JP6549435B2 - Method of manufacturing powder pressed compact - Google Patents
Method of manufacturing powder pressed compact Download PDFInfo
- Publication number
- JP6549435B2 JP6549435B2 JP2015141836A JP2015141836A JP6549435B2 JP 6549435 B2 JP6549435 B2 JP 6549435B2 JP 2015141836 A JP2015141836 A JP 2015141836A JP 2015141836 A JP2015141836 A JP 2015141836A JP 6549435 B2 JP6549435 B2 JP 6549435B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- press
- die
- mold
- granulated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000843 powder Substances 0.000 title claims description 300
- 238000004519 manufacturing process Methods 0.000 title claims description 29
- 238000000465 moulding Methods 0.000 claims description 90
- 229920005989 resin Polymers 0.000 claims description 47
- 239000011347 resin Substances 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 41
- 239000002994 raw material Substances 0.000 claims description 29
- 239000011230 binding agent Substances 0.000 claims description 26
- 239000002245 particle Substances 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 239000000919 ceramic Substances 0.000 claims description 22
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical group O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 18
- 239000010935 stainless steel Substances 0.000 claims description 18
- 229910001220 stainless steel Inorganic materials 0.000 claims description 18
- 230000003287 optical effect Effects 0.000 claims description 11
- 238000005245 sintering Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 10
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 9
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 9
- 238000003825 pressing Methods 0.000 claims description 9
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 8
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 8
- 239000002202 Polyethylene glycol Substances 0.000 claims description 8
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 8
- 229920001223 polyethylene glycol Polymers 0.000 claims description 8
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- 229910000851 Alloy steel Inorganic materials 0.000 claims description 4
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- 230000007797 corrosion Effects 0.000 claims description 4
- 238000005260 corrosion Methods 0.000 claims description 4
- 229910001004 magnetic alloy Inorganic materials 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000011812 mixed powder Substances 0.000 claims description 3
- 238000007493 shaping process Methods 0.000 claims description 3
- 230000000052 comparative effect Effects 0.000 description 13
- 239000002002 slurry Substances 0.000 description 8
- 238000003475 lamination Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000005238 degreasing Methods 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 229910001315 Tool steel Inorganic materials 0.000 description 5
- 239000007769 metal material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 229910010293 ceramic material Inorganic materials 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- -1 cemented carbide Inorganic materials 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 238000010097 foam moulding Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000003232 water-soluble binding agent Substances 0.000 description 1
Images
Landscapes
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
- Powder Metallurgy (AREA)
Description
本発明は、光造形法や3次元(3D)プリンタ等で作られた樹脂製成形型を用いて金属又はセラミックの原料粉をプレス成形して成形体を製造する方法に関する。 The present invention relates to a method for producing a molded body by press-forming metal or ceramic raw material powder using a resin-made mold made by an optical forming method, a three-dimensional (3D) printer or the like.
粉末プレス成形法は、粉末プレス成形装置を用いて、金属粉末、セラミック粉末などの原料粉を金型に入れ、所定の圧力をかけることで所望の製品形状にプレス成形する方法である。プレス成形した後、この成形体を所定の温度で焼結して製品を得ることができる。粉末プレス成形装置は、通常、プレス成形機本体、ダイセット及び金型から構成される。粉末プレス成形機本体は、加圧を行う上ラム、脱型などを行う下ラムを有し、ダイセットに上パンチ、下パンチ、ダイ及びコアから構成される金型が取付けられ、粉体の充填、成形及び脱型を自動的に行うようになっている。 The powder press molding method is a method in which raw material powders such as metal powder and ceramic powder are put into a mold using a powder press molding apparatus and pressed into a desired product shape by applying a predetermined pressure. After press-molding, the compact can be sintered at a predetermined temperature to obtain a product. The powder press molding apparatus usually comprises a press molding machine body, a die set and a mold. The powder press molding machine main body has an upper ram for pressing and a lower ram for demolding, and a die consisting of an upper punch, a lower punch, a die and a core is attached to a die set, Filling, molding and demolding are performed automatically.
従来、粉末プレス成形装置の金型には、一般に耐摩耗性、耐衝撃性、耐チッピング性等の耐久性が要求され、超硬合金、鋳鉄、鋳鋼、鍛鋼などの工具鋼が使用される(例えば特許文献1、2参照。)。 In the past, molds for powder press forming devices generally require durability such as wear resistance, impact resistance, chipping resistance, etc., and tool steels such as cemented carbide, cast iron, cast steel, forged steel, etc. are used ( See, for example, Patent Documents 1 and 2.).
一方、射出成形、発泡成形、RIM成形、注型、真空注型、真空成形、RTM成形、粉末成形、ブロー成形、圧縮成形、プレス成形、押出成形、FRP成形に用いられる型として、積層造形法により作製された成形型が開示されている(例えば、特許文献3参照。)。この特許文献3には、成形型が、従来の成形型に比べて強度、耐摩耗性、耐久性及び離型性に優れ、成形型の作製時間を短縮することができる旨が記載されている。この成形型は、球状カーボンと樹脂粉末を必須成分とする複合材料粉末を使用し、積層造形法により作製される。 On the other hand, as a mold used for injection molding, foam molding, RIM molding, casting, vacuum casting, vacuum molding, RTM molding, powder molding, blow molding, compression molding, press molding, extrusion molding, FRP molding, lamination molding method The mold produced by these is disclosed (for example, refer patent document 3). The patent document 3 describes that the mold is superior in strength, wear resistance, durability and releasability to conventional molds and can shorten the time for manufacturing the mold. . This mold is manufactured by a lamination molding method using a composite material powder containing spherical carbon and a resin powder as essential components.
特許文献1、2に示される工具鋼を使用した金型で複雑な形状の成形体を製造する場合、金型を作製するのに多大の製作日数と製作コストを要し、量産品を製造する前段階で、このプレス成形法により試作品を製造することが製作日数と製作コストの観点からできなかった。また特許文献3に示されるカーボン材料を初めとして、金属材料、セラミック材料と樹脂とを混合した複合材料粉末を使用し、積層造形法により樹脂製成形型を作製した場合、上記工具鋼を使用した金型の課題は解決される一方、強度又は耐熱性を増した樹脂製成形型は、適切な強度又は耐熱性を得るための配合比の設定が複雑であるとともに、その原料及び製作コストが上昇する不具合があった。またこの種の樹脂製成形型を用いて粉末プレス成形した場合、プレス圧力が工具鋼を使用した金型によるプレス圧力より高めることができず、焼結品にしたときに成形体内部に存在する空孔に起因する強度上の脆弱性があった。 In the case of producing a shaped body of complex shape with a mold using a tool steel shown in Patent Documents 1 and 2, it takes a large number of production days and cost to produce the mold and produces a mass-produced product. In the previous step, it was not possible to manufacture a prototype by this press molding method from the viewpoint of production days and production cost. In the case of using a composite material powder in which a metal material, a ceramic material and a resin are mixed, using a carbon material shown in Patent Document 3 as a starting material and manufacturing a resin mold by a lamination molding method, the above tool steel is used. While the problem of the mold is solved, the resin mold having increased strength or heat resistance has complicated setting of the compounding ratio for obtaining appropriate strength or heat resistance, and the raw material and manufacturing cost thereof are increased. There was a problem. Moreover, when powder press molding is performed using this kind of resin mold, the press pressure can not be higher than the press pressure by the die using tool steel, and it exists inside the molded body when it is made into a sintered product There was weakness in strength due to the holes.
本発明の第1の目的は、光造形法又は3次元プリンタを用いて立体的に造形された樹脂以外の材料を含まない光硬化性樹脂からなる樹脂製成形型を用いて、ひび割れ、キズ及び欠けのない粉末プレス成形体を簡便にかつ安価に製造する方法を提供することにある。本発明の第2の目的は、成形体を繰り返し製造しても樹脂製成形型を構造上損傷させることなく同形同大の複数の形状の粉末プレス成形体を製造する方法を提供することにある。また本発明の第3の目的は、焼結品にしたときに、工具鋼を使用した金型によりプレス成形された成形体の焼結品と比較して強度上劣らない粉末プレス成形体を製造する方法を提供することにある。 The first object of the present invention is to use a resin mold made of a photocurable resin which does not contain a material other than a resin which is three-dimensionally shaped using an optical shaping method or a three-dimensional printer. It is an object of the present invention to provide a method for easily and inexpensively producing a powder press molding without chipping. A second object of the present invention is to provide a method for producing powder press compacts of a plurality of shapes of the same shape and size without damaging the resin molding die structurally even if the molded articles are repeatedly produced. is there. Further, a third object of the present invention is to produce a powder press-formed body having a strength which is not inferior to that of a sintered body of a formed body press-formed by a die using tool steel when made into a sintered article. To provide a way to
本発明者らは、カーボン材料、金属材料、セラミック材料と樹脂とを混合した複合材料粉末を使用した積層造形法による樹脂製成形型に代わって、光造形法又は3次元プリンタによる樹脂以外の材料を含まない光硬化性樹脂からなる樹脂製成形型を作製し、その一方、原料粉として、バインダを3〜12質量%含有する粉末粒度(D50)が50〜200μmである球状の造粒粉を用いて、50〜300MPaの圧力と樹脂製成形型の耐熱温度以下のプレス温度でプレス成形を繰り返し行えば、樹脂製成形型を構造上損傷させることなく、ひび割れ、キズ及び欠けのない所定の寸法通りの同形同大の複数の粉末プレス成形体を簡便にかつ安価に製造できるうえ、焼結品にしたときに従来の金型で作られた粉末プレス成形体の焼結品と強度上劣らないことに着目し、本発明に到達した。 The present inventors replaced the resin molding die by the lamination molding method using the composite material powder in which the carbon material, the metal material, and the ceramic material and the resin are mixed, a material other than the resin by the optical molding method or the three-dimensional printer A resin mold made of a photocurable resin not containing any of the above, and on the other hand, spherical granulated powder having a particle size (D50) of 50 to 200 μm and containing 3 to 12% by mass of a binder as raw material powder If press molding is repeatedly performed at a pressure of 50 to 300 MPa and a press temperature lower than the heat resistance temperature of the resin mold, predetermined dimensions without cracks, flaws and chips are obtained without structurally damaging the resin mold. It is possible to easily and inexpensively produce a plurality of powder press compacts of the same shape and size as usual, and when sintered into a sintered product, it is inferior in strength to a sintered product of a powder press compact made with a conventional mold. Focusing on the absence, we have reached the present invention.
本発明の第1の観点は、下パンチとダイにより形成されるダイキャビティ内に充填した原料粉を前記下パンチと上パンチ間にプレス成形することにより粉末プレス成形体を製造する方法において、前記下パンチ、前記上パンチ及び前記ダイを含む成形型が光造形法又は3次元プリンタを用いて立体的に造形された樹脂以外の材料を含まない光硬化性樹脂からなる樹脂製成形型であり、前記原料粉が金属粉末又はセラミック粉末とバインダとを混合して得られた粉末粒度(D50)が50〜200μmの球状の造粒粉であり、前記造粒粉100質量%中、前記バインダを3〜12質量%含有し、前記造粒粉のプレス成形を50〜300MPaのプレス圧力と前記樹脂製成形型の耐熱温度以下のプレス温度で行うことを特徴とする粉末プレス成形体の製造方法である。 According to a first aspect of the present invention, there is provided a method for producing a powder pressed compact by pressing raw material powder filled in a die cavity formed by a lower punch and a die between the lower punch and the upper punch. The mold comprising the lower punch, the upper punch and the die is a resin mold comprising a photocurable resin which does not contain a material other than a resin three-dimensionally shaped using an optical shaping method or a three-dimensional printer, The raw material powder is a spherical granulated powder having a particle size (D50) of 50 to 200 μm obtained by mixing a metal powder or ceramic powder and a binder, and the binder is contained in 100% by mass of the granulated powder. And 12 mass%, powder press molding characterized in that the press molding of the granulated powder is performed at a press pressure of 50 to 300 MPa and a press temperature not higher than the heat resistance temperature of the resin mold. It is a method of manufacture.
本発明の第2の観点は、第1の観点に基づく発明であって、前記金属粉末が、鉄粉、Ni粉、Co粉又はこれらの混合粉、合金鋼粉、ステンレス鋼粉、耐食合金粉、又は磁性合金粉であることを特徴とする。 A second aspect of the present invention is the invention based on the first aspect, wherein the metal powder is iron powder, Ni powder, Co powder or a mixed powder thereof, alloy steel powder, stainless steel powder, corrosion resistant alloy powder Or magnetic alloy powder.
本発明の第3の観点は、第1の観点に基づく発明であって、前記セラミック粉末が、ジルコニア(ZrO2)粉、アルミナ(Al2O3)粉又は窒化アルミニウム(AlN)粉であることを特徴とする。 A third aspect of the present invention is the invention based on the first aspect, wherein the ceramic powder is zirconia (ZrO 2 ) powder, alumina (Al 2 O 3 ) powder or aluminum nitride (AlN) powder. It is characterized by
本発明の第4の観点は、第1ないし第3の観点のうち、いずれか1つの観点の発明であって、前記バインダがポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)又はポリエチレングリコール(PEG)のいずれか又はこれらの組合せであることを特徴とする。 A fourth aspect of the present invention is the invention according to any one of the first to third aspects, wherein the binder is polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC) Or polyethylene glycol (PEG), or any combination thereof.
本発明の第5の観点は、第1ないし第4の観点のうち、いずれか1つの観点の方法により製造された粉末プレス成形体を焼結して焼結品を製造する方法である。 A fifth aspect of the present invention is a method for producing a sintered product by sintering a powder press-molded product produced by the method according to any one of the first to fourth aspects.
本発明の第1の観点の粉末プレス成形体の製造方法では、光造形法や3次元プリンタ等で作られた樹脂以外の材料を含まない光硬化性樹脂からなる樹脂製成形型を用いて粉末プレス成形体を製造するため、従来の機械加工等で製作していた高価な金型及びカーボン材料、金属材料、セラミック材料と樹脂とを混合した複合材料粉末を使用して積層造形法により製作していた樹脂製成形型と比較して、簡便にかつ安価に成形体を製造できる。特に光造形法や3次元プリンタ等では、求められる製品の形状が複雑かつ微細であってもその形状に忠実かつ精密に合致させて樹脂製成形型の形状を作り出すことができる。またバインダを3〜12質量%含有し、粉末粒度(D50)が50〜200μmの球状の造粒粉を原料粉として用い、50〜300MPaの圧力と樹脂製成形型の耐熱温度以下のプレス温度でプレス成形を行うことにより、単一種類の樹脂からなる樹脂製成形型であっても、この樹脂製成形型がプレス時に弾性変形し、脱圧後に原型に復帰するため、樹脂製成形型を構造上損傷させずに、繰り返し成形を行うことができる。この結果、同形同大の複数の粉末プレス成形体をひび割れ、キズ及び欠けなしで製造することができる。また従来の金型等によるプレス成形では金属粉末等を潰すことで形状を保持した圧粉体を製造する際に大きなプレス圧力を必要としていたが、上記造粒粉を使用して、低圧力で低温で金属粉末等を潰すことなくプレス成形して圧粉体である成形体を作り、この粉末プレス成形体を焼結すれば、強度が低下しない焼結品を得ることができる。これにより玩具、日用雑貨品、自動車部品、電気部品などの試作品用の粉末プレス成形体を手軽に製造することができる。 In the method of producing a powder press molded article according to the first aspect of the present invention, powder is produced using a resin mold made of a photocurable resin which does not contain a material other than a resin produced by an optical forming method or a three-dimensional printer. In order to manufacture a press-formed product, it is manufactured by a lamination molding method using an expensive mold and a carbon material, a metal material, and a composite material powder in which a ceramic material and a resin are mixed by conventional machining and the like. As compared with the conventional resin mold, the molded body can be manufactured simply and inexpensively. In particular, in the case of a stereolithography method or a three-dimensional printer, even if the shape of the required product is complicated and fine, the shape of the resin mold can be created faithfully and precisely conforming to the shape. In addition, a binder is contained at 3 to 12% by mass, and a spherical granulated powder having a powder particle size (D50) of 50 to 200 μm is used as a raw material powder, at a pressure of 50 to 300 MPa and a pressing temperature lower than the heat resistance temperature of the resin mold By performing press molding, even if it is a resin mold made of a single kind of resin, this resin mold is elastically deformed at the time of pressing and returns to the original form after pressure release, so the resin mold is structured It is possible to carry out repeated molding without damaging it. As a result, a plurality of powder compacts of the same shape and size can be manufactured without cracks, scratches and chips. In the conventional press molding using a metal mold etc., a large pressing pressure is required when producing a green compact having a shape maintained by crushing metal powder etc. By pressing and forming a compact as a green compact at a low temperature without collapsing metal powder and the like, and sintering the powder press compact, a sintered product which does not decrease in strength can be obtained. This makes it possible to easily manufacture powder press moldings for trial products such as toys, daily goods, automobile parts, and electric parts.
本発明の第2の観点の粉末プレス成形体の製造方法は、鉄粉、Ni粉、Co粉又はこれらの混合粉、合金鋼粉、ステンレス鋼粉、耐食合金粉、又は磁性合金粉の金属粉末を原料粉として用いることにより、多様な金属製の成形体を製造することができる。 The method for producing a powder pressed compact according to the second aspect of the present invention is a metal powder of iron powder, Ni powder, Co powder or a mixture thereof, alloy steel powder, stainless steel powder, corrosion resistant alloy powder, or magnetic alloy powder. By using as raw material powder, various metal-made molded objects can be manufactured.
本発明の第3の観点の粉末プレス成形体の製造方法は、ジルコニア(ZrO2)粉、アルミナ(Al2O3)粉又は窒化アルミニウム(AlN)粉のセラミック粉末を原料粉として用いることにより、多様なセラミック製の成形体を製造することができる。 The method for producing a powder pressed compact according to the third aspect of the present invention uses ceramic powder of zirconia (ZrO 2 ) powder, alumina (Al 2 O 3 ) powder or aluminum nitride (AlN) powder as raw material powder. Various ceramic moldings can be produced.
本発明の第4の観点の粉末プレス成形体の製造方法では、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)又はポリエチレングリコール(PEG)のいずれか又はこれらの組合せの水溶性のバインダを用いる。これにより、このバインダ水溶液と金属粉末又はセラミック粉末とを混合してスラリー化し、金属粉末又はセラミック粉末の所望の造粒粉を製造することができる。また造粒粉の圧粉特性が向上し、更に粉末プレス成形体を焼結したときに脱脂しやすい。 In the method of producing a powder press-molded product according to the fourth aspect of the present invention, water solubility of polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC) or polyethylene glycol (PEG) or a combination thereof is used. The binder of Thus, the aqueous binder solution and the metal powder or ceramic powder can be mixed and slurried to produce a desired granulated powder of the metal powder or ceramic powder. In addition, the powder properties of the granulated powder are improved, and when the powder press compact is sintered, it is easily degreased.
本発明の第5の観点の方法によれば、第1ないし第4いずれかの観点の方法で製造された粉末プレス成形体を焼結して焼結品を製造することにより、焼結品間で寸法や形状のばらつきが小さく、しかも従来の金型による粉末プレス成形体の焼結品と劣らない強度を有する金属製又はセラミック製の焼結品を製造することができる。 According to the method of the fifth aspect of the present invention, the sintered product is produced by sintering the powder press-molded product produced by the method according to any one of the first to fourth aspects, thereby producing a sintered product. It is possible to manufacture a metal or ceramic sintered product having a small variation in size and shape, and a strength equal to that of a sintered product of a powder press molded product using a conventional mold.
次に本発明を実施するための形態について図面を参照して説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.
〔原料粉である造粒粉の製造方法〕
最初に、粉末プレス成形体を作るための原料粉である造粒粉の製造方法について説明する。本実施形態の原料粉は金属粉末又はセラミック粉末とバインダとを混合して得られる造粒粉である。この金属粉末としては、鉄粉、Ni粉、Co粉又はこれらの混合粉、合金鋼粉、ステンレス鋼粉、耐食合金粉、又は磁性合金粉等が例示される。特にステンレス鋼粉としては、SUS316L、SUS630、SKD11、SKH57等が例示される。またセラミック粉末としては、ジルコニア(ZrO2)粉、アルミナ(Al2O3)粉又は窒化アルミニウム(AlN)粉等が例示される。上記金属粉末又はセラミック粉末の粉末粒度(D50)は20μm以下が好ましい。更に10μm以下がより好ましい。20μmを超えた粉末粒度の金属粉末又はセラミック粉末では、後述する圧力でプレス成形体にしたときに、粉末間に空孔が形成され、後工程の焼結時に空孔が残存し、焼結品の密度及び強度が低下しやすい。なお、本明細書中、粉末粒度(D50)とは、レーザー回折散乱式粒子分布測定装置(型式名:HORIBA LA-950)によって測定した粒子分布(直径)の中央値を3回測定し、この平均値をいう。
[Method of producing granulated powder as raw material powder]
First, a method of producing granulated powder, which is a raw material powder for producing a powder pressed compact, will be described. The raw material powder of this embodiment is a granulated powder obtained by mixing a metal powder or a ceramic powder with a binder. Examples of the metal powder include iron powder, Ni powder, Co powder or mixed powder thereof, alloy steel powder, stainless steel powder, corrosion resistant alloy powder, magnetic alloy powder and the like. In particular, as stainless steel powder, SUS316L, SUS630, SKD11, SKH57, etc. are exemplified. Further, examples of the ceramic powder include zirconia (ZrO 2 ) powder, alumina (Al 2 O 3 ) powder, aluminum nitride (AlN) powder and the like. The powder particle size (D50) of the metal powder or ceramic powder is preferably 20 μm or less. Furthermore, 10 micrometers or less are more preferable. With metal powder or ceramic powder having a particle size of more than 20 μm, when formed into a press-formed product under pressure described later, pores are formed between the powders, and pores remain during sintering in a later step, resulting in a sintered product Density and strength tend to decrease. In the present specification, the powder particle size (D50) refers to the median value of the particle distribution (diameter) measured by a laser diffraction scattering particle distribution measuring apparatus (model name: HORIBA LA-950) three times. Average value.
またバインダとしては、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)又はポリエチレングリコール(PEG)のいずれか又はこれらの組合せた水溶性バインダが例示される。上記バインダは、金属粉末又はセラミック粉末の粉末同士を凝集させる糊の役割を果たす。このバインダ水溶液と金属粉末又はセラミック粉末とを混合してスラリー化し、金属粉末又はセラミック粉末の所望の造粒粉を製造することができる。またこのバインダで造粒粉を作ると、造粒粉の圧粉特性が向上し、更には粉末プレス成形体を焼結したときに脱脂しやすい。 Examples of the binder include polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC) and polyethylene glycol (PEG), or a water-soluble binder in combination thereof. The said binder plays the role of the glue which aggregates powder of metal powder or ceramic powder. The aqueous binder solution and metal powder or ceramic powder can be mixed and slurried to produce the desired granulated powder of metal powder or ceramic powder. In addition, when a granulated powder is produced with this binder, the green powder characteristics of the granulated powder are improved, and furthermore, it is easy to degrease when the powder press compact is sintered.
造粒粉を作るには、先ず上記バインダを純水に溶かして水溶液にし、上記金属粉末又はセラミック粉末とバインダ水溶液を混合して金属粉末又はセラミック粉末が均一に分散したスラリーにする。ここで、スラリー中、バインダは3〜12質量%、好ましくは5〜8質量%含有する。3質量%未満では、作られる造粒粉の粉末粒度(D50)が小さすぎ、12質量%を超えると、作られる造粒粉の粉末粒度(D50)が大きくなりすぎる。このバインダは、用いる金属粉末又はセラミック粉末の硬度が高い場合、或いはこれらの粉末粒度(D50)が小さい場合、上記範囲内で多く含有させることが好ましい。 In order to produce granulated powder, first, the binder is dissolved in pure water to form an aqueous solution, and the metal powder or ceramic powder and a binder aqueous solution are mixed to form a slurry in which the metal powder or ceramic powder is uniformly dispersed. Here, in the slurry, the binder is contained in an amount of 3 to 12% by mass, preferably 5 to 8% by mass. If it is less than 3% by mass, the powder particle size (D50) of the granulated powder to be produced is too small, and if it exceeds 12% by mass, the powder particle size (D50) of the granulated powder to be produced becomes too large. When the hardness of the metal powder or ceramic powder to be used is high, or when the powder particle size (D50) thereof is small, it is preferable that the binder be contained in a large amount within the above range.
本実施形態の造粒装置は次のように構成される。上記スラリーを貯蔵するスラリータンクが逆円錐台状の筒体の上部中心に配置され、筒体内の上部中心に回転する円板が水平に配置され、更に筒体上部に筒体内に向けて熱風を吹き出すドライヤが配置される。逆円錐台状の筒体の下端(円錐先端)は開口し、その下方に造粒粉の捕集容器が配置される。造粒粉を作るには、水平に配置した円板を10000〜20000rpmの速度で回転させ、回転する円板上にスラリータンクからスラリーを300〜500kg/hの割合で滴下させる。円板から飛び散ったスラリーの微小滴は筒体内でドライヤからの熱風により水分が除去されて乾燥し凝集した粉末粒子である球状の造粒粉となる。球状の造粒粉は自重で逆円錐台状の筒体の錐部を伝わって筒体の下端に落下し、筒体の下部開口部から捕集容器に入る。 The granulation apparatus of the present embodiment is configured as follows. A slurry tank for storing the above-mentioned slurry is disposed at the upper center of the inverted truncated cone-like cylinder, a rotating disc is horizontally disposed at the upper center of the cylinder, and hot air is directed toward the cylinder at the upper portion of the cylinder. A blow-out dryer is placed. The lower end (conical tip) of the inverted frusto-conical tube is open, and a granulated powder collection container is disposed below the lower end. In order to produce granulated powder, a horizontally arranged disc is rotated at a speed of 10000 to 20000 rpm, and a slurry is dropped from the slurry tank at a rate of 300 to 500 kg / h onto the rotating disc. The fine droplets of the slurry spattered from the disk become spherical granulated powder which is powder particles which are dried and aggregated by removing water by hot air from a dryer in a cylinder. The spherical granulated powder travels along the conical portion of the inverted truncated cone-like cylinder by its own weight, falls to the lower end of the cylinder, and enters the collection container from the lower opening of the cylinder.
上記方法で作製された造粒粉は、粉末粒度(D50)が50〜200μmの球状粉である。この粉末粒度(D50)は上述したバインダ濃度、スラリーの単位時間当りの滴下量、円板の回転速度を調整して得られる。球状の造粒粉の粉末粒度(D50)は80〜100μmが好ましい。球状の造粒粉は、後述する上パンチ、下パンチ及びダイを含む成形型内への流動性に優れる。造粒粉の粉末粒度(D50)が50μm未満である場合、上記成形型のクリアランスから造粒粉が噴出し、所望のプレス成形体が得られない。また200μmを超えると、上記成形型内に造粒粉を充填するときに、細かい部分に造粒粉が充填されなかったり、必要十分な量の造粒粉を成形型内に充填することが困難になったり、造粒粉同士の間に空孔が残り、所望の形状又は所望の密度を有するプレス成形体が得られない。上記粉末粒度(D50)範囲の球状の造粒粉は、成形型が光造形法又は3次元プリンタを用いて立体的に造形され、その成形型が複雑であっても、成形型内の隅々まで造粒粉を行き渡らせることができ、後述する粉末プレス成形体の成形性を向上させることができる。 The granulated powder produced by the above method is a spherical powder having a powder particle size (D50) of 50 to 200 μm. This powder particle size (D50) is obtained by adjusting the above-mentioned binder concentration, the amount of dripping of the slurry per unit time, and the rotational speed of the disk. The powder particle size (D50) of the spherical granulated powder is preferably 80 to 100 μm. The spherical granulated powder is excellent in fluidity into a mold including an upper punch, a lower punch and a die described later. When the powder particle size (D50) of the granulated powder is less than 50 μm, the granulated powder is ejected from the clearance of the molding die, and a desired press-formed product can not be obtained. Also, if it exceeds 200 μm, when the granulated powder is filled in the molding die, the granulated powder is not filled in the fine part or it is difficult to fill the necessary and sufficient amount of granulated powder in the molding die As a result, pores remain between the granulated powders, and a press-formed product having a desired shape or a desired density can not be obtained. The spherical granulated powder in the above powder particle size (D50) range is three-dimensionally shaped using a stereolithography method or a three-dimensional printer, and even if the forming die is complicated, every corner in the forming die Granulated powder can be distributed to the end, and the formability of the powder press compact described later can be improved.
〔粉末プレス成形体の製造方法〕
次に、上記方法で得られた造粒粉を用いて粉末プレス成形体を製造する方法について説明する。先ず、本発明の実施形態に係る粉末プレス成形体を製造する装置(以下、粉末プレス成形装置という。)について説明する。 図2に示すように、本実施形態に係る粉末プレス成形装置10は、ダイプレート11に取付けられたダイ12とこのダイに嵌合する下パンチ13とが形成するダイキャビティ14内に給粉装置20から原料粉である造粒粉Mを充填し、図1(a)及び(b)に示すように、ダイ12内の造粒粉Mを上パンチ15と下パンチ13間に圧縮成形する装置である。図2に示す給粉装置20は、原料粉である造粒粉を貯蔵する高位置に設けられたホッパ16と底のない箱状のフィーダ17とを可撓性ホース18により連結して構成される。フィーダ17は、アクチュエータの駆動ロッド19により図2に示す待機位置からダイに向かって(図では左方向に)前進し、ダイ12の上に至って原料粉である造粒粉をダイキャビティ14内に流し込み、次いでダイ内に流し込んだ原料粉である造粒粉を上面をフィーダ17の下縁で平らにしつつ待機位置まで後退して充填の1サイクルを終了する。
[Method for producing powder press compact]
Next, the method to manufacture a powder press molding using the granulated powder obtained by the said method is demonstrated. First, an apparatus for producing a powder press compact according to an embodiment of the present invention (hereinafter referred to as a powder press compacting apparatus) will be described. As shown in FIG. 2, the powder
図1(a)及び(b)に示すように、粉末プレス成形装置10の下パンチ13はグランドプレート21を介して基台22に固定される。ダイ12を取付けるダイプレート11はグランドプレート21を貫通するコラム23を介してコラムプレート24に支持され、コラムプレート24は下ラム26に取付けられる。
As shown in FIGS. 1A and 1B, the
このように構成された粉末プレス成形装置10では、ダイ12は下ラム26の昇降に従って、同時に上下動する。図1(a)に示すように、原料粉である造粒粉Mをダイキャビティ14内に充填して上昇した状態のダイ12に対して、上パンチ15を下降させてダイキャビティ14内に嵌入して原料粉である造粒粉を圧縮する。図1(b)に示すように、上パンチ15により原料粉である造粒粉を圧縮するとともに、下パンチ13を上昇させて更に原料粉である造粒粉を圧縮する。上パンチ15と下パンチ13による原料粉である造粒粉の圧縮によりグリーン体(圧粉体)である図3に示される粉末プレス成形体Pが形成される。
In the powder
粉末プレス成形体Pを形成するときのプレス成形圧力は、50〜300MPa、好ましくは100〜200MPaである。プレス成形圧力が50MPa未満である場合、造粒粉がプレス成形圧力で破壊又は変形し難く、粉末プレス成形体内に空孔が残り、この粉末プレス成形体を焼結しても焼結品の密度及び強度を高められない。またプレス成形圧力が200MPaを超えると、後述する樹脂製成形型がプレス時に摩耗したり、割れやクラックを生じる。またプレス成形温度は、本実施形態では特別に加熱して温度を上昇させる必要はない。繰り返しプレス成形したときの造粒粉相互の摩擦熱、粉末プレス成形体を成形型から押し出すときの摩擦熱等による樹脂製成形型の温度が樹脂製成形型の耐熱温度以下であればよい。 The press molding pressure when forming the powder press compact P is 50 to 300 MPa, preferably 100 to 200 MPa. When the press molding pressure is less than 50 MPa, the granulated powder is difficult to be broken or deformed by the press molding pressure, and a void remains in the powder press compact, and the density of the sintered product is obtained even if this powder press compact is sintered And the strength can not be increased. In addition, when the press molding pressure exceeds 200 MPa, a resin mold to be described later is worn at the time of pressing, or cracks or cracks occur. Further, it is not necessary to heat the press molding temperature specially in this embodiment to raise the temperature. The temperature of the resin mold due to the frictional heat of the granulated powder when repeatedly press-formed, the frictional heat when pushing the powder press compact from the mold, etc. may be equal to or less than the heat resistance temperature of the resin mold.
本実施形態のダイ12、下パンチ13及び上パンチ15からなる成形型は樹脂製成形型であって、光造形法又は3次元プリンタを用いて立体的に造形される。本実施形態では、光造形物である樹脂製成形型は、光積層造形法で代表される光学的立体造形法により製造される。図4(a)〜(c)は、上記下パンチ13を光積層造形法で造形する工程を示す。予め下パンチ13に相当する造形物の3次元データを取得し、そのデータを計算上で等間隔で輪切りにしスライスデータとして記憶しておく。図4(a)に示すように、液状の光硬化性組成物31を収容した容器32の液槽内に、液面33からわずかな距離だけ下方に上面が位置するように、鉛直方向に移動可能なテーブル34を配置する。液状の光硬化性組成物は、(メタ)アクリル系モノマーなどのラジカル重合性化合物、エポキシ化合物などのカチオン重合化合物を含む重合性モノマー及び光重合開始剤などを含有する。テーブル34を配置した後、このテーブル34上の液状の光硬化性組成物31の薄層に、紫外線レーザ装置36から紫外線レーザ光37を上記記憶したデータに基づいた所定のパターンで走査して、所定の形状を有する第一の硬化薄層13aを形成させる。次いで、図4(b)に示すように、テーブル34の位置を僅かな距離だけ下方に移動させることによって、第一の硬化薄層13aの上に液状の光硬化性組成物31の薄層を形成させた後、この薄層に紫外線レーザ光37を上記記憶したデータに基づいた所定のパターンで走査して、所定の形状を有する第二の硬化薄層13bを形成させる。以後、同様の操作を繰り返して、最終的に、図4(c)に示すように、複数の硬化薄層13a、13b、・・・、13xの集合体である所定の立体形状を有する光造形物である下パンチ13を得る。図示しないが、上パンチ及びダイも下パンチ13と同様の方法で作製される。
The mold consisting of the die 12, the
なお、本発明の造形物である樹脂製成形型は、上記の光積層造形法に限らず、3次元プリンタによる、アクリル系光硬化樹脂を使用したインクジェット紫外線硬化方式のものや、ABS樹脂(アクリロニトリル・ブタジエン・スチレン共重合合成樹脂)を使用した熱溶解積層方式のものや、パウダーを使用した粉末固着方式のもので製造してもよい。また本発明の樹脂製成形型には、カーボン材料、金属材料、セラミック材料等の強度又は耐熱性を、材質の観点から従来の金型に近づける目的の材料、即ち樹脂以外の材料は一切含まれていない。そのため本発明の樹脂製成形型の耐熱温度は、原料樹脂の材質に依存するが、70〜100℃の範囲にある。本明細書で「樹脂製成形型の耐熱温度」とは、樹脂製成形型を構成する材料が分解、溶解などの変質をせず、室温(25℃)での構造と同等の構造を維持している最高温度をいう。更に本発明の粉末プレス成形装置の樹脂製成形型は、ダイ、下パンチ、上パンチ及びコアから構成されるものを含む。 In addition, the resin mold which is the shaped article of the present invention is not limited to the above-described photo-stacking method, but an inkjet ultraviolet curing method using an acrylic photo-curing resin by a three-dimensional printer, an ABS resin (acrylonitrile -It may manufacture by the thing of the hot melt lamination system using a butadiene styrene copolymer synthetic resin), and the thing of the powder fixation system using a powder. Further, the resin mold of the present invention includes any material for the purpose of making the strength or heat resistance of a carbon material, a metal material, a ceramic material, etc. closer to a conventional mold from the viewpoint of materials, ie, materials other than resin. Not. Therefore, the heat resistance temperature of the resin mold of the present invention, which depends on the material of the raw material resin, is in the range of 70 to 100 ° C. In the present specification, “heat-resistant temperature of resin-made mold” means that the material constituting the resin-made mold does not deteriorate, such as decomposition or dissolution, and maintains a structure equivalent to the structure at room temperature (25 ° C.) Say the highest temperature. Furthermore, the resin mold of the powder press molding apparatus of the present invention includes one comprising a die, a lower punch, an upper punch and a core.
〔焼結品の製造方法〕
次に、上記方法で得られた粉末プレス成形体Pを用いて焼結品を製造する方法について説明する。先ず、粉末プレス成形体の脱脂が行われる。脱脂工程では、粉末プレス成形体に含まれるバインダが除去される。例えば粉末プレス成形体を大気中および窒素ガスのような非酸化性雰囲気下で、200〜500℃の温度で、2〜8時間加熱処理する。
[Method of producing sintered product]
Next, a method of producing a sintered product using the powder press compact P obtained by the above method will be described. First, degreasing of the powder press compact is performed. In the degreasing step, the binder contained in the powder press compact is removed. For example, the powder pressed compact is heat treated in the air and in a nonoxidizing atmosphere such as nitrogen gas at a temperature of 200 to 500 ° C. for 2 to 8 hours.
続いて、脱脂された粉末プレス成形体を通常の焼結条件、例えば大気中窒素ガスのような非酸化性雰囲気下で、1000〜1500℃まで昇温し、その温度で0.5〜8時間保持して焼成される。これにより焼結品が得られる。なお、脱脂と焼結とはそれぞれ別々の加熱炉で行っても、同じ加熱炉で行ってもよい。 Subsequently, the degreased powder press compact is heated to 1000 to 1500 ° C. under ordinary sintering conditions, for example, in a non-oxidizing atmosphere such as nitrogen gas in the atmosphere, and the temperature is maintained for 0.5 to 8 hours. Hold and bake. Thereby, a sintered product is obtained. Degreasing and sintering may be performed in separate heating furnaces or in the same heating furnace.
次に本発明の実施例を比較例とともに詳しく説明する。 Next, an example of the present invention will be described in detail along with a comparative example.
<造粒粉の製造例>
表1に示すように、ステンレス鋼粉であるSUS316LとバインダであるPVAとを混合した造粒粉(No.1〜No.6)と、セラミック粉であるジルコニア(ZrO2)粉とバインダであるCMCとを混合した造粒粉(No.7)を原料粉とする7種類の造粒粉を作製した。No.1〜No.6のステンレス鋼粉の粉末粒度(D50)は全て7μmであり、No.7のジルコニア粉の粉末粒度(D50)は0.09μmであった。No.1〜No.6の造粒粉の粉末粒度(D50)はバインダのCMCの含有量を変えることにより、45〜210μmに調製した。またNo.7の造粒粉の粉末粒度(D50)は80μmに調製した。
<Production example of granulated powder>
As shown in Table 1, granulated powder (No. 1 to No. 6) prepared by mixing SUS316L which is stainless steel powder and PVA which is a binder, and zirconia (ZrO 2 ) powder which is ceramic powder and a binder Seven types of granulated powders were prepared using granulated powder (No. 7) mixed with CMC as a raw material powder. The powder particle sizes (D50) of stainless steel powders No. 1 to No. 6 were all 7 μm, and the powder particle size (D50) of zirconia powders No. 7 was 0.09 μm. The powder particle size (D50) of the granulated powder of No. 1 to No. 6 was adjusted to 45 to 210 μm by changing the content of CMC of the binder. Moreover, the powder particle size (D50) of the granulated powder of No. 7 was prepared at 80 micrometers.
<成形型の製造例>
先ず、3次元プリンタでそれぞれ造形した紫外線硬化樹脂からなる下パンチ、上パンチ及びダイから構成された成形型を用意した。ここでは、図5(a)及び図5(b)に示すように、JISZ2201の14号に準じたダンベル状試験片S(厚み3.5mm、平行部幅6mm、平行部長さ30mm、肩部の半径20R、つかみ部幅10mm、全長100mm)が焼結品として得られるように成形型を作製した。
<Production example of molding die>
First, a molding die composed of a lower punch, an upper punch, and a die made of an ultraviolet curable resin, which were respectively shaped by a three-dimensional printer, was prepared. Here, as shown in FIGS. 5 (a) and 5 (b), a dumbbell-shaped test piece S (thickness 3.5 mm, parallel portion width 6 mm, parallel portion length 30 mm, shoulder portion according to No. 14 of JIS Z 2201 The mold was manufactured so that a radius of 20 R, a grip width of 10 mm, and a total length of 100 mm) were obtained as a sintered product.
<実施例1>
表1に示すNo.3のSUS316Lのステンレス鋼粉を含む造粒粉を粉末プレス成形装置の成形型に充填し、表2に示すプレス成形圧力50MPa、室温下の粉末プレス成形条件で粉末プレス成形した。その成形体を窒素ガス雰囲気下、320℃の温度で120分保持して脱脂し、続いて脱脂した成形体を窒素ガス雰囲気下、1300℃の温度で120分保持して図5に示す焼結品を得た。
Example 1
Granulated powder containing No. 3 SUS316L stainless steel powder shown in Table 1 is filled in a molding die of a powder press molding apparatus, and powder press molding is carried out under powder press molding conditions at room temperature under a press molding pressure of 50 MPa shown in Table 2. did. The compact is degreased by holding it at a temperature of 320 ° C. for 120 minutes in a nitrogen gas atmosphere, and subsequently the degreased compact is held at a temperature of 1300 ° C. for 120 minutes in a nitrogen gas atmosphere and sintered as shown in FIG. I got the goods.
<実施例2>
表1に示すNo.2のSUS316Lのステンレス鋼粉を含む造粒粉を実施例1と同じ粉末プレス成形装置の成形型に充填し、プレス成形圧力100MPaにして以外、実施例1と同じ条件でプレス成形、脱脂及び焼結して焼結品を得た。
Example 2
Granulated powder containing SUS316L No. 2 stainless steel powder shown in Table 1 is filled in the same molding die of the powder press molding apparatus as in Example 1 and the press molding pressure is 100 MPa, under the same conditions as in Example 1 It was pressed, degreased and sintered to obtain a sintered product.
<実施例3>
表1に示すNo.3のSUS316Lのステンレス鋼粉を含む造粒粉を実施例1と同じ粉末プレス成形装置の成形型に充填し、プレス成形圧力100MPaにして以外、実施例1と同じ条件でプレス成形、脱脂及び焼結して焼結品を得た。
Example 3
Granulated powder containing No. 3 SUS316L stainless steel powder shown in Table 1 is filled in the same molding die of the powder press molding apparatus as in Example 1 and the press molding pressure is 100 MPa, under the same conditions as in Example 1 It was pressed, degreased and sintered to obtain a sintered product.
<実施例4>
表1に示すNo.4のSUS316Lのステンレス鋼粉を含む造粒粉を実施例1と同じ粉末プレス成形装置の成形型に充填し、プレス成形圧力100MPaにして以外、実施例1と同じ条件でプレス成形、脱脂及び焼結して焼結品を得た。
Example 4
Granulated powder containing No. 4 SUS316L stainless steel powder shown in Table 1 is filled in the same molding die of the powder press molding apparatus as in Example 1 and the press molding pressure is 100 MPa, under the same conditions as in Example 1 It was pressed, degreased and sintered to obtain a sintered product.
<実施例5>
表1に示すNo.5のSUS316Lのステンレス鋼粉を含む造粒粉を実施例1と同じ粉末プレス成形装置の成形型に充填し、プレス成形圧力100MPaにして以外、実施例1と同じ条件でプレス成形、脱脂及び焼結して焼結品を得た。
Example 5
Granulated powder containing SUS316L stainless steel powder of No. 5 shown in Table 1 is filled in the same mold of the powder press molding apparatus as in Example 1 and the press molding pressure is 100 MPa, under the same conditions as in Example 1 It was pressed, degreased and sintered to obtain a sintered product.
<実施例6>
表1に示すNo.3のSUS316Lのステンレス鋼粉を含む造粒粉を実施例1と同じ粉末プレス成形装置の成形型に充填し、プレス成形圧力200MPaにして以外、実施例1と同じ条件でプレス成形、脱脂及び焼結して焼結品を得た。
Example 6
Granulated powder containing SUS316L stainless steel powder of No. 3 shown in Table 1 was filled in the same molding die of the powder press molding apparatus as in Example 1 and the press molding pressure was 200 MPa, under the same conditions as in Example 1 It was pressed, degreased and sintered to obtain a sintered product.
<比較例1>
表1に示すNo.1のSUS316Lのステンレス鋼粉を含む造粒粉を実施例1と同じ粉末プレス成形装置の成形型に充填し、プレス成形圧力100MPaにして成形したところ、バインダ量が2質量%と少なく、かつ造粒粉の粉末粒度(D50)が45μmと小さかったため、所望の形状を有する成形体を作ることができず、脱脂及び焼結は行わなかった。
Comparative Example 1
Granulated powder containing SUS316L No. 1 stainless steel powder shown in Table 1 was filled into the same molding die of the powder press molding apparatus as in Example 1 and molded with a press molding pressure of 100 MPa. The amount of binder was 2 mass Because the particle size (D50) of the granulated powder was as small as 45%, the molded product having the desired shape could not be produced, and degreasing and sintering were not performed.
<比較例2>
表1に示すNo.3のSUS316Lのステンレス鋼粉を含む造粒粉を実施例1と同じ粉末プレス成形装置の成形型に充填し、プレス成形圧力45MPaにして成形したところ、成形圧力が45MPaと低かったため、所望の形状を有する成形体を作ることができず、脱脂及び焼結は行わなかった。
Comparative Example 2
Granulated powder containing SUS316L stainless steel powder No. 3 shown in Table 1 is filled into the same molding die of the powder press molding apparatus as in Example 1 and molded with a press molding pressure of 45 MPa, and the molding pressure is 45 MPa. Because of the low temperature, it was not possible to produce a shaped body having the desired shape, and degreasing and sintering were not performed.
<比較例3>
表1に示すNo.3のSUS316Lのステンレス鋼粉を含む造粒粉を実施例1と同じ粉末プレス成形装置の成形型に充填し、プレス成形圧力210MPaにして成形したところ、成形圧力が210MPaと高かったため、下パンチと上パンチに割れを生じて成形ができなかった。このため、脱脂及び焼結もできなかった。
Comparative Example 3
Granulated powder containing SUS316L stainless steel powder No. 3 shown in Table 1 is filled into the same molding die of the powder press molding apparatus as in Example 1 and molded with a press molding pressure of 210 MPa, and the molding pressure is 210 MPa. Since it was high, the lower and upper punches were broken and could not be molded. For this reason, neither degreasing nor sintering was possible.
<比較例4>
表1に示すNo.6のSUS316Lのステンレス鋼粉を含む造粒粉を実施例1と同じ粉末プレス成形装置の成形型に充填し、プレス成形圧力100MPaにして以外、実施例1と同じ条件でプレス成形、脱脂及び焼結して焼結品を得た。
Comparative Example 4
Granulated powder containing SUS316L stainless steel powder of No. 6 shown in Table 1 is filled in the same mold of the powder press molding apparatus as in Example 1 and the press molding pressure is 100 MPa, under the same conditions as in Example 1 It was pressed, degreased and sintered to obtain a sintered product.
<参考例1>
実施例1と同じ粉末プレス成形装置であるが、成形型の下パンチ、上パンチ及びダイが工具鋼からなる金型を用い、、表1に示すNo.3のSUS316Lのステンレス鋼粉を含む造粒粉を金型に充填し、プレス成形圧力300MPaにして室温下でプレス成形した。成形した成形体を実施例1と同じ条件で脱脂及び焼結して焼結品を得た。
Reference Example 1
The same powder press forming apparatus as in Example 1, but using a mold in which the lower and upper punches and the upper punch and the die are made of tool steel, and including the No. 3 SUS316L stainless steel powder shown in Table 1 The granular powder was filled in a mold and press-formed at room temperature under a press-forming pressure of 300 MPa. The molded compact was degreased and sintered under the same conditions as in Example 1 to obtain a sintered product.
<実施例7>
表1に示すNo.7のジルコニア粉を含む造粒粉を実施例1と同じ粉末プレス成形装置の成形型に充填し、表2に示すプレス成形圧力200MPa、室温下の粉末プレス成形条件で粉末プレス成形した。その成形体を窒素ガス雰囲気下、500℃の温度で120分保持して脱脂し、続いて脱脂した成形体を窒素ガス雰囲気下、1450℃の温度で120分保持して図5に示す焼結品を得た。
Example 7
Granulated powder containing zirconia powder No. 7 shown in Table 1 was filled in the same mold of the powder press molding apparatus as in Example 1 and powder shown in Table 2 was used under powder press molding conditions of 200 MPa pressure and room temperature. Press molded. The compact is degreased by holding it at a temperature of 500 ° C. for 120 minutes in a nitrogen gas atmosphere, and subsequently the degreased compact is held at a temperature of 1450 ° C. for 120 minutes in a nitrogen gas atmosphere and the sintering shown in FIG. I got the goods.
<比較結果その1(プレス評価と型の破損有無)>
実施例1〜7、比較例1〜4及び参考例1でプレス成形した成形体について、成形後に形状を保持しているかを確認するため、ひび割れ、キズ及び欠けの有無を目視により判定した。更に上パンチ、下パンチ及びダイの各破損の有無を目視により判定した。これらの結果を表3に示す。
<Comparison result 1 (presence of damage to press evaluation and mold)>
In order to confirm whether or not the shape is maintained after molding, the presence or absence of cracks, flaws, and chips was visually determined for the molded articles press-molded in Examples 1 to 7 and Comparative Examples 1 to 4 and Reference Example 1. Furthermore, the presence or absence of each breakage of the upper punch, the lower punch and the die was visually determined. The results are shown in Table 3.
<比較結果その2(焼結品の評価)>
実施例1〜7、比較例4及び参考例1で得られたSUS316Lの焼結品について、アルキメデス法により、理論密度(100%)に対する相対密度を百分率で求め、また実施例1〜6及び参考例1のSUS316Lの焼結品であるJISZ2201の14号に準じたダンベル状試験片について、JISZ2241(2011)(金属材料引張り試験方法)に準じて、室温でそれぞれ引張強度を測定した。その結果を表3に示す。また図6に示すように、実施例7のジルコニア粉の焼結品である上記ダンベル状試験片Sを基板40上の支点間の距離が20mmである2つの支点41、41に載せ、2つの支点41、41の中心に相当する位置Tに1mm/分の速度で室温下、荷重を加えて3点曲げ試験を行い、その曲げ強度を測定した。曲げ強度は曲げ荷重が最大となったときの応力の値とした。その結果を表4に示す。
<Comparison result 2 (Evaluation of sintered products)>
With respect to the sintered products of SUS316L obtained in Examples 1 to 7 and Comparative Example 4 and Reference Example 1, the relative density to the theoretical density (100%) is determined by the Archimedes method, and Examples 1 to 6 and Reference The dumbbell-shaped test pieces according to JIS Z 2201 No. 14, which is a sintered product of SUS 316 L of Example 1, were measured for tensile strength at room temperature according to JIS Z 2241 (2011) (Metal Material Tensile Test Method). The results are shown in Table 3. Further, as shown in FIG. 6, the dumbbell-shaped test piece S, which is a sintered product of the zirconia powder of Example 7, is placed on two supporting
表3から明らかなように、成形型として金型を用いた参考例1では、当然のことながら成形性は良好で型の破損はなかった。前述したように、比較例1及び2では、成形型の破損はなかったが、所望の形状を有する成形体を作ることができなかった。また比較例3では成形型(上下パンチ)が破損して成形自体できなかった。これに対して実施例1〜6及び比較例4では所望の形状を有する成形体を作ることができ、成形型の破損もなかった。相対密度と引張強度に関しては、参考例1で得られたSUS316Lの焼結品の相対密度は97%と高く、引張強度も520MPaと高かった。これに対して、比較例4で得られたSUS316Lの焼結品の相対密度は参考例1のそれよりも89%と低く、引張強度も参考例1のそれよりも404MPaと低かった。これは比較例4の造粒粉はバインダ含有量が13質量%と高く、造粒粉の粉末粒度(D50)が210μmであるため、粉末プレス成形体中に空孔が残ったためと推定された。また実施例1〜6で得られたSUS316Lの焼結品の相対密度は参考例1のそれより若干低い93〜96%であり、これらの引張強度も451〜497MPaであって、参考例1の引張強度並みであった。これにより実施例1〜6の焼結品は従来の金型を用いた粉末プレス成形体から作られた焼結品と密度と強度において劣らないことが判明した。また表4から明らかなように、実施例7で得られたジルコニア粉から作られた焼結品の相対密度は参考例1並みの99%であり、その曲げ強度は832MPaであった。 As apparent from Table 3, in Reference Example 1 in which a mold was used as the mold, the moldability was naturally good and there was no mold breakage. As described above, in Comparative Examples 1 and 2, although there was no breakage of the mold, it was not possible to produce a molded body having a desired shape. Further, in Comparative Example 3, the forming die (upper and lower punches) was broken and the forming itself could not be performed. On the other hand, in Examples 1 to 6 and Comparative Example 4, a molded body having a desired shape could be produced, and there was no breakage of the mold. Regarding the relative density and the tensile strength, the relative density of the sintered product of SUS316L obtained in Reference Example 1 was as high as 97%, and the tensile strength was also as high as 520 MPa. On the other hand, the relative density of the sintered product of SUS316L obtained in Comparative Example 4 was 89% lower than that of Reference Example 1, and the tensile strength was also lower than that of Reference Example 1, 404 MPa. The reason for this is that the granulated powder of Comparative Example 4 had a high binder content of 13% by mass and the powder particle size (D50) of the granulated powder was 210 μm, so it was estimated that the pores remained in the powder press compact . The relative density of the sintered product of SUS316L obtained in Examples 1 to 6 is 93 to 96%, which is slightly lower than that of Reference Example 1, and the tensile strength of these is also 451 to 497 MPa. The tensile strength was about the same. From this, it was found that the sintered products of Examples 1 to 6 were comparable in density and strength to sintered products made from powder press-formed products using conventional molds. Further, as apparent from Table 4, the relative density of the sintered product produced from the zirconia powder obtained in Example 7 was 99% as in Reference Example 1, and the flexural strength was 832 MPa.
<比較結果その3(繰り返しのプレス成形性評価)>
実施例1と同一の粉末プレス成形装置に用い、実施例1と同一の上パンチ、下パンチ及びダイからなる成形型に実施例1と同一の造粒粉を充填し、粉末プレス成形を繰り返し行った。100回の粉末プレス成形後、上パンチ、下パンチ及びダイについて、ひび割れ、キズ、欠けなどを目視により検査した。また100個のプレス成形体のひび割れ、キズ、欠けの有無を目視により判定した。また成形体が所定の寸法通りにプレス成形されているか目視により判定した。その結果、上パンチ、下パンチ及びダイは、最初のプレス成形後と同一の外観を有し、ひび割れ、キズ、欠けは全く無かった。このことは、100個目のプレス成形体が最初にプレスした成形体と同形同大で、上パンチ、下パンチ及びダイと同様にひび割れ、キズ、欠けが皆無であったことからも実証された。
<Comparison result 3 (repetitive press formability evaluation)>
The same powder press molding apparatus as in Example 1 is used, and the same granulated powder as in Example 1 is filled in a mold consisting of an upper punch, a lower punch and a die identical to that in Example 1, and powder press molding is repeated The After 100 times of powder press molding, cracks, flaws, chips and the like were visually inspected for the upper punch, the lower punch and the die. Further, the presence or absence of cracks, flaws and chipping of 100 pressed articles was visually determined. Moreover, it was visually judged whether the molded object was press-formed according to the predetermined dimension. As a result, the upper punch, the lower punch and the die had the same appearance as that after the first press molding, and there were no cracks, flaws and chips. This is also demonstrated by the fact that the 100th press-formed body is the same shape and size as the first pressed body, and that there are no cracks, flaws, or chips as with the upper punch, lower punch and die. The
M 原料粉である造粒粉
P 粉末プレス成形体
10 粉末プレス成形体を製造する装置(粉末プレス成形装置)
11 ダイプレート
12 ダイ
13 下パンチ
14 ダイキャビティ
15 上パンチ
16 ホッパ
17 フィーダ
18 可撓性ホース
19 駆動ロッド
21 グランドプレート
22 基台
23 コラム
24 コラムプレート
26 下ラム
M Granulated powder P which is a raw material powder P powder press compact 10 A device for manufacturing a powder press compact (powder press compacting device)
DESCRIPTION OF
本発明の粉末プレス成形体の製造方法は、玩具、日用雑貨品、自動車部品、電気部品などの試作品用の成形体を簡便にかつ安価に製造するのに用いられる。 The method for producing a powder-pressed compact according to the present invention can be used to easily and inexpensively produce a compact for a trial product such as a toy, a sundry product, an automobile part, and an electric part.
Claims (5)
前記下パンチ、前記上パンチ及び前記ダイを含む成形型が光造形法又は3次元プリンタを用いて立体的に造形された樹脂以外の材料を含まない光硬化性樹脂からなる樹脂製成形型であり、
前記原料粉が金属粉末又はセラミック粉末とバインダとを混合して得られた粉末粒度(D50)が50〜200μmの球状の造粒粉であり、前記造粒粉100質量%中、前記バインダを3〜12質量%含有し、
前記造粒粉のプレス成形を50〜300MPaのプレス圧力と前記樹脂製成形型の耐熱温度以下のプレス温度で行うことを特徴とする粉末プレス成形体の製造方法。 In a method of manufacturing a powder pressed compact by pressing raw material powder filled in a die cavity formed by a lower punch and a die between the lower punch and the upper punch,
The mold comprising the lower punch, the upper punch and the die is a resin mold comprising a photocurable resin which does not contain a material other than a resin three-dimensionally shaped using an optical shaping method or a three-dimensional printer ,
The raw material powder is a spherical granulated powder having a particle size (D50) of 50 to 200 μm obtained by mixing a metal powder or ceramic powder and a binder, and the binder is contained in 100% by mass of the granulated powder. 12 to 12% by mass,
A method for producing a powdery press-formed product, characterized in that the press-molding of the granulated powder is performed at a press pressure of 50 to 300 MPa and a press temperature not higher than the heat resistance temperature of the resin mold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015141836A JP6549435B2 (en) | 2015-07-16 | 2015-07-16 | Method of manufacturing powder pressed compact |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015141836A JP6549435B2 (en) | 2015-07-16 | 2015-07-16 | Method of manufacturing powder pressed compact |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017024012A JP2017024012A (en) | 2017-02-02 |
JP6549435B2 true JP6549435B2 (en) | 2019-07-24 |
Family
ID=57945291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015141836A Active JP6549435B2 (en) | 2015-07-16 | 2015-07-16 | Method of manufacturing powder pressed compact |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6549435B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2566934B (en) * | 2017-09-20 | 2022-11-23 | Bae Systems Plc | Material for 3D printing and a 3D printed device |
US11491706B2 (en) | 2017-09-20 | 2022-11-08 | Bae Systems Plc | Material for 3D printing and a 3D printed device |
KR102255537B1 (en) * | 2018-01-12 | 2021-05-25 | 주식회사 엘지에너지솔루션 | The Pouch Film And The Method For Manufacturing Thereof |
CN108312606A (en) * | 2018-02-06 | 2018-07-24 | 江苏铭格锻压设备有限公司 | A kind of four-column hydraulic press |
CN109570310B (en) * | 2018-12-24 | 2020-05-08 | 南京宝色股份公司 | Novel titanium alloy curved surface forming method |
CN110014503A (en) * | 2019-05-07 | 2019-07-16 | 罗厚镇 | A kind of Production of Ceramics press machine |
DE102019127666A1 (en) * | 2019-10-15 | 2021-04-15 | Maag Automatik Gmbh | Perforated plate for granulating melts and processes for their production |
CN112011702B (en) * | 2020-08-30 | 2021-11-23 | 中南大学 | Method for preparing nano-phase reinforced nickel-based high-temperature alloy by adopting micro-ceramic particles |
CN113042732B (en) * | 2021-03-09 | 2022-07-08 | 吉林大学 | 3D printing magnetic control deformation clamping device and method capable of being implanted into organism |
KR102509103B1 (en) * | 2021-10-25 | 2023-03-10 | 주식회사 경진 | Manufacturing method for stainless type alloy with supper corrosion resistence for parts of transportation machine |
CN114570924B (en) * | 2022-04-29 | 2022-07-22 | 矿冶科技集团有限公司 | Binder, 5-15 micron tungsten carbide powder and preparation method thereof |
CN115214045B (en) * | 2022-06-24 | 2023-10-20 | 滁州燕荣塑料科技有限公司 | Pelletization forming device for reinforced nylon and forming method thereof |
CN115597318A (en) * | 2022-10-20 | 2023-01-13 | 湖南宏工智能科技有限公司(Cn) | Fluidization type ultra-low temperature freezing bin |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54145363A (en) * | 1978-05-04 | 1979-11-13 | Nissan Motor Co Ltd | Resin model production and apparatus therefor |
JPS63290207A (en) * | 1987-05-23 | 1988-11-28 | Kobe Steel Ltd | Production of powder compact |
US9347137B2 (en) * | 2006-09-11 | 2016-05-24 | Ihi Corporation | Method of manufacturing electrode for electrical-discharge surface treatment, and electrode for electrical-discharge surface treatment |
JP6229828B2 (en) * | 2013-07-29 | 2017-11-15 | 日立化成株式会社 | Method for manufacturing sintered parts |
-
2015
- 2015-07-16 JP JP2015141836A patent/JP6549435B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017024012A (en) | 2017-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6549435B2 (en) | Method of manufacturing powder pressed compact | |
Zhang et al. | Additive manufacturing of WC-20Co components by 3D gel-printing | |
CN104907567B (en) | A kind of method for preparing high-density complicated shape cemented carbide parts and cutter | |
CN105834360B (en) | The casting method of shell mould is made using 3D printing | |
US5779833A (en) | Method for constructing three dimensional bodies from laminations | |
CN105215246B (en) | The micro- moulding apparatus of ultrasonic vibration assistant metal and its application method | |
JP5819503B1 (en) | Method for manufacturing lost wax mold for powder metallurgy that is layered with 3D printer | |
WO2015151834A1 (en) | Three-dimensional fabrication apparatus | |
CN105777133A (en) | Manufacturing method and special die for one-step-formed multi-curved-face integral bullet-proof plates | |
Peng et al. | Effect of print path process on sintering behavior and thermal shock resistance of Al2O3 ceramics fabricated by 3D inkjet-printing | |
CN203917913U (en) | A kind of cold isostatic compaction mould | |
CN107398559A (en) | A kind of powder injection-molded method of large parts for support of arranging in pairs or groups | |
US6203734B1 (en) | Low pressure injection molding of metal and ceramic powders using soft tooling | |
CN211030928U (en) | Automatic die press | |
CN206464528U (en) | A kind of aluminium die casting hardware dies | |
CN110064759B (en) | Laminated compacted powder sintering 3D forming cylinder and forming method | |
CN102029352B (en) | Manufacturing method of pressing plate for railway wagon | |
CN114289689A (en) | Method for manufacturing rolling compaction near-forming sand mold | |
CN208697202U (en) | Prepare the mold of ultra hard ceramic bonding agent inner circle grinding wheel | |
RU115261U1 (en) | MULTI-LOCAL PRESS FORM FOR PRESSING POWDERS | |
CN108454303A (en) | A kind of non-manual forging is non-to carve the iron picture component production method carved by hand | |
CN211306017U (en) | Novel grinding wheel rotary press | |
CN207787697U (en) | A kind of mold for powder metallurgy | |
CN207657263U (en) | A kind of mold | |
CN110116205A (en) | A kind of rearview mirror holder powder metallurgy forming mold and its forming method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180627 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190418 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190627 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6549435 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |