JP6552915B2 - Damping device and damping method - Google Patents

Damping device and damping method Download PDF

Info

Publication number
JP6552915B2
JP6552915B2 JP2015163642A JP2015163642A JP6552915B2 JP 6552915 B2 JP6552915 B2 JP 6552915B2 JP 2015163642 A JP2015163642 A JP 2015163642A JP 2015163642 A JP2015163642 A JP 2015163642A JP 6552915 B2 JP6552915 B2 JP 6552915B2
Authority
JP
Japan
Prior art keywords
mass
curved surface
mass body
surface portion
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015163642A
Other languages
Japanese (ja)
Other versions
JP2017040332A (en
Inventor
亮 伊東
亮 伊東
泰明 徳永
泰明 徳永
安彦 相田
安彦 相田
丸山 裕
裕 丸山
智一 樋口
智一 樋口
俊司 大熊
俊司 大熊
麻貴子 栗原
麻貴子 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2015163642A priority Critical patent/JP6552915B2/en
Publication of JP2017040332A publication Critical patent/JP2017040332A/en
Application granted granted Critical
Publication of JP6552915B2 publication Critical patent/JP6552915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明の実施形態は、構造物の揺動を磁気減衰を用いて制振する制振装置及び制振方法に関する。   Embodiments described herein relate generally to a vibration damping device and a vibration damping method for damping a structure using a magnetic damping.

図15に示すように、構造物の上下方向の地震動に対応するための上下免震として、構造物としての免震対象物1を上下免震要素2で柔に支持して、免震対象物1の上下方向の応答加速度を低減する手法が知られている。その際、図15の矢印Pに示すように、免震対象物1が傾く揺動と呼ばれる往復運動(ロッキング振動)が発生する。その他、船舶のように水面に浮遊している構造物は、波や風などの要因によって揺動する。このような揺動を低減する揺動低減装置として、転動する質量体を用いた振り子型動吸振器に磁気ダンパを応用したもの、球面板上を球体形状の質量体が転がる振り子型動吸振器などが知られている。   As shown in FIG. 15, as a vertical seismic isolation to cope with the vertical ground motion of the structure, the seismic isolation object 1 as a structure is flexibly supported by the vertical seismic isolation element 2 and the seismic isolation object There is known a method for reducing the response acceleration of 1 in the vertical direction. At that time, as shown by arrow P in FIG. 15, a reciprocating movement (rocking vibration) called rocking in which the seismic isolation target 1 tilts is generated. In addition, a structure floating on the water surface such as a ship swings due to factors such as waves and winds. As a rocking reduction device for reducing such rocking, one in which a magnetic damper is applied to a pendulum type dynamic vibration absorber using a rolling mass, a pendulum type dynamic vibration absorption in which a spherical mass is rolled on a spherical plate Vessels are known.

特開平8−216875号公報JP-A-8-216875 特開2004−340163号公報JP 2004-340163 A

特許文献1に記載の揺動低減装置は、ロープウェーの揺動減衰を目的とし、車輪を有する台車型の質量体が円弧状のレール上を往復運動する振り子型動吸振器であり、車輪部分に磁石と導体を配置して磁気ダンパを構成している。この構成では、質量体の運動がレールの曲面に沿った移動のみであるため、動吸振器による制振効果は1方向に限定される。このため、水平2次元的な揺動に対しては異なる向きに設置した2つ以上の動吸振器が必要になる。   The swing reduction device described in Patent Document 1 is a pendulum type dynamic vibration absorber in which a dolly-type mass body having wheels reciprocates on an arc-shaped rail for the purpose of damping the ropeway swing. A magnet and a conductor are arranged to constitute a magnetic damper. In this configuration, since the motion of the mass body is only movement along the curved surface of the rail, the vibration damping effect by the dynamic vibration absorber is limited to one direction. For this reason, two or more dynamic vibration absorbers installed in different directions are required for horizontal two-dimensional rocking.

また、特許文献2に記載の揺動低減装置は、球面形状の板上を球体状の質量体が転がる振り子型動吸振器であり、全方向に対して制振効果を得ることができる。しかし、この構成では動吸振器に必要となる減衰を得ることが困難である。   Further, the swing reduction device described in Patent Document 2 is a pendulum type dynamic vibration absorber in which a spherical mass body rolls on a spherical plate, and can obtain a damping effect in all directions. However, in this configuration, it is difficult to obtain the damping required for the dynamic absorber.

本発明における実施形態の目的は、上述の事情を考慮してなされたものであり、制振対象の揺動を減衰して制振できる制振装置及び制振方法を提供することにある。   An object of an embodiment of the present invention is made in consideration of the above-described circumstances, and is to provide a vibration damping device and a vibration damping method capable of damping vibrations by damping the vibration of a vibration damping target.

本発明の実施形態における制振装置は、曲率半径を有する曲面部及び導体からなる導体部を備えた質量体と、制振対象に設けられると共に、前記質量体の前記曲面部を揺動可能に支持する質量体支持体と、前記制振対象に支持されて磁束を発生させる磁石と、を備える制振装置であって、前記曲面部が前記質量体支持体に支持されて前記質量体が揺動する際に、前記質量体の前記導体部は前記磁石が発生する前記磁束を通過するように配置され、更に、前記質量体の質量と前記曲面部の曲率半径と重力とによる復元力が前記質量体に作用するよう構成されたことを特徴とするものである。
また、本発明の実施形態における制振装置は、曲率半径を有する曲面部及び導体からなる導体部を備えた質量体と、制振対象に設けられると共に、前記質量体の前記曲面部を揺動可能に支持する質量体支持体と、前記制振対象に支持されて磁束を発生させる磁石と、を備える制振装置であって、前記質量体の前記導体部は、前記曲面部が前記質量体支持体に支持されて揺動する際に前記磁石が発生する前記磁束を通過するように配置され、前記質量体は、内周側に導体部が設けられると共に、この導体部の外周側に曲面部が設けられて構成され、前記導体部の下方に、磁極の異なる複数個の磁石を隣り合わせて交互に配設したことを特徴とするものである。
更に、本発明の実施形態における制振装置は、曲率半径を有する曲面部及び導体からなる導体部を備えた質量体と、制振対象に設けられると共に、前記質量体の前記曲面部を揺動可能に支持する質量体支持体と、前記制振対象に支持されて磁束を発生させる磁石と、を備える制振装置であって、前記質量体の前記導体部は、前記曲面部が前記質量体支持体に支持されて揺動する際に前記磁石が発生する前記磁束を通過するように配置され、前記質量体の曲面部は、その曲率半径が方向により異なって設定されたことを特徴とするものである。
また、本発明の実施形態における制振装置は、曲率半径を有する曲面部及び導体からなる導体部を備えた質量体と、制振対象に設けられると共に、前記質量体の前記曲面部を揺動可能に支持する質量体支持体と、前記制振対象に支持されて磁束を発生させる磁石と、を備える制振装置であって、前記質量体の前記導体部は、前記曲面部が前記質量体支持体に支持されて揺動する際に前記磁石が発生する前記磁束を通過するように配置され、前記質量体の導体部は、その半径方向における内側から外側の領域で厚さが異なって構成されたことを特徴とするものである。
The damping device according to the embodiment of the present invention is provided to a mass body including a curved surface portion having a radius of curvature and a conductor portion including a conductor, and is provided for damping, and the curved surface portion of the mass body can swing. A damping device comprising: a mass support to be supported; and a magnet supported by the damping object to generate a magnetic flux, wherein the curved surface portion is supported by the mass support and the mass is shaken. When moving, the conductor portion of the mass body is disposed to pass the magnetic flux generated by the magnet, and the restoring force by the mass of the mass body, the radius of curvature of the curved surface portion, and the gravity is also the It is characterized in that it is configured to act on the mass .
Further, the damping device in the embodiment of the present invention is provided with a mass body provided with a conductor portion including a curved surface portion having a radius of curvature and a conductor, and is provided for damping, and swings the curved surface portion of the mass body. A vibration control device comprising: a mass support which supports the magnet; and a magnet supported by the vibration control target to generate a magnetic flux, wherein the curved surface portion of the conductor portion of the mass is the mass The magnetic body is disposed so as to pass the magnetic flux generated by the magnet when supported by a support and oscillated, and the mass body is provided with a conductor portion on the inner peripheral side, and is curved on the outer peripheral side of the conductor portion A portion is provided and configured, and a plurality of magnets with different magnetic poles are alternately arranged adjacent to each other below the conductor portion.
Furthermore, the vibration damping device according to the embodiment of the present invention is provided with a mass body including a curved surface portion having a radius of curvature and a conductor portion including a conductor, and is provided for damping, and swings the curved surface portion of the mass body. A vibration control device comprising: a mass support which supports the magnet; and a magnet supported by the vibration control target to generate a magnetic flux, wherein the curved surface portion of the conductor portion of the mass is the mass The magnetic body is disposed so as to pass through the magnetic flux generated by the magnet when supported by a support and oscillated, and the curved surface portion of the mass body is characterized in that the radius of curvature is different depending on the direction. It is a thing.
Further, the damping device in the embodiment of the present invention is provided with a mass body provided with a conductor portion including a curved surface portion having a radius of curvature and a conductor, and is provided for damping, and swings the curved surface portion of the mass body. A vibration control device comprising: a mass support which supports the magnet; and a magnet supported by the vibration control target to generate a magnetic flux, wherein the curved surface portion of the conductor portion of the mass is the mass The magnetic body is disposed so as to pass through the magnetic flux generated by the magnet when supported by a support and oscillated, and the conductor portions of the mass body are configured to have different thicknesses in the region from the inner side to the outer side in the radial direction It is characterized by the fact that

本発明の実施形態によれば、制振対象の揺動を減衰して制振できる。   According to the embodiment of the present invention, it is possible to damp and damp the oscillation of the damping target.

第1実施形態に係る制振装置が適用された動吸振器が制振対象である免震対象物に設置された状態を示す側面図。The side view showing the state where the dynamic absorber to which the damping device concerning a 1st embodiment was applied was installed in the seismic isolation subject which is a damping object. 図1の動吸振器を拡大して示す側面図。The side view which expands and shows the dynamic vibration damper of FIG. 図1の動吸振器を示す平面図。The top view which shows the dynamic vibration absorber of FIG. 図1の動吸振器を示す側断面図。The sectional side view which shows the dynamic vibration damper of FIG. 図1の動吸振器の作用を示す説明図。Explanatory drawing which shows the effect | action of the dynamic vibration damper of FIG. 第2実施形態に係る制振装置が適用された動吸振器を示す側面図。FIG. 7 is a side view showing a dynamic vibration absorber to which a damping device according to a second embodiment is applied. 図6の動吸振器の質量体を示す平面図。The top view which shows the mass body of the dynamic vibration damper of FIG. 図6の磁石の配置例を示す説明図。Explanatory drawing which shows the example of arrangement | positioning of the magnet of FIG. 図6の磁石による磁束線と質量体の導体部との関係を説明する説明図。Explanatory drawing explaining the relationship between the magnetic flux line by the magnet of FIG. 6, and the conductor part of a mass body. 第3実施形態に係る制振装置が適用された動吸振器を示す側断面図。The side sectional view showing the dynamic absorber to which the damping device concerning a 3rd embodiment was applied. 第4実施形態に係る制振装置が適用された動吸振器の一例を示す側断面図。The side sectional view showing an example of the dynamic absorber to which the damping device concerning a 4th embodiment was applied. 第4実施形態に係る制振装置が適用された動吸振器の他の例を示す側断面図。The sectional side view which shows the other example of the dynamic vibration absorber to which the damping device concerning 4th Embodiment was applied. 第5実施形態に係る制振装置が適用された動吸振器の質量体を示し、(A)が平面図、(B)、(C)が図13(A)のそれぞれB矢視図、C矢視図。The mass body of the dynamic vibration damper to which the vibration damping device concerning 5th Embodiment was applied is shown, (A) is a top view, (B), (C) is each B arrow directional view of FIG. 13 (A), C Arrow view. 第6実施形態に係る制振装置が適用された動吸振器を示す側断面図。The side sectional view showing the dynamic absorber to which the damping device concerning a 6th embodiment was applied. 上下免震要素により支持された免震対象物の揺動状況を説明する説明図。Explanatory drawing explaining the rocking | fluctuation condition of the seismic isolation target object supported by the up-and-down seismic isolation element.

以下、本発明を実施するための形態を、図面に基づき説明する。
[A]第1実施形態(図1〜図5)
図1は、第1実施形態に係る制振装置が適用された動吸振器が制振対象である免震対象物に設置された状態を示す側面図である。また、図2は、図1の動吸振器を拡大して示す側面図である。これらの図1及び図2に示す制振装置としての動吸振器10は、制振対象としての免震対象物1の例えば天面1Aに設置されて、この免震対象物1の揺動を制振するものであり、質量体11、質量体支持体12、磁石13、磁石支持体14及び基板15を有して構成される。
Hereinafter, an embodiment for carrying out the present invention will be described based on the drawings.
[A] First Embodiment (FIGS. 1 to 5)
FIG. 1 is a side view showing a state in which a dynamic vibration absorber to which a vibration damping device according to the first embodiment is applied is installed on a seismic isolation object that is a vibration damping object. FIG. 2 is a side view showing the dynamic vibration absorber of FIG. 1 in an enlarged manner. The dynamic absorber 10 as a damping device shown in FIGS. 1 and 2 is installed on, for example, the top surface 1A of the seismic isolation target 1 as a damping target, and the oscillation of the seismic isolation target 1 is It is to be damped, and is configured to have a mass body 11, a mass body support 12, a magnet 13, a magnet support 14 and a substrate 15.

ここで、制振対象としての免震対象物1は、上下免震要素2を用いて地面3に対し柔に支持されたものであり、上下免震要素2によって上下方向の応答加速度が低減されるが、その際に生じる矢印P方向のロッキング振動、つまり揺動が動吸振器10により制振される。尚、動吸振器10が制振する制振対象は免震対象物1に限らず、水面に浮遊して波や風により揺動する船舶などの構造物も含まれる。   Here, the seismic isolation object 1 as a vibration control object is softly supported with respect to the ground 3 using the vertical seismic isolation element 2, and the vertical acceleration response is reduced by the vertical seismic isolation element 2. However, the rocking vibration in the direction indicated by the arrow P, that is, the rocking, is suppressed by the dynamic vibration absorber 10. It should be noted that the vibration damping object that is damped by the dynamic vibration absorber 10 is not limited to the seismic isolation object 1, but also includes structures such as ships that float on the water surface and are swung by waves or wind.

質量体11は、図3及び図4にも示すように、軸心Oを含む内周側の部分に曲面部16が設けられると共に、この曲面部16の外周側に導体部17が設けられて構成される。これらの曲面部16及び導体部17は、曲面部16が平面視円板形状に、導体部17が平面視リング形態に形成されることで、軸心Oに対して対称な形状に構成される。特に、曲面部16は、少なくとも下面16Aが球面形状に形成されて、その下面16Aの周方向各位置の曲率半径Rが同一の値に設定される。また、導体部17は導電体にて構成され、曲面部16に連続して結合されて質量体11の半径方向外方へ延在する。   As shown in FIGS. 3 and 4, the mass body 11 is provided with a curved surface portion 16 on the inner peripheral side including the axis O and a conductor portion 17 on the outer peripheral side of the curved surface portion 16. Composed. The curved surface portion 16 and the conductor portion 17 are configured to be symmetrical with respect to the axis O by forming the curved surface portion 16 in a disk shape in plan view and the conductor portion 17 in a ring shape in plan view. . In particular, at least the lower surface 16A of the curved surface portion 16 is formed in a spherical shape, and the curvature radius R of each circumferential position of the lower surface 16A is set to the same value. The conductor portion 17 is formed of a conductor, and is continuously coupled to the curved surface portion 16 so as to extend outward in the radial direction of the mass body 11.

質量体支持体12は、図2、図4及び図5に示すように、質量体11の曲面部16の下面16Aに接触し、この質量体11の曲面部16の下面16Aを水平方向に揺動可能に下方から支持する。例えば、質量体支持体12は、質量体11の水平方向の変位に対して摩擦抵抗が小さくなるように構成されており、具体的にはボールキャスタのようなころを備えて構成される。更に質量体支持体12は、空気ばね等を用いて質量体11を水平方向に揺動可能に下方から非接触に支持してもよい。この質量体支持体12は、磁石支持体14と共に基板15に設置され、この基板15が免震対象物1の天面1Aに取り付けられる。質量体支持体12は、基板15において質量体11の曲面部16の下方に設置される。   The mass support 12 is in contact with the lower surface 16A of the curved surface 16 of the mass 11 as shown in FIGS. 2, 4 and 5, and the lower surface 16A of the curved surface 16 of the mass 11 is horizontally shaken. Support from below to be movable. For example, the mass body support 12 is configured such that the frictional resistance is reduced with respect to the horizontal displacement of the mass body 11, and specifically includes rollers such as a ball caster. Furthermore, the mass support 12 may support the mass 11 so as to be horizontally pivotable in a non-contact manner from below using an air spring or the like. The mass support 12 is mounted on the substrate 15 together with the magnet support 14, and the substrate 15 is attached to the top surface 1 A of the seismic isolation target 1. The mass support 12 is disposed below the curved surface portion 16 of the mass 11 on the substrate 15.

図3及び図4に示すように、磁石支持体14は、基板15において質量体11の導体部17における周方向複数位置に略等間隔で設置されて免震対象物1に固定される。また、磁石13は磁石支持体14を介して免震対象物1に支持される。すなわち、磁石支持体14に、異なる磁極の一対の磁石13、つまりN極、S極の一対の磁石13が質量体11の導体部17を挟んで対向して設置され、この一対の磁石13の間に磁束が発生する。
質量体11の導体部17は、図5に示す質量体11が水平方向に揺動する際、一対の磁石13が発生する磁束を通過(横切って移動)するように配置される。ここで、磁石支持体14は磁性体にて構成されてヨークとして機能し、磁石13及び磁石支持体14により磁気回路を形成することで、導体部17が通過する磁束の磁束密度を増大させている。
As shown in FIGS. 3 and 4, the magnet support 14 is installed on the substrate 15 at a plurality of positions in the circumferential direction of the conductor portion 17 of the mass body 11 at substantially equal intervals, and is fixed to the seismic isolation object 1. Also, the magnet 13 is supported by the seismic isolation target 1 via the magnet support 14. That is, a pair of magnets 13 of different magnetic poles, that is, a pair of magnets 13 of N and S poles, are disposed opposite to each other across the conductor portion 17 of the mass body 11 on the magnet support 14. Magnetic flux is generated between them.
The conductor portion 17 of the mass body 11 is disposed so as to pass (move across) the magnetic flux generated by the pair of magnets 13 when the mass body 11 shown in FIG. 5 swings in the horizontal direction. Here, the magnet support 14 is made of a magnetic material and functions as a yoke, and by forming a magnetic circuit by the magnet 13 and the magnet support 14, the magnetic flux density of the magnetic flux passing through the conductor portion 17 is increased. Yes.

図1、図2及び図5に示すように、免震対象物1が矢印P方向に揺動したとき、この揺動に伴って動吸振器10の質量体11は、免震対象物1に対して相対的に変位して水平方向に揺動する。この際、質量体11の曲面部16が周方向各位置に曲率半径Rを有しているので、質量体11は、変位した際に作用する重力Gによる復元力Fによって、振り子として機能する。更に、質量体11の導体部17は、一対の磁石13が形成する磁束を通過(横切って移動)する。このため、磁気減衰の原理で、質量体11の振動(揺動)速度に比例する減衰力が導体部17に作用して、質量体11の揺動が減衰される。この結果、動吸振器10は、振り子型動吸振器として機能する。   As shown in FIGS. 1, 2, and 5, when the seismic isolation object 1 swings in the direction of arrow P, the mass body 11 of the dynamic vibration absorber 10 moves to the seismic isolation object 1 along with this swinging. On the other hand, it is displaced relatively and swings in the horizontal direction. At this time, since the curved surface portion 16 of the mass body 11 has a radius of curvature R at each position in the circumferential direction, the mass body 11 functions as a pendulum by a restoring force F due to gravity G acting when displaced. Further, the conductor portion 17 of the mass body 11 passes (moves across) the magnetic flux formed by the pair of magnets 13. For this reason, on the principle of magnetic damping, a damping force proportional to the vibration (swinging) speed of the mass body 11 acts on the conductor portion 17 to attenuate the swinging of the mass body 11. As a result, the dynamic vibration absorber 10 functions as a pendulum type dynamic vibration absorber.

この動吸振器10では、免震対象物1の揺動に適合させるべく、動吸振器10の固有振動数及び減衰比が調整される。動吸振器10の固有振動数は、曲面部16の半径R、または質量体11の質量もしくは慣性モーメントによって決定される。また、動吸振器10の減衰比は、磁石13により生ずる磁束密度、導体部17の厚さ、導体部17の透磁率、導体部17と磁石13の隙間量などによって決定される。   In this dynamic vibration absorber 10, the natural frequency and damping ratio of the dynamic vibration absorber 10 are adjusted in order to adapt to the swing of the seismic isolation object 1. The natural frequency of the dynamic vibration absorber 10 is determined by the radius R of the curved surface portion 16 or the mass or moment of inertia of the mass 11. The damping ratio of the dynamic vibration absorber 10 is determined by the magnetic flux density generated by the magnet 13, the thickness of the conductor 17, the permeability of the conductor 17, the gap between the conductor 17 and the magnet 13, and the like.

以上にように構成されたから、第1実施形態によれば、次の効果(1)及び(2)を奏する。
(1)図1及び図2に示すように、免震対象物1の矢印P方向の揺動に伴って、動吸振器10の質量体11は、周方向各位置に曲率半径Rを有する曲面部16が質量体支持体12に支持されることで、免震対象物1に対して水平2次元の全方向に揺動可能となる。このとき、質量体11の導体部17が一対の磁石13の磁束を通過することで、磁気減衰の原理により導体部17に減衰力が作用して質量体11が減衰する。これにより、免震対象物1の水平2次元の全方向に対する揺動を減衰して制振できる。
Since it was comprised as mentioned above, according to 1st Embodiment, the following effects (1) and (2) are show | played.
(1) As shown in FIGS. 1 and 2, the mass body 11 of the dynamic vibration absorber 10 has a curved surface having a radius of curvature R at each position in the circumferential direction along with the rocking of the seismic isolation object 1 in the arrow P direction. The portion 16 is supported by the mass support 12 so that it can swing in all directions in the horizontal two-dimensional direction with respect to the seismic isolation target 1. At this time, when the conductor portion 17 of the mass body 11 passes the magnetic flux of the pair of magnets 13, a damping force acts on the conductor portion 17 according to the principle of magnetic attenuation, and the mass body 11 is attenuated. As a result, it is possible to damp and damp the oscillation of the seismic isolation target 1 in all directions in the horizontal two dimensions.

(2)動吸振器10では、質量体11の導体部17と磁石13とによる磁気減衰を用いて減衰力を生じさせ、免震対象物1を制振させるので、この制振効果を得るために必要な動吸振器10の減衰比を比較的簡素な構成で確保できる。つまり、磁石13の大きさ、磁石13と導体部17の隙間、または導体部17の厚さなどを変更することで、例えば磁石13により生ずる磁束密度を調整して、動吸振器10の減衰比を最適に確保できる。   (2) In the dynamic vibration absorber 10, the damping force is generated using the magnetic damping by the conductor portion 17 of the mass body 11 and the magnet 13, and the vibration isolation target 1 is damped. The damping ratio of the dynamic vibration absorber 10 necessary for the above can be ensured with a relatively simple configuration. That is, by changing the size of the magnet 13, the gap between the magnet 13 and the conductor 17, the thickness of the conductor 17, etc., for example, the magnetic flux density generated by the magnet 13 is adjusted, and the damping ratio of the dynamic vibration absorber 10 Can be ensured optimally.

[B]第2実施形態(図6〜図9)
図6は、第2実施形態に係る制振装置が適用された動吸振器を示す側面図である。また、図7は、図6の動吸振器の質量体を示す平面図である。この第2実施形態において、第1実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second Embodiment (FIGS. 6 to 9)
FIG. 6 is a side view showing a dynamic vibration absorber to which the vibration damping device according to the second embodiment is applied. FIG. 7 is a plan view showing a mass of the dynamic vibration absorber of FIG. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals to simplify or omit the description.

第2実施形態の制振装置としての動吸振器20が第1実施形態と異なる点は、質量体21の軸線Oを含む内周側の部分に導体部23が設けられると共に、この導体部23の外側周囲、すなわち外周側に曲面部22が設けられて質量体21が構成され、更に、導体部23の下方に設置された磁石支持体24に、磁極の異なる複数の磁石13が交互に隣り合って配置された点である。   The dynamic vibration absorber 20 as the vibration damping device of the second embodiment is different from the first embodiment in that a conductor portion 23 is provided on the inner peripheral side portion including the axis O of the mass body 21, and this conductor portion 23. A curved surface portion 22 is provided on the outer periphery of the body, that is, on the outer peripheral side, and a mass body 21 is configured. Furthermore, a plurality of magnets 13 having different magnetic poles are alternately adjacent to a magnet support 24 installed below the conductor portion 23 It is the point arranged together.

つまり、質量体21の導体部23は、導電体により構成されて平面視円形状に形成される。また、曲面部22は、導体部13の外側周囲に結合されて平面視リング状に形成される。この曲面部22は、少なくとも下面22Aが球面形状に形成されて、周方向各位置に同一の値の曲率半径Rを有する。   That is, the conductor part 23 of the mass body 21 is formed of a conductor and is formed in a circular shape in plan view. The curved surface portion 22 is coupled to the outer periphery of the conductor portion 13 and is formed in a ring shape in plan view. At least the lower surface 22A of the curved surface portion 22 is formed into a spherical shape, and the curved surface portion 22 has the curvature radius R of the same value at each circumferential position.

質量体21は、曲面部22の下面22Aが質量体支持体12により下方から支持される。この質量体支持体12は、曲面部22に対して摩擦抵抗の少ない構成であり、例えば曲面部22の下面22Aに接触するボールキャスタのようなころであったり、曲面部22の下面22に非接触な空気ばね等である。曲面部22の下面22Aが周方向各位置で曲率半径Rを有しているため、質量体21が免震対象物1の揺動に伴って水平方向に揺動したとき、この質量体21は振り子として機能する。   In the mass body 21, the lower surface 22 </ b> A of the curved surface portion 22 is supported by the mass body support 12 from below. The mass support 12 is configured to have a low frictional resistance with respect to the curved surface 22, and may be, for example, a roller such as a ball caster contacting the lower surface 22 A of the curved surface 22. For example, a contact air spring. Since the lower surface 22A of the curved surface portion 22 has a radius of curvature R at each circumferential position, when the mass body 21 swings in the horizontal direction along with the swing of the seismic isolation object 1, this mass body 21 Functions as a pendulum.

第1実施形態と同様、磁石13は磁石支持体24を介して免震対象物1に支持されるが、磁石支持体24に配設される複数の磁石13は、図8に示すように、N極の磁石13とS極の磁石13が交互に隣り合って水平状態で配設され、これにより、図9に示すように、N極の磁石13からS極の磁石13へ向かう磁束線25が形成される。免震対象物1の揺動に伴う質量体21の揺動時に、質量体21の導体部23が磁束線25(磁束)を通過する(横切って移動する)ことで、磁気減衰の原理によって導体部23に減衰力が作用して質量体21が減衰され、免震対象物1の揺動が減衰して制振される。   As in the first embodiment, the magnet 13 is supported by the seismic isolation object 1 via the magnet support 24, but the plurality of magnets 13 disposed on the magnet support 24 are as shown in FIG. The magnet 13 of the N pole and the magnet 13 of the S pole are alternately arranged in a horizontal state, whereby the magnetic flux lines 25 directed from the magnet 13 of the N pole to the magnet 13 of the S pole as shown in FIG. Is formed. The conductor portion 23 of the mass body 21 passes (moves across) the magnetic flux line 25 (magnetic flux) during the oscillation of the mass body 21 associated with the oscillation of the seismic isolation object 1, so that the conductor is formed according to the principle of magnetic attenuation. A damping force acts on the portion 23 to damp the mass body 21 and the oscillation of the seismic isolation target 1 is damped and damped.

以上にように構成されたことから、第2実施形態によれば、第1実施形態の効果(1)及び(2)と同様な効果を奏するほか、次の効果(3)を奏する。   Since it was configured as described above, according to the second embodiment, in addition to the same effects as the effects (1) and (2) of the first embodiment, the following effect (3) is achieved.

(3)質量体21の導体部23の下方に、磁極の異なる複数の磁石13が交互に隣り合って配置されたので、これらの磁石13は、導体部23の片側のみに配設されることになる。このため、これらの磁石13により生ずる磁束線25の磁束は第1実施形態の場合に比べて小さく、磁気減衰の効果が第1実施形態よりも低いが、磁石支持体24を、第1実施形態の磁石支持体14よりも簡素に構成できるので、動吸振器20をコンパクトに構成できる。   (3) Since the plurality of magnets 13 having different magnetic poles are alternately arranged adjacent to each other below the conductor portion 23 of the mass body 21, these magnets 13 are disposed only on one side of the conductor portion 23 become. For this reason, the magnetic flux of the magnetic flux lines 25 generated by these magnets 13 is smaller than that in the first embodiment, and the effect of the magnetic attenuation is lower than that in the first embodiment. The dynamic absorber 20 can be made compact because it can be made simpler than the magnet support 14 of the above.

[C]第3実施形態(図10)
図10は、第3実施形態に係る制振装置が適用された動吸振器を示す側断面図である。この第3実施形態において、第1及び第2実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[C] Third Embodiment (FIG. 10)
FIG. 10 is a side sectional view showing a dynamic vibration absorber to which the vibration damping device according to the third embodiment is applied. In the third embodiment, the same parts as those in the first and second embodiments are denoted by the same reference numerals to simplify or omit the description.

第3実施形態の制振装置としての動吸振器30が第1及び第2実施形態と異なる点は、図10及び図6に示すように、上方向に過大に移動する質量体11、21に当接してこの質量体11、21の移動を抑止する上方移動抑止体31が設けられた点である。   The dynamic vibration absorber 30 as the vibration damping device of the third embodiment is different from the first and second embodiments in that mass bodies 11 and 21 that move excessively upward as shown in FIGS. This is the point that an upward movement deterring body 31 that abuts and deters movement of the mass bodies 11 and 21 is provided.

この上方移動抑止体31は、図10に示すように、免震対象物1に取り付けられた基板15から立設された磁石支持体14に、質量体11の導体部17へ向かって突設される。また、図6の2点鎖線に示すように、上方移動抑止体31は、基板15に立設された取付ステー32から質量体21の曲面部22へ向かって突設される。これらの上方移動抑止体31は緩衝部材にて構成され、免震対象物1の上下動により動吸振器30の質量体11、21が質量体支持体12に対して浮き上がろうとした際に、この質量体11、21に当接して下方へ押圧し、質量体11、21の浮き上がりを防止する。   As shown in FIG. 10, the upward movement restraining body 31 protrudes toward the conductor portion 17 of the mass body 11 on the magnet support body 14 erected from the substrate 15 attached to the seismic isolation object 1. The Further, as shown by a two-dot chain line in FIG. 6, the upward movement restraining body 31 is projected from the mounting stay 32 erected on the substrate 15 toward the curved surface portion 22 of the mass body 21. These upward movement restraining bodies 31 are constituted by buffer members, and when the mass bodies 11 and 21 of the dynamic vibration absorber 30 are about to float up with respect to the mass support body 12 due to the vertical movement of the seismic isolation object 1. The mass bodies 11 and 21 are pressed against the mass bodies 11 and 21 to prevent the mass bodies 11 and 21 from being lifted up.

ここで、上方移動抑止体31と質量体11、21の間には隙間が設定されて、質量体11、21の水平方向の移動(揺動)を阻害しないことが望ましい。但し、上方移動抑止体31と質量体11、21とを接触させる場合には、上方移動抑止体31は低摩擦材にて構成されて、質量体11、21の移動(揺動)が阻害されないよう考慮される。   Here, it is desirable that a gap is set between the upward movement suppressing body 31 and the mass bodies 11 and 21 so as not to hinder the movement (swing) of the mass bodies 11 and 21 in the horizontal direction. However, when the upward movement restraining body 31 and the mass bodies 11 and 21 are brought into contact with each other, the upward movement restraining body 31 is formed of a low friction material, and movement (rocking) of the mass bodies 11 and 21 is not inhibited. Is taken into account.

以上のように構成されたことから、本第3実施形態によれば、第1及び第2実施形態の効果(1)〜(3)と同様な効果を奏するほか、次の効果(4)を奏する。   With the configuration as described above, according to the third embodiment, in addition to the same effects as the effects (1) to (3) of the first and second embodiments, the following effect (4) is obtained. Play.

(4)上方向に過大に移動する質量体11、21に当接してこの質量体11、21を抑止する上方移動抑止体31が設けられたから、免震対象物1の上下動によっても質量体11、21の過大な上方移動、つまり浮き上がりを防止できる。この結果、質量体11、21は、質量体支持体12に支持されて水平方向に滑らかに揺動することが可能になるので、質量体11の導体部17、質量体21の導体部23が磁石13の磁束を確実に通過する。これにより、磁気減衰によって質量体11、21が減衰されることで、免震対象物1の揺動を確実に制振できる。   (4) Since the upward movement deterring body 31 that abuts the mass bodies 11 and 21 that move excessively in the upward direction and deters the mass bodies 11 and 21 is provided, the mass body is also caused by the vertical movement of the seismic isolation object 1. 11 and 21 can be prevented from excessively moving upward, that is, lifting. As a result, since the mass bodies 11 and 21 are supported by the mass body support body 12 and can swing smoothly in the horizontal direction, the conductor portion 17 of the mass body 11 and the conductor portion 23 of the mass body 21 are The magnetic flux of the magnet 13 is reliably passed. As a result, the mass bodies 11 and 21 are attenuated by magnetic damping, so that the oscillation of the seismic isolation target 1 can be reliably suppressed.

[D]第4実施形態(図11、図12)
図11は、第4実施形態に係る制振装置が適用された動吸振器の一例を示す側断面図である。また、図12は、第4実施形態に係る制振装置が適用された動吸振器の他の例を示す側断面図である。この第4実施形態において、第1及び第2実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[D] Fourth Embodiment (FIG. 11, FIG. 12)
FIG. 11 is a side sectional view showing an example of a dynamic vibration absorber to which the vibration damping device according to the fourth embodiment is applied. FIG. 12 is a side cross-sectional view showing another example of the dynamic vibration absorber to which the damping device according to the fourth embodiment is applied. In the fourth embodiment, the same parts as those in the first and second embodiments are denoted by the same reference numerals to simplify or omit the description.

第4実施形態の制振装置としての動吸振器40が第1及び第2実施形態と異なる点は、水平方向に過大に移動する質量体11、21に当接してこの質量体11、21の移動を抑止する水平移動抑止体41、42、43が設けられた点である。   The dynamic vibration absorber 40 as the vibration damping device of the fourth embodiment is different from the first and second embodiments in that the mass bodies 11 and 21 that are excessively moved in the horizontal direction are in contact with the mass bodies 11 and 21. It is a point provided with horizontal movement restraints 41, 42, 43 for suppressing movement.

つまり、水平移動抑止体41は緩衝部材にて構成され、図11に示すように、免震対象物1に取り付けられた基板15から立設された磁石支持体14に、質量体11が揺動する水平方向に対し長手方向を直交して設置される。これにより、質量体11が水平方向に過大な振幅で揺動したとき、この質量体11は、水平移動抑止体41に当接して緩衝され、質量体支持体12からの落下が防止される。   That is, the horizontal movement restraining body 41 is constituted by a buffer member, and the mass body 11 swings on the magnet support 14 erected from the substrate 15 attached to the seismic isolation object 1 as shown in FIG. It is installed with the longitudinal direction orthogonal to the horizontal direction. As a result, when the mass body 11 swings in the horizontal direction with an excessive amplitude, the mass body 11 abuts against the horizontal movement restraining body 41 and is buffered, and the drop from the mass body support 12 is prevented.

また、図12に示すように、水平移動抑止体42は、質量体21から垂下された質量体側支持部材44の外側に例えばリング状に設置される。また、水平移動抑止体43は、基板15に立設された基板側支持部材45の内側に例えばリング状に設置される。これらの水平移動抑止体42及び43は共に緩衝部材にて構成され、質量体21が水平方向に過大な振幅で揺動したとき、この質量体21は、質量体21側の水平移動抑止体42が基板15側の水平移動抑止体43に当接することで緩衝され、質量体21が質量体支持体12から落下することが防止される。なお、この第4実施形態に、第3実施形態の上方移動抑止体31が併設されてもよい。   Further, as shown in FIG. 12, the horizontal movement restraining body 42 is installed, for example, in a ring shape on the outside of the mass body side support member 44 suspended from the mass body 21. Further, the horizontal movement suppressing body 43 is installed in a ring shape, for example, inside the substrate side support member 45 erected on the substrate 15. These horizontal movement restraints 42 and 43 are both composed of buffer members, and when the mass 21 swings in the horizontal direction with excessive amplitude, this mass 21 is a horizontal movement restraint 42 on the mass 21 side. Is abutted against the horizontal movement restraining body 43 on the side of the substrate 15 so that the mass body 21 is prevented from falling from the mass body support 12. In the fourth embodiment, the upward movement restraining body 31 of the third embodiment may be juxtaposed.

以上のように構成されたことから、第4実施形態においても、第1及び第2実施形態の効果(1)〜(3)と同様な効果を奏するほか、次の効果(5)を奏する。   Since it was configured as described above, the fourth embodiment also provides the following effect (5) in addition to the same effects as the effects (1) to (3) of the first and second embodiments.

(5)水平方向に過大に移動する質量体11、21に当接してこの質量体11、21の移動を抑止する水平移動抑止体41、42、43が設けられたことから、質量体11、21が過大な振幅で揺動した際に、質量体11が水平移動抑止体42に当接し、また質量体21が水平移動抑止体42を介して水平移動抑止体43に当接するので、質量体11、21の過大な水平移動が緩衝されて阻止される。これにより、質量体11、21が質量体支持体12から落下することが防止される。   (5) Since the horizontal movement deterring bodies 41, 42, and 43 that contact the mass bodies 11 and 21 that move excessively in the horizontal direction and deter the movement of the mass bodies 11 and 21 are provided, Since the mass body 11 abuts on the horizontal movement restraining body 42 and the mass body 21 abuts on the horizontal movement restraining body 43 via the horizontal movement restraining body 42 when 21 swings with an excessive amplitude, the mass body Excessive horizontal movement of 11, 21 is buffered and prevented. This prevents the mass bodies 11 and 21 from falling off the mass body support 12.

この結果、質量体11、21は、質量体支持体12に支持されて水平方向に滑らかに移動(揺動)できるので、質量体11の導体部17、質量体21の導体部23が磁石13の磁束を確実に通過する(横切って移動する)。このため、磁気減衰によって質量体11、21が減衰されることで、免震対象物1の揺動を確実に制振できる。   As a result, the mass bodies 11 and 21 are supported by the mass body support 12 and can move (swing) smoothly in the horizontal direction, so that the conductor portion 17 of the mass body 11 and the conductor portion 23 of the mass body 21 are magnets 13. Surely passes through (moves across). For this reason, the mass bodies 11 and 21 are attenuated by magnetic damping, so that the oscillation of the seismic isolation target 1 can be reliably suppressed.

[E]第5実施形態(図13)
図13は、第5実施形態に係る制振装置が適用された動吸振器の質量体を示し、(A)が平面図、(B)、(C)が図13(A)のそれぞれB矢視図、C矢視図である。この第5実施形態において、第1及び第2実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[E] Fifth embodiment (FIG. 13)
FIG. 13: shows the mass body of the dynamic vibration damper to which the damping device concerning 5th Embodiment was applied, (A) is a top view, (B), (C) is each B arrow of FIG. 13 (A). It is a view and C arrow view. In the fifth embodiment, the same parts as those in the first and second embodiments are denoted by the same reference numerals to simplify or omit the description.

第5実施形態の制振装置としての動吸振器50が第1実施形態と異なる点は、質量体51の曲面部52におけるその少なくとも下面52Aが楕円体の面形状に形成されて、この下面52Aの曲率半径が曲面部52の周方向により異なって設定され、これにより、質量体51の揺動方向によって動吸振器50の固有振動数が異なるよう構成された点である。   The dynamic vibration reducer 50 as the vibration damping device of the fifth embodiment differs from that of the first embodiment in that at least the lower surface 52A of the curved surface portion 52 of the mass 51 is formed into an ellipsoidal surface shape. Is set differently depending on the circumferential direction of the curved surface portion 52, so that the natural frequency of the dynamic vibration absorber 50 is different depending on the swing direction of the mass body 51.

つまり、動吸振器により免震対象物1の揺動を静止する場合には、動吸振器は、免震対象物1の揺動の振動数に応じてその固有振動数を調整する必要がある。その際、免震対象物1は、必ずしも対称性を備えた構造になっている訳ではないので、揺動方向によってその振動数が異なる、いわゆる振動数の異方性を有する場合がある。   That is, when the swing of the seismic isolation object 1 is stopped by the dynamic vibration absorber, the dynamic vibration absorber needs to adjust its natural frequency according to the vibration frequency of the vibration isolation object 1. . At this time, the seismic isolation target 1 does not necessarily have a symmetrical structure, so it may have so-called anisotropy of the frequency, in which the frequency is different depending on the rocking direction.

第1実施形態の動吸振器10では、質量体11の曲面部16における下面16Aが球面形状(球体の面形状)に形成されているため、下面16Aの曲率半径Rは、曲面部16の周方向の各位置において一定である。従って、この動吸振器10の固有振動数は動吸振器10の方向によらず一定となり、単一の動吸振器10では免震対象物1の揺動の振動数の異方性に対応することができない。   In the dynamic vibration absorber 10 according to the first embodiment, the lower surface 16A of the curved surface portion 16 of the mass body 11 is formed into a spherical shape (surface shape of a sphere). It is constant at each position in the direction. Therefore, the natural frequency of the dynamic vibration absorber 10 is constant regardless of the direction of the dynamic vibration absorber 10, and the single dynamic vibration absorber 10 corresponds to the anisotropy of the vibration frequency of the seismic isolation object 1. I can't.

これに対し、第5実施形態の動吸振器50では、質量体51における曲面部52の下面52Aが楕円体の面形状に形成されているため、この下面52Aは、長手方向を正面にして目視した図13(B)に示すB矢視では、曲率半径がRbに設定され、また、B矢視に直交し且つ下面52Aの短手方向を正面にして目視した図13(C)に示すC矢視では、曲率半径がRc(Rc≠Rb)に設定されている。従って、動吸振器50の固有振動数は、質量体51の揺動方向によって異なる値に設定される。このため、動吸振器50は、免震対象物1の揺動方向によってその振動数が異なる振動数の異方性に対応することが可能になる。   On the other hand, in the dynamic vibration absorber 50 of the fifth embodiment, the lower surface 52A of the curved surface portion 52 of the mass body 51 is formed into an ellipsoidal surface shape, so this lower surface 52A is viewed with the longitudinal direction as the front. 13B, the radius of curvature is set to Rb, and C shown in FIG. 13C is orthogonal to the arrow B and is viewed with the short side direction of the lower surface 52A in front. In the arrow view, the curvature radius is set to Rc (Rc ≠ Rb). Therefore, the natural frequency of the dynamic vibration absorber 50 is set to a different value depending on the swing direction of the mass body 51. For this reason, it is possible for the dynamic vibration absorber 50 to correspond to the anisotropy of the frequency whose frequency is different depending on the swing direction of the seismic isolation target 1.

なお、図13中の符号53は、曲面部52の外側周囲に結合されて導電体から構成される導体部である。また、第2実施形態の質量体21(図6)の曲面部22を楕円体の面形状に形成して、質量体21に本第5実施形態を適用してもよい。   Note that reference numeral 53 in FIG. 13 denotes a conductor portion that is coupled to the outer periphery of the curved surface portion 52 and is made of a conductor. Further, the fifth embodiment may be applied to the mass body 21 by forming the curved surface portion 22 of the mass body 21 (FIG. 6) of the second embodiment into an elliptical surface shape.

以上ように構成されたことから、第5実施形態においても、第1及び第2実施形態の効果(1)〜(3)と同様の効果を奏するほか、次の効果(6)を奏する。   Due to the above configuration, the fifth embodiment also provides the following effect (6) in addition to the same effects as the effects (1) to (3) of the first and second embodiments.

(6)質量体51の曲面部52における下面52Aの曲率半径Rb、Rcが曲面部52の方向によって異なって設定され、これにより、質量体51の揺動方向によって動吸振器50の固有振動数を異ならせて設定することができる。このため、免震対象物1の揺動の振動数が揺動の方向によって異なる場合であっても、免震対象物1の揺動の振動数に応じて質量体51の曲面部52における下面52Aの曲率半径を調整することで、単一の動吸振器50であっても、免震対象物1の揺動の振動数の異方性に対応でき、免震対象物1の異なる方向の揺動を好適に制振できる。   (6) The radii of curvature Rb and Rc of the lower surface 52A of the curved surface 52 of the mass 51 are set differently depending on the direction of the curved surface 52, whereby the natural frequency of the dynamic vibration absorber 50 according to the swinging direction of the mass 51 Can be set differently. For this reason, even if the frequency of oscillation of the seismic isolation object 1 varies depending on the direction of oscillation, the lower surface of the curved surface portion 52 of the mass body 51 according to the frequency of oscillation of the seismic isolation object 1. By adjusting the curvature radius of 52A, even the single dynamic vibration absorber 50 can cope with the anisotropy of the oscillation frequency of the seismic isolation object 1, and the seismic isolation object 1 in different directions. Oscillation can be suitably controlled.

[F]第6実施形態(図14)
図14は、第6実施形態に係る制振装置が適用された動吸振器を示す側断面図である。この第6実施形態において、第1及び第2実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[F] Sixth Embodiment (FIG. 14)
FIG. 14 is a side sectional view showing a dynamic vibration absorber to which the vibration damping device according to the sixth embodiment is applied. In the sixth embodiment, the same parts as those in the first and second embodiments are denoted by the same reference numerals to simplify or omit the description.

第6実施形態の制振装置としての動吸振器60が第1実施形態と異なる点は、質量体61の導体部62は、半径方向における内側から外側の領域で厚さを異にして構成された点であり、例えば、導体部62の半径方向における内側領域部62Bの厚さTbが、外側領域部62Aの厚さTaよりも厚く設定されている。   The dynamic vibration absorber 60 as the vibration damping device of the sixth embodiment is different from that of the first embodiment in that the conductor portion 62 of the mass body 61 is configured with different thicknesses from the inner side to the outer side in the radial direction. For example, the thickness Tb of the inner region 62B in the radial direction of the conductor 62 is set larger than the thickness Ta of the outer region 62A.

動吸振器60は、導体部62と磁石13とによる磁気減衰を利用しているため、導体部62の厚さの増大によって動吸振器60の減衰比が増大する。導体部62の外側領域部62Aが磁石13の磁束を通過する質量体61の通常の変位領域では、免震対象物1の揺動の制振に最適となるように質量体61が磁気減衰される。また、質量体61が想定を超えて変位する変位領域では、導体部62の内側領域部62Bが磁石13の磁束を通過して導体部62に大きな減衰力が作用し、この減衰力がブレーキとなって質量体61の想定を超える変位が抑制される。   Since the dynamic vibration absorber 60 uses magnetic attenuation by the conductor portion 62 and the magnet 13, the attenuation ratio of the dynamic vibration absorber 60 increases as the thickness of the conductor portion 62 increases. In the normal displacement region of the mass 61 where the outer region 62A of the conductor 62 passes the magnetic flux of the magnet 13, the mass 61 is magnetically attenuated so as to be optimal for vibration suppression of the seismic isolation object 1. The Further, in a displacement region where the mass 61 is displaced beyond the assumption, the inner region 62B of the conductor 62 passes the magnetic flux of the magnet 13 and a large damping force acts on the conductor 62, and this damping force Therefore, the displacement exceeding the assumption of the mass body 61 is suppressed.

なお、図14中の符号63は、導体部62の内側でこの導体部62に連続して結合された曲面部である。また、本第6実施形態の導体部62は、外側領域部62Aから内側領域部62Bへ向かって厚さが漸次増大して形成されてもよい。更に、第2実施形態の質量体21(図6)の導体部23について、外側領域部の厚さを内側領域部よりも厚く設定して本第6実施形態を適用してもよい。   Note that reference numeral 63 in FIG. 14 denotes a curved surface portion that is continuously coupled to the conductor portion 62 inside the conductor portion 62. Also, the conductor portion 62 of the sixth embodiment may be formed such that its thickness gradually increases from the outer region portion 62A toward the inner region portion 62B. Furthermore, the sixth embodiment may be applied to the conductor portion 23 of the mass body 21 (FIG. 6) of the second embodiment by setting the outer region portion to be thicker than the inner region portion.

以上に構成されたことから、第6実施形態によれば、第1及び第2実施形態の効果(1)〜(3)と同様な効果を奏するほか、次の効果(7)を奏する。   As described above, according to the sixth embodiment, in addition to the same effects as the effects (1) to (3) of the first and second embodiments, the following effect (7) is obtained.

(7)質量体61の導体部62では、その半径方向における内側領域部62Bが外側領域部62Aによりも厚く構成されたので、質量体61が想定を超えて変位して導体部62の内側領域部62Bが磁石13を通過したとき、導体部62に作用する減衰力が増加することで質量体61の想定を超える変位を抑制できる。この結果、第4実施形態の水平移動抑止体41、42及び43と同様に、質量体支持体12からの質量体61の落下を防止して動吸振器60による免震対象物1の制振効果を確保できると共に、動吸振器60の破損を防止できる。   (7) In the conductor portion 62 of the mass body 61, the inner region portion 62 </ b> B in the radial direction is configured to be thicker than the outer region portion 62 </ b> A. When the portion 62 </ b> B passes the magnet 13, the increase in damping force acting on the conductor portion 62 can suppress the displacement exceeding the assumption of the mass 61. As a result, similarly to the horizontal movement deterring bodies 41, 42 and 43 of the fourth embodiment, the mass body 61 is prevented from dropping from the mass body support body 12, and the vibration isolator 60 is used to control the seismic isolation object 1. The effect can be ensured and the dynamic vibration absorber 60 can be prevented from being damaged.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができ、また、それらの置き換えや変更は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。例えば、前述の各実施形態における曲面部を導体部と同一の材料(導電体)で形成し、これらの曲面部と導体部とを一体に構成してもよい。   While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, changes can be made without departing from the scope of the invention, and those replacements or changes can be made. Is included in the scope and gist of the invention, and is included in the invention described in the claims and the equivalents thereof. For example, the curved surface portion in each embodiment described above may be formed of the same material (conductor) as the conductor portion, and the curved surface portion and the conductor portion may be integrated.

1…免震対象物(制振対象)、10…動吸振器(制振装置)、11…質量体、12…質量体支持体、13…磁石、14…磁石支持体、16…曲面部、17…導体部、20…動吸振器(制振装置)、21…質量体、22…曲面部、23…導体部、24…磁石支持体、30…動吸振器(制振装置)、31…上方移動抑止体、40…動吸振器(制振装置)、41、42、43…水平移動抑止体、50…動吸振器(制振装置)、51…質量体、52…曲面部、60…動吸振器(制振装置)、61…質量体、62…導体部、62A…外側領域部、62B…内側領域部、O…軸心 DESCRIPTION OF SYMBOLS 1 ... Seismic isolation object (damping object), 10 ... Dynamic vibration absorber (vibration control apparatus), 11 ... Mass body, 12 ... Mass body support, 13 ... Magnet, 14 ... Magnet support, 16 ... Curved surface part, DESCRIPTION OF SYMBOLS 17 ... Conductor part, 20 ... Dynamic vibration absorber (damping device), 21 ... Mass body, 22 ... Curved surface part, 23 ... Conductor part, 24 ... Magnet support body, 30 ... Dynamic vibration absorber (vibration damping device), 31 ... Upper movement suppression body, 40 ... dynamic vibration absorber (vibration control device), 41, 42, 43 ... horizontal movement suppression body, 50 ... dynamic vibration absorber (vibration suppression device), 51 ... mass body, 52 ... curved surface portion, 60 ... Dynamic absorber (vibration damping device) 61 mass body 62 conductor portion 62A outer region portion 62B inner region portion O central axis

Claims (9)

曲率半径を有する曲面部及び導体からなる導体部を備えた質量体と、
制振対象に設けられると共に、前記質量体の前記曲面部を揺動可能に支持する質量体支持体と、
前記制振対象に支持されて磁束を発生させる磁石と、を備える制振装置であって、
前記曲面部が前記質量体支持体に支持されて前記質量体が揺動する際に、前記質量体の前記導体部は前記磁石が発生する前記磁束を通過するように配置され、更に、前記質量体の質量と前記曲面部の曲率半径と重力とによる復元力が前記質量体に作用するよう構成されたことを特徴とする制振装置。
A mass body provided with a curved surface portion having a radius of curvature and a conductor portion consisting of a conductor;
A mass support which is provided for damping and which swingably supports the curved surface portion of the mass;
And a magnet supported by the vibration control target to generate a magnetic flux.
When the curved surface portion is supported by the mass support and the mass oscillates, the conductor portion of the mass is disposed to pass the magnetic flux generated by the magnet , and the mass A damping device characterized in that a restoring force due to a mass of a body, a radius of curvature of the curved surface portion, and gravity acts on the mass body .
前記質量体は、内周側に曲面部が設けられると共に、この曲面部の外周側に導体部が設けられて構成され、前記導体部の周方向複数位置に、異なる磁極の一対の前記磁石が対向して配置されたことを特徴とする請求項1に記載の制振装置。 The mass body is configured such that a curved surface portion is provided on the inner peripheral side and a conductor portion is provided on the outer peripheral side of the curved surface portion, and a pair of magnets having different magnetic poles are provided at a plurality of circumferential positions of the conductor portion. The vibration damping device according to claim 1, wherein the vibration damping device is disposed so as to face each other. 前記質量体は、内周側に導体部が設けられると共に、この導体部の外周側に曲面部が設けられて構成され、前記導体部の下方に、磁極の異なる複数個の磁石を隣り合わせて交互に配設したことを特徴とする請求項1に記載の制振装置。 The mass body is configured such that a conductor portion is provided on the inner circumferential side and a curved surface portion is provided on the outer circumferential side of the conductor portion, and a plurality of magnets of different magnetic poles are alternately arranged below the conductor portion. The vibration damping device according to claim 1, wherein the vibration damping device is disposed on the surface. 曲率半径を有する曲面部及び導体からなる導体部を備えた質量体と、
制振対象に設けられると共に、前記質量体の前記曲面部を揺動可能に支持する質量体支持体と、
前記制振対象に支持されて磁束を発生させる磁石と、を備える制振装置であって、
前記質量体の前記導体部は、前記曲面部が前記質量体支持体に支持されて揺動する際に前記磁石が発生する前記磁束を通過するように配置され、
前記質量体は、内周側に導体部が設けられると共に、この導体部の外周側に曲面部が設けられて構成され、前記導体部の下方に、磁極の異なる複数個の磁石を隣り合わせて交互に配設したことを特徴とする制振装置。
A mass body provided with a curved surface portion having a radius of curvature and a conductor portion consisting of a conductor;
A mass support which is provided for damping and which swingably supports the curved surface portion of the mass;
And a magnet supported by the vibration control target to generate a magnetic flux.
The conductor portion of the mass body is disposed to pass the magnetic flux generated by the magnet when the curved surface portion is supported by the mass body support and oscillated.
The mass body is configured such that a conductor portion is provided on the inner circumferential side and a curved surface portion is provided on the outer circumferential side of the conductor portion, and a plurality of magnets of different magnetic poles are alternately arranged below the conductor portion. The vibration control device is characterized in that it is disposed at .
前記質量体の曲面部は、その曲率半径が方向により異なって設定されたことを特徴とする請求項1乃至のいずれか1項に記載の制振装置。 Curved surface portion of the mass body, vibration damping device according to any one of claims 1 to 4, characterized in that the radius of curvature is set differently depending on the direction. 前記質量体の導体部は、その半径方向における内側から外側の領域で厚さが異なって構成されたことを特徴とする請求項1乃至のいずれか1項に記載の制振装置。 Conductor portion of the mass body, vibration damping device according to any one of claims 1 to 5, characterized in that its thickness from the inside in the outer area in the radial direction is differently configured. 曲率半径を有する曲面部及び導体からなる導体部を備えた質量体と、
制振対象に設けられると共に、前記質量体の前記曲面部を揺動可能に支持する質量体支持体と、
前記制振対象に支持されて磁束を発生させる磁石と、を備える制振装置であって、
前記質量体の前記導体部は、前記曲面部が前記質量体支持体に支持されて揺動する際に前記磁石が発生する前記磁束を通過するように配置され、
前記質量体の曲面部は、その曲率半径が方向により異なって設定されたことを特徴とする制振装置。
A mass body provided with a curved surface portion having a radius of curvature and a conductor portion consisting of a conductor;
A mass support which is provided for damping and which swingably supports the curved surface portion of the mass;
And a magnet supported by the vibration control target to generate a magnetic flux.
The conductor portion of the mass body is disposed to pass the magnetic flux generated by the magnet when the curved surface portion is supported by the mass body support and oscillated.
The curved surface portion of the mass body has a radius of curvature set differently depending on a direction .
曲率半径を有する曲面部及び導体からなる導体部を備えた質量体と、A mass body having a curved surface portion having a radius of curvature and a conductor portion made of a conductor;
制振対象に設けられると共に、前記質量体の前記曲面部を揺動可能に支持する質量体支持体と、  A mass body support that is provided on a vibration control target and that swingably supports the curved surface portion of the mass body;
前記制振対象に支持されて磁束を発生させる磁石と、を備える制振装置であって、  A damping device comprising a magnet that generates a magnetic flux supported by the damping target,
前記質量体の前記導体部は、前記曲面部が前記質量体支持体に支持されて揺動する際に前記磁石が発生する前記磁束を通過するように配置され、  The conductor portion of the mass body is disposed so as to pass the magnetic flux generated by the magnet when the curved surface portion is supported by the mass body support and swings.
前記質量体の導体部は、その半径方向における内側から外側の領域で厚さが異なって構成されたことを特徴とする制振装置。  The vibration control device is characterized in that the conductor portion of the mass body is formed to have different thicknesses in the region from the inner side to the outer side in the radial direction.
請求項1乃至請求項のいずれか1項記載の制振装置により、前記制振対象を制振することを特徴とする制振方法。 A vibration control method characterized in that the vibration control device according to any one of claims 1 to 8 controls the vibration control object.
JP2015163642A 2015-08-21 2015-08-21 Damping device and damping method Active JP6552915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015163642A JP6552915B2 (en) 2015-08-21 2015-08-21 Damping device and damping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015163642A JP6552915B2 (en) 2015-08-21 2015-08-21 Damping device and damping method

Publications (2)

Publication Number Publication Date
JP2017040332A JP2017040332A (en) 2017-02-23
JP6552915B2 true JP6552915B2 (en) 2019-07-31

Family

ID=58206626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015163642A Active JP6552915B2 (en) 2015-08-21 2015-08-21 Damping device and damping method

Country Status (1)

Country Link
JP (1) JP6552915B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161575A (en) * 1990-10-24 1992-06-04 Minoru Tomizawa Horizontal and omnidirectional hybrid type vibration absorbing device
JPH06249285A (en) * 1993-02-25 1994-09-06 Toshiba Corp Dynamic vibration absorbing type damping device
JP2799118B2 (en) * 1993-02-18 1998-09-17 株式会社東芝 Dynamic vibration absorber type vibration damping device
JP3718307B2 (en) * 1997-01-13 2005-11-24 株式会社東芝 Magnetic damper
JP2002221250A (en) * 2001-01-26 2002-08-09 Nasu Denki Tekko Co Ltd Dynamic vibration-absorbing type damping apparatus

Also Published As

Publication number Publication date
JP2017040332A (en) 2017-02-23

Similar Documents

Publication Publication Date Title
CN101713225B (en) Method for damping vibrations and horizontal action vibration damper
JPS63223244A (en) Vibrationproof earthquake damping apparatus
CN107061599B (en) Ball type electric vortex omnidirectional damping device
JP3973666B2 (en) Seismic isolation device
JP6552915B2 (en) Damping device and damping method
JP3206384U (en) Rolling member for vibration control unit
JP5821396B2 (en) Ceiling suspension device
JP5352270B2 (en) Seismic isolation structure and building with seismic isolation structure
JP4288338B2 (en) Synchronized cradle type vibration control device
JP6398421B2 (en) Vibration control structure
CN203559501U (en) Magneto-rheological semi-active rolling type pendulum mass damper
JP6389890B2 (en) Suspension structure that protects against excessive force
JP2009293693A (en) Vibration control device
JPH01131767A (en) Vibration damper for structure
JP2018031384A (en) Damping device
CN103628586B (en) A kind of magnetorheological half active tumbling-type quality pendulum damper
JP4613333B2 (en) Seismic isolation device
JP2006233993A (en) Shock damper
JP2012172511A (en) Seismic isolator using flanged spherical surface roller
JP5953256B2 (en) Quay crane
KR101460108B1 (en) Active vibration reduction device and method using electro-magnetic force of non-contact moving coil
JP2013170599A (en) Opening-closing valve
JP2020190286A (en) Seismic isolator
JPH11256875A (en) Base isolation structure and vibration control method thereof
JP2000161423A5 (en)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190703

R150 Certificate of patent or registration of utility model

Ref document number: 6552915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150