JP6549882B2 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP6549882B2
JP6549882B2 JP2015082727A JP2015082727A JP6549882B2 JP 6549882 B2 JP6549882 B2 JP 6549882B2 JP 2015082727 A JP2015082727 A JP 2015082727A JP 2015082727 A JP2015082727 A JP 2015082727A JP 6549882 B2 JP6549882 B2 JP 6549882B2
Authority
JP
Japan
Prior art keywords
wavelength
spectral sensitivity
photoelectric conversion
imaging device
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015082727A
Other languages
Japanese (ja)
Other versions
JP2016201776A (en
Inventor
俊克 堺
俊克 堺
北斗 瀬尾
北斗 瀬尾
大竹 浩
浩 大竹
友望 高木
友望 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2015082727A priority Critical patent/JP6549882B2/en
Publication of JP2016201776A publication Critical patent/JP2016201776A/en
Application granted granted Critical
Publication of JP6549882B2 publication Critical patent/JP6549882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)

Description

本発明は、被写体の像を撮像するとともに、レンズから被写体までの距離を計測することができる撮像装置に関する。   The present invention relates to an imaging device capable of capturing an image of a subject and measuring the distance from a lens to the subject.

近年、高機能なカメラとして、従来の2次元画像だけではなく奥行き情報を取得することで、撮影後にピントを合わせられる任意焦点像画像や立体像の生成が可能なカメラが研究・開発されている。   In recent years, as a high-performance camera, a camera that can generate an arbitrary focus image and a stereoscopic image that can be focused after shooting has been researched and developed by acquiring not only conventional 2D images but also depth information. .

このような画像を撮影するための方式の一つとして、レンズから被写体までの距離を計測する光学的技法として、レンズによる合焦位置を機構的にずらせて複数の被写体画像(多重フォーカス画像群)を撮影する方式が挙げられる。この方式では、いわゆるコントラストに基づく多重フォーカス法によりカメラと撮像される画像内の被写体との間の距離の測定を行うことが知られている。この場合、レンズによる合焦位置をずらす機構を設け、複数回の撮像動作を行う必要がある。   As an optical technique for measuring the distance from the lens to the subject as one of methods for capturing such an image, a plurality of subject images (multi-focus image group) by mechanically shifting the in-focus position by the lens There is a method to shoot the In this method, it is known to measure the distance between a camera and a subject in an image to be captured by a so-called contrast-based multiple focusing method. In this case, it is necessary to provide a mechanism for shifting the in-focus position by the lens, and to perform a plurality of imaging operations.

また、レンズによる合焦位置を機構的にずらせて複数の被写体画像(多重フォーカス画像群)を得る代わりに、複数のマイクロレンズにより複数の個眼像について合焦位置をずらせて撮像する複眼カメラ部を構成し、この複眼カメラ部により複数の被写体画像(多重フォーカス画像群)を得て、コントラストに基づく多重フォーカス法によりカメラと撮像される画像内の被写体との間の距離の測定を行う装置が開示されている(例えば、特許文献1参照)。   In addition, instead of mechanically shifting the in-focus position by the lens to obtain a plurality of subject images (multi-focus image group), a compound eye camera unit that images a plurality of single-eye images by shifting the in-focus position by a plurality of microlenses. An apparatus for obtaining a plurality of subject images (multi-focus image group) by the compound-eye camera unit and measuring the distance between the camera and the subject in the image to be captured by the multi-focus method based on contrast. For example, Patent Document 1 discloses the disclosure.

さらに、レンズから被写体までの距離を計測する従来の測距装置として、入射光を分離する複数のプリズムで分光した光を複数の固体撮像素子で撮像し、合焦位置とレンズの焦点距離に基づいて被写体までの距離を計測する装置が開示されている(例えば、特許文献2参照)。   Furthermore, as a conventional distance measuring device that measures the distance from a lens to a subject, light split by a plurality of prisms that separate incident light is imaged by a plurality of solid state imaging devices, and based on the focusing position and the focal distance of the lens An apparatus for measuring the distance to a subject is disclosed (see, for example, Patent Document 2).

例えば、従来の測距装置として、レンズによる合焦位置を機構的にずらせて複数の被写体画像(多重フォーカス画像群)を得る技法では、合焦位置が複数個所となるようにフォーカス駆動して、複数のフォーカス画像を取得することになるが、このフォーカス駆動には、ある程度の時間が必要なため動物体の撮像及びその被写体までの距離計測には適していないという問題がある。   For example, as a conventional distance measuring apparatus, in the technique of mechanically shifting the in-focus position by the lens to obtain a plurality of object images (multi-focus image group), the focus drive is performed so that the in-focus position becomes a plurality. Although multiple focus images are to be acquired, this focus drive requires a certain amount of time, which is not suitable for imaging an object and measuring the distance to the subject.

また、複数のマイクロレンズにより複数の個眼像について合焦位置をずらせて撮像する複眼カメラ部を構成する技法では、焦点距離の同じ複数のマイクロレンズを精密に配置する必要があり、製造上の問題が生じやすくコスト的にも高価になりうる。   Further, in the technique of forming a compound eye camera unit in which a plurality of microlenses shift the in-focus position of a plurality of individual eye images to form an image, it is necessary to precisely arrange a plurality of microlenses having the same focal length. It is prone to problems and can be costly.

また、入射光をプリズム(或いはハーフミラー)で分光する技法では、カメラが大型化してしまうという問題がある。   In addition, in the technique of dispersing incident light with a prism (or a half mirror), there is a problem that the size of the camera is increased.

これらの問題を解決する方式として、入射光のうち所定の光吸収率で光を吸収して光電変換し被写体の像を撮像する第1撮像素子と、第1撮像素子を透過した光を光電変換し当該被写体の像を撮像する第2撮像素子とを、予め定めた間隔でレンズの光軸上に配置することによって被写体画像(多重フォーカス画像群)を得る方式が開示されている(例えば、特許文献3参照)。   As a method for solving these problems, among the incident light, the first image pickup element that absorbs light with a predetermined light absorption rate, photoelectrically converts it, and picks up the image of the subject, and photoelectrically converts the light transmitted through the first image pickup element A system is disclosed in which a subject image (multi-focus image group) is obtained by arranging a second imaging element for capturing an image of the subject on the optical axis of the lens at predetermined intervals (for example, Patent Reference 3).

この多重フォーカスカメラにおいては、第1撮像素子及び第2撮像素子で撮像される被写体の像のボケ量の差が焦点距離、口径比(F値)、被写体からレンズまでの距離、レンズから第1撮像素子までの距離及びレンズから第2撮像素子までの距離に依存することを利用して、被写体からレンズまでの距離を演算する。所定の光吸収率で光を吸収して光電変換し被写体の像を撮像する第1撮像素子として、有機光電変換膜を光電変換部に採用することが提案されている。   In this multi-focus camera, the difference in the amount of blur of the image of the subject imaged by the first imaging element and the second imaging element is the focal length, aperture ratio (F value), the distance from the subject to the lens, the first lens The distance from the subject to the lens is calculated using the dependence on the distance to the imaging element and the distance from the lens to the second imaging element. It has been proposed to employ an organic photoelectric conversion film in a photoelectric conversion unit as a first imaging element for absorbing light with a predetermined light absorption rate, performing photoelectric conversion, and capturing an image of a subject.

特開2009−216600号公報JP, 2009-216600, A 特開平11−337313号公報Unexamined-Japanese-Patent No. 11-337313 gazette 特開2013−205516号公報JP, 2013-205516, A

ところで、従来技術では、第2撮像素子でカラー画像を撮影する場合において、第2撮像素子として配置されたCCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)センサーや薄膜トランジスタ回路上に配設される、ベイヤー配列を有するカラーフィルターや有機光電変換材料と、第1撮像素子の有機光電変換材料との関係が考慮されていない。   By the way, in the prior art, when photographing a color image with the second imaging element, it is disposed on a charge coupled device (CCD) or complementary metal oxide semiconductor (CMOS) sensor or thin film transistor circuit disposed as the second imaging element. The relationship between the color filter or the organic photoelectric conversion material having the Bayer arrangement and the organic photoelectric conversion material of the first imaging device is not considered.

このため、第1撮像素子の吸収波長帯によっては、第2撮像素子のカラーフィルターを透過する光量が大幅に減少し、第2撮像素子の感度の低下が生じる等の測距性能の観点における課題があった。   For this reason, depending on the absorption wavelength band of the first imaging device, the amount of light passing through the color filter of the second imaging device is significantly reduced, which causes a problem in distance measurement performance such as a decrease in sensitivity of the second imaging device. was there.

そこで、高感度で高性能な多重フォーカスの撮像装置を提供することを目的とする。   Therefore, it is an object of the present invention to provide a high-sensitivity, high-performance multi-focus imaging apparatus.

本発明の実施の形態の撮像装置は、入射光のうちの所定割合の第1入射光を光電変換する第1光電変換部と、前記第1光電変換部から出力される第1撮像信号を読み出す第1読み出し部とを有し、前記第1光電変換部に入射する入射光のうちの前記第1入射光以外の第2入射光を透過する、第1撮像素子と、光の三原色に対応する第1分光感度、第2分光感度、及び第3分光感度を有し、前記第2入射光を透過するカラーフィルタと、前記カラーフィルタを透過した前記第2入射光を光電変換する第2光電変換部と、前記第2光電変換部から出力される第2撮像信号を読み出す第2読み出し部とを有する、第2撮像素子とを含み、前記第2撮像素子は、前記入射光の入射方向において、前記第1撮像素子から所定距離を隔てた位置に配置されており、前記第1分光感度の第1ピークの位置を表す第1波長、前記第2分光感度の第2ピークの位置を表す第2波長、及び前記第3分光感度の第3ピークの位置を表す第3波長は、この順に短波長側から長波長側に分布しており、前記第1入射光を吸収する前記第1光電変換部の分光感度のピークの位置を表す波長は、前記第1波長よりも長く、かつ、前記第2波長よりも短い、又は、前記第2波長よりも長く、かつ、前記第3波長よりも短い。   An imaging device according to an embodiment of the present invention reads a first photoelectric conversion unit that photoelectrically converts a first incident light of a predetermined ratio of incident light, and reads out a first imaging signal output from the first photoelectric conversion unit. A first imaging device having a first readout unit, and transmitting a second incident light other than the first incident light among incident light incident on the first photoelectric conversion unit, and corresponds to three primary colors of light A color filter having a first spectral sensitivity, a second spectral sensitivity, and a third spectral sensitivity, and a second photoelectric conversion for photoelectrically converting the second incident light transmitted through the color filter and the second incident light. Unit and a second image pickup device having a second read out unit for reading out a second image pickup signal output from the second photoelectric conversion unit, the second image pickup device in the incident direction of the incident light, Disposed at a position separated by a predetermined distance from the first imaging element A first wavelength representing the position of the first peak of the first spectral sensitivity, a second wavelength representing the position of the second peak of the second spectral sensitivity, and a position of the third peak of the third spectral sensitivity The third wavelength is distributed in this order from the short wavelength side to the long wavelength side, and the wavelength representing the position of the peak of the spectral sensitivity of the first photoelectric conversion unit that absorbs the first incident light is the first wavelength And longer than the second wavelength, or longer than the second wavelength and shorter than the third wavelength.

高感度で高性能な多重フォーカスの撮像装置を提供することができる。   It is possible to provide a high-sensitivity, high-performance multi-focus imaging device.

撮像装置100を示す図である。FIG. 2 is a diagram showing an imaging device 100. 撮像装置100の断面構造を示す図である。FIG. 2 is a view showing a cross-sectional structure of the imaging device 100. 分光感度を示す図である。It is a figure which shows spectral sensitivity. 実施の形態の変形例による分光感度を示す図である。It is a figure which shows the spectral sensitivity by the modification of embodiment.

以下、本発明の撮像装置を適用した実施の形態について説明する。   Hereinafter, an embodiment to which an imaging device of the present invention is applied will be described.

<実施の形態>
図1は、撮像装置100を示す図である。
Embodiment
FIG. 1 is a diagram showing an imaging device 100. As shown in FIG.

撮像装置100は、撮像素子110と撮像素子120を含む。撮像素子110は、光電変換層111と信号読み出し部112を有する。光電変換層111は、信号読み出し部112の上に形成されている。撮像素子120は、カラーフィルタ121と撮像部122を有する。カラーフィルタ121は、撮像部122の上に形成されている。なお、光電変換層111の上には電極が形成されるが、図1では図示を省略する。   The imaging device 100 includes an imaging element 110 and an imaging element 120. The imaging element 110 includes a photoelectric conversion layer 111 and a signal readout unit 112. The photoelectric conversion layer 111 is formed on the signal readout unit 112. The imaging element 120 includes a color filter 121 and an imaging unit 122. The color filter 121 is formed on the imaging unit 122. In addition, although an electrode is formed on the photoelectric conversion layer 111, illustration is abbreviate | omitted in FIG.

撮像素子110と撮像素子120は、矢印で示す光の入射方向において、図示しないホルダ等で保持されることにより、所定距離を隔てて配置されている。   The imaging element 110 and the imaging element 120 are arranged at a predetermined distance apart by being held by a holder (not shown) or the like in the incident direction of light indicated by the arrow.

カラーフィルタ121は、ベイヤー配列されるB(Blue)、G(Green)、R(Red)のフィルタ部121B、121G、121Rを有する。フィルタ部121B、121G、121Rは、撮像部122の各画素に対応して配置されている。   The color filter 121 includes B (Blue), G (Green), and R (Red) filter sections 121B, 121G, and 121R arranged in a Bayer arrangement. The filter units 121 </ b> B, 121 </ b> G, and 121 </ b> R are arranged corresponding to the respective pixels of the imaging unit 122.

光電変換層111は、フィルタ部121B、121G、121Rに合わせてマトリクス状に配置される画素領域を有する。図1には光電変換層111の画素領域をフィルタ部121B、121G、121Rと同様に示す。   The photoelectric conversion layer 111 has pixel regions arranged in a matrix in accordance with the filter portions 121B, 121G, and 121R. The pixel area of the photoelectric conversion layer 111 is shown in FIG. 1 similarly to the filter parts 121B, 121G, and 121R.

図2は、撮像装置100の断面構造を示す図である。   FIG. 2 is a view showing a cross-sectional structure of the imaging device 100. As shown in FIG.

撮像素子110は、ガラス製支持基板20上に、単結晶シリコン層により半導体島領域31が構成された透明なTFT(Thin Film Transistor)60によって構成される信号読み出し回路部を有する。   The imaging device 110 has a signal readout circuit unit formed of a transparent thin film transistor (TFT) 60 in which a semiconductor island region 31 is formed of a single crystal silicon layer on a support substrate 20 made of glass.

TFT60(信号読み出し回路部)は、ガラス製支持基板20上に形成される絶縁膜22の内部に形成される半導体島領域31及びソース・ドレイン領域32、ゲート絶縁膜21、ゲート電極41、信号読み出し線42、及び絶縁膜23を有する。絶縁膜22、23、画素電極43、及び対向電極44は、可視光透過率の高い材料で形成すればよい。   The TFT 60 (signal readout circuit portion) includes a semiconductor island region 31 and a source / drain region 32 formed inside the insulating film 22 formed on the support substrate 20 made of glass, a gate insulating film 21, a gate electrode 41, and signal readout. A wire 42 and an insulating film 23 are provided. The insulating films 22 and 23, the pixel electrode 43, and the counter electrode 44 may be formed of a material having high visible light transmittance.

これらのうち、対向電極44には、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)等の透明導電膜や、数nm〜数十nmの薄いAl、Mg、Au、Ag製の導電膜を用いればよい。   Among them, for example, a transparent conductive film such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide) or the like, or conductive made of thin Al, Mg, Au, Ag of several nm to several tens of nm is used for the counter electrode 44. A membrane may be used.

なお、ガラス製支持基板20と絶縁膜22の間に埋め込み酸化膜を形成してもよい。また、TFT60の代わりに透明なMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)を形成してもよい。   A buried oxide film may be formed between the support substrate 20 made of glass and the insulating film 22. Also, instead of the TFT 60, a transparent MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) may be formed.

また、ガラス製支持基板20の代わりに、光透過性の高いプラスチック、石英、サファイア等で作製した基板を用いてもよい。   Further, instead of the support substrate 20 made of glass, a substrate made of plastic with high light transmittance, quartz, sapphire or the like may be used.

また、TFT60の代わりに、多結晶シリコン、アモルファスシリコン等のシリコン系材料、IGZO(In(インジウム)、Ga(ガリウム)、Zn(亜鉛)、O(酸素)を含む透明な酸化物半導体)又はZnO(酸化亜鉛)等の酸化物半導体、又は、ペンタセン等の有機半導体で透明なトランジスタを作製してもよい。   Also, instead of the TFT 60, a silicon-based material such as polycrystalline silicon or amorphous silicon, IGZO (In (indium), Ga (gallium), Zn (zinc), O (oxygen) -containing transparent oxide semiconductor) or ZnO A transparent transistor may be manufactured using an oxide semiconductor such as (zinc oxide) or an organic semiconductor such as pentacene.

信号読み出し回路部の光透過性を上げるという観点から、数十nmの薄いシリコンや酸化物半導体、透過性の高い有機半導体材料を用いることが望ましい。   From the viewpoint of increasing the light transmittance of the signal readout circuit portion, it is desirable to use a thin silicon or oxide semiconductor with a thickness of several tens of nm, or an organic semiconductor material with high transmittance.

撮像素子110は、TFT60(信号読み出し回路部)の画素電極43上に、光電変換層111と対向電極44を形成して構成される。   The imaging element 110 is configured by forming the photoelectric conversion layer 111 and the counter electrode 44 on the pixel electrode 43 of the TFT 60 (signal readout circuit portion).

光電変換層111は、有機材料製の光電変換層であり、図1に示す光電変換層111である。光電変換層111は、画素電極43の上に有機光導電膜を積層することによって作製される。   The photoelectric conversion layer 111 is a photoelectric conversion layer made of an organic material, and is the photoelectric conversion layer 111 shown in FIG. The photoelectric conversion layer 111 is manufactured by laminating an organic photoconductive film on the pixel electrode 43.

ガラス製支持基板20、絶縁膜22、TFT60、及び対向電極44は、図1に示す信号読み出し部112に相当する。   The support substrate 20 made of glass, the insulating film 22, the TFT 60, and the counter electrode 44 correspond to the signal readout unit 112 shown in FIG.

このような撮像素子110では、画素電極43と対向電極44の間にバイアス電圧が印加した状態で光電変換層111に光が吸収されると、光電変換層111に電荷が発生し、画素電極43とTFT60を介して外部に撮像信号として出力される。   In such an imaging element 110, when light is absorbed in the photoelectric conversion layer 111 in a state where a bias voltage is applied between the pixel electrode 43 and the counter electrode 44, charges are generated in the photoelectric conversion layer 111, and the pixel electrode 43 And is output as an imaging signal to the outside through the TFT 60.

このような光電変換層111と信号読み出し部112を組み合わせたアレイ状の光検出素子を形成することにより、高精度、高速度な撮像信号の検出が可能となる。   By forming an array of light detection elements in which the photoelectric conversion layer 111 and the signal readout unit 112 are combined, it is possible to detect an imaging signal with high accuracy and high speed.

撮像素子120として、単結晶シリコン製の厚さ5μm程度のフォトダイオード131及び信号読み出し回路部132で構成されたCMOS(Complementary Metal Oxide Semiconductor)撮像デバイスを採用した。   As the imaging device 120, a complementary metal oxide semiconductor (CMOS) imaging device configured with a photodiode 131 having a thickness of about 5 μm and a signal readout circuit unit 132 made of single crystal silicon is adopted.

撮像素子120は、シリコン基板130、フォトダイオード131、信号読み出し回路部132、絶縁膜133、及びカラーフィルタ121を有する。シリコン基板130、フォトダイオード131、信号読み出し回路部132、及び絶縁膜133は、図1に示す撮像部122に相当する。なお、上述したように、フォトダイオード131と信号読み出し回路部132は、CMOSによって構成される。   The imaging element 120 includes a silicon substrate 130, a photodiode 131, a signal readout circuit portion 132, an insulating film 133, and a color filter 121. The silicon substrate 130, the photodiode 131, the signal readout circuit portion 132, and the insulating film 133 correspond to the imaging portion 122 shown in FIG. As described above, the photodiode 131 and the signal readout circuit unit 132 are configured by CMOS.

ここで、撮像素子110に用いた光電変換層111は、約500〜600nmの光を主に吸収して光電変換し、それ以外の帯域の光は透過する。   Here, the photoelectric conversion layer 111 used for the imaging device 110 mainly absorbs light of about 500 to 600 nm and performs photoelectric conversion, and transmits light in other bands.

また、撮像素子120に用いた単結晶シリコン製の厚さ5μm程度のフォトダイオードは、光電変換層111を透過した光を吸収して光電変換する。   Further, a single crystal silicon photodiode having a thickness of about 5 μm used for the imaging device 120 absorbs light transmitted through the photoelectric conversion layer 111 and performs photoelectric conversion.

撮像装置100は、撮像素子110で波長約500〜約600nmの可視域の光を光電変換し、撮像素子110を透過した光を撮像素子120で光電変換する。   The imaging device 100 photoelectrically converts light in a visible range of wavelengths of about 500 to about 600 nm by the imaging device 110, and photoelectrically converts light transmitted through the imaging device 110 by the imaging device 120.

図3は、分光感度を示す図であり、図3(A)は、カラーフィルタ121は、ベイヤー配列されるフィルタ部121B、121G、121Rの分光感度を示し、図3(B)は、図3(A)に、光電変換層111の分光感度を追加した図である。   FIG. 3 is a diagram showing the spectral sensitivity, and FIG. 3 (A) shows the spectral sensitivity of the filter sections 121B, 121G, 121R in which the color filter 121 is Bayer-arranged, and FIG. 3 (B) is a diagram of FIG. It is the figure which added the spectral sensitivity of the photoelectric converting layer 111 to (A).

図3(A)には、フィルタ部121B、121G、121Rの分光感度をB、G、Rで示す。撮像部122のフォトダイオード131は、図3(A)に示す全帯域の光を光電変換することができる。このため、撮像素子120は、図3(A)に示す3つの分光感度を有する。これら3つの分光感度は、光の三原色に対応している。   In FIG. 3A, the spectral sensitivities of the filter sections 121B, 121G, and 121R are indicated by B, G, and R, respectively. The photodiode 131 of the imaging unit 122 can photoelectrically convert light of the entire band illustrated in FIG. For this reason, the imaging device 120 has three spectral sensitivities shown in FIG. These three spectral sensitivities correspond to the three primary colors of light.

図3(B)に示すように、光電変換層111は、約500〜約600nmの帯域の分光感度111Aを有する。分光感度111Aは、分光感度Gと分光感度Rの間に位置し、分光感度Gと分光感度Rの交点を与える波長と、吸収ピークの波長が等しい。また、分光感度Gと分光感度Rの交点における分光感度Gと分光感度Rの吸収量と、分光感度111Aの吸収ピークにおける吸収量とが等しい。   As shown in FIG. 3B, the photoelectric conversion layer 111 has a spectral sensitivity 111A in a band of about 500 to about 600 nm. The spectral sensitivity 111A is located between the spectral sensitivity G and the spectral sensitivity R, and the wavelength giving the intersection of the spectral sensitivity G and the spectral sensitivity R is equal to the wavelength of the absorption peak. Further, the absorption amounts of the spectral sensitivity G and the spectral sensitivity R at the intersection of the spectral sensitivity G and the spectral sensitivity R are equal to the absorption amounts at the absorption peak of the spectral sensitivity 111A.

このように、分光感度Gと分光感度Rの間に位置する分光感度111Aを有する光電変換層111としては、例えば、アントラキノン、又は、アゾベンゼン系色素のような有機光電変換膜がある。   Thus, as the photoelectric conversion layer 111 having the spectral sensitivity 111A located between the spectral sensitivity G and the spectral sensitivity R, for example, there is an organic photoelectric conversion film such as anthraquinone or an azobenzene-based dye.

光電変換層111の分光感度111Aは、吸収ピークが分光感度Gの吸収ピーク(約530nm)よりも長波長側で、分光感度Rの吸収ピーク(約600nm)よりも短波長側に位置すればよい。吸収ピークが重なると、撮像素子120の感度が低くなりすぎるおそれがあるからである。   The spectral sensitivity 111A of the photoelectric conversion layer 111 may be located on the longer wavelength side than the absorption peak (about 530 nm) of the spectral sensitivity G and on the shorter wavelength side than the absorption peak (about 600 nm) of the spectral sensitivity R . If the absorption peaks overlap, the sensitivity of the imaging device 120 may be too low.

換言すれば、光電変換層111の分光感度111Aのピークの位置を表す波長は、分光感度Gのピークの位置を表す波長よりも長く、かつ、分光感度Rのピークの位置を表す波長よりも短ければよい。   In other words, the wavelength representing the peak position of the spectral sensitivity 111A of the photoelectric conversion layer 111 is longer than the wavelength representing the peak position of the spectral sensitivity G and shorter than the wavelength representing the peak position of the spectral sensitivity R Just do it.

なお、ここでは、分光感度111Aの吸収ピークの波長が、分光感度Gと分光感度Rの交点を与える波長と等しい場合について説明するが、分光感度111Aの吸収ピークの波長は、分光感度Gと分光感度Rの間に位置していれば、分光感度Gと分光感度Rの交点を与える波長と一致していなくてもよい。   Here, although the case where the wavelength of the absorption peak of the spectral sensitivity 111A is equal to the wavelength giving the intersection of the spectral sensitivity G and the spectral sensitivity R is described, the wavelength of the absorption peak of the spectral sensitivity 111A is the spectral sensitivity G and the spectrum If it is located between the sensitivities R, it does not have to coincide with the wavelength giving the intersection of the spectral sensitivity G and the spectral sensitivity R.

また、分光感度Gと分光感度Rの交点における分光感度Gと分光感度Rの吸収量と、分光感度111Aの吸収ピークにおける吸収量とが等しい場合について説明するが、分光感度111Aの吸収ピークにおける吸収量は、交点における分光感度Gと分光感度Rの吸収量よりも多くてもよく、少なくてもよい。分光感度111Aの吸収ピークにおける吸収量と、交点における分光感度Gと分光感度Rの吸収量とのバランスは、撮像素子110と120の感度に影響をもたらすため、撮像素子110と120の感度のバランスを考慮した上で適切なバランスに設定すればよい。   Further, the case where the absorption amounts of the spectral sensitivity G and the spectral sensitivity R at the intersection of the spectral sensitivity G and the spectral sensitivity R are equal to the absorption amounts at the absorption peak of the spectral sensitivity 111A will be described. The amount may be larger or smaller than the absorption amount of the spectral sensitivity G and the spectral sensitivity R at the intersection point. The balance between the absorption at the absorption peak of the spectral sensitivity 111A and the absorption between the spectral sensitivity G and the spectral sensitivity R at the intersection affects the sensitivity of the imaging elements 110 and 120, so the balance of the sensitivities of the imaging elements 110 and 120 The balance should be set appropriately in consideration of

撮像素子110の光電変換層111として、吸収の主波長が、撮像素子120の分光感度Gと分光感度Rが重なった部分に位置する有機光電変換材料を用いることにより、撮像素子120の感度が高い波長の光が撮像素子110に吸収されることなく透過するため、撮像装置100の系全体で見た場合の光のロスが少なくなる。   The sensitivity of the imaging device 120 is high by using an organic photoelectric conversion material in which the principal wavelength of absorption is located in a portion where the spectral sensitivity G and the spectral sensitivity R of the imaging device 120 overlap as the photoelectric conversion layer 111 of the imaging device 110. Since the light of the wavelength is transmitted without being absorbed by the imaging element 110, the loss of light when viewed in the entire system of the imaging device 100 is reduced.

以上のような構成を有する撮像装置100は、撮像素子110及び撮像素子120で撮像される被写体の像のボケ量に差が生じる。これは、撮像素子110と撮像素子120とで被写体までの距離が異なるからである。   In the imaging device 100 having the configuration as described above, a difference occurs in the amount of blur of the image of the subject imaged by the imaging element 110 and the imaging element 120. This is because the distances to the subject are different between the imaging element 110 and the imaging element 120.

被写体の像のボケ量に差が焦点距離、口径比(F値)、被写体から撮像素子110の入射側に配置されるレンズまでの距離、レンズから撮像素子110までの距離、及び、レンズから撮像素子120までの距離に依存することを利用して、被写体からレンズまでの距離を演算により求めることができる。   The difference in the amount of blur of the image of the subject is the focal length, aperture ratio (F value), the distance from the subject to the lens disposed on the incident side of the imaging device 110, the distance from the lens to the imaging device 110, and imaging from the lens Using the dependence on the distance to the element 120, the distance from the subject to the lens can be determined by calculation.

従って、撮像装置100は、距離情報を含む画像を取得できる多重フォーカスカメラとして利用することができる。   Therefore, the imaging device 100 can be used as a multi-focus camera capable of acquiring an image including distance information.

以上、実施の形態によれば、高感度で高性能な多重フォーカスの撮像装置100を提供することができる。   As described above, according to the embodiment, it is possible to provide the imaging apparatus 100 with high sensitivity and high performance and multiple focus.

なお、以上では、光電変換層111は、分光感度Gと分光感度Rとの間に位置する分光感度111Aを有する形態について説明したが、分光感度Bと分光感度Gとの間に位置する分光感度を有していてもよい。   In addition, although the photoelectric conversion layer 111 demonstrated the form which has the spectral sensitivity 111A located between the spectral sensitivity G and the spectral sensitivity R above, the spectral sensitivity located between the spectral sensitivity B and the spectral sensitivity G May be included.

図4は、実施の形態の変形例による分光感度を示す図である。   FIG. 4 is a diagram showing spectral sensitivity according to a modification of the embodiment.

図4に示すように、光電変換層111は、約500〜約600nmの帯域の分光感度111Aに加えて、約430〜約520nmの帯域の分光感度111Bを有していてもよい。分光感度111Bは、分光感度Bと分光感度Gの間に位置し、分光感度Bと分光感度Gの交点を与える波長と、吸収ピークの波長が等しい。また、分光感度Bと分光感度Gの交点における分光感度Bと分光感度Gの吸収量と、分光感度111Bの吸収ピークにおける吸収量とが等しい。   As shown in FIG. 4, the photoelectric conversion layer 111 may have a spectral sensitivity 111 </ b> B in a band of about 430 to about 520 nm in addition to the spectral sensitivity 111 </ b> A in a band of about 500 to about 600 nm. The spectral sensitivity 111B is located between the spectral sensitivity B and the spectral sensitivity G, and the wavelength giving the intersection of the spectral sensitivity B and the spectral sensitivity G is equal to the wavelength of the absorption peak. Further, the absorption amounts of the spectral sensitivity B and the spectral sensitivity G at the intersection of the spectral sensitivity B and the spectral sensitivity G are equal to the absorption amount at the absorption peak of the spectral sensitivity 111B.

このように、分光感度Bと分光感度Gの間に位置する分光感度111Bを有する光電変換層の材料としては、例えば、ジオキサジンジオキサジン、キナクリドン、ペリレン、インジゴイド、アントラキノン、キサンテン系色素のような有機光電変換膜がある。   Thus, as a material of the photoelectric conversion layer having the spectral sensitivity 111 B located between the spectral sensitivity B and the spectral sensitivity G, for example, dioxazine dioxazine, quinacridone, perylene, indigoid, anthraquinone, xanthene dye, etc. There is an organic photoelectric conversion film.

光電変換層111が2つの分光感度111Aと111Bを有するようにするためには、分光感度111Aを実現するアントラキノン、又は、アゾベンゼン系色素の有機光電変換膜と、分光感度111Bを実現するジオキサジンジオキサジン、キナクリドン、ペリレン、インジゴイド、アントラキノン、又は、キサンテン系色素のような有機光電変換膜とを重ねて2層構造の光電変換層111を形成すればよい。   In order for the photoelectric conversion layer 111 to have two spectral sensitivities 111A and 111B, an anthraquinone which realizes the spectral sensitivity 111A, or an organic photoelectric conversion film of an azobenzene dye and a dioxazine dien which realizes the spectral sensitivity 111B. An organic photoelectric conversion film such as oxazine, quinacridone, perylene, indigoid, anthraquinone, or xanthene dye may be stacked to form the photoelectric conversion layer 111 having a two-layer structure.

また、重ねて形成する代わりに、分光感度111Aを実現する有機光電変換膜材料と、分光感度111Bを実現する有機光電変換膜材料とを混合した材料で光電変換層111を形成してもよい。   Further, instead of forming them in layers, the photoelectric conversion layer 111 may be formed of a material in which an organic photoelectric conversion film material for realizing the spectral sensitivity 111A and an organic photoelectric conversion film material for realizing the spectral sensitivity 111B are mixed.

光電変換層111の分光感度111Bは、吸収ピークが分光感度Bの吸収ピーク(約430nm)よりも長波長側で、分光感度Gの吸収ピーク(約530nm)よりも短波長側に位置すればよい。吸収ピークが重なると、撮像素子120の感度が低くなりすぎるおそれがあるからである。   The spectral sensitivity 111B of the photoelectric conversion layer 111 may be located on the longer wavelength side than the absorption peak (about 430 nm) of the spectral sensitivity B and on the shorter wavelength side than the absorption peak (about 530 nm) of the spectral sensitivity G. . If the absorption peaks overlap, the sensitivity of the imaging device 120 may be too low.

換言すれば、光電変換層111の分光感度111Bのピークの位置を表す波長は、分光感度Bのピークの位置を表す波長よりも長く、かつ、分光感度Gのピークの位置を表す波長よりも短ければよい。   In other words, the wavelength representing the position of the peak of the spectral sensitivity 111B of the photoelectric conversion layer 111 is longer than the wavelength representing the position of the peak of spectral sensitivity B and shorter than the wavelength representing the position of the peak of spectral sensitivity G Just do it.

なお、ここでは、分光感度111Bの吸収ピークの波長が、分光感度Bと分光感度Gの交点を与える波長と等しい場合について説明するが、分光感度111Bの吸収ピークの波長は、分光感度Bと分光感度Gの間に位置していれば、分光感度Bと分光感度Gの交点を与える波長と一致していなくてもよい。   In addition, although the case where the wavelength of the absorption peak of the spectral sensitivity 111B is equal to the wavelength giving the intersection of the spectral sensitivity B and the spectral sensitivity G is described here, the wavelength of the absorption peak of the spectral sensitivity 111B is the spectral sensitivity B and the spectral If it is located between the sensitivities G, it does not have to coincide with the wavelength giving the intersection of the spectral sensitivities B and the spectral sensitivities G.

また、分光感度Bと分光感度Gの交点における分光感度Bと分光感度Gの吸収量と、分光感度111Bの吸収ピークにおける吸収量とが等しい場合について説明するが、分光感度111Bの吸収ピークにおける吸収量は、交点における分光感度Bと分光感度Gの吸収量よりも多くてもよく、少なくてもよい。分光感度111Bの吸収ピークにおける吸収量と、交点における分光感度Bと分光感度Gの吸収量とのバランスは、撮像素子110と120の感度に影響をもたらすため、撮像素子110と120の感度のバランスを考慮した上で適切なバランスに設定すればよい。   Further, the case where the absorption amounts of the spectral sensitivity B and the spectral sensitivity G at the intersection of the spectral sensitivity B and the spectral sensitivity G and the absorption amount at the absorption peak of the spectral sensitivity 111B are equal will be described. The amount may be larger or smaller than the absorption amount of the spectral sensitivity B and the spectral sensitivity G at the intersection point. The balance between the absorption at the absorption peak of the spectral sensitivity 111 B and the absorption between the spectral sensitivity B and the spectral sensitivity G at the intersection affects the sensitivity of the imaging elements 110 and 120, so the balance of the sensitivities of the imaging elements 110 and 120 The balance should be set appropriately in consideration of

以上のように、撮像装置100の撮像素子110が2つの分光感度111A及び111Bを有する場合は、分光感度111Aのみの場合よりも、さらに撮像素子110の感度が上がるため、より高感度で高性能な多重フォーカスの撮像装置100を提供することができる。   As described above, when the imaging device 110 of the imaging apparatus 100 has two spectral sensitivities 111A and 111B, the sensitivity of the imaging device 110 is further increased than in the case of the spectral sensitivity 111A alone, so that higher sensitivity and high performance are achieved. It is possible to provide a multi-focus imaging device 100.

以上、本発明の例示的な実施の形態の撮像装置について説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。   Although the imaging apparatus of the exemplary embodiment of the present invention has been described above, the present invention is not limited to the specifically disclosed embodiment, and does not deviate from the scope of the claims. Various modifications and variations are possible.

100 撮像装置
110 撮像素子
120 撮像素子
111 光電変換層
111A、111B 分光感度
112 信号読み出し部
20 ガラス製支持基板
21 ゲート絶縁膜
22 絶縁膜
23 絶縁膜
31 半導体島領域
32 ソース・ドレイン領域
41 ゲート電極
42 信号読み出し線
43 画素電極
44 対向電極
60 TFT
121B、121G、121R フィルタ部
131 フォトダイオード
132 信号読み出し回路部
133 絶縁膜
Reference Signs List 100 imaging device 110 imaging device 120 imaging device 111 photoelectric conversion layer 111A, 111B spectral sensitivity 112 signal readout unit 20 glass support substrate 21 gate insulating film 22 insulating film 23 insulating film 31 semiconductor island region 32 source / drain region 41 gate electrode 42 Signal readout line 43 pixel electrode 44 counter electrode 60 TFT
121B, 121G, 121R filter section 131 photodiode 132 signal readout circuit section 133 insulating film

Claims (5)

入射光のうちの所定割合の第1入射光を光電変換する第1光電変換部と、前記第1光電変換部から出力される第1撮像信号を読み出す第1読み出し部とを有し、前記第1光電変換部に入射する入射光のうちの前記第1入射光以外の第2入射光を透過する、第1撮像素子と、
光の三原色に対応する第1分光感度、第2分光感度、及び第3分光感度を有し、前記第2入射光を透過するカラーフィルタと、前記カラーフィルタを透過した前記第2入射光を光電変換する第2光電変換部と、前記第2光電変換部から出力される第2撮像信号を読み出す第2読み出し部とを有する、第2撮像素子と
を含み、
前記第2撮像素子は、前記入射光の入射方向において、前記第1撮像素子から所定距離を隔てた位置に配置されており、
前記第1分光感度の第1ピークの位置を表す第1波長、前記第2分光感度の第2ピークの位置を表す第2波長、及び前記第3分光感度の第3ピークの位置を表す第3波長は、この順に短波長側から長波長側に分布しており、
前記第1入射光を吸収する前記第1光電変換部の分光感度のピークの位置を表す波長は、前記第1波長よりも長く、かつ、前記第2波長よりも短い、又は、前記第2波長よりも長く、かつ、前記第3波長よりも短い、撮像装置。
A first photoelectric conversion unit that photoelectrically converts a first incident light of a predetermined ratio in incident light; and a first reading unit that reads a first imaging signal output from the first photoelectric conversion unit; A first imaging element that transmits second incident light other than the first incident light among incident light incident on the first photoelectric conversion unit;
A color filter having a first spectral sensitivity, a second spectral sensitivity, and a third spectral sensitivity corresponding to three primary colors of light and transmitting the second incident light; and photoelectrically detecting the second incident light transmitted through the color filter A second imaging device having a second photoelectric conversion unit to convert and a second reading unit that reads a second imaging signal output from the second photoelectric conversion unit;
The second imaging device is disposed at a position separated by a predetermined distance from the first imaging device in the incident direction of the incident light.
A first wavelength representing the position of the first peak of the first spectral sensitivity, a second wavelength representing the position of the second peak of the second spectral sensitivity, and a third representing the position of the third peak of the third spectral sensitivity The wavelengths are distributed in this order from the short wavelength side to the long wavelength side,
The wavelength representing the position of the peak of the spectral sensitivity of the first photoelectric conversion portion absorbing the first incident light is longer than the first wavelength and shorter than the second wavelength, or the second wavelength An imaging device, which is longer than the third wavelength.
前記第1光電変換部の分光感度のピークの位置を表す波長は、前記第1分光感度と前記第2分光感度の交点の波長、又は、前記第2分光感度と前記第3分光感度の交点の波長に対応する、請求項1記載の撮像装置。   The wavelength representing the position of the peak of the spectral sensitivity of the first photoelectric conversion unit is the wavelength of the intersection of the first spectral sensitivity and the second spectral sensitivity, or the intersection of the second spectral sensitivity and the third spectral sensitivity. The imaging device according to claim 1 corresponding to a wavelength. 前記第1光電変換部は、前記分光感度を有する有機材料製の第1光電変換部である、請求項1又は2記載の撮像装置。   The imaging device according to claim 1, wherein the first photoelectric conversion unit is a first photoelectric conversion unit made of an organic material having the spectral sensitivity. 前記第1光電変換部は、前記第1波長よりも長く、かつ、前記第2波長よりも短い波長にピークを有する分光感度と、前記第2波長よりも長く、かつ、前記第3波長よりも短い波長にピークを有する分光感度との2つの分光感度を有する、請求項1乃至3のいずれか一項記載の撮像装置。   The first photoelectric conversion unit has a spectral sensitivity having a peak at a wavelength longer than the first wavelength and shorter than the second wavelength, and longer than the second wavelength and longer than the third wavelength. The imaging device according to any one of claims 1 to 3, having two spectral sensitivities of a spectral sensitivity having a peak at a short wavelength. 前記第1光電変換部は、
前記第1波長よりも長く、かつ、前記第2波長よりも短い波長にピークを有する分光感度を持つ第1有機材料製の第1光電変換部と、
前記第2波長よりも長く、かつ、前記第3波長よりも短い波長にピークを有する分光感度を持つ第2有機材料製の第1光電変換部と
を重ね合わせた第1光電変換部である、
又は、
前記第1波長よりも長く、かつ、前記第2波長よりも短い波長にピークを有する分光感度を持つ第1有機材料製と、前記第2波長よりも長く、かつ、前記第3波長よりも短い波長にピークを有する分光感度を持つ第2有機材料製とを混合して作製した第1光電変換部である、請求項4記載の撮像装置。
The first photoelectric conversion unit is
A first photoelectric conversion portion made of a first organic material having a spectral sensitivity having a peak at a wavelength longer than the first wavelength and shorter than the second wavelength;
A first photoelectric conversion unit obtained by superposing the first photoelectric conversion unit made of a second organic material having a spectral sensitivity having a peak at a wavelength longer than the second wavelength and shorter than the third wavelength.
Or
Made of a first organic material having a spectral sensitivity having a peak at a wavelength longer than the first wavelength and shorter than the second wavelength, and longer than the second wavelength and shorter than the third wavelength The imaging device according to claim 4, which is a first photoelectric conversion unit produced by mixing a second organic material product having spectral sensitivity having a peak at a wavelength.
JP2015082727A 2015-04-14 2015-04-14 Imaging device Active JP6549882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015082727A JP6549882B2 (en) 2015-04-14 2015-04-14 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015082727A JP6549882B2 (en) 2015-04-14 2015-04-14 Imaging device

Publications (2)

Publication Number Publication Date
JP2016201776A JP2016201776A (en) 2016-12-01
JP6549882B2 true JP6549882B2 (en) 2019-07-24

Family

ID=57423018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015082727A Active JP6549882B2 (en) 2015-04-14 2015-04-14 Imaging device

Country Status (1)

Country Link
JP (1) JP6549882B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110913144B (en) * 2019-12-27 2021-04-27 维沃移动通信有限公司 Image processing method and imaging device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085933A (en) * 2003-09-08 2005-03-31 Matsushita Electric Ind Co Ltd Optical sensor, and optical logic device, and electronic device using sensor
JP2006270021A (en) * 2005-02-28 2006-10-05 Fuji Photo Film Co Ltd Laminated photoelectric conversion element
JP5032954B2 (en) * 2007-11-27 2012-09-26 日本放送協会 Color imaging device
JP5268417B2 (en) * 2008-05-02 2013-08-21 日本放送協会 Image sensor
JP5848177B2 (en) * 2012-03-27 2016-01-27 日本放送協会 Multi-focus camera

Also Published As

Publication number Publication date
JP2016201776A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP5537905B2 (en) Imaging device and imaging apparatus
US9686462B2 (en) Solid-state imaging device and electronic apparatus
US10686004B2 (en) Image capturing element and image capturing device image sensor and image-capturing device
JP2021044582A (en) Photodetection device and electronic device
JP2021073722A (en) Imaging element and electronic device
US20120033120A1 (en) Solid-state imaging device and electronic camera
KR101621158B1 (en) Solid-state imaging device
CN108352395B (en) Solid-state image pickup device and electronic apparatus
US11728357B2 (en) Solid-state imaging device and electronic equipment
US20120218448A1 (en) Solid-state imaging device and portable information terminal
JP2012049257A (en) Solid state imaging device
JP2015015296A (en) Solid-state imaging device and electronic equipment
JP5848177B2 (en) Multi-focus camera
US20190258025A1 (en) Image sensor, focus detection apparatus, and electronic camera
TWI711173B (en) Solid-state imaging device
US10490592B2 (en) Stacked image sensor
JP6549882B2 (en) Imaging device
JP2019057649A (en) Imaging element, imaging apparatus, and image input device
JP2015159231A (en) Solid-state image pickup device
JP2018182045A (en) Imaging apparatus
JP2010102090A (en) Signal generator, focusing point detector, and image pickup apparatus
JP6491537B2 (en) Imaging device
JP2016116167A (en) Imaging device
JP2013157606A (en) Solid state imaging device
WO2016194577A1 (en) Imaging element, imaging method, program, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190628

R150 Certificate of patent or registration of utility model

Ref document number: 6549882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250