JP2017024012A - Method for manufacturing powder press-molded body - Google Patents

Method for manufacturing powder press-molded body Download PDF

Info

Publication number
JP2017024012A
JP2017024012A JP2015141836A JP2015141836A JP2017024012A JP 2017024012 A JP2017024012 A JP 2017024012A JP 2015141836 A JP2015141836 A JP 2015141836A JP 2015141836 A JP2015141836 A JP 2015141836A JP 2017024012 A JP2017024012 A JP 2017024012A
Authority
JP
Japan
Prior art keywords
powder
press
mold
die
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015141836A
Other languages
Japanese (ja)
Other versions
JP6549435B2 (en
Inventor
拓夫 戸田
Takuo Toda
拓夫 戸田
中山 英樹
Hideki Nakayama
英樹 中山
橋爪 良博
Yoshihiro Hashizume
良博 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CASTEM CO Ltd
SWANY CO Ltd
Original Assignee
CASTEM CO Ltd
SWANY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CASTEM CO Ltd, SWANY CO Ltd filed Critical CASTEM CO Ltd
Priority to JP2015141836A priority Critical patent/JP6549435B2/en
Publication of JP2017024012A publication Critical patent/JP2017024012A/en
Application granted granted Critical
Publication of JP6549435B2 publication Critical patent/JP6549435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively and simply provide a plurality of molded bodies which have the same shape and size and are free from a crack, scratch and a chip using a resin mold which is three-dimensionally shaped using an optical shaping method or a three-dimensional printer without structurally damaging the resin mold, where a sintered product of the molded body is not inferior in strength to a sintered product formed by a metal mold.SOLUTION: A powder press-molded body is manufactured by press-molding raw material powder filling a die cavity formed of a lower punch and a die between upper and lower punches. The mold including the lower punch, the upper punch and the die is a resin mold formed of a photocurable resin containing only a material formed of a resin three-dimensionally shaped using an optical shaping method or a three-dimensional printer, the raw material powder is spherical granulated powder that is obtained by mixing metal powder or ceramic powder and a binder and has a powder grain size (D50) of 50-200 μm, 3-12 mass% of the binder is contained in 100 mass% of the granulated powder, and the granulated powder is press-molded at a press pressure of 50-300 MPa and a press temperature of a heat resistant temperature of the resin mold or lower.SELECTED DRAWING: Figure 1

Description

本発明は、光造形法や3次元(3D)プリンタ等で作られた樹脂製成形型を用いて金属又はセラミックの原料粉をプレス成形して成形体を製造する方法に関する。   The present invention relates to a method for producing a molded body by press-molding a metal or ceramic raw material powder using a resin molding die made by an optical modeling method, a three-dimensional (3D) printer or the like.

粉末プレス成形法は、粉末プレス成形装置を用いて、金属粉末、セラミック粉末などの原料粉を金型に入れ、所定の圧力をかけることで所望の製品形状にプレス成形する方法である。プレス成形した後、この成形体を所定の温度で焼結して製品を得ることができる。粉末プレス成形装置は、通常、プレス成形機本体、ダイセット及び金型から構成される。粉末プレス成形機本体は、加圧を行う上ラム、脱型などを行う下ラムを有し、ダイセットに上パンチ、下パンチ、ダイ及びコアから構成される金型が取付けられ、粉体の充填、成形及び脱型を自動的に行うようになっている。   The powder press molding method is a method in which raw powder such as metal powder and ceramic powder is placed in a mold using a powder press molding apparatus, and is pressed into a desired product shape by applying a predetermined pressure. After press molding, the molded body can be sintered at a predetermined temperature to obtain a product. The powder press molding apparatus is usually composed of a press molding machine main body, a die set and a mold. The main body of the powder press molding machine has an upper ram for pressurization and a lower ram for demolding, and a die set consisting of an upper punch, a lower punch, a die and a core is attached to the die set. Filling, molding and demolding are performed automatically.

従来、粉末プレス成形装置の金型には、一般に耐摩耗性、耐衝撃性、耐チッピング性等の耐久性が要求され、超硬合金、鋳鉄、鋳鋼、鍛鋼などの工具鋼が使用される(例えば特許文献1、2参照。)。   Conventionally, the die of a powder press molding apparatus generally requires durability such as wear resistance, impact resistance, and chipping resistance, and tool steels such as cemented carbide, cast iron, cast steel, and forged steel are used ( For example, see Patent Documents 1 and 2.)

一方、射出成形、発泡成形、RIM成形、注型、真空注型、真空成形、RTM成形、粉末成形、ブロー成形、圧縮成形、プレス成形、押出成形、FRP成形に用いられる型として、積層造形法により作製された成形型が開示されている(例えば、特許文献3参照。)。この特許文献3には、成形型が、従来の成形型に比べて強度、耐摩耗性、耐久性及び離型性に優れ、成形型の作製時間を短縮することができる旨が記載されている。この成形型は、球状カーボンと樹脂粉末を必須成分とする複合材料粉末を使用し、積層造形法により作製される。   On the other hand, as a mold used for injection molding, foam molding, RIM molding, casting, vacuum casting, vacuum molding, RTM molding, powder molding, blow molding, compression molding, press molding, extrusion molding, FRP molding, additive manufacturing method (See, for example, Patent Document 3). Patent Document 3 describes that the mold is superior in strength, wear resistance, durability, and releasability as compared with the conventional mold, and can shorten the time for producing the mold. . This mold is made by a layered manufacturing method using a composite material powder containing spherical carbon and resin powder as essential components.

特開2005−152961号公報(段落[0002]、段落[0004])JP 2005-152961 A (paragraph [0002], paragraph [0004]) 特開2004−306119号公報(段落[0023])JP 2004-306119 A (paragraph [0023]) 特開2010−234800号公報(要約、請求項1、段落[0001])JP 2010-234800 A (summary, claim 1, paragraph [0001])

特許文献1、2に示される工具鋼を使用した金型で複雑な形状の成形体を製造する場合、金型を作製するのに多大の製作日数と製作コストを要し、量産品を製造する前段階で、このプレス成形法により試作品を製造することが製作日数と製作コストの観点からできなかった。また特許文献3に示されるカーボン材料を初めとして、金属材料、セラミック材料と樹脂とを混合した複合材料粉末を使用し、積層造形法により樹脂製成形型を作製した場合、上記工具鋼を使用した金型の課題は解決される一方、強度又は耐熱性を増した樹脂製成形型は、適切な強度又は耐熱性を得るための配合比の設定が複雑であるとともに、その原料及び製作コストが上昇する不具合があった。またこの種の樹脂製成形型を用いて粉末プレス成形した場合、プレス圧力が工具鋼を使用した金型によるプレス圧力より高めることができず、焼結品にしたときに成形体内部に存在する空孔に起因する強度上の脆弱性があった。   In the case of manufacturing a molded body having a complicated shape with a mold using the tool steel shown in Patent Documents 1 and 2, it takes a lot of manufacturing days and manufacturing costs to manufacture the mold, and a mass-produced product is manufactured. In the previous stage, it was not possible to produce a prototype by this press molding method from the viewpoint of production days and production costs. Moreover, when using a composite material powder obtained by mixing a metal material, a ceramic material, and a resin, including a carbon material shown in Patent Document 3, the above tool steel was used when a resin mold was produced by an additive manufacturing method. While the problem of molds is solved, resin molds with increased strength or heat resistance have complicated compounding ratio settings for obtaining appropriate strength or heat resistance, and the raw materials and production costs have increased. There was a bug to do. Moreover, when powder press molding is performed using this type of resin mold, the press pressure cannot be higher than the press pressure by a mold using tool steel, and is present inside the molded body when it is made into a sintered product. There was a weakness in strength due to vacancies.

本発明の第1の目的は、光造形法又は3次元プリンタを用いて立体的に造形された樹脂以外の材料を含まない光硬化性樹脂からなる樹脂製成形型を用いて、ひび割れ、キズ及び欠けのない粉末プレス成形体を簡便にかつ安価に製造する方法を提供することにある。本発明の第2の目的は、成形体を繰り返し製造しても樹脂製成形型を構造上損傷させることなく同形同大の複数の形状の粉末プレス成形体を製造する方法を提供することにある。また本発明の第3の目的は、焼結品にしたときに、工具鋼を使用した金型によりプレス成形された成形体の焼結品と比較して強度上劣らない粉末プレス成形体を製造する方法を提供することにある。   The first object of the present invention is to use a resin molding die made of a photocurable resin that does not contain a material other than a resin that is three-dimensionally modeled using a stereolithography method or a three-dimensional printer. An object of the present invention is to provide a method for easily and inexpensively producing a powder press-molded body having no chip. The second object of the present invention is to provide a method for producing a powder press-molded body having a plurality of shapes having the same shape and the same size without structurally damaging the resin mold even if the molded body is repeatedly produced. is there. In addition, the third object of the present invention is to produce a powder press-molded body that is not inferior in strength compared to a sintered product of a molded body press-molded by a mold using tool steel. It is to provide a way to do.

本発明者らは、カーボン材料、金属材料、セラミック材料と樹脂とを混合した複合材料粉末を使用した積層造形法による樹脂製成形型に代わって、光造形法又は3次元プリンタによる樹脂以外の材料を含まない光硬化性樹脂からなる樹脂製成形型を作製し、その一方、原料粉として、バインダを3〜12質量%含有する粉末粒度(D50)が50〜200μmである球状の造粒粉を用いて、50〜300MPaの圧力と樹脂製成形型の耐熱温度以下のプレス温度でプレス成形を繰り返し行えば、樹脂製成形型を構造上損傷させることなく、ひび割れ、キズ及び欠けのない所定の寸法通りの同形同大の複数の粉末プレス成形体を簡便にかつ安価に製造できるうえ、焼結品にしたときに従来の金型で作られた粉末プレス成形体の焼結品と強度上劣らないことに着目し、本発明に到達した。   The present inventors have replaced a resin molding die by a layered molding method using a composite material powder in which a carbon material, a metal material, a ceramic material and a resin are mixed, and a material other than a resin by an optical modeling method or a three-dimensional printer. A resin-molding die made of a photo-curing resin containing no curable resin is prepared. On the other hand, as a raw material powder, a spherical granulated powder having a powder particle size (D50) containing 3 to 12 mass% of a binder and having a particle size of 50 to 200 μm If the press molding is repeated at a pressure of 50 to 300 MPa and a press temperature lower than the heat resistance temperature of the resin mold, the predetermined dimensions without cracks, scratches and chips are obtained without structurally damaging the resin mold. It is possible to easily and inexpensively produce multiple powder press-molded bodies of the same size and size as the streets, and when compared to sintered products of powder press-molded bodies made with conventional molds, the strength is inferior. Focusing on the absence, we have reached the present invention.

本発明の第1の観点は、下パンチとダイにより形成されるダイキャビティ内に充填した原料粉を前記下パンチと上パンチ間にプレス成形することにより粉末プレス成形体を製造する方法において、前記下パンチ、前記上パンチ及び前記ダイを含む成形型が光造形法又は3次元プリンタを用いて立体的に造形された樹脂以外の材料を含まない光硬化性樹脂からなる樹脂製成形型であり、前記原料粉が金属粉末又はセラミック粉末とバインダとを混合して得られた粉末粒度(D50)が50〜200μmの球状の造粒粉であり、前記造粒粉100質量%中、前記バインダを3〜12質量%含有し、前記造粒粉のプレス成形を50〜300MPaのプレス圧力と前記樹脂製成形型の耐熱温度以下のプレス温度で行うことを特徴とする粉末プレス成形体の製造方法である。   According to a first aspect of the present invention, there is provided a method for producing a powder press-molded body by press-molding a raw material powder filled in a die cavity formed by a lower punch and a die between the lower punch and the upper punch. A molding die including a lower punch, the upper punch and the die is a resin molding die made of a photocurable resin that does not include a material other than a resin that is three-dimensionally modeled using an optical modeling method or a three-dimensional printer, The raw material powder is a spherical granulated powder having a powder particle size (D50) obtained by mixing a metal powder or ceramic powder and a binder of 50 to 200 μm, and 3% of the binder is contained in 100% by mass of the granulated powder. Powder press molding characterized by containing ~ 12% by mass, and performing press molding of the granulated powder at a press pressure of 50 to 300 MPa and a press temperature not higher than the heat resistance temperature of the resin mold. It is a method of manufacture.

本発明の第2の観点は、第1の観点に基づく発明であって、前記金属粉末が、鉄粉、Ni粉、Co粉又はこれらの混合粉、合金鋼粉、ステンレス鋼粉、耐食合金粉、又は磁性合金粉であることを特徴とする。   A second aspect of the present invention is an invention based on the first aspect, wherein the metal powder is iron powder, Ni powder, Co powder or a mixed powder thereof, alloy steel powder, stainless steel powder, corrosion-resistant alloy powder. Or a magnetic alloy powder.

本発明の第3の観点は、第1の観点に基づく発明であって、前記セラミック粉末が、ジルコニア(ZrO)粉、アルミナ(Al)粉又は窒化アルミニウム(AlN)粉であることを特徴とする。 A third aspect of the present invention is the invention based on the first aspect, wherein the ceramic powder is zirconia (ZrO 2 ) powder, alumina (Al 2 O 3 ) powder, or aluminum nitride (AlN) powder. It is characterized by.

本発明の第4の観点は、第1ないし第3の観点のうち、いずれか1つの観点の発明であって、前記バインダがポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)又はポリエチレングリコール(PEG)のいずれか又はこれらの組合せであることを特徴とする。   A fourth aspect of the present invention is the invention according to any one of the first to third aspects, wherein the binder is polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC). Or any of polyethylene glycol (PEG) or a combination thereof.

本発明の第5の観点は、第1ないし第4の観点のうち、いずれか1つの観点の方法により製造された粉末プレス成形体を焼結して焼結品を製造する方法である。   A fifth aspect of the present invention is a method for producing a sintered product by sintering a powder press-molded body produced by the method of any one of the first to fourth aspects.

本発明の第1の観点の粉末プレス成形体の製造方法では、光造形法や3次元プリンタ等で作られた樹脂以外の材料を含まない光硬化性樹脂からなる樹脂製成形型を用いて粉末プレス成形体を製造するため、従来の機械加工等で製作していた高価な金型及びカーボン材料、金属材料、セラミック材料と樹脂とを混合した複合材料粉末を使用して積層造形法により製作していた樹脂製成形型と比較して、簡便にかつ安価に成形体を製造できる。特に光造形法や3次元プリンタ等では、求められる製品の形状が複雑かつ微細であってもその形状に忠実かつ精密に合致させて樹脂製成形型の形状を作り出すことができる。またバインダを3〜12質量%含有し、粉末粒度(D50)が50〜200μmの球状の造粒粉を原料粉として用い、50〜300MPaの圧力と樹脂製成形型の耐熱温度以下のプレス温度でプレス成形を行うことにより、単一種類の樹脂からなる樹脂製成形型であっても、この樹脂製成形型がプレス時に弾性変形し、脱圧後に原型に復帰するため、樹脂製成形型を構造上損傷させずに、繰り返し成形を行うことができる。この結果、同形同大の複数の粉末プレス成形体をひび割れ、キズ及び欠けなしで製造することができる。また従来の金型等によるプレス成形では金属粉末等を潰すことで形状を保持した圧粉体を製造する際に大きなプレス圧力を必要としていたが、上記造粒粉を使用して、低圧力で低温で金属粉末等を潰すことなくプレス成形して圧粉体である成形体を作り、この粉末プレス成形体を焼結すれば、強度が低下しない焼結品を得ることができる。これにより玩具、日用雑貨品、自動車部品、電気部品などの試作品用の粉末プレス成形体を手軽に製造することができる。   In the method for producing a powder press-molded body according to the first aspect of the present invention, powder is produced using a resin-made mold made of a photocurable resin that does not contain a material other than a resin made by an optical modeling method or a three-dimensional printer. In order to produce a press-molded body, it is manufactured by the additive manufacturing method using a composite material powder in which an expensive metal mold and carbon material, metal material, ceramic material and resin mixed with conventional machining are used. Compared with the conventional resin mold, the molded product can be produced easily and inexpensively. In particular, in the optical modeling method, the three-dimensional printer, and the like, even if the required shape of the product is complicated and fine, the shape of the resin mold can be created by faithfully and precisely matching the shape. In addition, a spherical granulated powder containing 3 to 12% by mass of a binder and having a powder particle size (D50) of 50 to 200 μm is used as a raw material powder, with a pressure of 50 to 300 MPa and a press temperature not higher than the heat resistance temperature of the resin mold. Even if it is a resin mold made of a single type of resin, the resin mold is elastically deformed during pressing and returns to the original mold after depressurization. Repetitive molding can be performed without causing damage. As a result, a plurality of powder press-molded bodies having the same shape and the same size can be produced without cracks, scratches and chips. In addition, in the conventional press molding with a mold or the like, a large pressing pressure is required when producing a green compact that retains its shape by crushing a metal powder or the like. If a green compact is formed by press molding without crushing metal powder or the like at a low temperature, and this powder press molded body is sintered, a sintered product whose strength does not decrease can be obtained. This makes it possible to easily manufacture powder press-molded bodies for prototypes such as toys, household goods, automobile parts, and electrical parts.

本発明の第2の観点の粉末プレス成形体の製造方法は、鉄粉、Ni粉、Co粉又はこれらの混合粉、合金鋼粉、ステンレス鋼粉、耐食合金粉、又は磁性合金粉の金属粉末を原料粉として用いることにより、多様な金属製の成形体を製造することができる。   The method for producing a powder press-molded body according to the second aspect of the present invention is a metal powder of iron powder, Ni powder, Co powder or a mixed powder thereof, alloy steel powder, stainless steel powder, corrosion-resistant alloy powder, or magnetic alloy powder. By using as a raw material powder, various metal molded bodies can be produced.

本発明の第3の観点の粉末プレス成形体の製造方法は、ジルコニア(ZrO)粉、アルミナ(Al)粉又は窒化アルミニウム(AlN)粉のセラミック粉末を原料粉として用いることにより、多様なセラミック製の成形体を製造することができる。 The method for producing a powder press-molded body of the third aspect of the present invention uses a ceramic powder of zirconia (ZrO 2 ) powder, alumina (Al 2 O 3 ) powder or aluminum nitride (AlN) powder as a raw material powder, Various ceramic molded bodies can be manufactured.

本発明の第4の観点の粉末プレス成形体の製造方法では、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)又はポリエチレングリコール(PEG)のいずれか又はこれらの組合せの水溶性のバインダを用いる。これにより、このバインダ水溶液と金属粉末又はセラミック粉末とを混合してスラリー化し、金属粉末又はセラミック粉末の所望の造粒粉を製造することができる。また造粒粉の圧粉特性が向上し、更に粉末プレス成形体を焼結したときに脱脂しやすい。   In the method for producing a powder press-molded body according to the fourth aspect of the present invention, water solubility of any one of polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), polyethylene glycol (PEG), or a combination thereof. This binder is used. Thereby, this binder aqueous solution and metal powder or ceramic powder can be mixed and slurried, and the desired granulated powder of metal powder or ceramic powder can be manufactured. Moreover, the compacting characteristics of the granulated powder are improved, and it is easy to degrease when the powder press-molded body is sintered.

本発明の第5の観点の方法によれば、第1ないし第4いずれかの観点の方法で製造された粉末プレス成形体を焼結して焼結品を製造することにより、焼結品間で寸法や形状のばらつきが小さく、しかも従来の金型による粉末プレス成形体の焼結品と劣らない強度を有する金属製又はセラミック製の焼結品を製造することができる。   According to the method of the fifth aspect of the present invention, a sintered product is produced by sintering the powder press-molded body produced by the method of any one of the first to fourth aspects. Thus, it is possible to produce a sintered product made of metal or ceramic having a small variation in size and shape and having a strength not inferior to that of a sintered product of a powder press-molded body using a conventional mold.

本発明の実施形態に係る粉末プレス成形体を製造する装置の構成図である。図1(a)はダイキャビティ内に原料粉を充填した状態を示し、図1(b)は上下パンチ間で原料粉をプレス成形している状態を示す。It is a block diagram of the apparatus which manufactures the powder press molded object which concerns on embodiment of this invention. FIG. 1A shows a state in which raw material powder is filled in a die cavity, and FIG. 1B shows a state in which raw material powder is press-formed between upper and lower punches. 本発明の実施形態に係るダイキャビティ内に原料粉を充填する前の状況を示す図である。It is a figure which shows the condition before filling raw material powder in the die cavity which concerns on embodiment of this invention. 本発明の実施形態で製造された粉末プレス成形体の外観斜視図である。It is an external appearance perspective view of the powder press molding manufactured by embodiment of this invention. 本発明の実施形態に係る下パンチを製造するための光積層造形法を示す概略断面図である。図4(a)は所定の形状を有する第一の硬化薄層を形成する状態を示し、図4(b)はテーブルを僅かに下方に移動させて第二の硬化薄層を形成する状態を示し、図4(c)は所定の立体形状を有する光造形物である下パンチを形成する状態を示す。It is a schematic sectional drawing which shows the optical lamination molding method for manufacturing the lower punch which concerns on embodiment of this invention. FIG. 4A shows a state in which a first cured thin layer having a predetermined shape is formed, and FIG. 4B shows a state in which the table is moved slightly downward to form a second cured thin layer. FIG. 4C shows a state in which a lower punch which is an optically shaped object having a predetermined three-dimensional shape is formed. 実施例及び比較例で得られた焼結品を示す。図5(a)はその平面図を、図5(b)はその側面図をそれぞれ示す。The sintered product obtained by the Example and the comparative example is shown. FIG. 5A shows a plan view thereof, and FIG. 5B shows a side view thereof. 実施例で得られた焼結品の曲げ試験を示す図である。It is a figure which shows the bending test of the sintered product obtained in the Example.

次に本発明を実施するための形態について図面を参照して説明する。   Next, modes for carrying out the present invention will be described with reference to the drawings.

〔原料粉である造粒粉の製造方法〕
最初に、粉末プレス成形体を作るための原料粉である造粒粉の製造方法について説明する。本実施形態の原料粉は金属粉末又はセラミック粉末とバインダとを混合して得られる造粒粉である。この金属粉末としては、鉄粉、Ni粉、Co粉又はこれらの混合粉、合金鋼粉、ステンレス鋼粉、耐食合金粉、又は磁性合金粉等が例示される。特にステンレス鋼粉としては、SUS316L、SUS630、SKD11、SKH57等が例示される。またセラミック粉末としては、ジルコニア(ZrO)粉、アルミナ(Al)粉又は窒化アルミニウム(AlN)粉等が例示される。上記金属粉末又はセラミック粉末の粉末粒度(D50)は20μm以下が好ましい。更に10μm以下がより好ましい。20μmを超えた粉末粒度の金属粉末又はセラミック粉末では、後述する圧力でプレス成形体にしたときに、粉末間に空孔が形成され、後工程の焼結時に空孔が残存し、焼結品の密度及び強度が低下しやすい。なお、本明細書中、粉末粒度(D50)とは、レーザー回折散乱式粒子分布測定装置(型式名:HORIBA LA-950)によって測定した粒子分布(直径)の中央値を3回測定し、この平均値をいう。
[Production method of granulated powder as raw material powder]
Initially, the manufacturing method of the granulated powder which is a raw material powder for making a powder press molding body is demonstrated. The raw material powder of this embodiment is a granulated powder obtained by mixing metal powder or ceramic powder and a binder. Examples of the metal powder include iron powder, Ni powder, Co powder or a mixed powder thereof, alloy steel powder, stainless steel powder, corrosion-resistant alloy powder, and magnetic alloy powder. In particular, examples of stainless steel powder include SUS316L, SUS630, SKD11, and SKH57. Examples of the ceramic powder include zirconia (ZrO 2 ) powder, alumina (Al 2 O 3 ) powder, and aluminum nitride (AlN) powder. The powder particle size (D50) of the metal powder or ceramic powder is preferably 20 μm or less. Furthermore, 10 μm or less is more preferable. In metal powder or ceramic powder having a particle size exceeding 20 μm, when formed into a press-molded body at the pressure described later, voids are formed between the powders, and the voids remain during sintering in the subsequent process. The density and strength of the steel tends to decrease. In this specification, the powder particle size (D50) means the median value of the particle distribution (diameter) measured by a laser diffraction scattering type particle distribution measuring device (model name: HORIBA LA-950) three times. Mean value.

またバインダとしては、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)又はポリエチレングリコール(PEG)のいずれか又はこれらの組合せた水溶性バインダが例示される。上記バインダは、金属粉末又はセラミック粉末の粉末同士を凝集させる糊の役割を果たす。このバインダ水溶液と金属粉末又はセラミック粉末とを混合してスラリー化し、金属粉末又はセラミック粉末の所望の造粒粉を製造することができる。またこのバインダで造粒粉を作ると、造粒粉の圧粉特性が向上し、更には粉末プレス成形体を焼結したときに脱脂しやすい。   Examples of the binder include water-soluble binders such as polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), polyethylene glycol (PEG), or a combination thereof. The binder serves as a glue that aggregates metal powder or ceramic powder. This aqueous binder solution and a metal powder or ceramic powder can be mixed and slurried to produce a desired granulated powder of metal powder or ceramic powder. Moreover, when granulated powder is made with this binder, the compacting characteristics of the granulated powder are improved, and it is easy to degrease when the powder press-molded body is sintered.

造粒粉を作るには、先ず上記バインダを純水に溶かして水溶液にし、上記金属粉末又はセラミック粉末とバインダ水溶液を混合して金属粉末又はセラミック粉末が均一に分散したスラリーにする。ここで、スラリー中、バインダは3〜12質量%、好ましくは5〜8質量%含有する。3質量%未満では、作られる造粒粉の粉末粒度(D50)が小さすぎ、12質量%を超えると、作られる造粒粉の粉末粒度(D50)が大きくなりすぎる。このバインダは、用いる金属粉末又はセラミック粉末の硬度が高い場合、或いはこれらの粉末粒度(D50)が小さい場合、上記範囲内で多く含有させることが好ましい。   In order to produce granulated powder, first, the binder is dissolved in pure water to form an aqueous solution, and the metal powder or ceramic powder and the binder aqueous solution are mixed to form a slurry in which the metal powder or ceramic powder is uniformly dispersed. Here, a binder contains 3-12 mass% in a slurry, Preferably it contains 5-8 mass%. If it is less than 3% by mass, the particle size (D50) of the granulated powder to be produced is too small, and if it exceeds 12% by mass, the particle size (D50) of the granulated powder to be produced is too large. When the hardness of the metal powder or ceramic powder to be used is high, or when these powder particle sizes (D50) are small, it is preferable to contain much this binder within the said range.

本実施形態の造粒装置は次のように構成される。上記スラリーを貯蔵するスラリータンクが逆円錐台状の筒体の上部中心に配置され、筒体内の上部中心に回転する円板が水平に配置され、更に筒体上部に筒体内に向けて熱風を吹き出すドライヤが配置される。逆円錐台状の筒体の下端(円錐先端)は開口し、その下方に造粒粉の捕集容器が配置される。造粒粉を作るには、水平に配置した円板を10000〜20000rpmの速度で回転させ、回転する円板上にスラリータンクからスラリーを300〜500kg/hの割合で滴下させる。円板から飛び散ったスラリーの微小滴は筒体内でドライヤからの熱風により水分が除去されて乾燥し凝集した粉末粒子である球状の造粒粉となる。球状の造粒粉は自重で逆円錐台状の筒体の錐部を伝わって筒体の下端に落下し、筒体の下部開口部から捕集容器に入る。   The granulating apparatus of this embodiment is configured as follows. A slurry tank for storing the slurry is disposed at the upper center of the inverted truncated cone-shaped cylinder, a rotating disk is horizontally disposed at the upper center of the cylinder, and hot air is further directed toward the cylinder at the upper part of the cylinder. A dryer that blows out is arranged. The lower end (conical tip) of the inverted truncated cone-shaped cylinder is opened, and a granulated powder collection container is disposed below the bottom. In order to make the granulated powder, a horizontally disposed disk is rotated at a speed of 10,000 to 20,000 rpm, and the slurry is dropped from the slurry tank at a rate of 300 to 500 kg / h on the rotating disk. The minute droplets of the slurry scattered from the disk become spherical granulated powder which is powder particles which are dried and aggregated by removing moisture by hot air from a dryer in the cylinder. Spherical granulated powder travels through the cone of the inverted truncated cone-shaped cylinder under its own weight, falls to the lower end of the cylinder, and enters the collection container from the lower opening of the cylinder.

上記方法で作製された造粒粉は、粉末粒度(D50)が50〜200μmの球状粉である。この粉末粒度(D50)は上述したバインダ濃度、スラリーの単位時間当りの滴下量、円板の回転速度を調整して得られる。球状の造粒粉の粉末粒度(D50)は80〜100μmが好ましい。球状の造粒粉は、後述する上パンチ、下パンチ及びダイを含む成形型内への流動性に優れる。造粒粉の粉末粒度(D50)が50μm未満である場合、上記成形型のクリアランスから造粒粉が噴出し、所望のプレス成形体が得られない。また200μmを超えると、上記成形型内に造粒粉を充填するときに、細かい部分に造粒粉が充填されなかったり、必要十分な量の造粒粉を成形型内に充填することが困難になったり、造粒粉同士の間に空孔が残り、所望の形状又は所望の密度を有するプレス成形体が得られない。上記粉末粒度(D50)範囲の球状の造粒粉は、成形型が光造形法又は3次元プリンタを用いて立体的に造形され、その成形型が複雑であっても、成形型内の隅々まで造粒粉を行き渡らせることができ、後述する粉末プレス成形体の成形性を向上させることができる。   The granulated powder produced by the above method is a spherical powder having a powder particle size (D50) of 50 to 200 μm. This powder particle size (D50) is obtained by adjusting the binder concentration, the amount of slurry dropped per unit time, and the rotational speed of the disc. The powder particle size (D50) of the spherical granulated powder is preferably 80 to 100 μm. The spherical granulated powder is excellent in fluidity into a mold including an upper punch, a lower punch and a die, which will be described later. When the powder particle size (D50) of the granulated powder is less than 50 μm, the granulated powder is ejected from the clearance of the mold, and a desired press-molded product cannot be obtained. On the other hand, if it exceeds 200 μm, when the granulated powder is filled in the mold, it is difficult to fill the fine mold with the granulated powder or to fill the mold with the necessary and sufficient amount of granulated powder. Or pores remain between the granulated powders, and a press-formed body having a desired shape or a desired density cannot be obtained. The spherical granulated powder in the above-mentioned powder particle size (D50) range is shaped in three dimensions using a stereolithography or a three-dimensional printer, and even if the mold is complicated, every corner in the mold The granulated powder can be spread all the way to the above, and the moldability of the powder press-molded body described later can be improved.

〔粉末プレス成形体の製造方法〕
次に、上記方法で得られた造粒粉を用いて粉末プレス成形体を製造する方法について説明する。先ず、本発明の実施形態に係る粉末プレス成形体を製造する装置(以下、粉末プレス成形装置という。)について説明する。 図2に示すように、本実施形態に係る粉末プレス成形装置10は、ダイプレート11に取付けられたダイ12とこのダイに嵌合する下パンチ13とが形成するダイキャビティ14内に給粉装置20から原料粉である造粒粉Mを充填し、図1(a)及び(b)に示すように、ダイ12内の造粒粉Mを上パンチ15と下パンチ13間に圧縮成形する装置である。図2に示す給粉装置20は、原料粉である造粒粉を貯蔵する高位置に設けられたホッパ16と底のない箱状のフィーダ17とを可撓性ホース18により連結して構成される。フィーダ17は、アクチュエータの駆動ロッド19により図2に示す待機位置からダイに向かって(図では左方向に)前進し、ダイ12の上に至って原料粉である造粒粉をダイキャビティ14内に流し込み、次いでダイ内に流し込んだ原料粉である造粒粉を上面をフィーダ17の下縁で平らにしつつ待機位置まで後退して充填の1サイクルを終了する。
[Production method of powder press-molded body]
Next, a method for producing a powder press-molded body using the granulated powder obtained by the above method will be described. First, an apparatus (hereinafter referred to as a powder press molding apparatus) for producing a powder press molded body according to an embodiment of the present invention will be described. As shown in FIG. 2, the powder press molding apparatus 10 according to this embodiment includes a powder feeding apparatus in a die cavity 14 formed by a die 12 attached to a die plate 11 and a lower punch 13 fitted to the die 12. An apparatus for filling granulated powder M, which is a raw material powder, from 20 and compression-molding granulated powder M in die 12 between upper punch 15 and lower punch 13 as shown in FIGS. 1 (a) and 1 (b). It is. A powder feeding device 20 shown in FIG. 2 is configured by connecting a hopper 16 provided at a high position for storing granulated powder, which is a raw material powder, and a box-shaped feeder 17 having no bottom, by a flexible hose 18. The The feeder 17 advances from the standby position shown in FIG. 2 toward the die (leftward in the figure) by the actuator drive rod 19, reaches the die 12, and feeds the granulated powder as raw material powder into the die cavity 14. Then, the granulated powder, which is the raw material powder poured into the die, is moved back to the standby position while the upper surface is flattened at the lower edge of the feeder 17 to complete one cycle of filling.

図1(a)及び(b)に示すように、粉末プレス成形装置10の下パンチ13はグランドプレート21を介して基台22に固定される。ダイ12を取付けるダイプレート11はグランドプレート21を貫通するコラム23を介してコラムプレート24に支持され、コラムプレート24は下ラム26に取付けられる。   As shown in FIGS. 1A and 1B, the lower punch 13 of the powder press molding apparatus 10 is fixed to a base 22 via a ground plate 21. The die plate 11 to which the die 12 is attached is supported by the column plate 24 via the column 23 penetrating the ground plate 21, and the column plate 24 is attached to the lower ram 26.

このように構成された粉末プレス成形装置10では、ダイ12は下ラム26の昇降に従って、同時に上下動する。図1(a)に示すように、原料粉である造粒粉Mをダイキャビティ14内に充填して上昇した状態のダイ12に対して、上パンチ15を下降させてダイキャビティ14内に嵌入して原料粉である造粒粉を圧縮する。図1(b)に示すように、上パンチ15により原料粉である造粒粉を圧縮するとともに、下パンチ13を上昇させて更に原料粉である造粒粉を圧縮する。上パンチ15と下パンチ13による原料粉である造粒粉の圧縮によりグリーン体(圧粉体)である図3に示される粉末プレス成形体Pが形成される。   In the powder press molding apparatus 10 configured as described above, the die 12 moves up and down simultaneously as the lower ram 26 moves up and down. As shown in FIG. 1 (a), the upper punch 15 is lowered and inserted into the die cavity 14 with respect to the die 12 that has been filled with the granulated powder M, which is a raw material powder, and has been raised. Then, the granulated powder that is the raw material powder is compressed. As shown in FIG. 1B, the granulated powder as the raw material powder is compressed by the upper punch 15, and the lower punch 13 is raised to further compress the granulated powder as the raw material powder. By pressing the granulated powder, which is a raw material powder, by the upper punch 15 and the lower punch 13, a powder press-molded body P shown in FIG.

粉末プレス成形体Pを形成するときのプレス成形圧力は、50〜300MPa、好ましくは100〜200MPaである。プレス成形圧力が50MPa未満である場合、造粒粉がプレス成形圧力で破壊又は変形し難く、粉末プレス成形体内に空孔が残り、この粉末プレス成形体を焼結しても焼結品の密度及び強度を高められない。またプレス成形圧力が200MPaを超えると、後述する樹脂製成形型がプレス時に摩耗したり、割れやクラックを生じる。またプレス成形温度は、本実施形態では特別に加熱して温度を上昇させる必要はない。繰り返しプレス成形したときの造粒粉相互の摩擦熱、粉末プレス成形体を成形型から押し出すときの摩擦熱等による樹脂製成形型の温度が樹脂製成形型の耐熱温度以下であればよい。   The press molding pressure when forming the powder press-molded body P is 50 to 300 MPa, preferably 100 to 200 MPa. When the press molding pressure is less than 50 MPa, the granulated powder is not easily broken or deformed by the press molding pressure, and voids remain in the powder press molded body. Even if this powder press molded body is sintered, the density of the sintered product And the strength cannot be increased. On the other hand, when the press molding pressure exceeds 200 MPa, a resin mold described later is worn during pressing, or cracks and cracks occur. Further, the press molding temperature does not need to be raised by special heating in this embodiment. The temperature of the resin mold due to frictional heat between the granulated powders when repeatedly press-molded, frictional heat when extruding the powder press-molded body from the mold, or the like may be lower than the heat resistance temperature of the resin mold.

本実施形態のダイ12、下パンチ13及び上パンチ15からなる成形型は樹脂製成形型であって、光造形法又は3次元プリンタを用いて立体的に造形される。本実施形態では、光造形物である樹脂製成形型は、光積層造形法で代表される光学的立体造形法により製造される。図4(a)〜(c)は、上記下パンチ13を光積層造形法で造形する工程を示す。予め下パンチ13に相当する造形物の3次元データを取得し、そのデータを計算上で等間隔で輪切りにしスライスデータとして記憶しておく。図4(a)に示すように、液状の光硬化性組成物31を収容した容器32の液槽内に、液面33からわずかな距離だけ下方に上面が位置するように、鉛直方向に移動可能なテーブル34を配置する。液状の光硬化性組成物は、(メタ)アクリル系モノマーなどのラジカル重合性化合物、エポキシ化合物などのカチオン重合化合物を含む重合性モノマー及び光重合開始剤などを含有する。テーブル34を配置した後、このテーブル34上の液状の光硬化性組成物31の薄層に、紫外線レーザ装置36から紫外線レーザ光37を上記記憶したデータに基づいた所定のパターンで走査して、所定の形状を有する第一の硬化薄層13aを形成させる。次いで、図4(b)に示すように、テーブル34の位置を僅かな距離だけ下方に移動させることによって、第一の硬化薄層13aの上に液状の光硬化性組成物31の薄層を形成させた後、この薄層に紫外線レーザ光37を上記記憶したデータに基づいた所定のパターンで走査して、所定の形状を有する第二の硬化薄層13bを形成させる。以後、同様の操作を繰り返して、最終的に、図4(c)に示すように、複数の硬化薄層13a、13b、・・・、13xの集合体である所定の立体形状を有する光造形物である下パンチ13を得る。図示しないが、上パンチ及びダイも下パンチ13と同様の方法で作製される。   The mold composed of the die 12, the lower punch 13 and the upper punch 15 of the present embodiment is a resin mold, and is three-dimensionally formed using an optical modeling method or a three-dimensional printer. In this embodiment, the resin mold which is an optical modeling object is manufactured by the optical three-dimensional modeling method represented by the optical lamination modeling method. 4A to 4C show a process of modeling the lower punch 13 by an optical layered modeling method. The three-dimensional data of the shaped object corresponding to the lower punch 13 is acquired in advance, and the data is cut into circles at equal intervals and stored as slice data. As shown in FIG. 4 (a), it moves in the vertical direction so that the upper surface is located at a slight distance from the liquid surface 33 in the liquid tank of the container 32 containing the liquid photocurable composition 31. A possible table 34 is arranged. The liquid photocurable composition contains a radically polymerizable compound such as a (meth) acrylic monomer, a polymerizable monomer containing a cationically polymerizable compound such as an epoxy compound, a photopolymerization initiator, and the like. After arranging the table 34, the thin layer of the liquid photocurable composition 31 on the table 34 is scanned with the ultraviolet laser beam 37 from the ultraviolet laser device 36 in a predetermined pattern based on the stored data, A first cured thin layer 13a having a predetermined shape is formed. Next, as shown in FIG. 4B, by moving the position of the table 34 downward by a small distance, a thin layer of the liquid photocurable composition 31 is formed on the first cured thin layer 13a. After the formation, the ultraviolet laser beam 37 is scanned on the thin layer in a predetermined pattern based on the stored data to form the second cured thin layer 13b having a predetermined shape. Thereafter, the same operation is repeated, and finally, as shown in FIG. 4C, stereolithography having a predetermined three-dimensional shape that is an aggregate of a plurality of cured thin layers 13a, 13b,. The lower punch 13 which is a thing is obtained. Although not shown, the upper punch and the die are manufactured by the same method as that for the lower punch 13.

なお、本発明の造形物である樹脂製成形型は、上記の光積層造形法に限らず、3次元プリンタによる、アクリル系光硬化樹脂を使用したインクジェット紫外線硬化方式のものや、ABS樹脂(アクリロニトリル・ブタジエン・スチレン共重合合成樹脂)を使用した熱溶解積層方式のものや、パウダーを使用した粉末固着方式のもので製造してもよい。また本発明の樹脂製成形型には、カーボン材料、金属材料、セラミック材料等の強度又は耐熱性を、材質の観点から従来の金型に近づける目的の材料、即ち樹脂以外の材料は一切含まれていない。そのため本発明の樹脂製成形型の耐熱温度は、原料樹脂の材質に依存するが、70〜100℃の範囲にある。本明細書で「樹脂製成形型の耐熱温度」とは、樹脂製成形型を構成する材料が分解、溶解などの変質をせず、室温(25℃)での構造と同等の構造を維持している最高温度をいう。更に本発明の粉末プレス成形装置の樹脂製成形型は、ダイ、下パンチ、上パンチ及びコアから構成されるものを含む。   In addition, the resin mold which is a modeled article of the present invention is not limited to the above-described optical layered modeling method, but is an inkjet ultraviolet curing method using an acrylic photocuring resin or an ABS resin (acrylonitrile) using a three-dimensional printer. A heat melting lamination method using butadiene / styrene copolymer synthetic resin) or a powder fixing method using powder may be used. In addition, the resin mold of the present invention does not include any material other than a resin intended to bring the strength or heat resistance of carbon materials, metal materials, ceramic materials, etc. close to those of conventional molds from the viewpoint of materials. Not. Therefore, the heat-resistant temperature of the resin mold of the present invention is in the range of 70 to 100 ° C., although it depends on the material of the raw material resin. In this specification, the “heat-resistant temperature of the resin mold” means that the material constituting the resin mold does not undergo degradation such as decomposition and dissolution, and maintains a structure equivalent to that at room temperature (25 ° C.). Says the highest temperature. Furthermore, the resin mold of the powder press molding apparatus of the present invention includes a die constituted by a die, a lower punch, an upper punch and a core.

〔焼結品の製造方法〕
次に、上記方法で得られた粉末プレス成形体Pを用いて焼結品を製造する方法について説明する。先ず、粉末プレス成形体の脱脂が行われる。脱脂工程では、粉末プレス成形体に含まれるバインダが除去される。例えば粉末プレス成形体を大気中および窒素ガスのような非酸化性雰囲気下で、200〜500℃の温度で、2〜8時間加熱処理する。
[Method of manufacturing sintered product]
Next, a method for producing a sintered product using the powder press-molded product P obtained by the above method will be described. First, the powder press-molded body is degreased. In the degreasing step, the binder contained in the powder press molded body is removed. For example, the powder press-molded body is heat-treated at a temperature of 200 to 500 ° C. for 2 to 8 hours in the air and in a non-oxidizing atmosphere such as nitrogen gas.

続いて、脱脂された粉末プレス成形体を通常の焼結条件、例えば大気中窒素ガスのような非酸化性雰囲気下で、1000〜1500℃まで昇温し、その温度で0.5〜8時間保持して焼成される。これにより焼結品が得られる。なお、脱脂と焼結とはそれぞれ別々の加熱炉で行っても、同じ加熱炉で行ってもよい。   Subsequently, the degreased powder press-molded body is heated to 1000 to 1500 ° C. under a normal sintering condition, for example, a non-oxidizing atmosphere such as nitrogen gas in the atmosphere, and the temperature is 0.5 to 8 hours. Hold and baked. Thereby, a sintered product is obtained. Note that degreasing and sintering may be performed in separate heating furnaces or in the same heating furnace.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<造粒粉の製造例>
表1に示すように、ステンレス鋼粉であるSUS316LとバインダであるPVAとを混合した造粒粉(No.1〜No.6)と、セラミック粉であるジルコニア(ZrO)粉とバインダであるCMCとを混合した造粒粉(No.7)を原料粉とする7種類の造粒粉を作製した。No.1〜No.6のステンレス鋼粉の粉末粒度(D50)は全て7μmであり、No.7のジルコニア粉の粉末粒度(D50)は0.09μmであった。No.1〜No.6の造粒粉の粉末粒度(D50)はバインダのCMCの含有量を変えることにより、45〜210μmに調製した。またNo.7の造粒粉の粉末粒度(D50)は80μmに調製した。
<Production example of granulated powder>
As shown in Table 1, granulated powder (No. 1 to No. 6) obtained by mixing SUS316L, which is stainless steel powder, and PVA, which is a binder, and zirconia (ZrO 2 ) powder, which is a ceramic powder, and a binder. Seven types of granulated powder were produced using granulated powder (No. 7) mixed with CMC as raw material powder. The powder particle size (D50) of the stainless steel powders of No. 1 to No. 6 was all 7 μm, and the powder particle size (D50) of the zirconia powder of No. 7 was 0.09 μm. The particle size (D50) of the granulated powders No. 1 to No. 6 was adjusted to 45 to 210 μm by changing the content of CMC in the binder. The powder particle size (D50) of the granulated powder of No. 7 was adjusted to 80 μm.

<成形型の製造例>
先ず、3次元プリンタでそれぞれ造形した紫外線硬化樹脂からなる下パンチ、上パンチ及びダイから構成された成形型を用意した。ここでは、図5(a)及び図5(b)に示すように、JISZ2201の14号に準じたダンベル状試験片S(厚み3.5mm、平行部幅6mm、平行部長さ30mm、肩部の半径20R、つかみ部幅10mm、全長100mm)が焼結品として得られるように成形型を作製した。
<Example of mold production>
First, a molding die composed of a lower punch, an upper punch, and a die each made of an ultraviolet curable resin each modeled by a three-dimensional printer was prepared. Here, as shown in FIGS. 5 (a) and 5 (b), a dumbbell-shaped test piece S according to JISZ2201 No. 14 (thickness 3.5 mm, parallel part width 6 mm, parallel part length 30 mm, shoulder part) A mold was prepared so that a radius of 20R, a grip width of 10 mm, and a total length of 100 mm were obtained as a sintered product.

<実施例1>
表1に示すNo.3のSUS316Lのステンレス鋼粉を含む造粒粉を粉末プレス成形装置の成形型に充填し、表2に示すプレス成形圧力50MPa、室温下の粉末プレス成形条件で粉末プレス成形した。その成形体を窒素ガス雰囲気下、320℃の温度で120分保持して脱脂し、続いて脱脂した成形体を窒素ガス雰囲気下、1300℃の温度で120分保持して図5に示す焼結品を得た。
<Example 1>
The granulated powder containing SUS316L stainless steel powder of No. 3 shown in Table 1 is filled in the mold of the powder press molding apparatus, and the powder press molding is performed under the press molding pressure of 50 MPa and the powder press molding conditions at room temperature shown in Table 2. did. The molded body was degreased by holding it at a temperature of 320 ° C. for 120 minutes under a nitrogen gas atmosphere, and then the degreased molded body was held at a temperature of 1300 ° C. for 120 minutes under a nitrogen gas atmosphere and sintered as shown in FIG. I got a product.

<実施例2>
表1に示すNo.2のSUS316Lのステンレス鋼粉を含む造粒粉を実施例1と同じ粉末プレス成形装置の成形型に充填し、プレス成形圧力100MPaにして以外、実施例1と同じ条件でプレス成形、脱脂及び焼結して焼結品を得た。
<Example 2>
Under the same conditions as in Example 1 except that the granulated powder containing SUS316L stainless steel powder of No. 2 shown in Table 1 is filled in the mold of the same powder press molding apparatus as in Example 1 and the press molding pressure is 100 MPa. A sintered product was obtained by press molding, degreasing and sintering.

<実施例3>
表1に示すNo.3のSUS316Lのステンレス鋼粉を含む造粒粉を実施例1と同じ粉末プレス成形装置の成形型に充填し、プレス成形圧力100MPaにして以外、実施例1と同じ条件でプレス成形、脱脂及び焼結して焼結品を得た。
<Example 3>
Under the same conditions as in Example 1 except that the granulated powder containing SUS316L stainless steel powder of No. 3 shown in Table 1 is filled in the mold of the same powder press molding apparatus as in Example 1 and the press molding pressure is 100 MPa. A sintered product was obtained by press molding, degreasing and sintering.

<実施例4>
表1に示すNo.4のSUS316Lのステンレス鋼粉を含む造粒粉を実施例1と同じ粉末プレス成形装置の成形型に充填し、プレス成形圧力100MPaにして以外、実施例1と同じ条件でプレス成形、脱脂及び焼結して焼結品を得た。
<Example 4>
Under the same conditions as in Example 1 except that the granulated powder containing SUS316L stainless steel powder of No. 4 shown in Table 1 is filled in the mold of the same powder press molding apparatus as in Example 1 and the press molding pressure is 100 MPa. A sintered product was obtained by press molding, degreasing and sintering.

<実施例5>
表1に示すNo.5のSUS316Lのステンレス鋼粉を含む造粒粉を実施例1と同じ粉末プレス成形装置の成形型に充填し、プレス成形圧力100MPaにして以外、実施例1と同じ条件でプレス成形、脱脂及び焼結して焼結品を得た。
<Example 5>
Under the same conditions as in Example 1, except that the granulated powder containing SUS316L stainless steel powder of No. 5 shown in Table 1 is filled in the mold of the same powder press molding apparatus as in Example 1 and the press molding pressure is 100 MPa. A sintered product was obtained by press molding, degreasing and sintering.

<実施例6>
表1に示すNo.3のSUS316Lのステンレス鋼粉を含む造粒粉を実施例1と同じ粉末プレス成形装置の成形型に充填し、プレス成形圧力200MPaにして以外、実施例1と同じ条件でプレス成形、脱脂及び焼結して焼結品を得た。
<Example 6>
Under the same conditions as in Example 1, except that the granulated powder containing SUS316L stainless steel powder of No. 3 shown in Table 1 is filled in the mold of the same powder press molding apparatus as in Example 1 and the press molding pressure is 200 MPa. A sintered product was obtained by press molding, degreasing and sintering.

<比較例1>
表1に示すNo.1のSUS316Lのステンレス鋼粉を含む造粒粉を実施例1と同じ粉末プレス成形装置の成形型に充填し、プレス成形圧力100MPaにして成形したところ、バインダ量が2質量%と少なく、かつ造粒粉の粉末粒度(D50)が45μmと小さかったため、所望の形状を有する成形体を作ることができず、脱脂及び焼結は行わなかった。
<Comparative Example 1>
The granulated powder containing stainless steel powder of No. 1 SUS316L shown in Table 1 was filled in the same mold of the powder press molding apparatus as in Example 1 and molded at a press molding pressure of 100 MPa. %, And the powder particle size (D50) of the granulated powder was as small as 45 μm, so a molded product having a desired shape could not be produced, and degreasing and sintering were not performed.

<比較例2>
表1に示すNo.3のSUS316Lのステンレス鋼粉を含む造粒粉を実施例1と同じ粉末プレス成形装置の成形型に充填し、プレス成形圧力45MPaにして成形したところ、成形圧力が45MPaと低かったため、所望の形状を有する成形体を作ることができず、脱脂及び焼結は行わなかった。
<Comparative example 2>
The granulated powder containing SUS316L stainless steel powder of No. 3 shown in Table 1 was filled in the mold of the same powder press molding apparatus as in Example 1 and molded at a press molding pressure of 45 MPa. The molding pressure was 45 MPa. Since it was low, the molded object which has a desired shape could not be made, and degreasing and sintering were not performed.

<比較例3>
表1に示すNo.3のSUS316Lのステンレス鋼粉を含む造粒粉を実施例1と同じ粉末プレス成形装置の成形型に充填し、プレス成形圧力210MPaにして成形したところ、成形圧力が210MPaと高かったため、下パンチと上パンチに割れを生じて成形ができなかった。このため、脱脂及び焼結もできなかった。
<Comparative Example 3>
The granulated powder containing SUS316L stainless steel powder of No. 3 shown in Table 1 was filled in the mold of the same powder press molding apparatus as in Example 1 and molded at a press molding pressure of 210 MPa. The molding pressure was 210 MPa. Since it was high, the lower punch and the upper punch were cracked and could not be molded. For this reason, degreasing and sintering could not be performed.

<比較例4>
表1に示すNo.6のSUS316Lのステンレス鋼粉を含む造粒粉を実施例1と同じ粉末プレス成形装置の成形型に充填し、プレス成形圧力100MPaにして以外、実施例1と同じ条件でプレス成形、脱脂及び焼結して焼結品を得た。
<Comparative example 4>
Under the same conditions as in Example 1, except that the granulated powder containing SUS316L stainless steel powder of No. 6 shown in Table 1 is filled in the mold of the same powder press molding apparatus as in Example 1 and the press molding pressure is 100 MPa. A sintered product was obtained by press molding, degreasing and sintering.

<参考例1>
実施例1と同じ粉末プレス成形装置であるが、成形型の下パンチ、上パンチ及びダイが工具鋼からなる金型を用い、、表1に示すNo.3のSUS316Lのステンレス鋼粉を含む造粒粉を金型に充填し、プレス成形圧力300MPaにして室温下でプレス成形した。成形した成形体を実施例1と同じ条件で脱脂及び焼結して焼結品を得た。
<Reference Example 1>
The same powder press molding apparatus as in Example 1, except that the lower punch, the upper punch and the die of the mold are made of tool steel and contain No. 3 SUS316L stainless steel powder shown in Table 1. Granules were filled in a mold, and press-molded at room temperature with a press-molding pressure of 300 MPa. The molded body was degreased and sintered under the same conditions as in Example 1 to obtain a sintered product.

<実施例7>
表1に示すNo.7のジルコニア粉を含む造粒粉を実施例1と同じ粉末プレス成形装置の成形型に充填し、表2に示すプレス成形圧力200MPa、室温下の粉末プレス成形条件で粉末プレス成形した。その成形体を窒素ガス雰囲気下、500℃の温度で120分保持して脱脂し、続いて脱脂した成形体を窒素ガス雰囲気下、1450℃の温度で120分保持して図5に示す焼結品を得た。
<Example 7>
The granulated powder containing No. 7 zirconia powder shown in Table 1 is filled in the same mold of the powder press molding apparatus as in Example 1, and the powder is pressed under the press molding conditions of 200 MPa and room temperature under the conditions shown in Table 2. Press molded. The molded body was degreased by holding it at a temperature of 500 ° C. for 120 minutes in a nitrogen gas atmosphere, and then the sintered body shown in FIG. I got a product.

<比較結果その1(プレス評価と型の破損有無)>
実施例1〜7、比較例1〜4及び参考例1でプレス成形した成形体について、成形後に形状を保持しているかを確認するため、ひび割れ、キズ及び欠けの有無を目視により判定した。更に上パンチ、下パンチ及びダイの各破損の有無を目視により判定した。これらの結果を表3に示す。
<Comparison result 1 (Press evaluation and presence or absence of breakage of mold)>
About the molded object press-molded by Examples 1-7, Comparative Examples 1-4, and Reference Example 1, in order to confirm whether the shape was hold | maintained after shaping | molding, the presence or absence of a crack, a crack, and a chip | tip was determined visually. Further, the presence or absence of breakage of the upper punch, the lower punch, and the die was visually determined. These results are shown in Table 3.

Figure 2017024012
Figure 2017024012

Figure 2017024012
Figure 2017024012

<比較結果その2(焼結品の評価)>
実施例1〜7、比較例4及び参考例1で得られたSUS316Lの焼結品について、アルキメデス法により、理論密度(100%)に対する相対密度を百分率で求め、また実施例1〜6及び参考例1のSUS316Lの焼結品であるJISZ2201の14号に準じたダンベル状試験片について、JISZ2241(2011)(金属材料引張り試験方法)に準じて、室温でそれぞれ引張強度を測定した。その結果を表3に示す。また図6に示すように、実施例7のジルコニア粉の焼結品である上記ダンベル状試験片Sを基板40上の支点間の距離が20mmである2つの支点41、41に載せ、2つの支点41、41の中心に相当する位置Tに1mm/分の速度で室温下、荷重を加えて3点曲げ試験を行い、その曲げ強度を測定した。曲げ強度は曲げ荷重が最大となったときの応力の値とした。その結果を表4に示す。
<Comparison result 2 (evaluation of sintered product)>
For the sintered products of SUS316L obtained in Examples 1 to 7, Comparative Example 4 and Reference Example 1, the relative density with respect to the theoretical density (100%) was obtained as a percentage by Archimedes method, and Examples 1 to 6 and Reference About the dumbbell-shaped test piece according to No. 14 of JISZ2201 which is a sintered product of SUS316L of Example 1, the tensile strength was measured at room temperature according to JISZ2241 (2011) (metallic material tensile test method). The results are shown in Table 3. As shown in FIG. 6, the dumbbell-shaped test piece S, which is a sintered product of the zirconia powder of Example 7, is placed on two fulcrums 41, 41 having a distance between fulcrums of the substrate 40 of 20 mm. A load was applied to the position T corresponding to the center of the fulcrums 41, 41 at a speed of 1 mm / min at room temperature, a three-point bending test was performed, and the bending strength was measured. The bending strength was the value of stress when the bending load reached the maximum. The results are shown in Table 4.

Figure 2017024012
Figure 2017024012

Figure 2017024012
Figure 2017024012

表3から明らかなように、成形型として金型を用いた参考例1では、当然のことながら成形性は良好で型の破損はなかった。前述したように、比較例1及び2では、成形型の破損はなかったが、所望の形状を有する成形体を作ることができなかった。また比較例3では成形型(上下パンチ)が破損して成形自体できなかった。これに対して実施例1〜6及び比較例4では所望の形状を有する成形体を作ることができ、成形型の破損もなかった。相対密度と引張強度に関しては、参考例1で得られたSUS316Lの焼結品の相対密度は97%と高く、引張強度も520MPaと高かった。これに対して、比較例4で得られたSUS316Lの焼結品の相対密度は参考例1のそれよりも89%と低く、引張強度も参考例1のそれよりも404MPaと低かった。これは比較例4の造粒粉はバインダ含有量が13質量%と高く、造粒粉の粉末粒度(D50)が210μmであるため、粉末プレス成形体中に空孔が残ったためと推定された。また実施例1〜6で得られたSUS316Lの焼結品の相対密度は参考例1のそれより若干低い93〜96%であり、これらの引張強度も451〜497MPaであって、参考例1の引張強度並みであった。これにより実施例1〜6の焼結品は従来の金型を用いた粉末プレス成形体から作られた焼結品と密度と強度において劣らないことが判明した。また表4から明らかなように、実施例7で得られたジルコニア粉から作られた焼結品の相対密度は参考例1並みの99%であり、その曲げ強度は832MPaであった。   As is apparent from Table 3, in Reference Example 1 in which a mold was used as the mold, it was natural that the moldability was good and the mold was not damaged. As described above, in Comparative Examples 1 and 2, the mold was not damaged, but a molded body having a desired shape could not be produced. Further, in Comparative Example 3, the mold (upper and lower punches) was damaged and could not be molded. On the other hand, in Examples 1 to 6 and Comparative Example 4, a molded body having a desired shape could be produced, and the mold was not damaged. Regarding the relative density and the tensile strength, the relative density of the sintered product of SUS316L obtained in Reference Example 1 was as high as 97%, and the tensile strength was as high as 520 MPa. On the other hand, the relative density of the sintered product of SUS316L obtained in Comparative Example 4 was 89% lower than that of Reference Example 1, and the tensile strength was 404 MPa lower than that of Reference Example 1. This is presumably because the granulated powder of Comparative Example 4 had a high binder content of 13% by mass and the granulated powder had a powder particle size (D50) of 210 μm, so that pores remained in the powder press compact. . Moreover, the relative density of the sintered product of SUS316L obtained in Examples 1 to 6 is 93 to 96% which is slightly lower than that of Reference Example 1, and the tensile strength thereof is also 451 to 497 MPa. The tensile strength was almost the same. Thus, it was found that the sintered products of Examples 1 to 6 were not inferior in density and strength to the sintered product made from a powder press-molded body using a conventional mold. As is clear from Table 4, the relative density of the sintered product made from the zirconia powder obtained in Example 7 was 99%, which was the same as that of Reference Example 1, and the bending strength was 832 MPa.

<比較結果その3(繰り返しのプレス成形性評価)>
実施例1と同一の粉末プレス成形装置に用い、実施例1と同一の上パンチ、下パンチ及びダイからなる成形型に実施例1と同一の造粒粉を充填し、粉末プレス成形を繰り返し行った。100回の粉末プレス成形後、上パンチ、下パンチ及びダイについて、ひび割れ、キズ、欠けなどを目視により検査した。また100個のプレス成形体のひび割れ、キズ、欠けの有無を目視により判定した。また成形体が所定の寸法通りにプレス成形されているか目視により判定した。その結果、上パンチ、下パンチ及びダイは、最初のプレス成形後と同一の外観を有し、ひび割れ、キズ、欠けは全く無かった。このことは、100個目のプレス成形体が最初にプレスした成形体と同形同大で、上パンチ、下パンチ及びダイと同様にひび割れ、キズ、欠けが皆無であったことからも実証された。
<Comparison result 3 (repetitive press formability evaluation)>
Using the same powder press molding apparatus as in Example 1, the same granulated powder as in Example 1 is filled in a mold consisting of the same upper punch, lower punch and die as in Example 1, and powder press molding is repeated. It was. After 100 times of powder press molding, the upper punch, the lower punch and the die were visually inspected for cracks, scratches, chips and the like. In addition, the presence or absence of cracks, scratches, and chips in 100 press-formed bodies was visually determined. Further, it was visually determined whether the molded body was press-molded according to predetermined dimensions. As a result, the upper punch, the lower punch and the die had the same appearance as after the first press molding, and there were no cracks, scratches or chips. This is also demonstrated by the fact that the 100th press-molded body was the same shape and size as the first pressed body, and there were no cracks, scratches, or chips as with the upper punch, lower punch and die. It was.

M 原料粉である造粒粉
P 粉末プレス成形体
10 粉末プレス成形体を製造する装置(粉末プレス成形装置)
11 ダイプレート
12 ダイ
13 下パンチ
14 ダイキャビティ
15 上パンチ
16 ホッパ
17 フィーダ
18 可撓性ホース
19 駆動ロッド
21 グランドプレート
22 基台
23 コラム
24 コラムプレート
26 下ラム
M Granulated powder which is raw material powder P Powder press molding body 10 Equipment for producing powder press molding body (powder press molding equipment)
11 Die Plate 12 Die 13 Lower Punch 14 Die Cavity 15 Upper Punch 16 Hopper 17 Feeder 18 Flexible Hose 19 Drive Rod 21 Ground Plate 22 Base 23 Column 24 Column Plate 26 Lower Ram

本発明の粉末プレス成形体の製造方法は、玩具、日用雑貨品、自動車部品、電気部品などの試作品用の成形体を簡便にかつ安価に製造するのに用いられる。   The method for producing a powder press-molded body of the present invention is used to easily and inexpensively produce a molded body for prototypes such as toys, daily goods, automobile parts, and electrical parts.

Claims (5)

下パンチとダイにより形成されるダイキャビティ内に充填した原料粉を前記下パンチと上パンチ間にプレス成形することにより粉末プレス成形体を製造する方法において、
前記下パンチ、前記上パンチ及び前記ダイを含む成形型が光造形法又は3次元プリンタを用いて立体的に造形された樹脂以外の材料を含まない光硬化性樹脂からなる樹脂製成形型であり、
前記原料粉が金属粉末又はセラミック粉末とバインダとを混合して得られた粉末粒度(D50)が50〜200μmの球状の造粒粉であり、前記造粒粉100質量%中、前記バインダを3〜12質量%含有し、
前記造粒粉のプレス成形を50〜300MPaのプレス圧力と前記樹脂製成形型の耐熱温度以下のプレス温度で行うことを特徴とする粉末プレス成形体の製造方法。
In a method for producing a powder press-molded body by press-molding a raw material powder filled in a die cavity formed by a lower punch and a die between the lower punch and the upper punch,
The molding die including the lower punch, the upper punch, and the die is a resin molding die made of a photocurable resin that does not contain a material other than a resin that is three-dimensionally modeled using a stereolithography method or a three-dimensional printer. ,
The raw material powder is a spherical granulated powder having a powder particle size (D50) obtained by mixing a metal powder or ceramic powder and a binder of 50 to 200 μm, and 3% of the binder is contained in 100% by mass of the granulated powder. Containing ~ 12% by mass,
A method for producing a powder press-molded product, wherein the granulated powder is press-molded at a press pressure of 50 to 300 MPa and a press temperature not higher than a heat resistant temperature of the resin mold.
前記金属粉末が、鉄粉、Ni粉、Co粉又はこれらの混合粉、合金鋼粉、ステンレス鋼粉、耐食合金粉、又は磁性合金粉である請求項1記載の粉末プレス成形体の製造方法。   The method for producing a powder press-molded body according to claim 1, wherein the metal powder is iron powder, Ni powder, Co powder or a mixed powder thereof, alloy steel powder, stainless steel powder, corrosion-resistant alloy powder, or magnetic alloy powder. 前記セラミック粉末が、ジルコニア(ZrO)粉、アルミナ(Al)粉又は窒化アルミニウム(AlN)粉である請求項1記載の粉末プレス成形体の製造方法。 The method for producing a powder press-molded body according to claim 1, wherein the ceramic powder is zirconia (ZrO 2 ) powder, alumina (Al 2 O 3 ) powder, or aluminum nitride (AlN) powder. 前記バインダがポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)又はポリエチレングリコール(PEG)のいずれか又はこれらの組合せである請求項1ないし3いずれか1項に記載の粉末プレス成形体の製造方法。   The powder press molding according to any one of claims 1 to 3, wherein the binder is polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), polyethylene glycol (PEG), or a combination thereof. Body manufacturing method. 請求項1ないし4いずれか1項に記載の方法により製造された粉末プレス成形体を焼結して焼結品を製造する方法。   A method for producing a sintered product by sintering a powder press-molded product produced by the method according to claim 1.
JP2015141836A 2015-07-16 2015-07-16 Method of manufacturing powder pressed compact Active JP6549435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015141836A JP6549435B2 (en) 2015-07-16 2015-07-16 Method of manufacturing powder pressed compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015141836A JP6549435B2 (en) 2015-07-16 2015-07-16 Method of manufacturing powder pressed compact

Publications (2)

Publication Number Publication Date
JP2017024012A true JP2017024012A (en) 2017-02-02
JP6549435B2 JP6549435B2 (en) 2019-07-24

Family

ID=57945291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015141836A Active JP6549435B2 (en) 2015-07-16 2015-07-16 Method of manufacturing powder pressed compact

Country Status (1)

Country Link
JP (1) JP6549435B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108312606A (en) * 2018-02-06 2018-07-24 江苏铭格锻压设备有限公司 A kind of four-column hydraulic press
GB2566934A (en) * 2017-09-20 2019-04-03 Bae Systems Plc Material for 3D printing and a 3D printed device
CN109570310A (en) * 2018-12-24 2019-04-05 南京宝色股份公司 A kind of new titanium alloy curved surface forming method
CN110014503A (en) * 2019-05-07 2019-07-16 罗厚镇 A kind of Production of Ceramics press machine
CN110447121A (en) * 2018-01-12 2019-11-12 株式会社Lg化学 Bag film and the method for manufacturing this bag of film
CN112011702A (en) * 2020-08-30 2020-12-01 中南大学 Method for preparing nano-phase reinforced nickel-based high-temperature alloy by adopting micro-ceramic particles
WO2021073869A1 (en) * 2019-10-15 2021-04-22 Maag Automatik Gmbh Die plate for hot die face granulation of melts and method for the production thereof
CN113042732A (en) * 2021-03-09 2021-06-29 吉林大学 3D printing magnetic control deformation clamping device and method capable of being implanted into organism
CN114570924A (en) * 2022-04-29 2022-06-03 矿冶科技集团有限公司 Binder, 5-15 micron tungsten carbide powder and preparation method thereof
CN115214045A (en) * 2022-06-24 2022-10-21 滁州燕荣塑料科技有限公司 Granulation forming device for reinforced nylon and forming method thereof
US11491706B2 (en) 2017-09-20 2022-11-08 Bae Systems Plc Material for 3D printing and a 3D printed device
CN115597318A (en) * 2022-10-20 2023-01-13 湖南宏工智能科技有限公司(Cn) Fluidization type ultra-low temperature freezing bin
KR102509103B1 (en) * 2021-10-25 2023-03-10 주식회사 경진 Manufacturing method for stainless type alloy with supper corrosion resistence for parts of transportation machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145363A (en) * 1978-05-04 1979-11-13 Nissan Motor Co Ltd Resin model production and apparatus therefor
JPS63290207A (en) * 1987-05-23 1988-11-28 Kobe Steel Ltd Production of powder compact
WO2008032359A1 (en) * 2006-09-11 2008-03-20 Mitsubishi Electric Corporation Process for producing electrode for electric discharge surface treatment and electrode for electric discharge surface treatment
JP2015025183A (en) * 2013-07-29 2015-02-05 日立化成株式会社 Method of producing sintered part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145363A (en) * 1978-05-04 1979-11-13 Nissan Motor Co Ltd Resin model production and apparatus therefor
JPS63290207A (en) * 1987-05-23 1988-11-28 Kobe Steel Ltd Production of powder compact
WO2008032359A1 (en) * 2006-09-11 2008-03-20 Mitsubishi Electric Corporation Process for producing electrode for electric discharge surface treatment and electrode for electric discharge surface treatment
JP2015025183A (en) * 2013-07-29 2015-02-05 日立化成株式会社 Method of producing sintered part

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11491706B2 (en) 2017-09-20 2022-11-08 Bae Systems Plc Material for 3D printing and a 3D printed device
GB2566934A (en) * 2017-09-20 2019-04-03 Bae Systems Plc Material for 3D printing and a 3D printed device
GB2566934B (en) * 2017-09-20 2022-11-23 Bae Systems Plc Material for 3D printing and a 3D printed device
CN110447121A (en) * 2018-01-12 2019-11-12 株式会社Lg化学 Bag film and the method for manufacturing this bag of film
CN108312606A (en) * 2018-02-06 2018-07-24 江苏铭格锻压设备有限公司 A kind of four-column hydraulic press
CN109570310A (en) * 2018-12-24 2019-04-05 南京宝色股份公司 A kind of new titanium alloy curved surface forming method
CN109570310B (en) * 2018-12-24 2020-05-08 南京宝色股份公司 Novel titanium alloy curved surface forming method
CN110014503A (en) * 2019-05-07 2019-07-16 罗厚镇 A kind of Production of Ceramics press machine
WO2021073869A1 (en) * 2019-10-15 2021-04-22 Maag Automatik Gmbh Die plate for hot die face granulation of melts and method for the production thereof
CN112011702A (en) * 2020-08-30 2020-12-01 中南大学 Method for preparing nano-phase reinforced nickel-based high-temperature alloy by adopting micro-ceramic particles
CN113042732A (en) * 2021-03-09 2021-06-29 吉林大学 3D printing magnetic control deformation clamping device and method capable of being implanted into organism
CN113042732B (en) * 2021-03-09 2022-07-08 吉林大学 3D printing magnetic control deformation clamping device and method capable of being implanted into organism
KR102509103B1 (en) * 2021-10-25 2023-03-10 주식회사 경진 Manufacturing method for stainless type alloy with supper corrosion resistence for parts of transportation machine
CN114570924B (en) * 2022-04-29 2022-07-22 矿冶科技集团有限公司 Binder, 5-15 micron tungsten carbide powder and preparation method thereof
CN114570924A (en) * 2022-04-29 2022-06-03 矿冶科技集团有限公司 Binder, 5-15 micron tungsten carbide powder and preparation method thereof
CN115214045A (en) * 2022-06-24 2022-10-21 滁州燕荣塑料科技有限公司 Granulation forming device for reinforced nylon and forming method thereof
CN115214045B (en) * 2022-06-24 2023-10-20 滁州燕荣塑料科技有限公司 Pelletization forming device for reinforced nylon and forming method thereof
CN115597318A (en) * 2022-10-20 2023-01-13 湖南宏工智能科技有限公司(Cn) Fluidization type ultra-low temperature freezing bin

Also Published As

Publication number Publication date
JP6549435B2 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
JP6549435B2 (en) Method of manufacturing powder pressed compact
CN104907567B (en) A kind of method for preparing high-density complicated shape cemented carbide parts and cutter
US5779833A (en) Method for constructing three dimensional bodies from laminations
CN108503355A (en) A kind of 3D printing materials, preparation method and use
CN203917913U (en) A kind of cold isostatic compaction mould
TW201539498A (en) Method and apparatus for preparing rare earth sintered magnet
JP2007039775A (en) Method for producing powder laminate, method for producing sintered compact using the same, and system of producing sintered compact using them
JP2014526397A (en) Fixed abrasive formed by uniaxial hot press molding
CA2352157A1 (en) Low pressure injection molding of metal and ceramic powders using soft tooling
US20070078027A1 (en) Clubface of a golf club and method for fabricating the same
JP2019108595A (en) Method for manufacturing titanium or titanium alloy green compact
CN112053843B (en) Forming and mould pressing method for large-size sintered neodymium iron boron blank
CN211680003U (en) Pressing die of hard alloy crushing disc
CN208697202U (en) Prepare the mold of ultra hard ceramic bonding agent inner circle grinding wheel
CN110064759B (en) Laminated compacted powder sintering 3D forming cylinder and forming method
RU115261U1 (en) MULTI-LOCAL PRESS FORM FOR PRESSING POWDERS
CN112876250A (en) PDC drill bit die and preparation method thereof
JP6853158B2 (en) Manufacturing method of silica sintered body
WO2006114849A1 (en) Miniature bearing and method for manufacturing the same
CN211306017U (en) Novel grinding wheel rotary press
TWI653110B (en) Method and apparatus for preparing rare earth sintered magnet
CN113618978B (en) Recyclable simple die and preparation method thereof
CN108454303A (en) A kind of non-manual forging is non-to carve the iron picture component production method carved by hand
CN207787697U (en) A kind of mold for powder metallurgy
CN103624254A (en) Thin-wall type powder metallurgy forming die and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190627

R150 Certificate of patent or registration of utility model

Ref document number: 6549435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250