JP6551017B2 - EGR control system for internal combustion engine, internal combustion engine, and EGR control method for internal combustion engine - Google Patents

EGR control system for internal combustion engine, internal combustion engine, and EGR control method for internal combustion engine Download PDF

Info

Publication number
JP6551017B2
JP6551017B2 JP2015152055A JP2015152055A JP6551017B2 JP 6551017 B2 JP6551017 B2 JP 6551017B2 JP 2015152055 A JP2015152055 A JP 2015152055A JP 2015152055 A JP2015152055 A JP 2015152055A JP 6551017 B2 JP6551017 B2 JP 6551017B2
Authority
JP
Japan
Prior art keywords
value
nox
internal combustion
combustion engine
egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015152055A
Other languages
Japanese (ja)
Other versions
JP2017031874A (en
Inventor
裕章 今原
裕章 今原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2015152055A priority Critical patent/JP6551017B2/en
Publication of JP2017031874A publication Critical patent/JP2017031874A/en
Application granted granted Critical
Publication of JP6551017B2 publication Critical patent/JP6551017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、EGR通路にEGRバルブを有して構成されるEGRシステムを備えた内燃機関で、気筒内酸素濃度に基づいてEGRバルブの開度を制御する内燃機関のEGR制御システム、内燃機関、及び内燃機関のEGR制御方法に関する。   The present invention relates to an internal combustion engine having an EGR system configured to have an EGR valve in an EGR passage, and an EGR control system for an internal combustion engine that controls the opening degree of the EGR valve based on the in-cylinder oxygen concentration, an internal combustion engine, And an EGR control method for an internal combustion engine.

一般的に、車両に搭載されるディーゼルエンジン等の内燃機関には、排気ガスに含まれるNOx(窒素酸化物)の濃度を一定濃度以下に制御するために、EGRシステムが備えられる。このEGRシステムは、図1に示すように、内燃機関10の排気通路13と吸気通路12を接続するEGR通路14と、このEGR通路14に設けられるEGRクーラー15、EGRバルブ16等により構成されるシステム1である。このEGRシステム1により、排気通路13を通過する排気ガスGの一部(EGRガス)Geを、EGR通路14を経由して吸気通路12に還流させて、新気Aと共に気筒11c内に供給することで、気筒11c内での燃焼温度を低下させ、排気ガスGに含まれるNOxの濃度を制御している。一般的に、気筒11c内での燃焼温度が低下するにつれて、排気ガスGに含まれるNOxの濃度が低減することが知られている。   In general, an internal combustion engine such as a diesel engine mounted on a vehicle is provided with an EGR system in order to control the concentration of NOx (nitrogen oxide) contained in exhaust gas to a certain concentration or less. As shown in FIG. 1, the EGR system includes an EGR passage 14 that connects the exhaust passage 13 and the intake passage 12 of the internal combustion engine 10, an EGR cooler 15 that is provided in the EGR passage 14, an EGR valve 16, and the like. System 1. With this EGR system 1, a part of the exhaust gas G (EGR gas) Ge passing through the exhaust passage 13 is recirculated to the intake passage 12 via the EGR passage 14 and supplied into the cylinder 11 c together with the fresh air A. Thus, the combustion temperature in the cylinder 11c is reduced, and the concentration of NOx contained in the exhaust gas G is controlled. In general, it is known that the concentration of NOx contained in the exhaust gas G decreases as the combustion temperature in the cylinder 11c decreases.

また、これに関連して、内燃機関の負荷にかかわらず低圧EGRの流量を一定となるようにフィードフォワード制御するとともに、排気中の酸素濃度が一定となるように、高圧EGRの流量をその目標値にフィードバック制御する内燃機関の排気還流制御装置が提案されている(例えば、特許文献1参照)。   In addition, related to this, feedforward control is performed so that the flow rate of low pressure EGR becomes constant regardless of the load of the internal combustion engine, and the flow rate of high pressure EGR is set to its target so that the oxygen concentration in the exhaust becomes constant. An exhaust gas recirculation control device for an internal combustion engine that performs feedback control to a value has been proposed (see, for example, Patent Document 1).

一方、発明者らは、図5に示すようなEGR制御システム40Xで、エンジン回転数及び燃料噴射量等のエンジン運転状態に基づいて算出される第1NOx目標値Nt1に、実際の排気ガスG中のNOx濃度がなるように、気筒内酸素濃度に基づいて、EGRバルブ16の開度を制御することを考えてきた。   On the other hand, the inventors use the EGR control system 40X as shown in FIG. 5 to set the actual exhaust gas G to the first NOx target value Nt1 calculated based on the engine operating state such as the engine speed and the fuel injection amount. It has been considered to control the opening degree of the EGR valve 16 on the basis of the in-cylinder oxygen concentration so that the NOx concentration becomes.

すなわち、EGRバルブ16の開度を制御する目標開度の制御量Cは、気筒内酸素濃度目標値Dtを基に第4制御部44のフィードフォワード制御で算出される基本制御量(プリ制御量)Caに、気筒内酸素濃度目標値Dtと、各種センサからの入力を基に算出される気筒内酸素濃度の計算値Dcとの差(誤差)ΔD(=Dt−Dc)を基に第5制御部45のフィードバック制御(PID制御)で算出される補正制御量Cbを加算してバルブ制御量Cが算出される(C=Ca+Cb)。   That is, the control amount C of the target opening degree that controls the opening degree of the EGR valve 16 is the basic control amount (pre-control amount) calculated by the feedforward control of the fourth control unit 44 based on the in-cylinder oxygen concentration target value Dt. ) Ca is calculated based on a difference (error) ΔD (= Dt−Dc) between the cylinder oxygen concentration target value Dt and the calculated value Dc of the cylinder oxygen concentration calculated based on inputs from various sensors. The valve control amount C is calculated by adding the correction control amount Cb calculated by the feedback control (PID control) of the control unit 45 (C = Ca + Cb).

より詳細に説明すると、吸入空気流量センサ21、吸気圧力センサ22、吸気温度センサ23、排気ラムダセンサ24などのセンサ群Sg1からの検出値を基に、第1制御部41で、NOx濃度算出値Ncが算出される。それと共に、NOx濃度検出値Ndを基本としてNOx濃度算出値Ncによる算出値を補正する値を用いて、制御用の算出値を補正するとの考えに基づいて、NOx補正部46Xで、NOx濃度センサ20の検出値であるNOx濃度検出値Ndが入力され、このNOx濃度検出値NdとNOx濃度算出値NcとからNOx補正係数(補正比率)Ncf=Nd/Ncが算出される。   More specifically, the first control unit 41 calculates the NOx concentration based on the detection values from the sensor group Sg1, such as the intake air flow sensor 21, the intake pressure sensor 22, the intake temperature sensor 23, and the exhaust lambda sensor 24. Nc is calculated. At the same time, based on the idea that the calculated value for control is corrected using the value for correcting the calculated value based on the NOx concentration calculated value Nc based on the detected NOx concentration value Nd, the NOx concentration sensor 46X uses the NOx concentration sensor. The NOx concentration detection value Nd, which is 20 detection values, is input, and the NOx correction coefficient (correction ratio) Ncf = Nd / Nc is calculated from the NOx concentration detection value Nd and the NOx concentration calculation value Nc.

一方、エンジン回転数及び燃料噴射量に基づいてマップデータを参照する等して、第1NOx目標値Nt1が算出され、この第1NOx目標値Nt1に対して、第2制御部42で、スモークリミットを考慮して第2NOx目標値Nt2が算出され、更に、内燃機関の運転状態が定常状態であるときに、NOx補正係数Ncfを乗じて、第3NOx目標値Nt3(=Nt2×Ncf=Nt2×Nd/Nc)が算出される。また、内燃機関の運転状態が過渡状態であるときには、NOx補正係数NCfによる補正を行わず、補正比率を1として、第3NOx目標値Nt3が算出される(Nt3=Nt2×1=Nt2)。   On the other hand, the first NOx target value Nt1 is calculated by referring to the map data based on the engine speed and the fuel injection amount, and the second control unit 42 sets the smoke limit for the first NOx target value Nt1. The second NOx target value Nt2 is calculated in consideration, and further, when the operating state of the internal combustion engine is in the steady state, the third NOx target value Nt3 (= Nt2 × Ncf = Nt2 × Nd /) is calculated by multiplying the NOx correction coefficient Ncf. Nc) is calculated. When the operating state of the internal combustion engine is in a transient state, the third NOx target value Nt3 is calculated with the correction ratio set to 1 without performing correction using the NOx correction coefficient NCf (Nt3 = Nt2 × 1 = Nt2).

この第3NOx目標値Nt3に対して、第3制御部43で、気筒内酸素濃度目標値Dtが算出され、第4制御部44でフィードフォワード制御(プリ制御)の目標値である基本制御量(プリ制御量)Caが算出される。それと共に、第5制御部45で、気筒内酸素濃度目標値Dtと第1制御部41で算出された気筒内酸素濃度算出値Dcとを入力して、フィードバック制御(PID制御)の目標値である補正制御量Cbが算出される。加算部47で、この基本制御量Caと補正制御量Cbとが加算されてバルブ制御量Cが算出される。このバルブ制御量CでEGRバルブ16の開度が調整制御される。   With respect to the third NOx target value Nt3, the third control unit 43 calculates the in-cylinder oxygen concentration target value Dt, and the fourth control unit 44 calculates the basic control amount (target value of feedforward control (pre-control)). Pre-control amount) Ca is calculated. At the same time, the fifth control unit 45 inputs the in-cylinder oxygen concentration target value Dt and the in-cylinder oxygen concentration calculated value Dc calculated by the first control unit 41 to obtain a target value for feedback control (PID control). A certain correction control amount Cb is calculated. The adder 47 adds the basic control amount Ca and the correction control amount Cb to calculate the valve control amount C. With this valve control amount C, the opening degree of the EGR valve 16 is adjusted and controlled.

そして、このEGR制御においては、図5に示すように、NOx補正部46Xでは、内燃機関の運転状態が定常状態であるときにおいて、NOx補正係数NCfの算出に、NOx濃度センサ20だけでなく、第1制御部41に入力される吸入空気流量センサ(MAFセンサ)21、吸気圧力センサ22、吸気温度センサ23、排気ラムダセンサ24等の各種センサの検出値が用いられる。   In the EGR control, as shown in FIG. 5, in the NOx correction unit 46X, when the operating state of the internal combustion engine is in the steady state, not only the NOx concentration sensor 20 but also the NOx concentration correction factor NCf is calculated. Detection values of various sensors such as an intake air flow rate sensor (MAF sensor) 21, an intake pressure sensor 22, an intake air temperature sensor 23, and an exhaust lambda sensor 24 that are input to the first control unit 41 are used.

しかしながら、吸入空気流量センサ21及び排気ラムダセンサ24は、それらのセンサの特性や個体差により、計測精度が維持できる範囲とできない範囲とがあり、特定のエンジン運転状態で測定精度が悪化するという問題がある。例えば、吸入空気流量センサ21は、吸入空気流量が一定量以下で、その検出値が特定の値以下であるときに測定精度が悪化する。また、排気ラムダセンサ24は、排気ガスの空燃比がリーン側で、その検出値が特定の値以上であるときに測定精度が悪化したり、感度が鈍くなったりする。そのため、この特定のエンジン運転状態での検出値でNOx補正係数NCfを算出すると、NOx補正係数NCfの算出精度が悪化したり、逆に感度が鈍くなったりする。   However, the intake air flow rate sensor 21 and the exhaust lambda sensor 24 have a range in which the measurement accuracy can be maintained and a range in which the measurement accuracy cannot be maintained depending on the characteristics and individual differences of the sensors, and the measurement accuracy deteriorates in a specific engine operating state. There is. For example, in the intake air flow sensor 21, the measurement accuracy is degraded when the intake air flow rate is equal to or less than a predetermined amount and the detected value is equal to or less than a specific value. Further, when the air-fuel ratio of the exhaust gas is on the lean side and the detected value is a specific value or more, the exhaust lambda sensor 24 is deteriorated in measurement accuracy or dull in sensitivity. Therefore, if the NOx correction coefficient NCf is calculated using the detected value in this specific engine operating state, the calculation accuracy of the NOx correction coefficient NCf is deteriorated, or conversely, the sensitivity becomes dull.

従って、このNOx補正係数NCfの算出精度が悪化し、ばらつく状態で、EGRバルブ16の開度の制御量Cを算出すると、この算出された制御量Cに基づくEGRバルブ16の目標開度がばらつき、EGRバルブ16の開度の制御の精度が悪化することになる。また、センサの感度が鈍い領域に入ると、EGRバルブ16の開度の目標値が変化しない張り付き状態が生じることになる。そのため、特定のエンジン運転状態では、センサの計測精度が原因で、気筒内酸素濃度の目標値Dtの算出精度が悪化して、EGRバルブ16の開度の制御の精度が悪化し、排気ガス中のNOx濃度が悪化してしまうことになる。   Accordingly, when the control amount C of the opening degree of the EGR valve 16 is calculated in a state where the calculation accuracy of the NOx correction coefficient NCf is deteriorated and varies, the target opening degree of the EGR valve 16 based on the calculated control amount C varies. Therefore, the control accuracy of the opening degree of the EGR valve 16 is deteriorated. In addition, when the sensor sensitivity falls in a region, a sticking state occurs in which the target value of the opening degree of the EGR valve 16 does not change. Therefore, in a specific engine operating state, due to the measurement accuracy of the sensor, the calculation accuracy of the target value Dt of the in-cylinder oxygen concentration deteriorates, the accuracy of control of the opening degree of the EGR valve 16 deteriorates, and the exhaust gas The NOx concentration will deteriorate.

特開2012−237290号公報JP 2012-237290 A

本発明は、上記のことを鑑みてなされたものであり、その目的は、EGR通路にEGRバルブを有して構成されるEGRシステムを備えた内燃機関で、排気通路に設けたNOx濃度検出装置の検出値と気筒内酸素濃度に基づいて、EGRバルブの開度を制御する内燃機関のEGRシステムに関し、特に、吸入空気流量の検出値と、排気ラムダの検出値と、排気ガス中のNOx濃度の検出値に基づいて算出され、かつ、気筒内酸素濃度の補正に使用されるNOx補正係数の算出精度の低下を回避することで、EGRバルブの開度の制御精度の悪化を抑制することができる内燃機関のEGR制御システム、内燃機関及び内燃機関のEGR制御方法を提供することにある。   The present invention has been made in view of the above, and an object of the present invention is an internal combustion engine including an EGR system configured to have an EGR valve in an EGR passage, and a NOx concentration detection device provided in the exhaust passage. TECHNICAL FIELD The present invention relates to an EGR system for an internal combustion engine that controls the opening degree of an EGR valve based on the detected value of the engine and the in-cylinder oxygen concentration, and in particular, the detected value of the intake air flow rate, the detected value of the exhaust lambda, The deterioration of the control accuracy of the opening degree of the EGR valve can be suppressed by avoiding a decrease in the calculation accuracy of the NOx correction coefficient that is calculated based on the detected value and used for correcting the in-cylinder oxygen concentration. An EGR control system for an internal combustion engine, an internal combustion engine, and an EGR control method for the internal combustion engine are provided.

上記の目的を達成するための本発明の内燃機関のEGR制御システムは、EGR通路にEGRバルブを有して構成されるEGRシステムを備えた内燃機関で、EGRのNOx濃度目標値に対応する気筒内酸素濃度目標値に基づいて、前記EGRバルブの開度を制御する内燃機関のEGR制御システムにおいて、吸気通路に吸入空気流量検出装置を設けるとともに、排気通路に排気ラムダ検出装置とNOx濃度検出装置を設け、前記EGRシステムを制御する制御装置が、前記内燃機関の運転状態が定常状態である場合において、前記NOx濃度検出装置の検出値とNOx濃度の算出値の比であるNOx補正係数を使用して前記気筒内酸素濃度目標値を補正する際に、前記内燃機関の運転状態、又は、前記吸入空気流量検出装置の検出値と前記排気ラムダ検出装置の検出値の組み合わせが、予め設定された検出値使用範囲内に含まれるときは、前記吸入空気流量検出装置の検出値と前記排気ラムダ検出装置の検出値と前記NOx濃度検出装置の検出値を使用して前記NOx補正係数を算出し、前記検出値使用範囲外であるときは、前記NOx補正係数を1.0にして算出し、この算出された前記NOx補正係数を使用して前記気筒内酸素濃度目標値を補正して、前記EGRバルブの開度を制御するように構成される。   In order to achieve the above object, an EGR control system for an internal combustion engine according to the present invention is an internal combustion engine having an EGR system configured to have an EGR valve in an EGR passage, and is a cylinder corresponding to an EGR NOx concentration target value. In an EGR control system for an internal combustion engine that controls the opening degree of the EGR valve based on an internal oxygen concentration target value, an intake air flow rate detection device is provided in the intake passage, and an exhaust lambda detection device and a NOx concentration detection device are provided in the exhaust passage. And the control device for controlling the EGR system uses a NOx correction coefficient that is a ratio of the detected value of the NOx concentration detecting device and the calculated value of the NOx concentration when the operating state of the internal combustion engine is in a steady state. When correcting the in-cylinder oxygen concentration target value, the operating state of the internal combustion engine or the detected value of the When a combination of detection values of the air lambda detection device is included in a preset detection value use range, the detection value of the intake air flow rate detection device, the detection value of the exhaust lambda detection device, and the NOx concentration detection device The detected value is used to calculate the NOx correction coefficient. When the detected value is out of the range of use, the NOx correction coefficient is set to 1.0, and the calculated NOx correction coefficient is used. Then, the opening degree of the EGR valve is controlled by correcting the in-cylinder oxygen concentration target value.

この検出値使用範囲(NOx補正係数適応範囲)は、吸入空気流量検出装置(吸入空気流量センサ)と排気ラムダ検出装置(排気ラムダセンサ)の検出値の信頼範囲によって予め設定されるが、実用時には、この検出値の測定精度には様々な要素が影響するので、実験などで、吸入空気流量の検出値と排気ラムダの検出値を使用して算出されたNOx補正係数に基づいて、EGRバルブの開度を制御した場合に不都合が生じない範囲を検出値使用範囲に設定する。   This detection value use range (NOx correction coefficient adaptation range) is set in advance depending on the detection value reliability range of the intake air flow rate detection device (intake air flow rate sensor) and exhaust lambda detection device (exhaust lambda sensor). Since various factors affect the measurement accuracy of the detected value, the EGR valve is controlled based on the NOx correction coefficient calculated by using the detected value of the intake air flow rate and the detected value of the exhaust lambda in an experiment or the like. A range in which no inconvenience occurs when the opening degree is controlled is set as a detection value use range.

この検出値使用範囲は、例えばエンジン回転数と負荷(若しくは燃料噴射量)の組み合わせで表せる内燃機関の運転状態に対して設定してもよく、また、吸入空気流量の検出値と排気ラムダの検出値の組み合わせ、言い換えれば、吸入空気流量の検出値の測定誤差の範囲と排気ラムダの検出値の測定誤差の範囲の組み合わせに対して設定してもよい。この測定誤差の設定に際しては、各センサの校正曲線等の公差の範囲等を利用できる。   This detection value use range may be set, for example, for the operating state of the internal combustion engine that can be expressed by a combination of the engine speed and the load (or fuel injection amount). Also, the detection value of the intake air flow rate and the detection of the exhaust lambda A combination of values, in other words, a combination of a measurement error range of the detected value of the intake air flow rate and a measurement error range of the detection value of the exhaust lambda may be set. When setting the measurement error, a tolerance range such as a calibration curve of each sensor can be used.

そして、この検出値使用範囲内では、これらの検出値を使用してNOx補正係数を算出し、この算出されたNOx補正係数に基づいて、EGRバルブの開度の制御量を算出して、この算出された制御量分、EGRバルブの開度を変化させて、EGRバルブの開度を目標開度に制御する。一方、検出値使用範囲外のときは、これらの検出値を使用して算出されるNOx補正係数を使用せずに、NOx補正係数を1.0として算出する。   Then, within this detected value use range, a NOx correction coefficient is calculated using these detected values, and a control amount of the opening degree of the EGR valve is calculated based on the calculated NOx correction coefficient. The opening degree of the EGR valve is changed by the calculated control amount to control the opening degree of the EGR valve to the target opening degree. On the other hand, when it is out of the detection value use range, the NOx correction coefficient is calculated as 1.0 without using the NOx correction coefficient calculated using these detection values.

したがって、この構成によれば、吸入空気流量検出装置及び排気ラムダ検出装置の測定精度が維持されるエンジン運転状態のときのみ、これらの検出値を用いて算出したNOx補正係数を使用するので、NOx補正係数の算出精度の悪化を抑制することができ、EGRバルブの開度の制御量の算出精度の悪化を抑制することができる。   Therefore, according to this configuration, the NOx correction coefficient calculated using these detected values is used only when the engine is in an operating state in which the measurement accuracy of the intake air flow rate detection device and the exhaust lambda detection device is maintained. Deterioration of the calculation accuracy of the correction coefficient can be suppressed, and deterioration of the calculation accuracy of the control amount of the opening degree of the EGR valve can be suppressed.

また、上記の内燃機関のEGR制御システムにおいて、前記制御装置が、前記内燃機関の運転状態、又は、前記吸入空気流量検出装置の検出値と前記排気ラムダ検出装置の検出値の組み合わせが、前記検出値使用範囲内に含まれるときであっても、前記吸入空気流量検出装置の検出値と前記排気ラムダ検出装置の検出値を使用して算出される排気ガス中のNOx濃度の算出値が、前記NOx濃度検出装置の検出値における予め設定された許容範囲内にあるか否かを判定して、該許容範囲内ではないときは、前記NOx補正係数を1.0にして算出するように構成される。   In the EGR control system for an internal combustion engine, the control device may be configured such that the operation state of the internal combustion engine or a combination of a detection value of the intake air flow rate detection device and a detection value of the exhaust lambda detection device is the detection value. The calculated value of the NOx concentration in the exhaust gas calculated using the detection value of the intake air flow rate detection device and the detection value of the exhaust lambda detection device even when included in the value use range, It is configured to determine whether or not the detected value of the NOx concentration detecting device is within a preset allowable range, and when the detected value is not within the allowable range, the NOx correction coefficient is set to 1.0. Ru.

内燃機関の運転状態、又は、吸入空気流量の検出値と排気ラムダの検出値の組み合わせが、検出値使用範囲内に含まれ、吸入空気流量及び排気ラムダの測定精度が維持されているときであっても、吸入空気流量の検出値と排気ラムダの検出値を使用して算出される排気ガスに含まれるNOx濃度の算出値が、NOx濃度検出装置(NOx濃度センサ)の個体差に基づく測定誤差範囲などから予め設定される許容範囲内に含まれているときは算出されたNOx補正係数を使用し、許容範囲外では算出されたNOx補正係数を使用せずに、1.0として算出されたNOx補正係数を使用して、EGRバルブの開度を制御する。   This is when the operating state of the internal combustion engine or a combination of the detected value of the intake air flow rate and the detected value of the exhaust lambda is included in the detected value usage range and the measurement accuracy of the intake air flow rate and the exhaust lambda is maintained. However, the calculated value of the NOx concentration contained in the exhaust gas calculated using the detected value of the intake air flow rate and the detected value of the exhaust lambda is a measurement error based on the individual difference of the NOx concentration detecting device (NOx concentration sensor). Calculated as 1.0 without using the calculated NOx correction coefficient when outside the allowable range, and using the calculated NOx correction coefficient when it falls within the preset allowable range from the range. The opening degree of the EGR valve is controlled using the NOx correction coefficient.

つまり、NOx濃度の検出値とNOx濃度の算出値を比べて、吸入空気流量の検出値と排気ラムダの検出値で測定精度が低いか否かを判定して、測定精度が低いとの判定のときは、吸入空気流量の検出値と排気ラムダの検出値を使用して算出されるNOx補正係数を使用せず、NOx補正係数の算出の精度の悪化を防止する。   That is, the detected value of NOx concentration and the calculated value of NOx concentration are compared to determine whether the measurement accuracy is low based on the detected value of the intake air flow rate and the detected value of the exhaust lambda. In this case, the NOx correction coefficient calculated using the detected value of the intake air flow rate and the detected value of the exhaust lambda is not used, and deterioration of the accuracy of calculating the NOx correction coefficient is prevented.

これにより、NOx濃度の算出値のバラツキによる、EGRバルブの開度が目標開度付近で振動する現象であるEGRハンチングの発生を回避し、また、センサの感度が鈍い領域でのEGRバルブの開度の上限張り付き等を防止する。   This avoids the occurrence of EGR hunting, which is a phenomenon in which the opening of the EGR valve vibrates in the vicinity of the target opening due to variations in the calculated value of the NOx concentration, and opens the EGR valve in a region where the sensor sensitivity is low. Prevent sticking of the upper limit of the degree.

また、上記の内燃機関のEGR制御システムを搭載した内燃機関は、上記の内燃機関のEGR制御システムと同様の作用効果を奏することができる。   An internal combustion engine equipped with the EGR control system for an internal combustion engine can achieve the same effects as the EGR control system for the internal combustion engine.

また、上記の目的を達成するための本発明の内燃機関のEGR制御方法は、EGR通路にEGRバルブを有して構成されるEGRシステムを備えた内燃機関で、EGRのNOx濃度目標値に対応する気筒内酸素濃度目標値に基づいて、前記EGRバルブの開度を制御する内燃機関のEGR制御方法において、前記内燃機関の運転状態が定常状態である場合において、NOx濃度検出装置の検出値とNOx濃度の算出値の比であるNOx補正係数を使用して前記気筒内酸素濃度目標値を補正する際に、前記内燃機関の運転状態、又は、吸気通路に設けた吸入空気流量検出装置の検出値と、排気通路に設けた排気ラムダ検出装置の検出値の組み合わせが、予め設定された検出値使用範囲内に含まれるときは、前記吸入空気流量検出装置の検出値と前記排気ラムダ検出装置の検出値と前記NOx濃度検出装置の検出値を使用して前記NOx補正係数を算出し、前記検出値使用範囲外であるときは、前記NOx補正係数を1.0にして算出し、この算出された前記NOx補正係数を使用して前記気筒内酸素濃度目標値を補正して、前記EGRバルブの開度を制御することを特徴とする方法である。 Further, an EGR control method for an internal combustion engine of the present invention for achieving the above object is an internal combustion engine having an EGR system configured to have an EGR valve in an EGR passage, and corresponds to an NOx concentration target value of EGR. In the EGR control method for an internal combustion engine that controls the opening degree of the EGR valve based on the in-cylinder oxygen concentration target value, when the operating state of the internal combustion engine is in a steady state, the detected value of the NOx concentration detection device When the in-cylinder oxygen concentration target value is corrected using a NOx correction coefficient that is a ratio of calculated values of NOx concentration, the operation state of the internal combustion engine or the detection of the intake air flow rate detection device provided in the intake passage and a value, when a combination of detected values of the provided in the exhaust passage exhaust lambda detection device is included in the preset detection values used within the range, the detected value of the intake air flow rate detection device The NOx correction coefficient is calculated using the detection value of the exhaust lambda detection device and the detection value of the NOx concentration detection device, and the NOx correction coefficient is set to 1.0 when it is out of the detection value use range. The method is characterized in that the calculated in-cylinder oxygen concentration target value is corrected using the calculated NOx correction coefficient, and the opening degree of the EGR valve is controlled.

また、上記の内燃機関のEGR制御方法において、前記内燃機関の運転状態、又は、前記吸入空気流量検出装置の検出値と、前記排気ラムダ検出装置の検出値の組み合わせが、前記検出値使用範囲内に含まれるときであっても、前記吸入空気流量検出装置の検出値と前記排気ラムダ検出装置の検出値を使用して算出される排気ガス中のNOx濃度の算出値が、前記NOx濃度検出装置の検出値における予め設定された許容範囲内にあるか否かを判定して、該許容範囲内ではないときは、前記NOx補正係数を1.0にして算出する。   In the EGR control method for an internal combustion engine described above, the operating state of the internal combustion engine or a combination of a detection value of the intake air flow rate detection device and a detection value of the exhaust lambda detection device is within the detection value use range. Even if it is included, the calculated value of the NOx concentration in the exhaust gas calculated using the detected value of the intake air flow rate detecting device and the detected value of the exhaust lambda detecting device is the NOx concentration detecting device. It is determined whether the detected value is within a preset allowable range. If the detected value is not within the allowable range, the NOx correction coefficient is set to 1.0.

これらの方法によれば、上記の内燃機関のEGR制御システムと同様の作用効果を奏することができる。   According to these methods, the same operational effects as those of the EGR control system for the internal combustion engine can be obtained.

本発明の内燃機関のEGR制御システム、内燃機関、及び内燃機関のEGR制御方法によれば、吸入空気流量検出装置及び排気ラムダ検出装置の測定精度が維持されるエンジン運転状態のときのみ、吸入空気流量の検出値及び排気ラムダの検出値を使用して算出されるNOx補正係数を使用するので、気筒内酸素濃度の補正に使用されるNOx補正係数の算出精度の低下を回避することができ、EGRバルブの開度の制御精度の悪化を抑制することができる。   According to the EGR control system for an internal combustion engine, the internal combustion engine, and the EGR control method for an internal combustion engine of the present invention, the intake air is only in the engine operating state in which the measurement accuracy of the intake air flow rate detection device and the exhaust lambda detection device is maintained. Since the NOx correction coefficient calculated using the detected value of the flow rate and the detected value of the exhaust lambda is used, it is possible to avoid a decrease in the calculation accuracy of the NOx correction coefficient used for correcting the in-cylinder oxygen concentration, The deterioration of the control accuracy of the opening degree of the EGR valve can be suppressed.

本発明に係る実施の形態の内燃機関におけるEGRシステムの構成を模式的に示す図である。FIG. 1 is a view schematically showing a configuration of an EGR system in an internal combustion engine of an embodiment according to the present invention. 本発明に係る実施の形態の内燃機関のEGR制御システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the EGR control system of the internal combustion engine of embodiment which concerns on this invention. 本発明に係る実施の形態の内燃機関のEGR制御方法の制御フローを示す図である。It is a figure which shows the control flow of the EGR control method of the internal combustion engine of embodiment which concerns on this invention. 吸入空気流量検出の検出値と、排気ラムダの検出値の組み合わせに対する検出値使用範囲の一例を示す図である。It is a figure which shows an example of the detection value use range with respect to the combination of the detection value of suction air flow rate detection, and the detection value of exhaust lambda. 先行技術における内燃機関のEGR制御システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the EGR control system of the internal combustion engine in a prior art.

以下、本発明に係る実施の形態の内燃機関のEGR制御システム、内燃機関、及び内燃機関のEGR制御方法について、図面を参照しながら説明する。なお、本発明に係る実施の形態の内燃機関は、本発明に係る実施の形態の内燃機関のEGR制御システム40を備えて構成され、後述する内燃機関のEGR制御システム40が奏する作用効果と同様の作用効果を奏することができる。   Hereinafter, an EGR control system for an internal combustion engine, an internal combustion engine, and an EGR control method for an internal combustion engine according to embodiments of the present invention will be described with reference to the drawings. The internal combustion engine of the embodiment according to the present invention is configured to include the EGR control system 40 of the internal combustion engine of the embodiment according to the present invention, and is similar to the operation and effect exhibited by the EGR control system 40 of the internal combustion engine described later. The effects and effects of

図1に示すように、本発明に係る実施の形態の内燃機関(以下エンジン)10は、EGRシステム1を備えて構成され、エンジン本体11と吸気通路12と排気通路13とEGR通路14を備えている。このEGR通路14は、排気通路13と吸気通路12とを接続して設けられ、上流側より順に、エンジン冷却水を冷却媒体とするEGRクーラー15、EGRバルブ16が設けられている。   As shown in FIG. 1, an internal combustion engine (hereinafter referred to as an engine) 10 according to an embodiment of the present invention includes an EGR system 1, and includes an engine body 11, an intake passage 12, an exhaust passage 13, and an EGR passage 14. ing. The EGR passage 14 is provided by connecting the exhaust passage 13 and the intake passage 12, and is provided with an EGR cooler 15 and an EGR valve 16 that use engine cooling water as a cooling medium in order from the upstream side.

そして、大気から導入される新気Aが、必要に応じて、EGR通路14から吸気マニホールド11aに流入するEGRガスGeを伴って、気筒(シリンダ)11c内の燃焼室に送られ、燃焼室にて燃料噴射装置(図示しない)より噴射された燃料と混合圧縮されて、燃料が燃焼することで、エンジン10に動力を発生させる。そして、エンジン10で燃焼により発生した排気ガスGが、排気マニホールド11bから排気通路13に流出するが、その一部はEGR通路14にEGRガスGeとして流れ、残りの排気ガスGa(=G−Ge)は、排気浄化処理装置(図示しない)により浄化処理された後、マフラー(図示しない)を経由して大気へ放出される。   Then, fresh air A introduced from the atmosphere is sent to the combustion chamber in the cylinder (cylinder) 11c together with the EGR gas Ge flowing into the intake manifold 11a from the EGR passage 14 as necessary. The fuel is mixed and compressed with the fuel injected from a fuel injection device (not shown), and the fuel is burned to generate power in the engine 10. Then, the exhaust gas G generated by combustion in the engine 10 flows out from the exhaust manifold 11b to the exhaust passage 13, but part of it flows as EGR gas Ge into the EGR passage 14, and the remaining exhaust gas Ga (= G-Ge). ) Is purified by an exhaust purification device (not shown) and then released to the atmosphere via a muffler (not shown).

また、吸気通路12には、吸入空気流量を検出する吸入空気流量センサ(MAFセンサ:吸入空気流量検出装置)21、吸気圧力を検出する吸気圧力センサ22及び吸気温度を検出する吸気温度センサ23が設けられるとともに、排気通路13には、排気ガス中のNOx濃度を検出するNOx濃度センサ(NOx濃度検出装置)20と、排気の空気過剰率を検出する排気ラムダセンサ(排気空気過剰率センサ:排気ラムダ検出装置)24が設けられる。これらのセンサ21〜24はセンサ群Sg1を形成し、これらのセンサ20〜24の信号は、予め設定された制御時間毎に、後述する制御装置30に送信される。   The intake passage 12 includes an intake air flow sensor (MAF sensor: intake air flow detection device) 21 that detects an intake air flow rate, an intake pressure sensor 22 that detects intake pressure, and an intake temperature sensor 23 that detects intake temperature. The exhaust passage 13 is provided with a NOx concentration sensor (NOx concentration detection device) 20 for detecting the NOx concentration in the exhaust gas, and an exhaust lambda sensor (exhaust air excess rate sensor: exhaust gas) for detecting the excess air ratio of the exhaust gas. A lambda detector 24) is provided. These sensors 21 to 24 form a sensor group Sg1, and signals from these sensors 20 to 24 are transmitted to a control device 30 described later at preset control times.

また、本発明の内燃機関のEGRシステム1を制御するEGR制御システム40のための制御装置30が備えられる。この制御装置30は、NOx濃度センサ20及びセンサ群Sg1のセンサ21〜24より送信された信号に基づいて、予め設定された制御時間毎に、センサ20〜24の検出値を算出するとともに、必要な検出値のデータ(通常は、最新の検出値のデータ)を記憶する。この制御装置30は、通常は、エンジン10の運転状態全般を制御するエンジンコントロールユニット(ECU)に組み込まれるが、独立して設けてもよい。   A control device 30 for an EGR control system 40 for controlling the EGR system 1 of the internal combustion engine of the present invention is also provided. The control device 30 calculates the detection values of the sensors 20 to 24 for each preset control time based on the signals transmitted from the NOx concentration sensor 20 and the sensors 21 to 24 of the sensor group Sg1, and is necessary. Detected detection value data (usually the latest detection value data) is stored. The control device 30 is generally incorporated in an engine control unit (ECU) that controls the overall operating condition of the engine 10, but may be provided independently.

ここで、EGRバルブ16の開度を制御する目標開度の制御量Cは、気筒内酸素濃度目標値Dtを基に第4制御部44のフィードフォワード制御で算出される基本制御量(プリ制御量)Caに、気筒内酸素濃度目標値Dtと、各種センサからの入力を基に算出される気筒内酸素濃度の計算値Dcとの差(誤差)ΔD(=Dt−Dc)を基に第5制御部45のフィードバック制御(PID制御)で算出される補正制御量Cbを加算してバルブ制御量Cが算出される(C=Ca+Cb)。   Here, the control amount C of the target opening that controls the opening of the EGR valve 16 is a basic control amount (pre-control) calculated by feedforward control of the fourth control unit 44 based on the in-cylinder oxygen concentration target value Dt. The amount (Ca) is calculated based on the difference (error) ΔD (= Dt−Dc) between the in-cylinder oxygen concentration target value Dt and the calculated value Dc of the in-cylinder oxygen concentration based on inputs from various sensors. The valve control amount C is calculated by adding the correction control amount Cb calculated by the feedback control (PID control) of the control unit 45 (C = Ca + Cb).

つまり、EGR通路14にEGRバルブ16を有して構成されるEGRシステム1を備えたエンジン10で、EGRのNOx濃度目標値Nt1に対応する気筒内酸素濃度目標値Dtに基づいて、EGRバルブ16の開度を制御する内燃機関のEGR制御システム40である。   That is, in the engine 10 including the EGR system 1 configured to include the EGR valve 16 in the EGR passage 14, the EGR valve 16 is based on the in-cylinder oxygen concentration target value Dt corresponding to the NOx concentration target value Nt1 of EGR. It is the EGR control system 40 of the internal combustion engine which controls the opening degree.

より詳細に説明すると、第1制御部41では、吸入空気流量センサ21、吸気圧力センサ22、吸気温度センサ23、排気ラムダセンサ24などのセンサ群Sg1からの検出値を基に、NOx濃度算出値Ncを算出する。   More specifically, the first control unit 41 calculates the NOx concentration calculated value based on the detected values from the sensor group Sg1 such as the intake air flow rate sensor 21, the intake pressure sensor 22, the intake air temperature sensor 23, the exhaust lambda sensor 24, and the like. Calculate Nc.

このシリンダ内酸素濃度算出値Dcの算出に際しても内部EGRガスを考慮することが好ましい。つまり、気筒内で発生するNOx量に関係するのは、気筒内の全排気ガス量に対する気筒内酸素濃度算出値Dcであるので、気筒内の全排気ガス量に対する気筒内酸素濃度算出値Dcを、吸気量と酸素濃度、外部EGRガスの排気ガス量と酸素濃度内部とだけで算出せずに、内部EGRガスの排気ガス量と酸素濃度と考慮に入れて、気筒内酸素濃度算出値Dcを算出することが好ましい。   It is preferable to consider the internal EGR gas when calculating the cylinder oxygen concentration calculation value Dc. That is, since the NOx amount generated in the cylinder is related to the in-cylinder oxygen concentration calculation value Dc with respect to the total exhaust gas amount in the cylinder, the in-cylinder oxygen concentration calculation value Dc with respect to the total exhaust gas amount in the cylinder is The in-cylinder oxygen concentration calculation value Dc is calculated by taking into account the exhaust gas amount and the oxygen concentration of the internal EGR gas, without calculating only the intake air amount and the oxygen concentration, the exhaust gas amount of the external EGR gas and the inside of the oxygen concentration. It is preferable to calculate.

そして、この気筒内酸素濃度算出値Dcなどから気筒内で発生するNOx量及び気筒内から排出される排気ガスのNOx濃度を算出し、NOx濃度算出値Ncとする。   Then, the NOx amount generated in the cylinder and the NOx concentration of the exhaust gas exhausted from the cylinder are calculated from the in-cylinder oxygen concentration calculated value Dc and the like, and set as the NOx concentration calculated value Nc.

それと共に、NOx濃度センサ20で検出されるNOx濃度検出値Ndを基本としてNOx濃度算出値Ncによる算出値を補正する値を用いて、制御用の算出値を補正するとの考えに基づいて、NOx補正部46で、NOx濃度センサ20の検出値であるNOx濃度検出値Ndが入力され、このNOx濃度検出値NdとNOx濃度算出値NcとからNOx補正係数(補正比率)Ncf=Nd/Ncを算出する。   At the same time, the NOx concentration detection value Nd detected by the NOx concentration sensor 20 is used as a basis to correct the calculated value for control using the value for correcting the calculated value by the NOx concentration calculated value Nc. The correction unit 46 receives the NOx concentration detection value Nd, which is the detection value of the NOx concentration sensor 20, and calculates a NOx correction coefficient (correction ratio) Ncf = Nd / Nc from the NOx concentration detection value Nd and the NOx concentration calculation value Nc. calculate.

一方、第2制御部42では、排気ラムダセンサ24の検出値を入力して、エンジン回転数及び燃料噴射量に基づいてマップデータを参照する等して、第1NOx目標値Nt1が算出され、この第1NOx目標値Nt1が入力される第2制御部42では、排気ラムダセンサ24の検出値を入力して、この第1NOx目標値Nt1ではスモークが発生することが、予め設定してある計算式やマップデータ等から予測される場合には、スモークが発生しないようなNOx濃度を第2NOx目標値Nt2とする。所謂スモークリミットを行う。なお、スモークが発生する可能性が無い場合は、そのまま、第1NOx目標値Nt1を第2NOx目標値Nt2とする。これにより第2NOx目標値Nt2を算出する。   On the other hand, the second control unit 42 calculates the first NOx target value Nt1 by inputting the detection value of the exhaust lambda sensor 24 and referring to the map data based on the engine speed and the fuel injection amount. In the second control unit 42 to which the first NOx target value Nt1 is input, the detection value of the exhaust lambda sensor 24 is input, and smoke is generated at the first NOx target value Nt1. When predicted from map data or the like, the NOx concentration at which smoke does not occur is taken as the second NOx target value Nt2. So-called smoke limit is performed. If there is no possibility that smoke will occur, the first NOx target value Nt1 is set as the second NOx target value Nt2 as it is. Thereby, the second NOx target value Nt2 is calculated.

更に、内燃機関の運転状態が定常状態であるときには、NOx補正係数Ncfを乗じて、第3NOx目標値Nt3(=Nt2×Ncf=Nt2×Nd/Nc)を算出する。一方、過渡状態であるときには、NOx補正係数NCfによる補正を行わず、補正比率を1として、第3NOx目標値Nt3を算出する(Nt3=Nt2×1=Nt2)。   Further, when the operating state of the internal combustion engine is in a steady state, the NOx correction coefficient Ncf is multiplied to calculate a third NOx target value Nt3 (= Nt2 × Ncf = Nt2 × Nd / Nc). On the other hand, when it is in the transient state, the third NOx target value Nt3 is calculated with the correction ratio being 1 (Nt3 = Nt2 × 1 = Nt2), without performing the correction using the NOx correction coefficient NCf.

そして、第3制御部43では、吸気圧力センサ22及び吸気温度センサ23の検出値を入力して、この第3NOx目標値Nt3に対して、気筒内酸素濃度目標値Dtを算出する。第4制御部44で、この算出された気筒内酸素濃度目標値Dtに対して、フィードフォワード制御(プリ制御)の目標値である基本制御量(プリ制御量)Caを算出する。この基本制御量Caの算出に際しても、内部EGRガスを考慮することが好ましい。   Then, the third control unit 43 inputs the detection values of the intake pressure sensor 22 and the intake temperature sensor 23, and calculates the in-cylinder oxygen concentration target value Dt with respect to the third NOx target value Nt3. The fourth control unit 44 calculates a basic control amount (pre-control amount) Ca that is a target value for feedforward control (pre-control) with respect to the calculated in-cylinder oxygen concentration target value Dt. In calculating the basic control amount Ca, it is preferable to consider the internal EGR gas.

なお、この第4制御部44では、EGRバルブ16の前後に設けた差圧センサ(図示しない)で検出したEGRバルブ16の前後圧力、EGRバルブ16の下流のEGR通路14に設けた温度センサ(図示しない)で検出したEGRガスGeの温度等を用いて、より正確なEGRガスGeの流量とEGRバルブ16の開度の関係を求めておくことが好ましい。   In the fourth control unit 44, the front-rear pressure of the EGR valve 16 detected by a differential pressure sensor (not shown) provided before and after the EGR valve 16, the temperature sensor provided in the EGR passage 14 downstream of the EGR valve 16 ( It is preferable to obtain a more accurate relationship between the flow rate of the EGR gas Ge and the opening degree of the EGR valve 16 using the temperature of the EGR gas Ge detected in (not shown).

つまり、気筒内で発生するNOx量に関係する気筒内の全排気ガス量に対する気筒内酸素濃度目標値Dtを、気筒内の排気ガス量と酸素濃度が、空気流量と酸素濃度、内部EGRガスの排気ガス量と酸素濃度、および外部EGRガスの排気ガス量と酸素濃度とで決まることを利用して、気筒内の酸素濃度の目標値である気筒内酸素濃度目標値Dtから、外部EGRガス量Geを算出して、このEGRガス量Geを供給できるEGRバルブ16の開度をプリ制御量Caとする。   That is, the in-cylinder oxygen concentration target value Dt with respect to the total exhaust gas amount in the cylinder related to the NOx amount generated in the cylinder, the exhaust gas amount and oxygen concentration in the cylinder, the air flow rate and oxygen concentration, and the internal EGR gas The external EGR gas amount is determined from the in-cylinder oxygen concentration target value Dt, which is the target value of the in-cylinder oxygen concentration, using the fact that the exhaust gas amount and oxygen concentration and the exhaust gas amount and oxygen concentration of the external EGR gas are determined. Ge is calculated, and the opening degree of the EGR valve 16 that can supply this EGR gas amount Ge is defined as a pre-control amount Ca.

また、それと並行して、第5制御部45で、第3制御部43で第3NOx目標値Nt3に対して算出された気筒内酸素濃度目標値Dtと第1制御部41で算出された気筒内酸素濃度算出値Dcとを入力して、フィードバック制御(PID制御)の目標値である補正制御量Cbを算出する。そして、加算部47で、この基本制御量Caと補正制御量Cbとを加算してバルブ制御量Cを算出する。このバルブ制御量CでEGRバルブ16の開度を調整制御する。   At the same time, the in-cylinder oxygen concentration target value Dt calculated by the fifth control unit 45 for the third NOx target value Nt3 by the third control unit 43 and the cylinder interior calculated by the first control unit 41 An oxygen concentration calculation value Dc is input to calculate a correction control amount Cb that is a target value for feedback control (PID control). Then, the adding unit 47 adds the basic control amount Ca and the correction control amount Cb to calculate the valve control amount C. The valve opening amount of the EGR valve 16 is adjusted and controlled by the valve control amount C.

そして、本発明においては、EGRシステム1を制御する制御装置30は、NOx補正部46で、エンジン運転状態が定常状態である場合において、NOx濃度センサ20の検出値NdとNOx濃度の算出値Ncの比であるNOx補正係数Ncf(=Nd/Nc)を使用して気筒内酸素濃度目標値Dtを補正する際に、エンジン運転状態が予め設定された検出値使用範囲(NOx補正係数適応範囲)内に含まれるときは、又は、図4に例示するように、吸入空気流量センサ21の検出値mと排気ラムダセンサ24の検出値λの組み合わせが、予め設定された検出値使用範囲(NOx補正係数適応範囲)AR(m≧m1 かつ λ≦λ1)内に含まれるときは、吸入空気流量センサ21の検出値と排気ラムダセンサ24の検出値とNOx濃度センサ20の検出値Ndを使用してNOx補正係数Ncfを算出し、検出値使用範囲ARの外であるときは、NOx補正係数Ncfを1.0にして算出し、この算出されたNOx補正係数Ncfを使用して気筒内酸素濃度目標値Dtを補正して、EGRバルブ16の開度を制御するように構成される。   In the present invention, the control device 30 that controls the EGR system 1 is the NOx correction unit 46, and the detected value Nd of the NOx concentration sensor 20 and the calculated value Nc of the NOx concentration Nc when the engine operating state is a steady state. When correcting the in-cylinder oxygen concentration target value Dt using the NOx correction coefficient Ncf (= Nd / Nc) which is the ratio of the engine operation state, the detection value use range in which the engine operating state is preset (NOx correction coefficient adaptation range) 4, or as illustrated in FIG. 4, the combination of the detected value m of the intake air flow rate sensor 21 and the detected value λ of the exhaust lambda sensor 24 is a preset detected value use range (NOx correction). When it is included in the coefficient adaptation range AR (m ≧ m1 and λ ≦ λ1), the detected value of the intake air flow rate sensor 21, the detected value of the exhaust lambda sensor 24, and the NOx concentration sensor The NOx correction coefficient Ncf is calculated using 20 detected values Nd, and when it is outside the detected value use range AR, the NOx correction coefficient Ncf is calculated to be 1.0, and this calculated NOx correction coefficient Ncf. Is used to correct the in-cylinder oxygen concentration target value Dt to control the opening degree of the EGR valve 16.

また、制御装置30は、エンジン運転状態、又は、吸入空気流量センサ21の検出値mと排気ラムダセンサ24の検出値λの組み合わせが、予め設定された検出値使用範囲AR内に含まれるときであっても、吸入空気流量センサ21の検出値mと排気ラムダセンサ24の検出値λを使用して算出される排気ガス中のNOx濃度算出値Ncが、NOx濃度センサ20の検出値Ndにおける予め設定された許容範囲MR内にあるか否かを判定して、この許容範囲MR内ではないときは、NOx補正係数Ncfを1.0にして算出するように構成される。   In addition, the control device 30 is in the engine operating state or when the combination of the detection value m of the intake air flow rate sensor 21 and the detection value λ of the exhaust lambda sensor 24 is included in a preset detection value use range AR. Even if the detected value m of the exhaust air flow sensor 21 and the detected value λ of the exhaust lambda sensor 24 are used to calculate the NOx concentration calculated value Nc in the exhaust gas in advance in the detected value Nd of the NOx concentration sensor 20. It is determined whether it is within the set allowable range MR, and when it is not within the allowable range MR, the NOx correction coefficient Ncf is set to 1.0 for calculation.

つまり、NOx濃度の検出値NdとNOx濃度の算出値Ncを比べて、吸入空気流量の検出値mと排気ラムダの検出値λの測定精度が低いか否かを判定して、測定精度が低いとの判定のときは、吸入空気流量の検出値mと排気ラムダの検出値λを使用して算出されるNOx補正係数Ncfを使用せず、NOx補正係数Ncfを1.0にして、NOx補正係数Ncfの算出の精度の悪化を防止する。   That is, by comparing the detected value Nd of the NOx concentration with the calculated value Nc of the NOx concentration, it is determined whether or not the measurement accuracy of the detected value m of the intake air flow rate and the detected value λ of the exhaust lambda is low. The NOx correction coefficient Ncf is set to 1.0 without using the NOx correction coefficient Ncf calculated using the detected value m of the intake air flow and the detected value λ of the exhaust lambda. The deterioration of the calculation accuracy of the coefficient Ncf is prevented.

次に、上記の内燃機関のEGR制御システム40を用いた、本発明の内燃機関のEGR制御方法について、図3の制御フローを参照しながら説明する。図3の制御フローは、エンジン10が運転状態にあるときに、制御時間毎に上級の制御フローから呼ばれて実施され、実施後に、上級の制御フローに戻る制御フローであり、エンジン10が運転状態にある限り、繰り返し呼ばれる制御フローとして示している。なお、この図3の制御フローに基づく制御の途中で、内燃機関が運転停止するとき等では、割り込みが生じて、リターンに行って上級の制御フローに戻り、この上級の制御フローの終了と共に終了する。   Next, an EGR control method for an internal combustion engine according to the present invention using the EGR control system 40 for the internal combustion engine will be described with reference to the control flow of FIG. The control flow of FIG. 3 is a control flow that is called from the advanced control flow at every control time when the engine 10 is in an operating state, and returns to the advanced control flow after execution. As long as it is in the state, it is shown as a control flow called repeatedly. In the middle of the control based on the control flow of FIG. 3, when the internal combustion engine stops operating, an interruption occurs, and the return is made to return to the advanced control flow, and is terminated when the advanced control flow ends. Do.

この図3の制御フローがスタートすると、ステップS11にて、吸入空気流量センサ21、排気ラムダセンサ24及びNOx濃度センサ20により、吸入空気流量m、排気ラムダλ及びNOx濃度Ndをそれぞれ検出する。この検出の後、ステップS12に進む。   When the control flow of FIG. 3 is started, in step S11, the intake air flow rate sensor 21, the exhaust lambda sensor 24 and the NOx concentration sensor 20 detect the intake air flow rate m, the exhaust lambda λ and the NOx concentration Nd. After this detection, the process proceeds to step S12.

ステップS12では、ステップS11で検出した、吸入空気流量m及び排気ラムダλの組み合わせが、検出値使用範囲AR内に含まれているか否かを判定する。検出値使用範囲AR内に含まれていないときは(NO)、NOx補正係数NCfの算出精度が維持される領域にないと判定して、ステップS16に進み、NOx補正係数NCfを1.0にし、ステップS17に進む。   In step S12, it is determined whether or not the combination of the intake air flow rate m and the exhaust lambda λ detected in step S11 is included in the detection value use range AR. When it is not included in the detected value use range AR (NO), it is determined that the calculation accuracy of the NOx correction coefficient NCf is not maintained, and the process proceeds to step S16 to set the NOx correction coefficient NCf to 1.0. , And proceeds to step S17.

また、ステップS12で、検出値使用範囲AR内に含まれているときは(YES)、吸入空気流量センサ21及び排気ラムダセンサ24の測定精度が維持されて、NOx補正係数NCfの算出精度が維持される領域にあると判定して、ステップS13に進む。   If the detected value usage range AR is included in step S12 (YES), the measurement accuracy of the intake air flow rate sensor 21 and the exhaust lambda sensor 24 is maintained, and the calculation accuracy of the NOx correction coefficient NCf is maintained. It is determined that the region is in the area to be processed, and the process proceeds to step S13.

ステップS13では、吸入空気流量センサ21の検出値(吸入空気流量)mと、排気ラムダセンサ24の検出値(排気ラムダ)λに基づいて、排気ガスGaに含まれるNOx濃度の計算値Ncを算出するとともに、このNOx濃度の計算値Ncが、ステップS11で検出したNOx濃度センサ20の検出値(NOx濃度検出値)Ndの個体差を含めた校正曲線の誤差範囲等に基づいて許容範囲MRを設定又は算出する。この許容範囲MRの設定又は算出後、ステップS14に進む。   In step S13, the calculated value Nc of the concentration of NOx contained in the exhaust gas Ga is calculated based on the detected value (intake air flow) m of the intake air flow sensor 21 and the detected value (exhaust lambda) λ of the exhaust lambda sensor 24. While the calculated value Nc of NOx concentration is based on the error range of the calibration curve including individual differences of the detected value (NOx concentration detected value) Nd of the NOx concentration sensor 20 detected in step S11, the allowable range MR is Set or calculate. After setting or calculating the allowable range MR, the process proceeds to step S14.

ステップS14では、NOx濃度の計算値Ncが、許容範囲MR内に含まれているか否かを判定する。ステップS14にて、許容範囲MR内に含まれていないときは(NO)、NOx補正係数NCfの算出精度が維持される領域にないと判定して、ステップS16に進み、NOx補正係数NCfを1.0にし、ステップS17に進む。   In step S14, it is determined whether or not the calculated value Nc of the NOx concentration is included in the allowable range MR. In step S14, when it is not included in the allowable range MR (NO), it is determined that the calculation accuracy of the NOx correction coefficient NCf is not in the range to be maintained, and the process proceeds to step S16. .0 and proceed to step S17.

一方、NOx濃度の計算値Ncが、許容範囲MR内に含まれるときは(YES)、ステップS15で、吸入空気流量m及び排気ラムダλを使用してNOx補正係数NCfを算出し、ステップS17に進む。   On the other hand, if the calculated value Nc of the NOx concentration is included in the allowable range MR (YES), the NOx correction coefficient NCf is calculated using the intake air flow rate m and the exhaust lambda λ in step S15, and the process proceeds to step S17. move on.

ステップS17で、NOx補正係数NCfを用いて気筒内酸素濃度目標値Dtを補正して、この気筒内酸素濃度目標値Dtに基づいてEGRバルブ16の開度の制御量Cを算出して、リターンし、リターンした上位の制御フローで、EGRバルブ16の開度を制御する。   In step S17, the cylinder oxygen concentration target value Dt is corrected using the NOx correction coefficient NCf, the control amount C of the opening degree of the EGR valve 16 is calculated based on the cylinder oxygen concentration target value Dt, and the return The opening degree of the EGR valve 16 is controlled by the returned upper control flow.

上記の制御により、本発明に係る実施の形態の内燃機関のEGR制御方法が実施でき、この内燃機関のEGR制御方法は、EGR通路14にEGRバルブ16を有して構成されるEGRシステム1を備えた内燃機関10で、EGRのNOx濃度目標値Nt1に対応する気筒内酸素濃度目標値Dtに基づいて、EGRバルブ16の開度を制御する内燃機関のEGR制御方法であり、エンジン運転状態が定常状態である場合において、NOx濃度センサ20の検出値NdとNOx濃度の算出値Ncの比であるNOx補正係数Ncfを使用して気筒内酸素濃度目標値Dtを補正する際に、エンジン運転状態、又は、吸気通路12に設けた吸入空気流量センサ21の検出値mと排気通路13に設けた排気ラムダセンサ24の検出値λの組み合わせが、予め設定された検出値使用範囲AR内に含まれるときは、吸入空気流量センサ21の検出値mと排気ラムダセンサ24の検出値λとNOx濃度センサ20の検出値Ndを使用してNOx補正係数Ncfを算出し、検出値使用範囲AR外であるときは、NOx補正係数Ncfを1.0にして算出し、この算出されたNOx補正係数Ncfを使用して気筒内酸素濃度目標値Dtを補正して、EGRバルブ16の開度を制御する方法である。 By the above control, the EGR control method for the internal combustion engine according to the embodiment of the present invention can be carried out. This EGR control method for the internal combustion engine includes the EGR system 1 configured by including the EGR valve 16 in the EGR passage 14. The internal combustion engine 10 is an EGR control method for an internal combustion engine that controls the opening degree of the EGR valve 16 based on the in-cylinder oxygen concentration target value Dt corresponding to the NOx concentration target value Nt1 of EGR. In the steady state, when the in-cylinder oxygen concentration target value Dt is corrected using the NOx correction coefficient Ncf, which is the ratio of the detected value Nd of the NOx concentration sensor 20 and the calculated value Nc of NOx concentration, the engine operating state , or a combination of the detection value λ of the exhaust lambda sensor 24 provided with the detection value m of the intake air flow sensor 21 provided in the intake passage 12 to the exhaust passage 13, When the detected value usage range AR is within the range, the detected value m of the intake air flow rate sensor 21, the detected value λ of the exhaust lambda sensor 24, and the detected value Nd of the NOx concentration sensor 20 are used. When Ncf is calculated and is outside the detection value usage range AR, the NOx correction coefficient Ncf is set to 1.0, and the calculated in-cylinder oxygen concentration target value Dt is corrected using the calculated NOx correction coefficient Ncf. Thus, the opening degree of the EGR valve 16 is controlled.

また、更に、エンジン運転状態、又は、吸入空気流量センサ21の検出値mと排気ラムダセンサ24の検出値λの組み合わせが、検出値使用範囲AR内に含まれるときであっても、吸入空気流量センサ21の検出値mと排気ラムダセンサ24の検出値λを使用して算出される排気ガス中のNOx濃度の算出値Ncが、NOx濃度センサ20の検出値Ndにおける予め設定された許容範囲MR内にあるか否かを判定して、この許容範囲MR内ではないときは、NOx補正係数Ncfを1.0にして算出する。 Furthermore, even when the engine operating state or the combination of the detection value m of the intake air flow sensor 21 and the detection value λ of the exhaust lambda sensor 24 is included in the detection value use range AR, the intake air flow rate The calculated value Nc of the NOx concentration in the exhaust gas calculated using the detection value m of the sensor 21 and the detection value λ of the exhaust lambda sensor 24 is a preset allowable range MR in the detection value Nd of the NOx concentration sensor 20. If it is not within the allowable range MR, the NOx correction coefficient Ncf is calculated to be 1.0.

上記の構成の内燃機関のEGR制御システム40、エンジン(内燃機関)10、及び内燃機関のEGR制御方法によれば、吸入空気流量センサ21及び排気ラムダセンサ24の測定精度が維持されるエンジン運転状態のときのみ、吸入空気流量センサ21の検出値m及び排気ラムダセンサ24の検出値λを使用して算出されるNOx補正係数NCfを使用するので、気筒内酸素濃度Dtの補正に使用されるNOx補正係数Ncfの算出精度の低下を回避することができ、EGRバルブ16の開度の制御精度の悪化を抑制することができる。   According to the EGR control system 40 of the internal combustion engine, the engine (internal combustion engine) 10, and the EGR control method of the internal combustion engine configured as described above, the engine operating state in which the measurement accuracy of the intake air flow rate sensor 21 and the exhaust lambda sensor 24 is maintained. Since the NOx correction coefficient NCf calculated using the detected value m of the intake air flow rate sensor 21 and the detected value λ of the exhaust lambda sensor 24 is used only when A decrease in the calculation accuracy of the correction coefficient Ncf can be avoided, and a deterioration in the control accuracy of the opening degree of the EGR valve 16 can be suppressed.

1 内燃機関のEGRシステム
10 エンジン(内燃機関)
11 エンジン本体
11a 吸気マニホールド
11b 排気マニホールド
11c 気筒
12 吸気通路
13 排気通路
14 EGR通路
15 EGRクーラー
16 EGRバルブ
20 NOx濃度センサ(NOx濃度検出装置)
21 吸入空気流量センサ(MAFセンサ:吸入空気流量検出装置)
22 吸気圧力センサ
23 吸気温度センサ
24 排気ラムダセンサ(排気過剰率センサ:排気ラムダ検出装置)
30 制御装置
40、40X 内燃機関のEGR制御システム
41 第1制御部
42 第2制御部
43 第3制御部
44 第4制御部
45 第5制御部
46、46X NOx補正部
47 加算部
A 新気
C EGRバルブの開度の制御量
Ca EGRバルブの開度の基本制御量
Cb EGRバルブの開度の補正制御量
Dt 気筒内酸素濃度目標値
Dc 気筒内酸素濃度算出値
G、Ga 排気ガス
Ge EGRガス
NCf NOx補正係数
Sg1 センサ群
1 EGR system for internal combustion engine 10 Engine (internal combustion engine)
11 Engine body 11a Intake manifold 11b Exhaust manifold 11c Cylinder 12 Intake passage 13 Exhaust passage 14 EGR passage 15 EGR cooler 16 EGR valve 20 NOx concentration sensor (NOx concentration detection device)
21 Intake air flow rate sensor (MAF sensor: Intake air flow rate detection device)
22 Intake pressure sensor 23 Intake temperature sensor 24 Exhaust lambda sensor (exhaust excess rate sensor: exhaust lambda detection device)
30 control device 40, 40X EGR control system 41 for internal combustion engine first control unit 42 second control unit 43 third control unit 44 fourth control unit 45 fifth control unit 46, 46X NOx correction unit 47 addition unit A fresh air C EGR valve opening control amount Ca EGR valve opening basic control amount Cb EGR valve opening correction control amount Dt In-cylinder oxygen concentration target value Dc In-cylinder oxygen concentration calculation value G, Ga Exhaust gas Ge EGR gas NCf NOx correction coefficient Sg1 sensor group

Claims (5)

EGR通路にEGRバルブを有して構成されるEGRシステムを備えた内燃機関で、EGRのNOx濃度目標値に対応する気筒内酸素濃度目標値に基づいて、前記EGRバルブの開度を制御する内燃機関のEGR制御システムにおいて、
吸気通路に吸入空気流量検出装置を設けるとともに、排気通路に排気ラムダ検出装置とNOx濃度検出装置を設け、
前記EGRシステムを制御する制御装置が、
前記内燃機関の運転状態が定常状態である場合において、前記NOx濃度検出装置の検出値とNOx濃度の算出値の比であるNOx補正係数を使用して前記気筒内酸素濃度目標値を補正する際に、
前記内燃機関の運転状態、又は、前記吸入空気流量検出装置の検出値と前記排気ラムダ検出装置の検出値の組み合わせが、予め設定された検出値使用範囲内に含まれるときは、前記吸入空気流量検出装置の検出値と前記排気ラムダ検出装置の検出値と前記NOx濃度検出装置の検出値を使用して前記NOx補正係数を算出し、前記検出値使用範囲外であるときは、前記NOx補正係数を1.0にして算出し、
この算出された前記NOx補正係数を使用して前記気筒内酸素濃度目標値を補正して、前記EGRバルブの開度を制御するように構成される内燃機関のEGR制御システム。
An internal combustion engine having an EGR system configured to have an EGR valve in an EGR passage, wherein the internal combustion engine controls the opening degree of the EGR valve based on an in-cylinder oxygen concentration target value corresponding to a NOx concentration target value of EGR. In the engine EGR control system,
An intake air flow rate detection device is provided in the intake passage, an exhaust lambda detection device and a NOx concentration detection device are provided in the exhaust passage,
A control device for controlling the EGR system,
When the operating state of the internal combustion engine is in a steady state, when correcting the in-cylinder oxygen concentration target value using a NOx correction coefficient that is a ratio of a detected value of the NOx concentration detecting device and a calculated value of the NOx concentration In addition,
When the combination of the operating state of the internal combustion engine or the detection value of the intake air flow rate detection device and the detection value of the exhaust lambda detection device is included in a preset detection value use range, the intake air flow rate The NOx correction coefficient is calculated using the detection value of the detection device, the detection value of the exhaust lambda detection device, and the detection value of the NOx concentration detection device, and the NOx correction coefficient is out of the detection value use range. Is calculated as 1.0,
An EGR control system of an internal combustion engine configured to control the opening degree of the EGR valve by correcting the in-cylinder oxygen concentration target value using the calculated NOx correction coefficient.
前記制御装置が、
前記内燃機関の運転状態、又は、前記吸入空気流量検出装置の検出値と前記排気ラムダ検出装置の検出値の組み合わせが、前記検出値使用範囲内に含まれるときであっても、
前記吸入空気流量検出装置の検出値と前記排気ラムダ検出装置の検出値を使用して算出される排気ガス中のNOx濃度の算出値が、前記NOx濃度検出装置の検出値における予め設定された許容範囲内にあるか否かを判定して、該許容範囲内ではないときは、前記NOx補正係数を1.0にして算出するように構成される請求項1に記載の内燃機関のEGR制御システム。
The control device is
Even when the operating state of the internal combustion engine or the combination of the detected value of the intake air flow rate detection device and the detected value of the exhaust lambda detection device is included in the detected value use range,
The calculated value of NOx concentration in the exhaust gas calculated using the detected value of the intake air flow rate detection device and the detected value of the exhaust lambda detection device is a preset allowance in the detected value of the NOx concentration detection device The EGR control system for an internal combustion engine according to claim 1, wherein the NOx correction coefficient is set to 1.0 to determine whether or not it is within the range, and when it is not within the allowable range. .
請求項1または2に記載の内燃機関のEGR制御システムを備えて構成される内燃機関。   An internal combustion engine comprising the EGR control system for an internal combustion engine according to claim 1 or 2. EGR通路にEGRバルブを有して構成されるEGRシステムを備えた内燃機関で、EGRのNOx濃度目標値に対応する気筒内酸素濃度目標値に基づいて、前記EGRバルブの開度を制御する内燃機関のEGR制御方法において、
前記内燃機関の運転状態が定常状態である場合において、NOx濃度検出装置の検出値とNOx濃度の算出値の比であるNOx補正係数を使用して前記気筒内酸素濃度目標値を補正する際に、
前記内燃機関の運転状態、又は、吸気通路に設けた吸入空気流量検出装置の検出値と、排気通路に設けた排気ラムダ検出装置の検出値の組み合わせが、予め設定された検出値使用範囲内に含まれるときは、前記吸入空気流量検出装置の検出値と前記排気ラムダ検出装置の検出値と前記NOx濃度検出装置の検出値を使用して前記NOx補正係数を算出し、前記検出値使用範囲外であるときは、前記NOx補正係数を1.0にして算出し、
この算出された前記NOx補正係数を使用して前記気筒内酸素濃度目標値を補正して、前記EGRバルブの開度を制御することを特徴とする内燃機関のEGR制御方法。
An internal combustion engine having an EGR system configured to have an EGR valve in an EGR passage and controlling an opening degree of the EGR valve based on an in-cylinder oxygen concentration target value corresponding to an EGR NOx concentration target value In the EGR control method of the engine,
When the operation state of the internal combustion engine is in a steady state, when correcting the in-cylinder oxygen concentration target value using a NOx correction coefficient that is a ratio of the detected value of the NOx concentration detecting device and the calculated value of the NOx concentration. ,
The combination of the operating state of the internal combustion engine or the detection value of the intake air flow rate detection device provided in the intake passage and the detection value of the exhaust lambda detection device provided in the exhaust passage is within a preset detection value use range. When it is included, the NOx correction coefficient is calculated using the detected value of the intake air flow rate detecting device, the detected value of the exhaust lambda detecting device and the detected value of the NOx concentration detecting device, and the detected value is out of use range Is calculated by setting the NOx correction coefficient to 1.0,
An EGR control method for an internal combustion engine, comprising: correcting the in-cylinder oxygen concentration target value using the calculated NOx correction coefficient; and controlling an opening degree of the EGR valve.
前記内燃機関の運転状態、又は、前記吸入空気流量検出装置の検出値と、前記排気ラムダ検出装置の検出値の組み合わせが、前記検出値使用範囲内に含まれるときであっても、
前記吸入空気流量検出装置の検出値と前記排気ラムダ検出装置の検出値を使用して算出される排気ガス中のNOx濃度の算出値が、前記NOx濃度検出装置の検出値における予め設定された許容範囲内にあるか否かを判定して、該許容範囲内ではないときは、前記NOx補正係数を1.0にして算出することを特徴とする請求項4に記載の内燃機関のEGR制御方法。
Even when the combination of the operating state of the internal combustion engine or the detection value of the intake air flow rate detection device and the detection value of the exhaust lambda detection device is included in the detection value use range,
The calculated value of the NOx concentration in the exhaust gas calculated using the detection value of the intake air flow rate detection device and the detection value of the exhaust lambda detection device is a preset tolerance in the detection value of the NOx concentration detection device. 5. The EGR control method for an internal combustion engine according to claim 4, wherein it is determined whether or not it is within the range, and when it is not within the allowable range, the NOx correction coefficient is calculated to be 1.0. .
JP2015152055A 2015-07-31 2015-07-31 EGR control system for internal combustion engine, internal combustion engine, and EGR control method for internal combustion engine Active JP6551017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015152055A JP6551017B2 (en) 2015-07-31 2015-07-31 EGR control system for internal combustion engine, internal combustion engine, and EGR control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015152055A JP6551017B2 (en) 2015-07-31 2015-07-31 EGR control system for internal combustion engine, internal combustion engine, and EGR control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2017031874A JP2017031874A (en) 2017-02-09
JP6551017B2 true JP6551017B2 (en) 2019-07-31

Family

ID=57985776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015152055A Active JP6551017B2 (en) 2015-07-31 2015-07-31 EGR control system for internal combustion engine, internal combustion engine, and EGR control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6551017B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203453A (en) * 1990-11-30 1992-07-24 Nissan Motor Co Ltd Control device of diesel engine
JP3531221B2 (en) * 1994-08-26 2004-05-24 日産自動車株式会社 Air-fuel ratio control device for internal combustion engine
JP3617240B2 (en) * 1997-03-14 2005-02-02 日産自動車株式会社 Exhaust gas recirculation control device for internal combustion engine
JP4706134B2 (en) * 2001-06-15 2011-06-22 トヨタ自動車株式会社 Control device for internal combustion engine
JP3929740B2 (en) * 2001-10-16 2007-06-13 本田技研工業株式会社 Control device for internal combustion engine
JP2007040186A (en) * 2005-08-03 2007-02-15 Toyota Motor Corp Nox generation amount estimation device for internal combustion engine and control device for internal combustion engine
JP5071494B2 (en) * 2010-03-01 2012-11-14 日産自動車株式会社 Control device for internal combustion engine
JP2012241581A (en) * 2011-05-18 2012-12-10 Toyota Motor Corp Control device for internal combustion engine
JP2013224613A (en) * 2012-04-20 2013-10-31 Toyota Motor Corp NOx GENERATION AMOUNT ESTIMATION DEVICE FOR INTERNAL COMBUSTION ENGINE AND NOx SENSOR FAILURE DIAGNOSING DEVICE
JP5962768B2 (en) * 2012-11-19 2016-08-03 トヨタ自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2017031874A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
US8036813B2 (en) EGR control system
US10260436B2 (en) System and methods for operating an exhaust gas recirculation valve based on a temperature difference of the valve
EP2339152B1 (en) Method and device for controlling an EGR system in a combustion engines
US9845749B2 (en) System and methods for diagnosing soot accumulation on an exhaust gas recirculation valve
JP6259246B2 (en) Control device for internal combustion engine
MX2015001843A (en) Approach for engine control and diagnostics.
JP3929740B2 (en) Control device for internal combustion engine
JP2010084519A (en) Engine
JP2011220142A (en) Catalyst deterioration determination device for internal combustion engine
JP2008297968A (en) Control device for internal combustion engine
JP6497048B2 (en) Air-fuel ratio learning control device for internal combustion engine
JP6551017B2 (en) EGR control system for internal combustion engine, internal combustion engine, and EGR control method for internal combustion engine
JP2017036697A (en) Egr control system for internal combustion engine, internal combustion engine and egr control method for internal combustion engine
CN111664017B (en) Method and device for diagnosing a component of an exhaust system in a motor system with an internal combustion engine
JP5111534B2 (en) EGR control device for internal combustion engine
JP6597001B2 (en) EGR control system for internal combustion engine
JP2017040174A (en) Egr control system for internal combustion engine, internal combustion engine and egr control method for internal combustion engine
JPS62240446A (en) Air-fuel ratio control device for lean burn engine
JP2017218974A (en) EGR control system for internal combustion engine, internal combustion engine, and EGR control method for internal combustion engine
US10502156B2 (en) Engine controller based on atmospheric pressure
JP6094743B2 (en) Engine control device
JP2013253564A (en) Control device for power system
JP6879460B2 (en) Engine control
JP6848524B2 (en) Engine control
JP2017053235A (en) Egr control system of internal combustion engine, internal combustion engine, and egr control method of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190617

R150 Certificate of patent or registration of utility model

Ref document number: 6551017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150