JP2015069045A - Multi-functional polarized lens - Google Patents

Multi-functional polarized lens Download PDF

Info

Publication number
JP2015069045A
JP2015069045A JP2013203964A JP2013203964A JP2015069045A JP 2015069045 A JP2015069045 A JP 2015069045A JP 2013203964 A JP2013203964 A JP 2013203964A JP 2013203964 A JP2013203964 A JP 2013203964A JP 2015069045 A JP2015069045 A JP 2015069045A
Authority
JP
Japan
Prior art keywords
lens
resin
polarizing
lens base
light absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013203964A
Other languages
Japanese (ja)
Inventor
皖一 田村
Kanichi Tamura
皖一 田村
祥一 光内
Shoichi Mitsuuchi
祥一 光内
憲三 和田
Kenzo Wada
憲三 和田
竜午 新田
Ryugo Nitta
竜午 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Talex Optical Co Ltd
Original Assignee
Talex Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Talex Optical Co Ltd filed Critical Talex Optical Co Ltd
Priority to JP2013203964A priority Critical patent/JP2015069045A/en
Publication of JP2015069045A publication Critical patent/JP2015069045A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates

Abstract

PROBLEM TO BE SOLVED: To provide a multi-functional polarized lens which is free from optical spots appearing at boundaries between lens base materials laminated in the polarized lens, has boundary surfaces with good adhesion, exhibits good doping efficiency of functionality-imparting agents for functions such as thermochromic property, photochromic property, ultraviolet or infrared absorption, and is capable of sufficiently securing those additional functions.SOLUTION: A multi-functional polarized lens A includes a polarized film 1 with lens base material layers made of a prescribed resin, such as an allyl diglycol carbonate resin (CR-39 (R) made by PPG industries), urethane resin, or the like, integrally formed on both front and back surfaces of the polarized film 1, respectively, by mean of insert molding. Out of the front and back surfaces of the polarized film 1, the front surface side is formed with a first lens base material layer 2 containing a light absorbent, which may be an ultraviolet light absorbent, infrared light absorbent, photochromic light absorbent, or thermochromic light absorbent, as an additive component, while the back surface side is formed with a second lens substrate layer 3 containing no light absorbents.

Description

この発明は、偏光機能に加えて、他の特定機能を併有する複合機能性偏光レンズおよびその製造方法に関する。   The present invention relates to a composite functional polarizing lens having another specific function in addition to a polarizing function and a method for manufacturing the same.

一般に、偏光眼鏡用のレンズ基材は、偏光膜(フィルム)を有する偏光素子を眼鏡用レンズ基材と一体化したものであり、偏光膜は、ポリビニルアルコール等の樹脂フィルムを一軸延伸し、ヨウ素等を含浸して調製されたものである。   In general, a lens base material for polarizing glasses is obtained by integrating a polarizing element having a polarizing film (film) with a lens base material for eyeglasses, and the polarizing film is formed by uniaxially stretching a resin film such as polyvinyl alcohol, and iodine. Etc. were prepared by impregnating them.

視力矯正用の眼鏡用レンズ基材は、注型重合により片側の表面に凸レンズ面が形成されていると共に、裏面は凹面状や平面状などに形成されており、眼鏡レンズとして需要者に適切なレンズ度数に調整する際に、裏面を研削し、表面は研削せずに何らかの機能性成分を含有するコーティングが施される場合がある。   The eyeglass lens base material for correcting vision has a convex lens surface formed on one surface by casting polymerization, and the back surface is formed in a concave shape or a flat shape. When adjusting to the lens power, the back surface may be ground and the coating containing some functional component may be applied without grinding the front surface.

偏光眼鏡用のレンズ基材を注型(キャスト)法によって製造するには、レンズ基材と同径のリング状のガスケットの内周側に、予め半球面状に加圧成形された偏光フィルムの周縁を保持し、この偏光フィルムの表裏面から所定間隔を開けて一対の凹・凸形のレンズ面形成用のモールドをガスケットと一体に固定し、前記一対のモールド間のレンズ厚みを設定する空隙(キャビティー)にモノマーを注入し、所用温度に所要時間保持して重合反応させ、さらに硬化した樹脂と偏光素子とを一体化して成形する製造法が周知である(特許文献1等)。   In order to manufacture a lens base material for polarized glasses by a casting method, a polarizing film that has been press-molded into a hemispherical shape in advance on the inner peripheral side of a ring-shaped gasket having the same diameter as the lens base material is used. A gap for holding a peripheral edge, fixing a pair of concave / convex lens surface forming molds integrally with a gasket at a predetermined interval from the front and back surfaces of the polarizing film, and setting a lens thickness between the pair of molds A manufacturing method is known in which a monomer is injected into a (cavity), held at a required temperature for a required time to undergo a polymerization reaction, and a cured resin and a polarizing element are integrated and molded (Patent Document 1, etc.).

また、眼鏡用レンズ基材に機能性成分を保持するには、例えば赤外線吸収剤をバインダー樹脂に分散させたコーティング液をレンズ表面に層状に塗布し、これを乾燥させて赤外線吸収層を形成する方法が知られている(特許文献2)   In addition, in order to retain the functional component in the lens base material for spectacles, for example, a coating liquid in which an infrared absorbing agent is dispersed in a binder resin is applied to the lens surface in a layer form, and this is dried to form an infrared absorbing layer. Method is known (Patent Document 2)

しかし、上記した従来の眼鏡用レンズの技術では、赤外線吸収剤をレンズの表面にコーティングするときに、レンズ基材の光学的特性を低下させないようにしなければならず、そのためにコーティングの層の厚さをできるだけ薄く形成すると、所望の赤外線吸収性能などの所要機能を充分に発揮できなかった。   However, in the conventional spectacle lens technology described above, when the infrared absorber is coated on the surface of the lens, the optical characteristics of the lens base material must not be deteriorated. If the thickness is made as thin as possible, required functions such as desired infrared absorption performance cannot be sufficiently exhibited.

また、近眼などに対応する視力矯正用のレンズ基材に、紫外線や赤外線の吸収剤などの高価な機能性付与剤を分散保持させるとき、所要のレンズ度数を得るための研削作業によってレンズ基材の大部分が廃棄されてしまうので、これでは添加した機能性付与剤の大部分が機能を果たすことなく廃棄されてしまい、機能性付与剤の添加効率が悪く、製造コストの高騰要因になるという問題点がある。   In addition, when an expensive function-imparting agent such as an ultraviolet ray or infrared ray absorbent is dispersed and held in a lens substrate for correcting vision that corresponds to myopia, etc., the lens substrate is obtained by grinding work to obtain a required lens power. Most of the added functionality-imparting agent is discarded without fulfilling its function, and the efficiency of adding the functionality-imparting agent is poor, resulting in increased production costs. There is a problem.

このような問題に対し、本願の発明者らは、先の特許出願において赤外線吸収剤を含有するポリウレタン樹脂で偏光フィルムの両面を被覆して形成される偏光素子と、赤外線吸収剤の含まれていないポリウレタン樹脂で形成されてレンズ度数調整の研削に用いる眼鏡用レンズ基材とを、ポリウレタン樹脂材料のインサート成形により形成し、前記眼鏡用レンズ基材の片面に前記偏光素子を重ねたように一体化して赤外線吸収性偏光眼鏡用レンズ基材を構成した(特許文献3)。   In response to such a problem, the inventors of the present application include a polarizing element formed by coating both surfaces of a polarizing film with a polyurethane resin containing an infrared absorber in a previous patent application, and an infrared absorber. A lens base material for spectacles, which is made of polyurethane resin and used for lens power adjustment grinding, is formed by insert molding of a polyurethane resin material, and the polarizing element is laminated on one side of the spectacle lens base material. To form a lens substrate for infrared-absorbing polarized glasses (Patent Document 3).

特開2001−311804号公報JP 2001-318044 A 特開2005− 43921号公報JP-A-2005-43921 特許第5075080号公報Japanese Patent No. 5075080

しかし、前記したように偏光フィルムの両面を赤外線吸収剤を含有する樹脂で被覆して形成される偏光素子と、レンズ度数調整の研削に用いる眼鏡用レンズ基材とを、インサート成形して偏光眼鏡用レンズ基材を製造すると、偏光素子の表裏面を形成する樹脂は予め硬化されており、その上に重ねて未硬化の樹脂層を形成するので、樹脂の種類によっては積層一体化が充分に良好でない場合があり、特にジエチレングリコールビスアリルカーボネート(CR−39)は積層による一体化が不確実になりやすいという問題点がある。   However, as described above, a polarizing element formed by coating both surfaces of a polarizing film with a resin containing an infrared absorbent and a lens base material for spectacles used for grinding for lens power adjustment are insert-molded to form polarizing glasses. When the lens base material is manufactured, the resin that forms the front and back surfaces of the polarizing element is cured in advance, and an uncured resin layer is formed on the resin layer. In some cases, it is not good, and diethylene glycol bisallyl carbonate (CR-39) has a problem that integration by lamination tends to be uncertain.

また、予め作成した偏光素子の表面の樹脂層と、インサート成形時に前記樹脂層上に重ねて形成された樹脂層との境には、成形時の樹脂の流動方向の相異や、1回以上受ける成形熱による熱履歴の相異などに起因して光学的に識別可能な界面が形成されてしまう。そして、このような眼鏡レンズを、いわゆる「度付き加工」のために前記界面に交差する研磨面を形成すると、研磨面に前記界面に沿った薄い影(レンズ全周にリング状の薄い影)が視認されてしまい、眼鏡用レンズの均一な透明感などの品質が損なわれるという問題点がある。   In addition, at the boundary between the resin layer on the surface of the polarizing element prepared in advance and the resin layer formed over the resin layer at the time of insert molding, the difference in the flow direction of the resin at the time of molding or at least once An optically distinguishable interface is formed due to a difference in thermal history due to the molding heat received. Then, when such a spectacle lens is formed with a polished surface intersecting the interface for so-called “degree processing”, a thin shadow (ring-shaped thin shadow around the entire lens) along the interface is formed on the polished surface. Is visually recognized, and there is a problem that quality such as uniform transparency of the spectacle lens is impaired.

そこで、この発明の課題は、上記した問題点を解決して、偏光レンズに積層されるレンズ基材の境界に光学的な斑が現れず界面の接着性が良好であり、しかもサーモクロミック、フォトクロミック、紫外線や赤外線の吸収などの機能性付与剤の添加効率がよく、これらの付加的機能を充分に確保できる複合機能性がある偏光レンズとすることである。
また、偏光フィルムをインサート成形(注型成形)する場合において、特に樹脂の種類を限らず、積層による接着一体化が良好な複合機能性偏光レンズとすることである。
Therefore, an object of the present invention is to solve the above-mentioned problems, optical spots do not appear at the boundary of the lens base material laminated on the polarizing lens, and the adhesiveness of the interface is good, and thermochromic and photochromic The addition of a function-imparting agent such as absorption of ultraviolet rays or infrared rays is good, and the polarizing lens has a composite functionality that can sufficiently secure these additional functions.
Moreover, when insert-molding (cast-molding) a polarizing film, the type of resin is not particularly limited, and a composite functional polarizing lens with good adhesion integration by lamination is to be obtained.

上記の課題を解決するために、この発明では、偏光フィルムの表裏両面に所定樹脂からなるレンズ基材層をインサート成形により一体に設けた偏光レンズからなり、前記偏光フィルムの表裏両面のうち一面側に設ける第1レンズ基材層に添加成分として光吸収剤を含有させ、他面側には前記光吸収剤を含まない第2レンズ基材層を設けた複合機能性偏光レンズとしたのである。   In order to solve the above-mentioned problems, the present invention comprises a polarizing lens in which a lens base material layer made of a predetermined resin is integrally formed by insert molding on both front and back surfaces of a polarizing film, and one side of the front and back surfaces of the polarizing film. The first lens base material layer provided in FIG. 1 is made to contain a light absorber as an additive component, and the second lens base material layer not containing the light absorber is provided on the other surface side to form a composite functional polarizing lens.

上記したように構成されるこの発明の複合機能性偏光レンズは、インサート成形に用いる偏光フィルムの両面に予め樹脂を被覆して硬化させておらず偏光フィルムの両面を同時に同じ所定樹脂で成形するので、このインサート成形以前に偏光フィルムとレンズ基材層を形成する所定樹脂との熱履歴や予備成形時とインサート成形時の樹脂の流動性などの差による光学的に識別可能な界面は形成されない。   Since the composite functional polarizing lens of the present invention configured as described above is not cured by coating a resin on both sides of a polarizing film used for insert molding in advance, both sides of the polarizing film are molded simultaneously with the same predetermined resin. Before the insert molding, an optically distinguishable interface is not formed due to a difference in heat history between the polarizing film and the predetermined resin for forming the lens base layer, or a difference in fluidity of the resin between the pre-molding and the insert molding.

そのため、この界面に交差する研磨面を形成しても研磨面に前記界面に沿った薄い影は形成されず、また界面の接着性は良好である。
特に所定樹脂としてジエチレングリコールビスアリルカーボネート(CR−39)を用いた場合でも偏光フィルムと基材層の一体化は確実に行える。
For this reason, even if a polished surface intersecting the interface is formed, a thin shadow along the interface is not formed on the polished surface, and the adhesiveness of the interface is good.
In particular, even when diethylene glycol bisallyl carbonate (CR-39) is used as the predetermined resin, the polarizing film and the base material layer can be reliably integrated.

そして、前記偏光フィルムの表裏両面のうち一面側に設ける第1レンズ基材層に添加成分として光吸収剤を含有させ、他面側には前記光吸収剤を含まない第2レンズ基材層を設けることにより、視力矯正のための度付きレンズを形成する際に、光吸収剤を含まない第2レンズ基材層を研削加工して、光吸収剤を含む第1レンズ基材層の研削滓の量を可及的に少なくすることができ、低コストになるように効率よく光吸収剤を利用することができる。   And the 1st lens base material layer provided in one surface side among the front and back both surfaces of the said polarizing film is made to contain a light absorber as an additional component, and the 2nd lens base material layer which does not contain the said light absorber in the other surface side. By providing, when forming a lens with a degree for correcting vision, the second lens base material layer that does not contain the light absorber is ground to grind the first lens base material layer that contains the light absorber. Therefore, the light absorber can be used efficiently so that the cost can be reduced.

このようにして、上記光吸収剤が、紫外線吸収剤、赤外線吸収剤、フォトクロミック光吸収剤またはサーモクロミック光吸収剤である複合機能性偏光レンズとすることにより、サーモクロミック、フォトクロミック、紫外線や赤外線の吸収などの機能性付与剤の添加効率がよく、これらの付加的機能を充分に確保できる複合機能性がある偏光レンズとすることができる。   In this way, the light absorber is a composite functional polarizing lens that is an ultraviolet absorber, an infrared absorber, a photochromic light absorber or a thermochromic light absorber, so that thermochromic, photochromic, ultraviolet or infrared rays can be obtained. It is possible to obtain a polarizing lens having a high functionality of adding a function-imparting agent such as absorption and having a composite functionality capable of sufficiently securing these additional functions.

また、光吸収剤を含む第1レンズ基材層の研削滓の量をより少なくするためには、偏光フィルムの他方側の第2レンズ基材層が、光吸収剤を全く含まない前記所定樹脂からなるレンズ基材層とすることであるが、第2レンズ基材層には、第1レンズ基材層の添加成分である光吸収剤とは異なる種類の光吸収剤を含ませることもできる。   In addition, in order to reduce the amount of grinding wrinkles of the first lens substrate layer containing the light absorber, the second resin substrate layer on the other side of the polarizing film does not contain any light absorber. The second lens base layer may contain a different type of light absorber from the light absorber that is an additive component of the first lens base layer. .

例えば、第1レンズ基材層にフォトクロミック光吸収剤を含有させ、第2レンズ基材層にサーモクロミック光吸収剤を含有させた複合機能性偏光レンズにすれば、フォトクロミック光吸収剤の機能が低下する温度域でサーモクロミック光吸収剤を作用させることができ、互いの光吸収剤の欠点を補い合うようにすることもできる。   For example, if the first lens base material layer contains a photochromic light absorber and the second lens base material layer contains a thermochromic light absorber, the function of the photochromic light absorber is reduced. The thermochromic light absorber can be allowed to act in a temperature range to compensate for the disadvantages of the light absorbers of each other.

また、偏光フィルムの両面を同時に同じ所定樹脂で成形するので、この所定樹脂が、同じ樹脂同士で積層性があまり良くなく、層間の剥離しやすいアリルジグリコールカーボネート樹脂であっても上記の複合機能性偏光レンズは、積層による接着一体化が確実に行える。   In addition, since both surfaces of the polarizing film are simultaneously molded with the same predetermined resin, even if the predetermined resin is an allyl diglycol carbonate resin that does not have a good lamination property between the same resins and is easily peeled between layers, the above composite function The polarizing lens can be surely bonded and integrated by lamination.

この発明は、インサート成形により偏光フィルムの表裏両面に所定樹脂からなるレンズ基材層を一体に設け、偏光フィルムの一面側に光吸収剤を含有させ、他面側には前記光吸収剤を含まない複合機能性偏光レンズとしたので、偏光レンズに積層されるレンズ基材の境界に光学的な斑が現れず界面の接着性が良好であり、しかもサーモクロミック、フォトクロミック、紫外線や赤外線の吸収などの機能性付与剤の添加効率がよく、これらの付加的機能を充分に確保できる複合機能性がある偏光レンズとなる利点がある。   In this invention, a lens base material layer made of a predetermined resin is integrally provided on both front and back surfaces of a polarizing film by insert molding, a light absorber is contained on one side of the polarizing film, and the light absorber is contained on the other side. Since there is no composite functional polarizing lens, no optical spots appear on the boundary of the lens base material laminated on the polarizing lens, the interface adhesion is good, and thermochromic, photochromic, ultraviolet and infrared absorption etc. Thus, there is an advantage that a polarizing lens having a composite functionality capable of sufficiently securing these additional functions can be obtained.

また、偏光フィルムをインサート成形(注型成形)する場合において、特に樹脂の種類を限らず、積層による接着一体化が良好な複合機能性偏光レンズになる利点もある。   In addition, when insert-molding (casting) a polarizing film, there is an advantage in that it is not limited to the type of resin, and a composite functional polarizing lens with good adhesion and integration by lamination is obtained.

実施形態を示す複合機能性偏光レンズの断面図Sectional drawing of the composite functional polarizing lens which shows embodiment 実施形態の複合機能性偏光レンズのインサート成形に用いるガスケットの平面図Plan view of gasket used for insert molding of composite functional polarizing lens of embodiment 図2のIII−III線方向のガスケットおよびモールドの断面図Sectional view of gasket and mold in the direction of line III-III in Fig. 2 他の実施形態の複合機能性偏光レンズのインサート成形に用いるガスケットおよびモールドの断面図Sectional drawing of the gasket and mold which are used for insert molding of the composite functional polarizing lens of other embodiment

この発明の実施形態を以下に、添付図面を参照して説明する。
図1〜3に示すように、実施形態は、偏光フィルム1の表裏両面に、アリルジグリコールカーボネート樹脂(PPG社製:CR−39)、ウレタン樹脂その他の所定樹脂からなるレンズ基材層をインサート成形により一体に設け、偏光フィルム1の表裏両面のうち、表面側に設ける第1レンズ基材層2に添加成分として紫外線吸収剤、赤外線吸収剤、フォトクロミック光吸収剤またはサーモクロミック光吸収剤である光吸収剤を含有させ、裏面側には前記光吸収剤を含まない第2レンズ基材層3を設けた複合機能性偏光レンズAである。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
As shown in FIGS. 1 to 3, in the embodiment, a lens base layer made of allyl diglycol carbonate resin (PPG: CR-39), urethane resin or other predetermined resin is inserted on both front and back surfaces of the polarizing film 1. An ultraviolet absorber, an infrared absorber, a photochromic light absorber, or a thermochromic light absorber is added as an additional component to the first lens base layer 2 provided on the front side of the polarizing film 1 on both sides of the polarizing film 1. The composite functional polarizing lens A is provided with a second lens base material layer 3 that contains a light absorber and does not contain the light absorber on the back side.

この複合機能性偏光レンズは、後述するインサート成形によって、偏光フィルム1の両面を同時に同じ所定樹脂を主要成分とする樹脂成形材料を注型成形している。
偏光フィルム1は、周知製法に従って得られるが、例えばポリビニルアルコール(PVA)製フィルムにヨウ素もしくはヨウ素化合物または染料を含浸等によって含ませ、一軸延伸したものを採用することが好ましい。
In this composite functional polarizing lens, a resin molding material containing the same predetermined resin as a main component is cast and molded on both surfaces of the polarizing film 1 by insert molding described later.
Although the polarizing film 1 is obtained according to a well-known manufacturing method, for example, it is preferable to employ a film obtained by impregnating a film made of polyvinyl alcohol (PVA) with iodine, an iodine compound, or a dye by impregnation.

偏光フィルム1は、その材質がPVAに限定されるものではなく、ポリエチレンテレフタレート(PET)またはPVA製フィルムにトリアセチルセルロースやポリカーボネートなどからなるフィルムを張り合わせた複合フィルムを用いることもできる。   The material of the polarizing film 1 is not limited to PVA, and a composite film in which a film made of triacetylcellulose, polycarbonate, or the like is bonded to a polyethylene terephthalate (PET) or PVA film can also be used.

一軸延伸されたPVA製などの偏光フィルム1は、メニスカス型のレンズの大きさに合わせて方形状にカットされた後、周知の加圧成形(プレス成形)によって、レンズのカーブ(曲率半径)に沿うように球面形の湾曲面を成形したものにして、インサート成形に用いる。   A uniaxially stretched polarizing film 1 made of PVA or the like is cut into a square shape in accordance with the size of a meniscus lens, and then converted into a lens curve (curvature radius) by a known pressure molding (press molding). A spherical curved surface is formed so as to be along, and used for insert molding.

所定の樹脂としては、前記した樹脂例も含めて、眼鏡レンズの注型(キャスト)成形可能な樹脂を広く使用可能である。例えば、熱可塑性樹脂として透明性に優れるMMA(メチルメタアクリレート樹脂)やPC(ポリカーボネート樹脂)、注型タイプの熱硬化性樹脂の代表的な樹脂であるCR−39や中屈折率樹脂(例えば、日本油脂製:コーポレックス、屈折率1.56)は、その成分としてアリルジグリコールカーボネートが含まれ、またイソシアネートとポリチオールを化合させた周知の高屈折率樹脂(例えば、三井化学社製:チオウレタン系樹脂MR−7、屈折率1.67)であるチオウレタン樹脂も代表例として挙げられる。   As the predetermined resin, a resin that can be cast (casted) into spectacle lenses can be widely used, including the resin examples described above. For example, MMA (methyl methacrylate resin) and PC (polycarbonate resin), which are excellent in transparency as a thermoplastic resin, CR-39, which is a typical resin of a casting type thermosetting resin, and a medium refractive index resin (for example, Nippon Oil & Fats: Corporex, refractive index 1.56) contains allyl diglycol carbonate as its component, and is a well-known high refractive index resin in which isocyanate and polythiol are combined (for example, Mitsui Chemicals: Thiourethane). A typical example is a thiourethane resin having a resin series MR-7 and a refractive index of 1.67).

このようなレンズ基材を構成する所定の樹脂に添加される光吸収剤の例としては、紫外線吸収剤、赤外線吸収剤、フォトクロミック光吸収剤またはサーモクロミック光吸収剤が挙げられる。
このうち、紫外線吸収剤は、紫外線波長(100nm〜380nm)についての吸収性を有する周知の紫外線吸収剤を使用可能であり、具体例として、以下の化合物を挙げることができる。
(1) 2−ヒドロキシ−4−n−オクトキシベンゾフェノン
(2) 4−ドデシロキシ−2−ヒドロキシベンゾフェノン
(3) 2−2´−ヒドロキシ−4−メトキシベンゾフェノン
Examples of the light absorber added to the predetermined resin that constitutes such a lens substrate include an ultraviolet absorber, an infrared absorber, a photochromic light absorber, and a thermochromic light absorber.
Among these, the ultraviolet absorber can use the well-known ultraviolet absorber which has the absorptivity about an ultraviolet wavelength (100 nm-380 nm), and can mention the following compounds as a specific example.
(1) 2-hydroxy-4-n-octoxybenzophenone
(2) 4-Dodecyloxy-2-hydroxybenzophenone
(3) 2-2'-hydroxy-4-methoxybenzophenone

これらの紫外線吸収剤を用いる際には、波長の長いUV−A(315〜400nm)と波長の短いUV−B(280〜315nm)とそれ以下のUV−C(100〜280nm)の全ての紫外線を吸収させることが好ましい。   When these ultraviolet absorbers are used, all ultraviolet rays of UV-A (315 to 400 nm) having a long wavelength, UV-B (280 to 315 nm) having a short wavelength, and UV-C (100 to 280 nm) having a shorter wavelength are used. Is preferably absorbed.

紫外線吸収剤の添加量は、レンズ基材を構成する樹脂材料100重量部に対して、0.01〜4重量部、好ましくは0.1〜4.0重量部、より好ましくは0.2〜0.5重量部の範囲が、添加効率よく紫外線吸収性を発揮するので適している。   The addition amount of the ultraviolet absorber is 0.01 to 4 parts by weight, preferably 0.1 to 4.0 parts by weight, more preferably 0.2 to 100 parts by weight with respect to 100 parts by weight of the resin material constituting the lens substrate. The range of 0.5 part by weight is suitable because it exhibits ultraviolet absorption with high addition efficiency.

また、赤外線吸収剤は、赤外線波長(780nm〜2500nm)について、吸収性を有する周知の赤外線吸収剤を使用可能であり、例えば以下の化合物が挙げられる。
(1) N,N,N´,N´−テトラキス(p-置換フェニル)-p−フェニレンジアミン類、
ベンジジン類及びそれらのアルミニウム塩、ジイモニウム塩からなる赤外線吸収剤。
(2) N,N,N´,N´−テトラアリールキノンジイモニウム塩類。
(3) ビス−(p-ジアルキルアミノフェニル)〔N,N-ビス(p-ジアルキルアミノフェニル)p
-アミノフェニル〕アミニウム塩。
赤外線吸収剤の添加量は、レンズを構成する樹脂材料100重量部に対して、通常0.05〜10重量部、遮光保護具以外の用途に使用する場合には0.1〜1.0重量部の範囲が適している。
Moreover, the infrared absorber can use the well-known infrared absorber which has an absorptivity about an infrared wavelength (780 nm-2500 nm), for example, the following compounds are mentioned.
(1) N, N, N ′, N′-tetrakis (p-substituted phenyl) -p-phenylenediamines,
Infrared absorbers comprising benzidines and their aluminum and diimonium salts.
(2) N, N, N ′, N′-tetraarylquinone dimonium salts.
(3) Bis- (p-dialkylaminophenyl) (N, N-bis (p-dialkylaminophenyl) p
-Aminophenyl] aminium salt.
The amount of the infrared absorber added is usually 0.05 to 10 parts by weight with respect to 100 parts by weight of the resin material constituting the lens, and 0.1 to 1.0 parts by weight when used for applications other than the light shielding protector. The range of parts is suitable.

また、フォトクロミック光吸収剤は、フォトクロミック化合物とも称されるものであり、例えば周知のスピロオキサジン系化合物やテトラ(またはヘキサ)ベンゾペロピレン系の化合物が挙げられる。
スピロオキサジン系化合物は、短波長の紫外線により耐候性が弱まる傾向が認められ、微粒子状のスピロオキサジン系化合物を遮光性無機質皮膜で包んで樹脂マトリックス中に分散させることによって耐候性のある態様で用いることができる(特開昭63−175071号公報)。
The photochromic light absorber is also referred to as a photochromic compound, and examples thereof include well-known spirooxazine compounds and tetra (or hexa) benzoperopyrene compounds.
Spirooxazine-based compounds tend to be weakened in weather resistance by short-wave ultraviolet rays, and are used in a weather-resistant form by wrapping fine-particle spirooxazine-based compounds in a light-shielding inorganic film and dispersing them in a resin matrix. (Japanese Patent Laid-Open No. 63-175071).

特に、フォトクロミック性によるレンズの消色に要する応答時間を可及的に短くすると共に、紫外線による性能劣化を抑制して耐候性のあるフォトクロミックレンズとするためには、樹脂製レンズ100質量部に対し、スピロオキサジン系フォトクロミック化合物、好ましくは化1の式で示されるスピロオキサジン系フォトクロミック化合物0.03〜0.2質量部をテトラヒドロフランに溶解した状態で混合し、均一分散させることが好ましい。   In particular, in order to shorten the response time required for decoloring the lens due to photochromic properties as much as possible, and to suppress the performance deterioration due to ultraviolet rays and to make a weatherable photochromic lens, with respect to 100 parts by mass of the resin lens It is preferable that 0.03-0.2 parts by mass of a spirooxazine photochromic compound, preferably a spirooxazine photochromic compound represented by the formula 1 is mixed in tetrahydrofuran and uniformly dispersed.

Figure 2015069045
Figure 2015069045

上記のフォトクロミック化合物は、テトラヒドロフランに溶解することにより、樹脂中に均一に分散するから、そのように分散したレンズでは、その表面から通常約0.5mmの深度まで浸入した紫外線によって劣化する場合があるが、樹脂の深部までは劣化し難い。そのため、レンズ全体としては耐候性のある特性を備えたフォトクロミックレンズになる。   Since the above-mentioned photochromic compound is uniformly dispersed in the resin by dissolving in tetrahydrofuran, such a dispersed lens may be deteriorated by ultraviolet light that has entered from the surface to a depth of usually about 0.5 mm. However, it does not easily deteriorate to the deep part of the resin. Therefore, the entire lens becomes a photochromic lens having weather resistance.

また、サーモクロミック光吸収剤は、温度に依存して光吸収性が変化する化合物であり、そのような特性を有するサーモクロミック化合物としては、ロイコ染料及び液晶粒子が挙げられる。
サーモクロミック液晶の具体例としては、ノナン酸コレステリル及びシアノビフェニルが挙げられる。ロイコ染料の例としては、スピロラクトン、フルオラン、スピロピラン、フルギド、及びこれらの組み合わせが挙げられる。重合可能な混合物に液晶及びロイコ染料をマイクロカプセル化して混合してもよい。
Thermochromic light absorbers are compounds whose light absorption changes depending on temperature, and examples of thermochromic compounds having such properties include leuco dyes and liquid crystal particles.
Specific examples of the thermochromic liquid crystal include cholesteryl nonanoate and cyanobiphenyl. Examples of leuco dyes include spirolactone, fluoran, spiropyran, fulgide, and combinations thereof. Liquid crystal and leuco dye may be microencapsulated and mixed in the polymerizable mixture.

使用されるサーモクロミック化合物の量は、レンズ基材の材量やレンズの厚みに応じて特定の波長での透過率(%)の低減を達成するように効果的な量に調整できる。   The amount of the thermochromic compound used can be adjusted to an effective amount so as to achieve a reduction in transmittance (%) at a specific wavelength depending on the material amount of the lens substrate and the thickness of the lens.

この発明で実施されるインサート成形について、以下に説明する。
図2、3に示すように、レンズ基材中に埋め込むように偏光フィルム1をインサート成形するには、シリコーン樹脂などの柔軟性のある軟質樹脂で形成された円筒状のガスケット4の内周面から内側に突出して設けられている環状凸部5の側面に、レンズのカーブ(曲率半径)に沿うように球面形に湾曲した円盤状の偏光フィルム1の周縁部を係止し、さらにその周縁部にガスケット4の内周面に押入れられた係止用リング6を重ね、ガスケット4に弾性力で保持された係止用リング6と環状凸部5の間に偏光フィルム1の縁部を挟んで保持する。
The insert molding performed in this invention will be described below.
As shown in FIGS. 2 and 3, in order to insert-mold the polarizing film 1 so as to be embedded in the lens base material, the inner peripheral surface of a cylindrical gasket 4 formed of a flexible soft resin such as a silicone resin. The peripheral edge of the disc-shaped polarizing film 1 curved in a spherical shape so as to follow the curve (curvature radius) of the lens is engaged with the side surface of the annular convex portion 5 provided so as to protrude inward from the outer periphery. The locking ring 6 pushed into the inner peripheral surface of the gasket 4 is overlapped with the portion, and the edge of the polarizing film 1 is sandwiched between the locking ring 6 held by the gasket 4 with an elastic force and the annular convex portion 5. Hold on.

円筒状のガスケット4の軸方向における偏光フィルム1の両側には、樹脂注入孔7、8が各側1つずつガスケット4の壁面を貫通しており、さらに樹脂注入孔7、8の対向する位置には、前記壁面を貫通してオーバーフロー孔9、10が開口している。
レンズ形状に合わせた凹型面と凸型面が対向配置できる一対のモールド11、12は、このようなガスケット4に偏光フィルム1と適当な間隔を空けるように配置して液密に嵌め合わされ、軸方向からばねクリップ13などで挟んで弾性的に固定される。
モールド11の凹型面と偏光フィルム1の凸型面との隙間は、例えば約1mm程度に、または必要があれば約2〜5mm程度に設定でき、モールド12の凸型面と偏光フィルム1の凹型面との隙間は、例えばセミ品では8〜18mm程度、またはプラノ品では1〜10mm程度に設定できる。
On both sides of the polarizing film 1 in the axial direction of the cylindrical gasket 4, resin injection holes 7, 8 penetrate the wall surface of the gasket 4, one on each side, and the resin injection holes 7, 8 face each other. In addition, overflow holes 9 and 10 are opened through the wall surface.
A pair of molds 11 and 12 in which a concave surface and a convex surface matched to the lens shape can be arranged opposite to each other are liquid-tightly fitted to such a gasket 4 so as to be spaced apart from the polarizing film 1 by an appropriate distance. It is elastically fixed by being sandwiched by a spring clip 13 or the like from the direction.
The gap between the concave surface of the mold 11 and the convex surface of the polarizing film 1 can be set to, for example, about 1 mm, or about 2 to 5 mm if necessary, and the concave surface of the mold 12 and the concave shape of the polarizing film 1 can be set. The gap with the surface can be set to, for example, about 8 to 18 mm for a semi product or about 1 to 10 mm for a plano product.

そして、図3に示すように樹脂注入孔7、8が下側に位置するようにし、2つのモールドの対向面の間に形成される縦長のキャビティーに、2つの樹脂注入孔7、8のうち、レンズ表面側の樹脂注入孔7には添加成分として光吸収剤を配合して脱気処理した樹脂材料を注入し、この注入と同時にレンズ裏面側の樹脂注入孔8には前記光吸収剤を含まないで脱気処理した樹脂材料を注入し、これらはオーバーフロー孔9、10からそれぞれガス抜きをしながらキャビティ内に完全に充填し、次いで加熱養生を行なって、それぞれの樹脂材料を重合および硬化させることにより、特定の光吸収機能と偏光機能を併有する複合機能性偏光レンズのインサート成形ができる。   Then, as shown in FIG. 3, the resin injection holes 7 and 8 are positioned on the lower side, and the two resin injection holes 7 and 8 are formed in a vertically long cavity formed between the opposing surfaces of the two molds. The resin injection hole 7 on the lens surface side is injected with a resin material mixed with a light absorber as an additional component and degassed, and simultaneously with this injection, the light absorber is injected into the resin injection hole 8 on the lens back side. The resin material that has been deaerated without containing water is injected, and these are completely filled into the cavities while degassing from the overflow holes 9 and 10, respectively, and then heat-cured to polymerize and resin each resin material. By curing, insert molding of a composite functional polarizing lens having both a specific light absorbing function and a polarizing function can be performed.

このように構成されたインサート成形用の型を用いると、偏光フィルムの表裏両面のうち一面側に設ける第1レンズ基材層に添加成分として光吸収剤を含有させ、他面側には前記光吸収剤を含まない第2レンズ基材層を設けることができ、偏光フィルム1をレンズ基材2、3と一体化させて、様々な機能を有する複合機能性偏光レンズを製造することができる。   When the mold for insert molding thus configured is used, the first lens base material layer provided on one side of the front and back surfaces of the polarizing film contains a light absorber as an additive component, and the other side is provided with the light. The 2nd lens base material layer which does not contain an absorber can be provided, and the polarizing film 1 can be integrated with the lens base materials 2 and 3, and the composite functional polarization lens which has various functions can be manufactured.

また、図4に示すように、上記とは形態の異なる2つ一組で用いるガスケット14、15を用いてインサート成形することもできる。
すなわち、レンズの凸型面形成用のモールド16とこれを保持するリング状のガスケット14とを一組として用い、またレンズの凹型面形成用のモールド17とこれを保持するリング状のガスケット15とを他の一組として、これらのガスケット14、15には、それぞれ樹脂注入孔18、19とオーバーフロー孔20、21を形成し、前記ガスケット14、15のモールド保持側と反対側の面を対向させて、対向面間に偏光フィルム1の縁部を挟んで保持し、ばねクリップ13などで固定しておく。
そして、このようなガスケット14、15とモールド16、17を用いることの他は、上記同様にして、偏光フィルム1を第1レンズ基材層2、第2レンズ基材層3と一体化させて、様々な機能を有する複合機能性偏光レンズを製造することができる。
Moreover, as shown in FIG. 4, it is also possible to insert-mold using gaskets 14 and 15 that are used in pairs each having a different form from the above.
That is, a mold 16 for forming a convex surface of a lens and a ring-shaped gasket 14 for holding the mold are used as a set, and a mold 17 for forming a concave surface of the lens and a ring-shaped gasket 15 for holding the same. As another set, the gaskets 14 and 15 are respectively formed with resin injection holes 18 and 19 and overflow holes 20 and 21, and the gaskets 14 and 15 are opposed to the mold holding side. Then, the edge of the polarizing film 1 is held between the opposing surfaces, and is fixed with a spring clip 13 or the like.
Then, the polarizing film 1 is integrated with the first lens base layer 2 and the second lens base layer 3 in the same manner as described above except that the gaskets 14 and 15 and the molds 16 and 17 are used. A composite functional polarizing lens having various functions can be manufactured.

[実施例1]
上述したインサート成形工程により、偏光フィルムの両面に対し所定樹脂を主要成分とし、第1レンズ基材層に添加成分として光吸収剤を含有させ、他面側には前記光吸収剤を含まない第2レンズ基材層を設けるように、2つのゲートから各樹脂成形材料を同時に注型成形して複合機能性偏光レンズを製造した。
[Example 1]
By the insert molding process described above, the predetermined resin is a main component on both sides of the polarizing film, the first lens base layer contains a light absorber as an additive component, and the other side does not contain the light absorber. Each resin molding material was cast and molded from two gates at the same time so as to provide a two-lens base material layer, thereby producing a composite functional polarizing lens.

すなわち、フォトクロミック光吸収剤(染料)を凸面側の第1レンズ基材層に添加し、このフォトクロミック光吸収剤に代えてサーモクロミック染料を凹面側の第2レンズ基材層に含ませた複合機能性眼鏡レンズ(視力矯正用眼鏡レンズ(セミ品)またはプラノ(平面)用眼鏡レンズを作製した。   That is, a composite function in which a photochromic light absorber (dye) is added to the first lens substrate layer on the convex surface side, and a thermochromic dye is included in the second lens substrate layer on the concave surface side instead of the photochromic light absorber. Sexual eyeglass lenses (eyeglass lenses for correcting vision (semi-product) or plano (plane)) were prepared.

第1レンズ基材層については、ポリイソシアネートとポリヒドロキシ化合物を反応させたプレポリマー(紫外線吸収剤無添加)100質量部に対し、化1の式で示されるスピロオキサジン系フォトクロミック化合物(山田化学工業社製:PSP−33、赤紫色)を0.05質量部、青緑色のスピロオキサジン系フォトクロミック化合物(山田化学工業社製:PSP−54)を0.02質量部、橙色のフォトクロミック化合物(山田化学工業社製:PSP−92)を0.06質量部の割合でTHF(テトラヒドロフラン)に溶解させてからプレポリマーに添加し、混合・撹拌して真空脱気した。次いで、前記プレポリマーには、当量分の硬化剤として芳香族ポリアミン(MOCA)を添加して樹脂材料とした。   About the 1st lens base material layer, the spirooxazine type photochromic compound (Yamada Chemical Industries) shown by the formula of 1 with respect to 100 mass parts of prepolymers (no UV absorber added) obtained by reacting polyisocyanate and polyhydroxy compound Company: PSP-33, red purple) 0.05 parts by mass, blue-green spirooxazine photochromic compound (Yamada Chemical Industries PSP-54) 0.02 parts by mass, orange photochromic compound (Yamada Chemical) Kogyo Co., Ltd .: PSP-92) was dissolved in THF (tetrahydrofuran) at a ratio of 0.06 parts by mass, added to the prepolymer, mixed and stirred, and vacuum degassed. Next, an aromatic polyamine (MOCA) was added to the prepolymer as an equivalent amount of a curing agent to obtain a resin material.

また、第2レンズ基材層については、第1レンズ基材層に用いたポリウレタンプレポリマーを用い、フォトクロミック光吸収剤に代えて、サーモクロミック化合物(ノナン酸コレステリル等)を配合したこと以外は同様にして樹脂材料とした。   Moreover, about the 2nd lens base material layer, it replaces with a photochromic light absorber using the polyurethane prepolymer used for the 1st lens base material layer, and is the same except having mix | blended thermochromic compounds (cholesteryl nonanoate etc.). Thus, a resin material was obtained.

注型成形では、実施形態で説明した構造のガラス製モールドのキャビティ内に第1レンズ基材層用または第2レンズ基材層用のそれぞれの樹脂成形材料を注入して、40℃で3時間維持した後、徐々に加熱して昇温し、100℃で24時間キュアした後、冷却して前記モールドから取り出し、複合機能性眼鏡用偏光レンズを得た。   In the cast molding, the resin molding materials for the first lens substrate layer or the second lens substrate layer are injected into the cavity of the glass mold having the structure described in the embodiment, and the molding is performed at 40 ° C. for 3 hours. After the maintenance, the temperature was gradually increased by heating, and the mixture was cured at 100 ° C. for 24 hours, then cooled and taken out from the mold to obtain a polarizing lens for composite functional glasses.

このように製造されたサーモクロミック層を併用する複合機能性眼鏡用偏光レンズは、従来のフォトクロミック光レンズでは、高温(30℃以上)になると、フォトクロ性能が大幅にダウンする欠点があったが、30℃以上の高温で使用した場合も明暗差が保持され、耐候性試験後においてもその性能は維持されていた。   The polarizing lens for composite functional glasses combined with the thermochromic layer manufactured in this way has a drawback that the photochromic performance is significantly lowered at a high temperature (30 ° C. or higher) in the conventional photochromic light lens. Even when used at a high temperature of 30 ° C. or higher, the difference in brightness was maintained, and the performance was maintained even after the weather resistance test.

[実施例2]
実施例1において、凸面層の第1レンズ基材層を成形するポリウレタンプレポリマーにフォトクロミック化合物に代えて赤外線吸収剤のジイモニウム系化合物(日本化薬社製:IRG−022)を1質量%添加したこと、および凹面層の第2レンズ基材層は光吸収剤は何も添加せず透明なポリウレタンプレポリマーを用いたことの他は、実施例1と全く同様にして複合機能性眼鏡用偏光レンズを注型成形した。
[Example 2]
In Example 1, 1% by mass of an infrared absorber diimonium compound (manufactured by Nippon Kayaku Co., Ltd .: IRG-022) was added to the polyurethane prepolymer forming the first lens base layer of the convex layer instead of the photochromic compound. In addition, the second lens substrate layer of the concave surface layer is a polarizing lens for composite functional glasses in exactly the same manner as in Example 1 except that no light absorber was added and a transparent polyurethane prepolymer was used. Was cast.

得られた複合機能性眼鏡レンズは、従来の2段重合による注型成形(特許文献3の実施形態)で得られたものより約半分の肉厚にまで薄くなっており、しかも視力矯正のための度付き研磨を施してもリング状の斑は生じなかった。   The obtained composite functional spectacle lens is thinned to about half the thickness obtained by the conventional cast molding by two-stage polymerization (embodiment of Patent Document 3), and for correcting vision. No ring-like spots were produced even after polishing with a degree of.

[実施例3]
実施例2において、ポリウレタンプレポリマーに代えて、アリルジグリコールカーボネート樹脂(CR39)を用いて注型成形し、30℃で7時間維持した後、徐々に加熱して昇温し、80〜100℃で8時間キュアしたことの他は、実施例2と全く同様にして複合機能性眼鏡用偏光レンズを注型成形した。
[Example 3]
In Example 2, instead of polyurethane prepolymer, cast molding was performed using allyl diglycol carbonate resin (CR39), maintained at 30 ° C. for 7 hours, and then gradually heated to increase the temperature to 80 to 100 ° C. A polarizing lens for composite functional glasses was cast and molded in exactly the same manner as in Example 2 except that the curing was performed for 8 hours.

得られた複合機能性眼鏡用偏光レンズは、アリルジグリコールカーボネート樹脂(CR39)を用いているにもかかわらず、凸面層、凹面層および偏光フィルムの積層一体化が良好で層間に全く剥がれのないものであり、また全層に交差する研磨面を形成しても研磨面に界面に沿う薄い影は全く認められず、品質良好なものであった。   Despite using allyl diglycol carbonate resin (CR39), the obtained polarizing lens for composite functional glasses has good lamination and integration of the convex layer, concave layer and polarizing film, and does not peel at all between the layers. Even if a polished surface intersecting all the layers was formed, a thin shadow along the interface was not recognized at all on the polished surface, and the quality was good.

[比較例1]
実施例1においては、フォトクロミック光吸収剤(染料)を凸面側の第1レンズ基材層に添加し、このフォトクロミック光吸収剤に代えてサーモクロミック染料を凹面側の第2レンズ基材層に含ませたが、この構成に代えてフォトクロミック染料とサーモクロミック染料を混合して凸面側の第1レンズ基材層に添加し、それ以外は全く同様にして複合機能性眼鏡用偏光レンズを作製した。
[Comparative Example 1]
In Example 1, a photochromic light absorber (dye) is added to the first lens substrate layer on the convex surface side, and a thermochromic dye is contained in the second lens substrate layer on the concave surface side instead of the photochromic light absorber. However, instead of this configuration, a photochromic dye and a thermochromic dye were mixed and added to the first lens base layer on the convex surface side, and other than that, a polarizing lens for composite functional glasses was produced in exactly the same manner.

得られた比較例1の偏光レンズは、初期には30℃以上の高温でも所期した光吸収性を示したが、戸外で紫外線に1カ月近く曝されると、その性能はフォトクロミック染料単体を添加したものと同程度まで劣化してしまった。   The obtained polarizing lens of Comparative Example 1 initially exhibited the expected light absorption even at a high temperature of 30 ° C. or higher. However, when exposed to ultraviolet rays outdoors for about one month, the performance of the polarizing lens is that of a photochromic dye alone. It has deteriorated to the same extent as the added one.

[比較例2]
実施例1に用いたウレタン樹脂と同じ耐衝撃性ウレタンで、肉厚10mmの透明レンズを予め製造した。肉厚は8mm〜20mmの範囲で、種々のカーブ(1カーブ、2カーブ、4カーブ、6カーブ、8カーブなど)の透明レンズを作製した。
[Comparative Example 2]
A transparent lens having a thickness of 10 mm was manufactured in advance using the same impact-resistant urethane as the urethane resin used in Example 1. Transparent lenses with various curves (1 curve, 2 curves, 4 curves, 6 curves, 8 curves, etc.) were produced with a thickness ranging from 8 mm to 20 mm.

そして、ガラスモールド(雄型と雌型)にガスケットをセットする際に、予め製造した前記透明レンズを凹面側にセットし、約2mm厚の偏光レンズ部分の両側約1mmづつの耐衝撃性ウレタンに赤外線吸収剤を1質量%添加して注型成形した。   Then, when setting the gasket on the glass mold (male and female), the transparent lens manufactured in advance is set on the concave side, and about 2 mm thick polarized lens part on each side about 1 mm impact-resistant urethane Casting was performed by adding 1% by mass of an infrared absorber.

このように2回の注型2段成形(2段重合とも呼ばれる)で作製したレンズは、所要の視力矯正のために、機能性層と透明層の界面を交差する研磨面を形成すると、いずれのカーブのレンズでも前記界面に沿う薄い影(透明状のリング)が視認された。   In this way, a lens produced by two-stage casting two-stage molding (also called two-stage polymerization), when a polished surface intersecting the interface between the functional layer and the transparent layer is formed to correct the required visual acuity. A thin shadow (transparent ring) along the interface was visually recognized even with a lens with a curve of.

[比較例3]
アリルジグリコールカーボネート樹脂(CR39)を用いて肉厚10mmの透明レンズを、肉厚8mm〜20mmの範囲で種々のカーブ(1カーブ、2カーブ、4カーブ、6カーブ、8カーブなど)の透明レンズを作製した。
次いで、インサート成形用のガラスモールド(雄型と雌型)にガスケットをセットする際に、前記透明レンズをモールドの代用にして凹面側にセットし、約2mm厚の偏光レンズ部分の両側約1mmづつのCR39モノマーに、実施例2同様に光吸収剤を添加して注型成形した。
[Comparative Example 3]
A transparent lens with a wall thickness of 10 mm using allyl diglycol carbonate resin (CR39) and a transparent lens with various curves (1 curve, 2 curves, 4 curves, 6 curves, 8 curves, etc.) in the thickness range of 8 mm to 20 mm Was made.
Next, when setting the gasket on the glass mold (male mold and female mold) for insert molding, the transparent lens is set on the concave surface instead of the mold, and about 1 mm on both sides of the polarizing lens portion having a thickness of about 2 mm. In the same manner as in Example 2, a light absorber was added to the CR39 monomer and cast.

このように2回の注型2段成形(2段重合とも呼ばれる)で作製したレンズは、一時的にはきれいに積層一体化されたように見えたが、常温でしばらく放置しておくと凸面層、凹面層および偏光フィルムの層間が簡単に剥離してしまい、使用不可能な状態であった。   The lens produced by two-step casting two-stage molding (also called two-stage polymerization) seemed to be laminated and integrated temporarily, but the convex layer was left standing at room temperature for a while. The layers of the concave layer and the polarizing film were easily peeled off, and were unusable.

以上のようにして、例えば赤外線吸収剤などを添加した機能性を有する眼鏡レンズを製造する場合、度付部分を透明で先だって作っておいて、それを凹面側にセットして2層注型成形する事により、高価な赤外線吸収剤の使用量を節約出来、視力矯正用眼鏡レンズ(セミ品)を度付加工した後で、偏肉化されてもほぼ均一な性能を保持することができる。   As described above, for example, when manufacturing a functional spectacle lens to which an infrared absorber or the like is added, a pre-made portion is made transparent and set on the concave side, and two-layer casting is performed. By doing so, it is possible to save the amount of use of an expensive infrared absorber, and it is possible to maintain a substantially uniform performance even if the thickness of the spectacle lens for correcting vision (semi-product) is increased after being processed.

また、従来、耐候性が悪い光吸収剤を眼鏡用レンズに添加できなかったが、この発明の複合機能性偏光レンズでは、UVカット性能を保有する凸面層と偏光素子でもって、凹面層には紫外線が届かないようにすることができるので、耐候性の良くない染料などの光吸収剤を添加することができる。   Conventionally, a light absorber having poor weather resistance could not be added to a spectacle lens, but in the composite functional polarizing lens of the present invention, the concave layer has a convex layer and a polarizing element having UV cut performance. Since the ultraviolet rays can be prevented from reaching, a light absorber such as a dye having poor weather resistance can be added.

1 偏光フィルム
2 第1レンズ基材層
3 第2レンズ基材層
4、14、15 ガスケット
5 環状凸部
6 係止用リング
7、8、18、19 樹脂注入孔
9、10、20、21 オーバーフロー孔
11、12、16、17 モールド
13 ばねクリップ
A 複合機能性偏光レンズ
DESCRIPTION OF SYMBOLS 1 Polarizing film 2 1st lens base material layer 3 2nd lens base material layer 4, 14, 15 Gasket 5 Annular convex part 6 Ring 7 for locking, 8, 18, 19 Resin injection hole 9, 10, 20, 21 Overflow Holes 11, 12, 16, 17 Mold 13 Spring clip A Composite functional polarizing lens

Claims (5)

偏光フィルムの表裏両面に所定樹脂からなるレンズ基材層をインサート成形により一体に設けた偏光レンズからなり、前記偏光フィルムの表裏両面のうち一面側に設ける第1レンズ基材層に添加成分として光吸収剤を含有させ、他面側には前記光吸収剤を含まない第2レンズ基材層を設けた複合機能性偏光レンズ。   It consists of a polarizing lens in which a lens base layer made of a predetermined resin is integrally formed on both the front and back sides of the polarizing film by insert molding, and light is added as an additive component to the first lens base layer provided on one side of the front and back sides of the polarizing film. A composite functional polarizing lens comprising an absorbent and a second lens substrate layer not containing the light absorbent on the other surface side. 上記光吸収剤が、紫外線吸収剤、赤外線吸収剤、フォトクロミック光吸収剤またはサーモクロミック光吸収剤である請求項1に記載の複合機能性偏光レンズ。   The composite functional polarizing lens according to claim 1, wherein the light absorber is an ultraviolet absorber, an infrared absorber, a photochromic light absorber, or a thermochromic light absorber. 上記偏光フィルムの他方側の第2レンズ基材層が、光吸収剤を全く含まない前記所定樹脂からなるレンズ基材層である請求項1または2に記載の複合機能性偏光レンズ。   The composite functional polarizing lens according to claim 1, wherein the second lens base layer on the other side of the polarizing film is a lens base layer made of the predetermined resin that does not contain any light absorber. 第1レンズ基材層にフォトクロミック光吸収剤を含有させ、第2レンズ基材層にサーモクロミック光吸収剤を含有させた請求項1に記載の複合機能性偏光レンズ。   The composite functional polarizing lens according to claim 1, wherein the first lens base layer contains a photochromic light absorber, and the second lens base layer contains a thermochromic light absorber. 上記所定樹脂が、アリルジグリコールカーボネート樹脂である請求項1〜4のいずれかに記載の複合機能性偏光レンズ。   The composite functional polarizing lens according to claim 1, wherein the predetermined resin is an allyl diglycol carbonate resin.
JP2013203964A 2013-09-30 2013-09-30 Multi-functional polarized lens Pending JP2015069045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013203964A JP2015069045A (en) 2013-09-30 2013-09-30 Multi-functional polarized lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013203964A JP2015069045A (en) 2013-09-30 2013-09-30 Multi-functional polarized lens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017232721A Division JP6553157B2 (en) 2017-12-04 2017-12-04 Method of manufacturing multi-functional polarization lens

Publications (1)

Publication Number Publication Date
JP2015069045A true JP2015069045A (en) 2015-04-13

Family

ID=52835741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013203964A Pending JP2015069045A (en) 2013-09-30 2013-09-30 Multi-functional polarized lens

Country Status (1)

Country Link
JP (1) JP2015069045A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180086245A (en) 2016-06-30 2018-07-30 호야 렌즈 타일랜드 리미티드 Spectacle lenses and glasses
KR20180088701A (en) 2016-06-30 2018-08-06 호야 렌즈 타일랜드 리미티드 Manufacturing method of spectacle lens
US10267966B2 (en) 2016-04-13 2019-04-23 Talex Optical Co., Ltd. Composite functional polarized lens
JPWO2018096612A1 (en) * 2016-11-24 2019-06-24 株式会社タレックス Plastic lens for non-corrective glasses
JP2019528466A (en) * 2016-08-09 2019-10-10 エシロール・アンテルナシオナル Composition for the production of spectacle lenses comprising an encapsulated light absorber
WO2019194132A1 (en) * 2018-04-02 2019-10-10 株式会社ホプニック研究所 Plastic polarizing lens and method for manufacturing same
WO2020203382A1 (en) 2019-03-29 2020-10-08 ホヤ レンズ タイランド リミテッド Polarized lens and manufacturing method thereof
CN112123684A (en) * 2019-06-25 2020-12-25 江苏想靓眼镜有限公司 Processing technology of multiple color-changing sunglasses
CN113927835A (en) * 2021-10-22 2022-01-14 江苏汇鼎光学眼镜有限公司 Auxiliary device is filled to resin in resin glasses lens production process
WO2022202182A1 (en) * 2021-03-22 2022-09-29 三井化学株式会社 Production method for photochromic lens and photochromic lens

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311804A (en) * 2000-05-02 2001-11-09 Taretsukusu Kogaku Kogyo Kk Plastic polarizing lens and method for producing the same
JP2006189565A (en) * 2005-01-05 2006-07-20 Yukihisa Takeda Manufacturing method of compound molding by secondary molding
US20070171537A1 (en) * 2006-01-20 2007-07-26 Chow Tak Fung Enhanced color contrast lens
JP2010085911A (en) * 2008-10-02 2010-04-15 Talex Optical Co Ltd Lens substrate for infrared ray absorbing spectacles
WO2012020570A1 (en) * 2010-08-12 2012-02-16 三井化学株式会社 Plastic polarizing lens, method for producing same, and polarizing film
JP2012173704A (en) * 2011-02-24 2012-09-10 Ito Kogaku Kogyo Kk Antiglare optical element
WO2013034557A1 (en) * 2011-09-06 2013-03-14 Bnl Eurolens Tinted polarizing optical element, and method for manufacturing such an element
JP2013109257A (en) * 2011-11-24 2013-06-06 Talex Optical Co Ltd Antiglare high-contrast resin lens
US20130141693A1 (en) * 2011-10-20 2013-06-06 Oakley, Inc. Eyewear with chroma enhancement
JP2013524296A (en) * 2010-04-13 2013-06-17 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Manufacturing process for thermochromic contact lens materials

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311804A (en) * 2000-05-02 2001-11-09 Taretsukusu Kogaku Kogyo Kk Plastic polarizing lens and method for producing the same
JP2006189565A (en) * 2005-01-05 2006-07-20 Yukihisa Takeda Manufacturing method of compound molding by secondary molding
US20070171537A1 (en) * 2006-01-20 2007-07-26 Chow Tak Fung Enhanced color contrast lens
JP2010085911A (en) * 2008-10-02 2010-04-15 Talex Optical Co Ltd Lens substrate for infrared ray absorbing spectacles
JP2013524296A (en) * 2010-04-13 2013-06-17 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Manufacturing process for thermochromic contact lens materials
WO2012020570A1 (en) * 2010-08-12 2012-02-16 三井化学株式会社 Plastic polarizing lens, method for producing same, and polarizing film
JP2012173704A (en) * 2011-02-24 2012-09-10 Ito Kogaku Kogyo Kk Antiglare optical element
WO2013034557A1 (en) * 2011-09-06 2013-03-14 Bnl Eurolens Tinted polarizing optical element, and method for manufacturing such an element
US20130141693A1 (en) * 2011-10-20 2013-06-06 Oakley, Inc. Eyewear with chroma enhancement
JP2013109257A (en) * 2011-11-24 2013-06-06 Talex Optical Co Ltd Antiglare high-contrast resin lens

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10267966B2 (en) 2016-04-13 2019-04-23 Talex Optical Co., Ltd. Composite functional polarized lens
KR20180086245A (en) 2016-06-30 2018-07-30 호야 렌즈 타일랜드 리미티드 Spectacle lenses and glasses
KR20180088701A (en) 2016-06-30 2018-08-06 호야 렌즈 타일랜드 리미티드 Manufacturing method of spectacle lens
US10913226B2 (en) 2016-06-30 2021-02-09 Hoya Lens Thailand Ltd. Method for manufacturing spectacle lens
JP2019530892A (en) * 2016-08-09 2019-10-24 エシロール・アンテルナシオナル Eyeglass lens containing encapsulated light absorber
JP2019528466A (en) * 2016-08-09 2019-10-10 エシロール・アンテルナシオナル Composition for the production of spectacle lenses comprising an encapsulated light absorber
JPWO2018096612A1 (en) * 2016-11-24 2019-06-24 株式会社タレックス Plastic lens for non-corrective glasses
US11543684B2 (en) 2016-11-24 2023-01-03 Talex Co., Ltd. Non-corrective plastic spectacle lens
WO2019194132A1 (en) * 2018-04-02 2019-10-10 株式会社ホプニック研究所 Plastic polarizing lens and method for manufacturing same
JPWO2019194132A1 (en) * 2018-04-02 2021-02-12 株式会社ホプニック研究所 Plastic polarized lenses and their manufacturing methods
WO2020203382A1 (en) 2019-03-29 2020-10-08 ホヤ レンズ タイランド リミテッド Polarized lens and manufacturing method thereof
CN112123684A (en) * 2019-06-25 2020-12-25 江苏想靓眼镜有限公司 Processing technology of multiple color-changing sunglasses
WO2022202182A1 (en) * 2021-03-22 2022-09-29 三井化学株式会社 Production method for photochromic lens and photochromic lens
CN113927835A (en) * 2021-10-22 2022-01-14 江苏汇鼎光学眼镜有限公司 Auxiliary device is filled to resin in resin glasses lens production process
CN113927835B (en) * 2021-10-22 2023-06-30 江苏汇鼎光学眼镜有限公司 Resin filling auxiliary device in production process of resin spectacle lenses

Similar Documents

Publication Publication Date Title
JP2015069045A (en) Multi-functional polarized lens
EP2049938B1 (en) Molded laminate for optical use and method for its manufacture
US10267966B2 (en) Composite functional polarized lens
US7036932B2 (en) Laminated functional wafer for plastic optical elements
US7002744B2 (en) Polarized optical part using high impact polyurethane-based material
WO2012035885A1 (en) Light-blocking lenses for safety glasses
US7035010B2 (en) Polarized lenses with variable transmission
JP2010085911A (en) Lens substrate for infrared ray absorbing spectacles
US9939660B2 (en) Gradient polarized ophthalmic lens
US10444547B2 (en) Functional laminated spectacle lens having functional layer formed by spin-coating
ES2897912T3 (en) Polarized lens for high refractive index glasses
US8474973B2 (en) Infrared absorbing polarized eyeglass lens
WO2015056801A1 (en) Polarizing lens, eyewear, and polarizing lens manufacturing method
US11754860B2 (en) Photochromic lens with laminated film, method for producing a photochromic lens, and a spectacle frame
JP2007293030A (en) Manufacturing method of polarizing lens and polarizing plate used therefor
JP2009139964A5 (en)
JP6553157B2 (en) Method of manufacturing multi-functional polarization lens
US20230168420A1 (en) Functional polarizing element for insert molding and functional polarizing lens
TWI826419B (en) Lenses and methods of manufacturing lenses
EP3593981B1 (en) Improved molding device for casting an optical article with wafer on top, corresponding method and opticle article
JP2019117390A (en) Composite functional polarized lens
CN112219157A (en) Color enhanced lens
CN114174055A (en) Method for making photochromic optical articles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170919