などの機能性付与剤の添加効率がよく、これらの付加的機能を充分に確保できる複合機能性がある偏光レンズとすることである。
また、偏光フィルムをインサート成形(注型成形)する場合において、特に樹脂の種類を限らず、積層による接着一体化が良好な複合機能性偏光レンズとすることである。
Therefore, an object of the present invention is to solve the above-mentioned problems, optical spots do not appear at the boundary of the lens base material laminated on the polarizing lens, and the adhesiveness of the interface is good, and thermochromic and photochromic The addition of a function-imparting agent such as absorption of ultraviolet rays or infrared rays is good, and the polarizing lens has a composite functionality that can sufficiently secure these additional functions.
Moreover, when insert-molding (cast-molding) a polarizing film, the type of resin is not particularly limited, and a composite functional polarizing lens with good adhesion integration by lamination is to be obtained.

上記の課題を解決するために、この発明では、偏光フィルムの表裏両面に同時に同じ所定樹脂を主要成分とするレンズ基材層をインサート成形により一体に設け、前記偏光フィルムの表裏両面のうち一面側に設ける第1レンズ基材層に添加成分として光吸収剤を含有させ、他面側には前記光吸収剤を含まない第2レンズ基材層を設ける偏光レンズの製造方法であり、前記偏光フィルムの縁部を保持する円筒状のガスケットに前記偏光フィルムから間隔を空けて一対のモールドを液密に嵌め合わせ、前記偏光フィルムの両側に各側1つずつの樹脂注入孔を前記ガスケットの壁面を貫通させて設け、前記ガスケットの前記樹脂注入孔に対向する位置には前記ガスケットの壁面を貫通してオーバーフロー孔を開口させ、前記一対のモールドの対向面の間に形成される縦長のキャビティーの下側に位置する前記樹脂注入孔から第1レンズ基材層及び第2レンズ基材層のそれぞれの樹脂成形材料を同時に注入し、前記オーバーフロー孔からガス抜きしながら注型成形する複合機能性偏光レンズの製造方法としたのである。   In order to solve the above-mentioned problems, in the present invention, a lens substrate layer containing the same predetermined resin as a main component is simultaneously provided integrally on both the front and back sides of the polarizing film by insert molding. A method of producing a polarized lens, comprising: adding a light absorbing agent as an additive component to the first lens base layer provided in the first layer; and providing a second lens base layer not containing the light absorbing agent on the other surface side A pair of molds are liquid-tightly fitted to the cylindrical gasket holding the edge of the polarizing plate at intervals from the polarizing film, and one resin injection hole on each side is used on both sides of the polarizing film. A through hole is provided, and an overflow hole is opened through a wall surface of the gasket at a position facing the resin injection hole of the gasket, and an opposing surface of the pair of molds is provided. Respective resin molding materials of the first lens substrate layer and the second lens substrate layer are simultaneously injected from the resin injection hole located under the longitudinally long cavity formed between, and degassing from the overflow hole However, this is a method for producing a composite functional polarizing lens that is cast and molded.

上記したように構成されるこの発明の複合機能性偏光レンズは、インサート成形に用いる偏光フィルムの両面に予め樹脂を被覆して硬化させておらず、一対のモールドの対向面の間に形成される縦長のキャビティーの下側に位置する前記樹脂注入孔から第1レンズ基材層及び第2レンズ基材層のそれぞれの樹脂成形材料を同時に注入し、前記オーバーフロー孔からガス抜きしながら注型成形することにより、偏光フィルムの両面を同時に同じ所定樹脂で成形するので、このインサート成形以前に偏光フィルムとレンズ基材層を形成する所定樹脂との熱履歴や予備成形時とインサート成形時の樹脂の流動性などの差による光学的に識別可能な界面は形成されない。   In the multi-functional polarization lens of the present invention configured as described above, both surfaces of the polarizing film used for insert molding are not coated and cured with resin beforehand, and are formed between the opposing surfaces of a pair of molds The respective resin molding materials of the first lens substrate layer and the second lens substrate layer are simultaneously injected from the resin injection hole located below the vertically elongated cavity, and cast molding while degassing from the overflow hole By molding the both sides of the polarizing film simultaneously with the same predetermined resin, the heat history of the predetermined resin forming the polarizing film and the lens base layer before this insert molding, and the resin at the time of preforming and insert molding An optically distinguishable interface due to a difference in fluidity or the like is not formed.

そのため、この界面に交差する研磨面を形成しても研磨面に前記界面に沿った薄い影は形成されず、また界面の接着性は良好である。
特に所定樹脂としてジエチレングリコールビスアリルカーボネート(CR−39)を用いた場合でも偏光フィルムと基材層の一体化は確実に行える。
Therefore, even if a polished surface intersecting this interface is formed, a thin shadow along the interface is not formed on the polished surface, and the adhesion of the interface is good.
In particular, even when diethylene glycol bisallyl carbonate (CR-39) is used as the predetermined resin, the polarizing film and the substrate layer can be reliably integrated.

そして、前記偏光フィルムの表裏両面のうち一面側に設ける第1レンズ基材層に添加成分として光吸収剤を含有させ、他面側には前記光吸収剤を含まない第2レンズ基材層を設けることにより、視力矯正のための度付きレンズを形成する際に、光吸収剤を含まない第2レンズ基材層を研削加工して、光吸収剤を含む第1レンズ基材層の研削滓の量を可及的に少なくすることができ、低コストになるように効率よく光吸収剤を利用することができる。   Then, the first lens base layer provided on one side of the front and back sides of the polarizing film contains a light absorbing agent as an additive component, and the other side is a second lens base layer not containing the light absorbing agent. When forming a weighted lens for vision correction, the second lens base layer containing no light absorbing agent is ground to grind the first lens base layer containing the light absorbing agent. As a result, the light absorbing agent can be efficiently used to reduce the cost as much as possible.

このようにして、上記光吸収剤が、紫外線吸収剤、赤外線吸収剤、フォトクロミック光吸収剤またはサーモクロミック光吸収剤である複合機能性偏光レンズとすることにより、サーモクロミック、フォトクロミック、紫外線や赤外線の吸収などの機能性付与剤の添加効率がよく、これらの付加的機能を充分に確保できる複合機能性がある偏光レンズとすることができる。   In this way, by setting the light absorbing agent to a complex functional polarizing lens in which the light absorbing agent is an ultraviolet light absorbing agent, an infrared light absorbing agent, a photochromic light absorbing agent or a thermochromic light absorbing agent, thermochromic, photochromic, ultraviolet light or infrared light can be obtained. The added efficiency of the functionalizing agent such as absorption is high, and it is possible to obtain a multi-functional polarization lens capable of sufficiently securing these additional functions.

また、光吸収剤を含む第1レンズ基材層の研削滓の量をより少なくするためには、偏光フィルムの他方側の第2レンズ基材層が、光吸収剤を全く含まない前記所定樹脂からなるレンズ基材層とすることであるが、第2レンズ基材層には、第1レンズ基材層の添加成分である光吸収剤とは異なる種類の光吸収剤を含ませることもできる。   Further, in order to further reduce the amount of grinding grind of the first lens base layer containing the light absorbing agent, the second resin base layer on the other side of the polarizing film does not contain the light absorbing agent at all. The second lens base layer may contain a light absorbing agent of a type different from the light absorbing agent which is an additive component of the first lens base layer. .

例えば、第1レンズ基材層にフォトクロミック光吸収剤を含有させ、第2レンズ基材層にサーモクロミック光吸収剤を含有させた複合機能性偏光レンズにすれば、フォトクロミック光吸収剤の機能が低下する温度域でサーモクロミック光吸収剤を作用させることができ、互いの光吸収剤の欠点を補い合うようにすることもできる。   For example, if a photochromic light absorbing agent is contained in the first lens base layer and a thermochromic light absorbing agent is contained in the second lens base layer, the function of the photochromic light absorbing agent decreases. The thermochromic light absorbers can be made to act in the temperature range, and the defects of the light absorbers can be compensated for each other.

また、偏光フィルムの両面を同時に同じ所定樹脂で成形するので、この所定樹脂が、同じ樹脂同士で積層性があまり良くなく、層間の剥離しやすいアリルジグリコールカーボネート樹脂であっても上記の複合機能性偏光レンズは、積層による接着一体化が確実に行える。   In addition, since both surfaces of the polarizing film are simultaneously molded with the same predetermined resin, even if the predetermined resin is an allyl diglycol carbonate resin which is not good in lamination between the same resins and is easily peelable between layers, the above composite function The polarizing lens can be surely bonded and integrated by lamination.

この発明は、インサート成形により偏光フィルムの表裏両面に所定樹脂からなるレンズ基材層を一体に設け、偏光フィルムの一面側に光吸収剤を含有させ、他面側には前記光吸収剤を含まない複合機能性偏光レンズの製造方法としたので、偏光レンズに積層されるレンズ基材の境界に光学的な斑が現れず界面の接着性が良好であり、しかもサーモクロミック、フォトクロミック、紫外線や赤外線の吸収などの機能性付与剤の添加効率がよく、これらの付加的機能を充分に確保できる複合機能性がある偏光レンズを製造できる利点がある。   In the present invention, a lens substrate layer made of a predetermined resin is integrally provided on both sides of a polarizing film by insert molding, a light absorbing agent is contained on one side of the polarizing film, and the light absorbing agent is contained on the other side. Because there is no manufacturing method of a composite functional polarized lens, optical spots do not appear at the boundary of the lens substrate laminated to the polarized lens, and the adhesion of the interface is good. Furthermore, thermochromic, photochromic, ultraviolet light and infrared light There is an advantage that the addition efficiency of the functionalizing agent such as the absorption of the above is high, and it is possible to manufacture a polarization lens having multifunctionality that can sufficiently secure these additional functions.

また、偏光フィルムをインサート成形(注型成形)する場合において、特に樹脂の種類を限らず、積層による接着一体化が良好な複合機能性偏光レンズになる利点もある。   In addition, in the case of insert-molding (casting-forming) a polarizing film, there is an advantage that the composite functional polarizing lens is not limited to the type of resin in particular, and adhesive integration by lamination is good.

実施形態を示す複合機能性偏光レンズの断面図Sectional drawing of the composite functional polarizing lens which shows embodiment 実施形態の複合機能性偏光レンズのインサート成形に用いるガスケットの平面図Plan view of gasket used for insert molding of composite functional polarizing lens of embodiment 図2のIII−III線方向のガスケットおよびモールドの断面図Sectional view of gasket and mold in the direction of line III-III in Fig. 2 他の実施形態の複合機能性偏光レンズのインサート成形に用いるガスケットおよびモールドの断面図Sectional view of a gasket and a mold used for insert molding of a multifunctional multifunctional polarizing lens of another embodiment

この発明の実施形態を以下に、添付図面を参照して説明する。
図1〜3に示すように、実施形態は、偏光フィルム1の表裏両面に、アリルジグリコールカーボネート樹脂(PPG社製:CR−39)、ウレタン樹脂その他の所定樹脂からなるレンズ基材層をインサート成形により一体に設け、偏光フィルム1の表裏両面のうち、表面側に設ける第1レンズ基材層2に添加成分として紫外線吸収剤、赤外線吸収剤、フォトクロミック光吸収剤またはサーモクロミック光吸収剤である光吸収剤を含有させ、裏面側には前記光吸収剤を含まない第2レンズ基材層3を設けた複合機能性偏光レンズAである。
Embodiments of the invention will now be described with reference to the accompanying drawings.
As shown in FIGS. 1 to 3, in the embodiment, a lens base layer made of allyl diglycol carbonate resin (PPG: CR-39), urethane resin or other predetermined resin is inserted on both front and back surfaces of the polarizing film 1. An ultraviolet absorber, an infrared absorber, a photochromic light absorber, or a thermochromic light absorber is added as an additional component to the first lens base layer 2 provided on the front side of the polarizing film 1 on both sides of the polarizing film 1. It is a composite functional polarizing lens A in which the second lens base layer 3 containing a light absorbing agent and not containing the light absorbing agent is provided on the back surface side.

この複合機能性偏光レンズは、後述するインサート成形によって、偏光フィルム1の両面を同時に同じ所定樹脂を主要成分とする樹脂成形材料を注型成形している。
偏光フィルム1は、周知製法に従って得られるが、例えばポリビニルアルコール(PVA)製フィルムにヨウ素もしくはヨウ素化合物または染料を含浸等によって含ませ、一軸延伸したものを採用することが好ましい。
In this composite functional polarizing lens, a resin molding material containing the same predetermined resin as a main component is cast and molded on both surfaces of the polarizing film 1 by insert molding described later.
Although the polarizing film 1 is obtained according to a well-known manufacturing method, for example, it is preferable to employ a film obtained by impregnating a film made of polyvinyl alcohol (PVA) with iodine, an iodine compound, or a dye by impregnation.

偏光フィルム1は、その材質がPVAに限定されるものではなく、ポリエチレンテレフタレート(PET)またはPVA製フィルムにトリアセチルセルロースやポリカーボネートなどからなるフィルムを張り合わせた複合フィルムを用いることもできる。   The material of the polarizing film 1 is not limited to PVA, and a composite film in which a film made of polyethylene terephthalate (PET) or PVA and a film made of triacetyl cellulose, polycarbonate or the like may be used.

一軸延伸されたPVA製などの偏光フィルム1は、メニスカス型のレンズの大きさに合わせて方形状にカットされた後、周知の加圧成形(プレス成形)によって、レンズのカーブ(曲率半径)に沿うように球面形の湾曲面を成形したものにして、インサート成形に用いる。   The polarizing film 1 made of uniaxially stretched PVA or the like is cut into a square shape in accordance with the size of a meniscus lens, and then is formed into a curve (curvature radius) of the lens by well-known pressure molding (press molding). A spherical curved surface is molded along the surface and used for insert molding.

所定の樹脂としては、前記した樹脂例も含めて、眼鏡レンズの注型(キャスト)成形可能な樹脂を広く使用可能である。例えば、熱可塑性樹脂として透明性に優れるMMA(メチルメタアクリレート樹脂)やPC(ポリカーボネート樹脂)、注型タイプの熱硬化性樹脂の代表的な樹脂であるCR−39や中屈折率樹脂(例えば、日本油脂製:コーポレックス、屈折率1.56)は、その成分としてアリルジグリコールカーボネートが含まれ、またイソシアネートとポリチオールを化合させた周知の高屈折率樹脂(例えば、三井化学社製:チオウレタン系樹脂MR−7、屈折率1.67)であるチオウレタン樹脂も代表例として挙げられる。   As the predetermined resin, a resin that can be cast-molded of an eyeglass lens can be widely used, including the above-described resin examples. For example, CR-39, which is a representative resin of thermosetting resin such as MMA (methyl methacrylate resin) or PC (polycarbonate resin) having excellent transparency as a thermoplastic resin, and medium refractive index resin (for example, Nippon Oil and Fat: Coporex, refractive index 1.56) contains allyldiglycol carbonate as its component, and is a well-known high refractive index resin in which isocyanate and polythiol are combined (for example, Mitsui Chemicals, Inc .: thiourethane) As a representative example, a thiourethane resin which is a base resin MR-7 and a refractive index of 1.67) can be mentioned.

このようなレンズ基材を構成する所定の樹脂に添加される光吸収剤の例としては、紫外線吸収剤、赤外線吸収剤、フォトクロミック光吸収剤またはサーモクロミック光吸収剤が挙げられる。
このうち、紫外線吸収剤は、紫外線波長(100nm〜380nm)についての吸収性を有する周知の紫外線吸収剤を使用可能であり、具体例として、以下の化合物を挙げることができる。
(1) 2−ヒドロキシ−4−n−オクトキシベンゾフェノン
(2) 4−ドデシロキシ−2−ヒドロキシベンゾフェノン
(3) 2−2´−ヒドロキシ−4−メトキシベンゾフェノン
Examples of the light absorber added to the predetermined resin that constitutes such a lens substrate include an ultraviolet absorber, an infrared absorber, a photochromic light absorber, and a thermochromic light absorber.
Among these, the ultraviolet absorber can use the well-known ultraviolet absorber which has the absorptivity about an ultraviolet wavelength (100 nm-380 nm), and can mention the following compounds as a specific example.
(1) 2-hydroxy-4-n-octoxybenzophenone
(2) 4-Dodecyloxy-2-hydroxybenzophenone
(3) 2-2'-hydroxy-4-methoxybenzophenone

これらの紫外線吸収剤を用いる際には、波長の長いUV−A(315〜400nm)と波長の短いUV−B(280〜315nm)とそれ以下のUV−C(100〜280nm)の全ての紫外線を吸収させることが好ましい。   When using these UV absorbers, all UV rays of long UV-A (315 to 400 nm), short UV-B (280 to 315 nm) and UV-C (100 to 280 nm) below it Is preferably absorbed.

紫外線吸収剤の添加量は、レンズ基材を構成する樹脂材料100重量部に対して、0.01〜4重量部、好ましくは0.1〜4.0重量部、より好ましくは0.2〜0.5重量部の範囲が、添加効率よく紫外線吸収性を発揮するので適している。   The amount of the ultraviolet absorber added is 0.01 to 4 parts by weight, preferably 0.1 to 4.0 parts by weight, and more preferably 0.2 to 40 parts by weight with respect to 100 parts by weight of the resin material constituting the lens substrate. A range of 0.5 parts by weight is suitable because it exhibits ultraviolet absorption with high addition efficiency.

また、赤外線吸収剤は、赤外線波長(780nm〜2500nm)について、吸収性を有する周知の赤外線吸収剤を使用可能であり、例えば以下の化合物が挙げられる。
(1) N,N,N´,N´−テトラキス(p-置換フェニル)-p−フェニレンジアミン類、
ベンジジン類及びそれらのアルミニウム塩、ジイモニウム塩からなる赤外線吸収剤。
(2) N,N,N´,N´−テトラアリールキノンジイモニウム塩類。
(3) ビス−(p-ジアルキルアミノフェニル)〔N,N-ビス(p-ジアルキルアミノフェニル)p
-アミノフェニル〕アミニウム塩。
赤外線吸収剤の添加量は、レンズを構成する樹脂材料100重量部に対して、通常0.05〜10重量部、遮光保護具以外の用途に使用する場合には0.1〜1.0重量部の範囲が適している。
Moreover, the infrared absorber can use the well-known infrared absorber which has absorption about infrared wavelength (780 nm-2500 nm), for example, the following compounds are mentioned.
(1) N, N, N ', N'-tetrakis (p-substituted phenyl) -p-phenylenediamines,
Infrared absorbers comprising benzidines and their aluminum salts and dimonium salts.
(2) N, N, N ', N'-tetraarylquinone diimmonium salts.
(3) Bis- (p-dialkylaminophenyl) [N, N-bis (p-dialkylaminophenyl) p
-Aminophenyl] aminium salt.
The addition amount of the infrared absorber is usually 0.05 to 10 parts by weight with respect to 100 parts by weight of the resin material constituting the lens, and 0.1 to 1.0 weight when used for applications other than the light shielding protective device The range of parts is suitable.

また、フォトクロミック光吸収剤は、フォトクロミック化合物とも称されるものであり、例えば周知のスピロオキサジン系化合物やテトラ(またはヘキサ)ベンゾペロピレン系の化合物が挙げられる。
スピロオキサジン系化合物は、短波長の紫外線により耐候性が弱まる傾向が認められ、微粒子状のスピロオキサジン系化合物を遮光性無機質皮膜で包んで樹脂マトリックス中に分散させることによって耐候性のある態様で用いることができる(特開昭63−175071号公報)。
The photochromic light absorber is also referred to as a photochromic compound, and examples thereof include well-known spirooxazine compounds and tetra (or hexa) benzoperopyrene compounds.
The spirooxazine compound tends to weaken the weatherability by ultraviolet light of a short wavelength, and is used in a weatherproof aspect by wrapping the fine particle spirooxazine compound in a light shielding inorganic film and dispersing it in a resin matrix. (Japanese Patent Application Laid-Open No. 63-175071).

特に、フォトクロミック性によるレンズの消色に要する応答時間を可及的に短くすると共に、紫外線による性能劣化を抑制して耐候性のあるフォトクロミックレンズとするためには、樹脂製レンズ100質量部に対し、スピロオキサジン系フォトクロミック化合物、好ましくは化1の式で示されるスピロオキサジン系フォトクロミック化合物0.03〜0.2質量部をテトラヒドロフランに溶解した状態で混合し、均一分散させることが好ましい。   In particular, in order to shorten the response time required for decoloring of the lens due to the photochromic property as much as possible and to suppress the performance deterioration due to ultraviolet light to obtain a photochromic lens having weather resistance, 100 parts by mass of the resin lens It is preferable that a spirooxazine-based photochromic compound, preferably 0.03 to 0.2 parts by mass of the spirooxazine-based photochromic compound represented by the formula 1 is dissolved in tetrahydrofuran and mixed and uniformly dispersed.

Figure 0006553157
Figure 0006553157

上記のフォトクロミック化合物は、テトラヒドロフランに溶解することにより、樹脂中に均一に分散するから、そのように分散したレンズでは、その表面から通常約0.5mmの深度まで浸入した紫外線によって劣化する場合があるが、樹脂の深部までは劣化し難い。そのため、レンズ全体としては耐候性のある特性を備えたフォトクロミックレンズになる。   The above photochromic compound is uniformly dispersed in the resin by being dissolved in tetrahydrofuran, so in the case of such a dispersed lens, it may be deteriorated by ultraviolet light that has penetrated to a depth of about 0.5 mm from the surface However, it does not easily deteriorate to the deep part of the resin. Therefore, the lens as a whole becomes a photochromic lens provided with weather resistant characteristics.

また、サーモクロミック光吸収剤は、温度に依存して光吸収性が変化する化合物であり、そのような特性を有するサーモクロミック化合物としては、ロイコ染料及び液晶粒子が挙げられる。
サーモクロミック液晶の具体例としては、ノナン酸コレステリル及びシアノビフェニルが挙げられる。ロイコ染料の例としては、スピロラクトン、フルオラン、スピロピラン、フルギド、及びこれらの組み合わせが挙げられる。重合可能な混合物に液晶及びロイコ染料をマイクロカプセル化して混合してもよい。
Thermochromic light absorbers are compounds whose light absorption changes depending on temperature, and examples of thermochromic compounds having such properties include leuco dyes and liquid crystal particles.
Specific examples of the thermochromic liquid crystal include cholesteryl nonanoate and cyanobiphenyl. Examples of leuco dyes include spirolactone, fluoran, spiropyran, fulgide, and combinations thereof. The liquid crystal and leuco dye may be microencapsulated and mixed in the polymerizable mixture.

使用されるサーモクロミック化合物の量は、レンズ基材の材量やレンズの厚みに応じて特定の波長での透過率(%)の低減を達成するように効果的な量に調整できる。   The amount of thermochromic compound used can be adjusted to an effective amount to achieve a reduction of the transmission (%) at a specific wavelength depending on the amount of material of the lens substrate and the thickness of the lens.

この発明で実施されるインサート成形について、以下に説明する。
図2、3に示すように、レンズ基材中に埋め込むように偏光フィルム1をインサート成形するには、シリコーン樹脂などの柔軟性のある軟質樹脂で形成された円筒状のガスケット4の内周面から内側に突出して設けられている環状凸部5の側面に、レンズのカーブ(曲率半径)に沿うように球面形に湾曲した円盤状の偏光フィルム1の周縁部を係止し、さらにその周縁部にガスケット4の内周面に押入れられた係止用リング6を重ね、ガスケット4に弾性力で保持された係止用リング6と環状凸部5の間に偏光フィルム1の縁部を挟んで保持する。
The insert molding implemented in the present invention will be described below.
As shown in FIGS. 2 and 3, in order to insert-mold the polarizing film 1 so as to be embedded in the lens base material, the inner peripheral surface of a cylindrical gasket 4 formed of a flexible soft resin such as a silicone resin. The peripheral portion of the disk-shaped polarizing film 1 curved in a spherical shape along the curve (curvature radius) of the lens is locked to the side surface of the annular convex portion 5 provided so as to protrude inward from the The locking ring 6 pushed into the inner peripheral surface of the gasket 4 is overlapped with the portion, and the edge of the polarizing film 1 is sandwiched between the locking ring 6 held by the gasket 4 with an elastic force and the annular convex portion 5. Hold on.

円筒状のガスケット4の軸方向における偏光フィルム1の両側には、樹脂注入孔7、8が各側1つずつガスケット4の壁面を貫通しており、さらに樹脂注入孔7、8の対向する位置には、前記壁面を貫通してオーバーフロー孔9、10が開口している。
レンズ形状に合わせた凹型面と凸型面が対向配置できる一対のモールド11、12は、このようなガスケット4に偏光フィルム1と適当な間隔を空けるように配置して液密に嵌め合わされ、軸方向からばねクリップ13などで挟んで弾性的に固定される。
モールド11の凹型面と偏光フィルム1の凸型面との隙間は、例えば約1mm程度に、または必要があれば約2〜5mm程度に設定でき、モールド12の凸型面と偏光フィルム1の凹型面との隙間は、例えばセミ品では8〜18mm程度、またはプラノ品では1〜10mm程度に設定できる。
On both sides of the polarizing film 1 in the axial direction of the cylindrical gasket 4, resin injection holes 7, 8 penetrate the wall surface of the gasket 4, one on each side, and the resin injection holes 7, 8 face each other. Overflow holes 9 and 10 are opened through the wall surface.
A pair of molds 11 and 12 in which a concave surface and a convex surface matched to the lens shape can be arranged opposite to each other are liquid-tightly fitted to such a gasket 4 so as to be spaced apart from the polarizing film 1 by an appropriate distance. It is elastically fixed by being sandwiched by spring clips 13 and the like from the direction.
The gap between the concave surface of the mold 11 and the convex surface of the polarizing film 1 can be set to, for example, about 1 mm, or about 2 to 5 mm if necessary, and the concave surface of the mold 12 and the concave shape of the polarizing film 1 can be set. The gap with the surface can be set to, for example, about 8 to 18 mm in a semi-finished product or about 1 to 10 mm in a plano product.

そして、図3に示すように樹脂注入孔7、8が下側に位置するようにし、2つのモールドの対向面の間に形成される縦長のキャビティーに、2つの樹脂注入孔7、8のうち、レンズ表面側の樹脂注入孔7には添加成分として光吸収剤を配合して脱気処理した樹脂材料を注入し、この注入と同時にレンズ裏面側の樹脂注入孔8には前記光吸収剤を含まないで脱気処理した樹脂材料を注入し、これらはオーバーフロー孔9、10からそれぞれガス抜きをしながらキャビティ内に完全に充填し、次いで加熱養生を行なって、それぞれの樹脂材料を重合および硬化させることにより、特定の光吸収機能と偏光機能を併有する複合機能性偏光レンズのインサート成形ができる。   Then, as shown in FIG. 3, the resin injection holes 7 and 8 are positioned on the lower side, and the two resin injection holes 7 and 8 are formed in the vertically long cavity formed between the opposing surfaces of the two molds. Among them, the resin injection hole 7 on the lens surface side is mixed with a light absorbing agent as an additive component, and a degassed resin material is injected. Simultaneously with this injection, the light absorbing agent is injected to the resin injection hole 8 on the lens back side. The resin materials deaerated without containing water are injected, these are completely filled in the cavity while degassing from the overflow holes 9 and 10 respectively, and then heat curing is performed to polymerize the respective resin materials and By curing, it is possible to insert-mold a composite functional polarizing lens having both a specific light absorbing function and a polarizing function.

このように構成されたインサート成形用の型を用いると、偏光フィルムの表裏両面のうち一面側に設ける第1レンズ基材層に添加成分として光吸収剤を含有させ、他面側には前記光吸収剤を含まない第2レンズ基材層を設けることができ、偏光フィルム1をレンズ基材2、3と一体化させて、様々な機能を有する複合機能性偏光レンズを製造することができる。   When the mold for insert molding configured in this way is used, the first lens base material layer provided on one of the front and back sides of the polarizing film contains a light absorbing agent as an additive component, and the light is provided on the other side. A second lens substrate layer not containing an absorbent can be provided, and the polarizing film 1 can be integrated with the lens substrates 2 and 3 to produce a composite functional polarizing lens having various functions.

また、図4に示すように、上記とは形態の異なる2つ一組で用いるガスケット14、15を用いてインサート成形することもできる。
すなわち、レンズの凸型面形成用のモールド16とこれを保持するリング状のガスケット14とを一組として用い、またレンズの凹型面形成用のモールド17とこれを保持するリング状のガスケット15とを他の一組として、これらのガスケット14、15には、それぞれ樹脂注入孔18、19とオーバーフロー孔20、21を形成し、前記ガスケット14、15のモールド保持側と反対側の面を対向させて、対向面間に偏光フィルム1の縁部を挟んで保持し、ばねクリップ13などで固定しておく。
そして、このようなガスケット14、15とモールド16、17を用いることの他は、上記同様にして、偏光フィルム1を第1レンズ基材層2、第2レンズ基材層3と一体化させて、様々な機能を有する複合機能性偏光レンズを製造することができる。
Moreover, as shown in FIG. 4, insert molding can also be performed using the gaskets 14 and 15 used by two sets from which the form differs from the above.
That is, a mold 16 for forming a convex surface of a lens and a ring-shaped gasket 14 for holding the mold are used as a set, and a mold 17 for forming a concave surface of the lens and a ring-shaped gasket 15 for holding the same. As another set, the gaskets 14 and 15 are respectively formed with resin injection holes 18 and 19 and overflow holes 20 and 21, and the gaskets 14 and 15 are opposed to the mold holding side. And hold the edge of the polarizing film 1 between the facing surfaces and fix it with a spring clip 13 or the like.
Then, the polarizing film 1 is integrated with the first lens base layer 2 and the second lens base layer 3 in the same manner as described above except that the gaskets 14 and 15 and the molds 16 and 17 are used. , Complex functional polarized lenses having various functions can be manufactured.

[実施例1]
上述したインサート成形工程により、偏光フィルムの両面に対し所定樹脂を主要成分とし、第1レンズ基材層に添加成分として光吸収剤を含有させ、他面側には前記光吸収剤を含まない第2レンズ基材層を設けるように、2つのゲートから各樹脂成形材料を同時に注型成形して複合機能性偏光レンズを製造した。
Example 1
By the insert molding process described above, the predetermined resin is a main component on both sides of the polarizing film, the first lens base layer contains a light absorber as an additive component, and the other side does not contain the light absorber. Each resin molding material was cast-molded simultaneously from two gates so as to provide a two-lens substrate layer, to manufacture a multi-functional polarization lens.

すなわち、フォトクロミック光吸収剤(染料)を凸面側の第1レンズ基材層に添加し、このフォトクロミック光吸収剤に代えてサーモクロミック染料を凹面側の第2レンズ基材層に含ませた複合機能性眼鏡レンズ(視力矯正用眼鏡レンズ(セミ品)またはプラノ(平面)用眼鏡レンズを作製した。   That is, a composite function in which a photochromic light absorber (dye) is added to the convex first side lens substrate layer, and a thermochromic dye is contained in the concave second side lens substrate layer instead of the photochromic light absorber. An eyeglass lens (eyeglass lens for vision correction (semi product) or a spectacle lens for plano (planar) was produced.

第1レンズ基材層については、ポリイソシアネートとポリヒドロキシ化合物を反応させたプレポリマー(紫外線吸収剤無添加)100質量部に対し、化1の式で示されるスピロオキサジン系フォトクロミック化合物(山田化学工業社製:PSP−33、赤紫色)を0.05質量部、青緑色のスピロオキサジン系フォトクロミック化合物(山田化学工業社製:PSP−54)を0.02質量部、橙色のフォトクロミック化合物(山田化学工業社製:PSP−92)を0.06質量部の割合でTHF(テトラヒドロフラン)に溶解させてからプレポリマーに添加し、混合・撹拌して真空脱気した。次いで、前記プレポリマーには、当量分の硬化剤として芳香族ポリアミン(MOCA)を添加して樹脂材料とした。   For the first lens substrate layer, a spirooxazine-based photochromic compound represented by the formula 1 with respect to 100 parts by mass of a prepolymer (no ultraviolet absorber added) in which polyisocyanate and polyhydroxy compound are reacted (Yamada Chemical Co., Ltd. Product: PSP-33, reddish purple) 0.05 parts by mass, blue-green spirooxazine-based photochromic compound (Yamada Chemical Industry Co., Ltd .: PSP-54) 0.02 parts by mass, orange photochromic compound (Yamada Chemical A product manufactured by Kogyo Co., Ltd .: PSP-92) was dissolved in THF (tetrahydrofuran) in a proportion of 0.06 parts by mass, and then added to the prepolymer, mixed and stirred, and vacuum degassed. Subsequently, to the prepolymer, an aromatic polyamine (MOCA) was added as a curing agent for an equivalent amount to obtain a resin material.

また、第2レンズ基材層については、第1レンズ基材層に用いたポリウレタンプレポリマーを用い、フォトクロミック光吸収剤に代えて、サーモクロミック化合物(ノナン酸コレステリル等)を配合したこと以外は同様にして樹脂材料とした。   The second lens base layer is the same as the first lens base layer except that a thermochromic compound (such as cholesteryl nonanoate) is blended instead of the photochromic light absorber using the polyurethane prepolymer used in the first lens base layer. And used as a resin material.

注型成形では、実施形態で説明した構造のガラス製モールドのキャビティ内に第1レンズ基材層用または第2レンズ基材層用のそれぞれの樹脂成形材料を注入して、40℃で3時間維持した後、徐々に加熱して昇温し、100℃で24時間キュアした後、冷却して前記モールドから取り出し、複合機能性眼鏡用偏光レンズを得た。   In cast molding, each resin molding material for the first lens base layer or the second lens base layer is injected into the cavity of the glass mold having the structure described in the embodiment, and the resin molding material is injected at 40 ° C. for 3 hours After maintaining, the temperature was gradually raised to raise the temperature, and after curing for 24 hours at 100 ° C., it was cooled and taken out from the mold to obtain a polarizing lens for multifunctional spectacles.

このように製造されたサーモクロミック層を併用する複合機能性眼鏡用偏光レンズは、従来のフォトクロミック光レンズでは、高温(30℃以上)になると、フォトクロ性能が大幅にダウンする欠点があったが、30℃以上の高温で使用した場合も明暗差が保持され、耐候性試験後においてもその性能は維持されていた。   Although the polarizing lens for multi-functional spectacles using the thermochromic layer manufactured together in this way has a drawback that the photochromic performance is significantly lowered at high temperature (30 ° C. or higher) in the conventional photochromic light lens. Even when used at a high temperature of 30 ° C. or higher, the contrast was maintained, and the performance was maintained even after the weathering test.

[実施例2]
実施例1において、凸面層の第1レンズ基材層を成形するポリウレタンプレポリマーにフォトクロミック化合物に代えて赤外線吸収剤のジイモニウム系化合物(日本化薬社製:IRG−022)を1質量%添加したこと、および凹面層の第2レンズ基材層は光吸収剤は何も添加せず透明なポリウレタンプレポリマーを用いたことの他は、実施例1と全く同様にして複合機能性眼鏡用偏光レンズを注型成形した。
Example 2
In Example 1, in place of the photochromic compound, 1% by mass of a diimmonium-based compound of infrared absorber (manufactured by Nippon Kayaku Co., Ltd .: IRG-022) was added to the polyurethane prepolymer for forming the first lens substrate layer of the convex layer. In addition, the second lens substrate layer of the concave surface layer is a polarizing lens for composite functional glasses in exactly the same manner as in Example 1 except that no light absorber was added and a transparent polyurethane prepolymer was used. Was cast.

得られた複合機能性眼鏡レンズは、従来の2段重合による注型成形(特許文献3の実施形態)で得られたものより約半分の肉厚にまで薄くなっており、しかも視力矯正のための度付き研磨を施してもリング状の斑は生じなかった。   The multi-functional spectacle lens obtained is thinner to about half the thickness obtained by cast molding by conventional two-step polymerization (embodiment of Patent Document 3), and for correction of vision. No ring-like spots were produced even after polishing with a degree of.

[実施例3]
実施例2において、ポリウレタンプレポリマーに代えて、アリルジグリコールカーボネート樹脂(CR39)を用いて注型成形し、30℃で7時間維持した後、徐々に加熱して昇温し、80〜100℃で8時間キュアしたことの他は、実施例2と全く同様にして複合機能性眼鏡用偏光レンズを注型成形した。
[Example 3]
In Example 2, in place of the polyurethane prepolymer, it is cast-molded using allyl diglycol carbonate resin (CR 39) and maintained at 30 ° C. for 7 hours, then heated gradually to raise the temperature, 80-100 ° C. In the same manner as in Example 2 except for curing for 8 hours, a polarizing lens for multifunctional spectacles was cast and molded.

得られた複合機能性眼鏡用偏光レンズは、アリルジグリコールカーボネート樹脂(CR39)を用いているにもかかわらず、凸面層、凹面層および偏光フィルムの積層一体化が良好で層間に全く剥がれのないものであり、また全層に交差する研磨面を形成しても研磨面に界面に沿う薄い影は全く認められず、品質良好なものであった。   Although the obtained polarizing lens for multifunctional glasses for eyeglasses uses allyldiglycol carbonate resin (CR 39), the lamination integration of the convex layer, the concave layer and the polarizing film is good and there is no peeling between layers Also, even when forming a polished surface intersecting all layers, no thin shadow along the interface was observed on the polished surface, and the quality was good.

[比較例1]
実施例1においては、フォトクロミック光吸収剤(染料)を凸面側の第1レンズ基材層に添加し、このフォトクロミック光吸収剤に代えてサーモクロミック染料を凹面側の第2レンズ基材層に含ませたが、この構成に代えてフォトクロミック染料とサーモクロミック染料を混合して凸面側の第1レンズ基材層に添加し、それ以外は全く同様にして複合機能性眼鏡用偏光レンズを作製した。
Comparative Example 1
In Example 1, a photochromic light absorber (dye) is added to the first lens substrate layer on the convex surface side, and a thermochromic dye is contained in the second lens substrate layer on the concave surface side instead of the photochromic light absorber. However, instead of this configuration, a photochromic dye and a thermochromic dye were mixed and added to the convex first lens substrate layer, and otherwise a polarizing lens for a multifunctional spectacles was produced in the same manner.

得られた比較例1の偏光レンズは、初期には30℃以上の高温でも所期した光吸収性を示したが、戸外で紫外線に1カ月近く曝されると、その性能はフォトクロミック染料単体を添加したものと同程度まで劣化してしまった。   The polarizing lens of Comparative Example 1 obtained in the initial stage showed desired light absorbability even at high temperatures of 30 ° C. or higher, but when exposed to ultraviolet light outdoors for nearly a month, its performance is that of the photochromic dye alone. It has deteriorated to the same extent as the added one.

[比較例2]
実施例1に用いたウレタン樹脂と同じ耐衝撃性ウレタンで、肉厚10mmの透明レンズを予め製造した。肉厚は8mm〜20mmの範囲で、種々のカーブ(1カーブ、2カーブ、4カーブ、6カーブ、8カーブなど)の透明レンズを作製した。
Comparative Example 2
A transparent lens having a thickness of 10 mm was manufactured in advance using the same impact resistant urethane as the urethane resin used in Example 1. Transparent lenses with various curves (one curve, two curves, four curves, six curves, eight curves, etc.) were manufactured in a thickness range of 8 mm to 20 mm.

そして、ガラスモールド(雄型と雌型)にガスケットをセットする際に、予め製造した前記透明レンズを凹面側にセットし、約2mm厚の偏光レンズ部分の両側約1mmづつの耐衝撃性ウレタンに赤外線吸収剤を1質量%添加して注型成形した。   Then, when setting the gasket in the glass mold (male type and female type), set the previously manufactured transparent lens on the concave side, and use about 1 mm of impact resistant urethane on both sides of the polarized lens part of about 2 mm thickness. Casting was performed by adding 1% by mass of an infrared absorber.

このように2回の注型2段成形(2段重合とも呼ばれる)で作製したレンズは、所要の視力矯正のために、機能性層と透明層の界面を交差する研磨面を形成すると、いずれのカーブのレンズでも前記界面に沿う薄い影(透明状のリング)が視認された。   In this way, a lens produced by two cast two-step molding (also called two-step polymerization) forms an abrasive surface that intersects the interface between the functional layer and the transparent layer for the purpose of the required vision correction. The light shadow (transparent ring) along the interface was visually recognized even with the lens of the curve.

[比較例3]
アリルジグリコールカーボネート樹脂(CR39)を用いて肉厚10mmの透明レンズを、肉厚8mm〜20mmの範囲で種々のカーブ(1カーブ、2カーブ、4カーブ、6カーブ、8カーブなど)の透明レンズを作製した。
次いで、インサート成形用のガラスモールド(雄型と雌型)にガスケットをセットする際に、前記透明レンズをモールドの代用にして凹面側にセットし、約2mm厚の偏光レンズ部分の両側約1mmづつのCR39モノマーに、実施例2同様に光吸収剤を添加して注型成形した。
Comparative Example 3
Transparent lens of 10 mm thickness using allyl diglycol carbonate resin (CR39), transparent lens of various curves (1 curve, 2 curves, 4 curves, 6 curves, 8 curves etc.) in the thickness range of 8 mm to 20 mm Was made.
Next, when setting the gasket in a glass mold (male and female molds) for insert molding, the transparent lens is set on the concave side instead of the mold, and about 1 mm on each side of the polarized lens part of about 2 mm thickness A light absorber was added to the CR39 monomer of the same as in Example 2 and cast molded.

このように2回の注型2段成形(2段重合とも呼ばれる)で作製したレンズは、一時的にはきれいに積層一体化されたように見えたが、常温でしばらく放置しておくと凸面層、凹面層および偏光フィルムの層間が簡単に剥離してしまい、使用不可能な状態であった。   The lens thus produced by two-step casting two-step molding (also called two-step polymerization) temporarily appeared to be neatly laminated and integrated, but when left at room temperature for a while, the convex layer The layer between the concave layer and the polarizing film was easily peeled off and was in an unusable state.

1 偏光フィルム
2 第1レンズ基材層
3 第2レンズ基材層
4、14、15 ガスケット
5 環状凸部
6 係止用リング
7、8、18、19 樹脂注入孔
9、10、20、21 オーバーフロー孔
11、12、16、17 モールド
13 ばねクリップ
A 複合機能性偏光レンズ
DESCRIPTION OF SYMBOLS 1 Polarizing film 2 1st lens base material layer 3 2nd lens base material layer 4, 14, 15 Gasket 5 Annular convex part 6 Ring 7 for locking, 8, 18, 19 Resin injection hole 9, 10, 20, 21 Overflow Holes 11, 12, 16, 17 Mold 13 Spring Clip A Multifunctional Polarizing Lens

Claims (3)

偏光フィルムの表裏両面に同時に同じ所定樹脂を主要成分とするレンズ基材層をインサート成形により一体に設け、前記偏光フィルムの表裏両面のうち一面側に設ける第1レンズ基材層を構成する所定樹脂100質量部に対して、スピロオキサジン系フォトクロミック化合物を0.03〜0.2質量部含有させ、他面側には前記スピロオキサジン系フォトクロミック化合物を含まない第2レンズ基材層を設ける偏光レンズの製造方法であり、
前記偏光フィルムの縁部を保持する円筒状のガスケットに前記偏光フィルムから間隔を空けて一対のモールドを液密に嵌め合わせ、前記偏光フィルムの両側に各側1つずつの樹脂注入孔を前記ガスケットの壁面を貫通させて設け、前記ガスケットの前記樹脂注入孔に対向する位置には前記ガスケットの壁面を貫通してオーバーフロー孔を前記各側に1つずつ開口させ、前記一対のモールドの対向面の間に形成される縦長のキャビティーの下側に位置する前記樹脂注入孔から第1レンズ基材層及び第2レンズ基材層のそれぞれの樹脂成形材料を同時に注入し、前記オーバーフロー孔からガス抜きしながら注型成形する複合機能性偏光レンズの製造方法。
Predetermined resin constituting the first lens base layer provided on one side of both the front and back sides of the polarizing film by integrally forming a lens base layer having the same predetermined resin as a main component at the same time on both front and back sides of the polarizing film per 100 parts by mass, a spirooxazine photochromic compound is contained 0.03 to 0.2 parts by weight, on the other side of the polarizing lens providing the second lens substrate layer not including the spirooxazine photochromic compound Manufacturing method,
A pair of molds are liquid-tightly fitted to a cylindrical gasket that holds the edge of the polarizing film, spaced from the polarizing film, and one resin injection hole on each side of the polarizing film. The wall surface of the gasket is provided at a position facing the resin injection hole, and one overflow hole is opened on each side through the wall surface of the gasket. The resin molding materials of the first lens base material layer and the second lens base material layer are simultaneously injected from the resin injection hole located below the vertically long cavity formed therebetween, and the gas is vented from the overflow hole. Manufacturing method of multi-functional polarization lens which casts while molding.
上記所定樹脂100質量部に対してスピロオキサジン系フォトクロミック化合物を0.03〜0.2質量部含有させることが、上記所定樹脂100質量部に対してスピロオキサジン系フォトクロミック化合物0.03〜0.2質量部をテトラヒドロフランに溶解した状態で混合し、均一分散して含有させることである請求項1に記載の複合機能性偏光レンズの製造方法。   The spirooxazine-based photochromic compound 0.03 to 0.2 per 100 parts by mass of the predetermined resin may be obtained by containing 0.03 to 0.2 parts by mass of the spirooxazine-based photochromic compound per 100 parts by mass of the predetermined resin. The method for producing a composite functional polarizing lens according to claim 1, wherein the mass part is mixed in a state of being dissolved in tetrahydrofuran, and dispersed uniformly. 第2レンズ基材層にサーモクロミック光吸収剤を含有させる請求項1または2に記載の複合機能性偏光レンズの製造方法。   The method for producing a composite functional polarizing lens according to claim 1, wherein the second lens base layer contains a thermochromic light absorber.
JP2017232721A 2017-12-04 2017-12-04 Method of manufacturing multi-functional polarization lens Active JP6553157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017232721A JP6553157B2 (en) 2017-12-04 2017-12-04 Method of manufacturing multi-functional polarization lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017232721A JP6553157B2 (en) 2017-12-04 2017-12-04 Method of manufacturing multi-functional polarization lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013203964A Division JP2015069045A (en) 2013-09-30 2013-09-30 Multi-functional polarized lens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019037362A Division JP2019117390A (en) 2019-03-01 2019-03-01 Composite functional polarized lens

Publications (2)

Publication Number Publication Date
JP2018072851A JP2018072851A (en) 2018-05-10
JP6553157B2 true JP6553157B2 (en) 2019-07-31

Family

ID=62115373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017232721A Active JP6553157B2 (en) 2017-12-04 2017-12-04 Method of manufacturing multi-functional polarization lens

Country Status (1)

Country Link
JP (1) JP6553157B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113811430B (en) 2019-05-16 2023-10-31 三井化学株式会社 Injection molding device, injection molding method using the same, method for producing molded body, and laminated lens

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235113A (en) * 1985-04-12 1986-10-20 Asahi Glass Co Ltd Manufacture of composite plastic
JPS6218225A (en) * 1985-07-16 1987-01-27 Mikasa Kogyo Kk Manufacture of composite lens made of synthetic resin and its gasket for manufacture
JP3073556B2 (en) * 1991-07-31 2000-08-07 ホーヤ株式会社 Method for manufacturing photochromic plastic lens
JP3481183B2 (en) * 2000-05-02 2003-12-22 タレックス光学工業株式会社 Plastic polarized lens and manufacturing method thereof
JP3756098B2 (en) * 2000-10-13 2006-03-15 タレックス光学工業株式会社 Polyurethane resin material composition for casting and impact-resistant optical lens
JP4590311B2 (en) * 2004-06-08 2010-12-01 Hoya株式会社 Plastic lens manufacturing method, plastic lens molding gasket, plastic lens molding mold, plastic lens raw material liquid injection jig, plastic lens molding mold holder, and plastic lens manufacturing apparatus
JP2006082421A (en) * 2004-09-16 2006-03-30 Olympus Corp Method and apparatus for producing optical element
US20100141890A1 (en) * 2007-05-04 2010-06-10 Federico Menta Method for manufacturing an optical element made of thermosetting plastic material for use in eye-protecting devices and optical element thus obtained
JP5075080B2 (en) * 2008-10-02 2012-11-14 タレックス光学工業株式会社 Infrared absorptive lens substrate
JP2011145341A (en) * 2010-01-12 2011-07-28 Talex Optical Co Ltd Allyldiglycol carbonate resin lens for eyeglasses
US8877103B2 (en) * 2010-04-13 2014-11-04 Johnson & Johnson Vision Care, Inc. Process for manufacture of a thermochromic contact lens material
KR20150043556A (en) * 2010-08-12 2015-04-22 미쓰이 가가쿠 가부시키가이샤 Plastic polarizing lens, method for producing same, and polarizing film
EP3447563A1 (en) * 2011-10-20 2019-02-27 Oakley, Inc. Eyewear with chroma enhancement
JP2013109257A (en) * 2011-11-24 2013-06-06 Talex Optical Co Ltd Antiglare high-contrast resin lens

Also Published As

Publication number Publication date
JP2018072851A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP2015069045A (en) Multi-functional polarized lens
US10267966B2 (en) Composite functional polarized lens
US7002744B2 (en) Polarized optical part using high impact polyurethane-based material
EP2049938B1 (en) Molded laminate for optical use and method for its manufacture
US7036932B2 (en) Laminated functional wafer for plastic optical elements
WO2012035885A1 (en) Light-blocking lenses for safety glasses
US7035010B2 (en) Polarized lenses with variable transmission
US10444547B2 (en) Functional laminated spectacle lens having functional layer formed by spin-coating
JP5075080B2 (en) Infrared absorptive lens substrate
US11067834B2 (en) High refractive index polarized spectacle lens
US8474973B2 (en) Infrared absorbing polarized eyeglass lens
US11754860B2 (en) Photochromic lens with laminated film, method for producing a photochromic lens, and a spectacle frame
JP2009139964A5 (en)
JP6553157B2 (en) Method of manufacturing multi-functional polarization lens
JP2019117390A (en) Composite functional polarized lens
WO2021235121A1 (en) Functional polarization element for insert molding and functional polarization lens
CN112219157A (en) Color enhanced lens
EP1941319A2 (en) Photochromic lens
CN114174055A (en) Method for making photochromic optical articles

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190301

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190703

R150 Certificate of patent or registration of utility model

Ref document number: 6553157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250