JP6547181B1 - Relative displacement measuring device and relative displacement measuring method - Google Patents

Relative displacement measuring device and relative displacement measuring method Download PDF

Info

Publication number
JP6547181B1
JP6547181B1 JP2018101559A JP2018101559A JP6547181B1 JP 6547181 B1 JP6547181 B1 JP 6547181B1 JP 2018101559 A JP2018101559 A JP 2018101559A JP 2018101559 A JP2018101559 A JP 2018101559A JP 6547181 B1 JP6547181 B1 JP 6547181B1
Authority
JP
Japan
Prior art keywords
measurement
relative displacement
measuring
wire
measurement points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018101559A
Other languages
Japanese (ja)
Other versions
JP2019207122A (en
Inventor
嘉二郎 渡邊
嘉二郎 渡邊
Original Assignee
グローバル精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グローバル精工株式会社 filed Critical グローバル精工株式会社
Priority to JP2018101559A priority Critical patent/JP6547181B1/en
Application granted granted Critical
Publication of JP6547181B1 publication Critical patent/JP6547181B1/en
Publication of JP2019207122A publication Critical patent/JP2019207122A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】専門の技術者でなくても、地震時の多層構造物の最大変形を求め、多層構造物の損傷状況、及びその安全性を簡易に確認、判断する相対変位計測装置を提供する。【解決手段】多層構造物の外力による変形を計測するための、少なくとも2点の測定点15a,15b間に設置され、測定点15a,15b間の相対変位量を計測する相対変位計測装置であって、測定点の一方に固定される基台部10と、2点の測定点の他方に固定されて2点の測定点15a,15b間に張設されるワイヤ15と、水平面内において回転可能に基台部10上に保持され、ワイヤ15の一端を把持する回転把持部13とを備え、回転把持部13は、他方の測定点側からの張力によって引っ張られたときに、張力に応じて不可逆的にワイヤ15を一端側へ送り出す。【選択図】図1Provided is a relative displacement measuring device for obtaining the maximum deformation of a multilayer structure at the time of an earthquake and easily checking and judging the damage status of the multilayer structure and its safety even if it is not a specialized engineer. A relative displacement measuring device is installed between at least two measurement points 15a and 15b for measuring deformation due to an external force of a multilayer structure and measures a relative displacement amount between the measurement points 15a and 15b. The base 10 fixed to one of the measurement points, the wire 15 fixed to the other of the two measurement points and stretched between the two measurement points 15a and 15b, and rotatable in a horizontal plane And a rotary gripping portion 13 that holds one end of the wire 15, and when the rotary gripping portion 13 is pulled by the tension from the other measurement point side, The wire 15 is sent irreversibly to one end side. [Selection] Figure 1

Description

本発明は、構造物の外力による変形を計測するための、少なくとも2点の測定点間に設置され、前記測定点間の相対変位量を計測する相対変位表示装置に関する。   The present invention relates to a relative displacement display device disposed between at least two measurement points for measuring deformation of a structure due to external force, and measuring a relative displacement amount between the measurement points.

地震、台風の暴風や降雨また自動車の走行に伴う振動により道路、橋梁、山の斜面、家屋にストレスが加えられ、累積或いは瞬時ストレスがあるレベルを超えると崩壊するリスク(顕在化していない危険な可能性)を、これらの構造体は抱えている。このようなリスクは顕在化されることが少なく、リスクが顕在化して災害となって初めてリスクを事後的に確認されるケースが多く、このようなケースでは多くの被害が発生する可能性が高い。   Roads, bridges, mountain slopes and houses are stressed by earthquakes, typhoons, rain and vibrations caused by driving a car, and the risk of collapse when the cumulative or instantaneous stress exceeds a certain level (danger not realized Possibilities, these structures have. Such risks are less likely to be manifested, and in many cases, they are only confirmed after the fact that they have become disasters, and in many cases, there is a high possibility that many damages will occur. .

ここで、過去の事例として地震により家屋が受けたストレスについて述べると、近年では、ある程度の震度までの耐震保証の家屋が増えてきているものの、1度目での地震に対して保証されるが、2度目以降の地震に対しては必ずしも保証されないのが現状である。これは、1度目の地震で受けたダメージ(釘の抜けな支持部の緩みなど)が顕在化してはいないがリスクとして残り保証できないからである。大地震に対して完全に構造的な対策を施すことはある程度であれば可能であろうが、極めて高コストな構造体となり現実的でない。むしろ一定震度以上の地震に対しては倒壊しない程度の強度で、部分的破断があるとしても地震後にそれを修復して家屋の健全性を維持するという考え方がコストパフォーマンス上では合理的であろう。地震発生時に家屋などの構造物は地震動により変形を受ける。最大変形時に構造物に最大のストレスが作用し、このとき構造体に部分的破断が起こる。   Here, the stress that houses have received due to earthquakes as an example in the past has been increased in recent years, although the number of houses with earthquake proofing up to a certain degree of seismic intensity has increased, but it is guaranteed against the first earthquake. Currently, it is not always guaranteed for the second and subsequent earthquakes. This is because the damage received at the first earthquake (such as the loose support of the nail) is not apparent but it can not be guaranteed as a risk. Although it may be possible to take structural measures completely against a large earthquake, if at all, it is an extremely expensive structure and not practical. Rather, it is reasonable in terms of cost performance that the strength is such that it does not collapse for earthquakes above a certain seismic intensity, and even if there is a partial failure, it is repaired after the earthquake to maintain the soundness of the house . When an earthquake occurs, structures such as houses are deformed by earthquake motion. At the time of maximum deformation, maximum stress acts on the structure, and at this time, partial breakage occurs in the structure.

従前より、専門の技術者でなくても、地震時の多層構造物の最大変形を求め、多層構造物の損傷状況、及びその安全性を簡易に確認、判断できる装置が提案されている(例えば、特許文献1)。この特許文献1に開示された装置では、多層構造物が外力を受け、多層構造物の変形を計測するための所定の2点間の相対変位量が所定の値を超えたときに、所定の2点間で引張られる測定部材によりスイッチを作動して電源と発光装置とを電気的に接続し、発光装置を作動させて、当該相対変位量に応じた多層構造物の変形の程度を報知する。   There has been proposed an apparatus which can find the maximum deformation of a multilayer structure during an earthquake and easily confirm and judge the damage status of the multilayer structure and its safety even without being a specialized engineer (for example, for example) , Patent Document 1). In the device disclosed in Patent Document 1, when the multilayer structure receives an external force and the relative displacement between predetermined two points for measuring the deformation of the multilayer structure exceeds a predetermined value, the predetermined value is obtained. The switch is operated by the measuring member pulled between two points to electrically connect the power supply and the light emitting device, and the light emitting device is operated to report the degree of deformation of the multilayer structure according to the relative displacement amount .

特開2016−53502公報JP, 2016-53502 gazette

しかしながら、上述したような不測の大きな惨事に発展する前に、潜在的なリスクを定量化し、これにより適切な手立てが求められている一方で、上述した特許文献1に開示された装置では、電源を必要とする仕組みであることから、電源の確保や、電気的機能を維持するための保守・管理が必要となる。このため、長期にわたりメンテナンスフリーで計測することができず、定期的なメンテナンスが必要となることから、計測者の負担が増大して永続的な計測が困難である。   However, while the potential risk is quantified before developing into an unexpected major disaster as described above, an appropriate measure is required, and the device disclosed in the above-mentioned Patent Document 1 is a power source. It is necessary to secure the power supply and to maintain and manage the electrical functions. For this reason, maintenance-free measurement can not be performed for a long period of time, and regular maintenance is required, which increases the burden on the measurer and makes permanent measurement difficult.

詳述すると、大規模な地震発生頻度は低いため、計測者の負担を少なく永続的に計測するには、計測装置を設置した後そのまま20年、30年放置しておいても安定に正確に動作するものでなければならない。そのため、この装置は保守や電源などのエネルギー源を不要とし、必要なときには誰でもが簡単に最大変位と残留変位が確認でき、リセットが可能なものでなければならない。リセットした後で初期の状態と比べて0に戻らない場合は初期状態から残留変形を受けたことを示す。構造物を補修し、最大変位に伴い抜けた釘やボルトを元に戻し、残留変形をなくした後には、装置を容易にリセットでき、次の地震における最大変位を計測するスタンバイ状態にはいる機能を有することが望ましい。   More specifically, since the frequency of large-scale earthquake occurrence is low, to measure the load on the measurer permanently and continuously, it is stable and accurate even if it is left for 20 or 30 years after installation of the measuring device. It must work. Therefore, the device should not require an energy source such as maintenance or power supply, and it should be possible for anyone to easily confirm the maximum displacement and residual displacement and be resettable when necessary. If it does not return to 0 compared with the initial state after reset, it indicates that residual deformation has been received from the initial state. Repairs the structure, restores the nails and bolts that have been removed with the maximum displacement, and can easily reset the device after removing the residual deformation, and enters the standby state to measure the maximum displacement for the next earthquake It is desirable to have

そこで、本発明は、地震で受けた構造体の基本構造部の最大変形量、及び地震後に残った残留変形等の構造体のストレスを、メンテナンスフリーで永続的に計測し記憶しておき、構造体の安全レベルを確保し、その定量的情報によって個人や社会に対して完全性を担保していることを示し、安心感を与えられるシステムを提供することを目的とする。   Therefore, according to the present invention, the maximum deformation of the basic structural part of the structure received due to the earthquake, and the stress of the structure such as residual deformation remaining after the earthquake are permanently measured and stored maintenance free. The objective is to ensure the safety level of the body, show that the quantitative information secures the integrity to the individual and society, and provide a system that gives a sense of security.

上記目的を達成するために、本発明は、構造物の外力による変形を計測するための、少なくとも2点の測定点間に設置され、前記測定点間の相対変位量を計測する相対変位計測装置であって、
前記2点の測定点の一方において前記構造物に固定される基台部と、
前記2点の測定点の他方に固定されて、前記2点の測定点間に張設される測定部材であるワイヤ部材と、
水平面内において回転可能に前記基台部上に保持され、前記測定部の前記一端を把持する回転把持部と
前記基台部を収納するとともに、電源コンセントを建造物の壁内に取付けるための配電ボックスと
を備え、
前記回転把持部は、前記他方の測定点側からの張力によって引っ張られたときに、前記張力に応じて不可逆的に前記測定部材を前記一端側へ送り出す
ことを特徴とする。
In order to achieve the above object, the present invention is a relative displacement measuring device installed between at least two measuring points for measuring deformation of a structure due to external force, and measuring a relative displacement amount between the measuring points. And
A base fixed to the structure at one of the two measurement points;
A wire member which is a measurement member fixed to the other of the two measurement points and stretched between the two measurement points;
A rotary gripping portion rotatably held on the base portion in a horizontal plane and gripping the one end of the measurement portion ;
A distribution box for housing the base portion and for mounting a power outlet in a wall of a building ;
The rotary grip unit irreversibly feeds the measurement member to the one end side according to the tension when it is pulled by the tension from the other measurement point side.

また、本発明は、構造物の外力による変形を計測するための、少なくとも2点の測定点間に設置され、前記測定点間の相対変位量を計測する相対変位計測方法であって、
前記2点の測定点の一方において前記構造物に基台部を固定するとともに、前記基台部上の水平面内において回転可能に保持された回転把持部によって、測定部材であるワイヤ部材の一端を把持する工程と、
前記測定部材の他端を、前記2点の測定点の他方に固定して、前記2点の測定点間に前記測定部材を張設する工程と、
前記回転把持部は、前記他方の測定点側からの張力によって引っ張られたときに、前記張力に応じて不可逆的に前記測定部材を前記一端側へ送り出し、一定期間におけるその送り出し量を測定することによって、前記測定点間の相対変位量を計測する工程と
を含み、前記ワイヤ部材の一端を把持する工程において、基台部は電源コンセントを建造物の壁内に取付けるための配電ボックス内に収納されることを特徴とする
Further, the present invention is a relative displacement measurement method which is disposed between at least two measurement points for measuring deformation of a structure due to external force, and measures a relative displacement amount between the measurement points,
The base is fixed to the structure at one of the two measurement points, and one end of the wire member, which is a measuring member, is fixed by the rotary grip held rotatably in the horizontal plane on the base. Grasping process,
Fixing the other end of the measurement member to the other of the two measurement points, and stretching the measurement member between the two measurement points;
When the rotating grip portion is pulled by tension from the other measurement point side, the rotation gripping portion irreversibly delivers the measurement member to the one end side according to the tension, and measures the delivery amount in a fixed period. by, viewed including the step of measuring a relative displacement amount between the measuring points, in the step of gripping one end of the wire member, the base portion is in a distribution box for mounting the electrical outlet in a wall of a building It is characterized by being stored .

上記発明において、前記回転把持部において送り出された前記測定部材の長さを表示する表示部をさらに備えることが好ましい。   In the above-mentioned invention, it is preferred to further have a display part which displays the length of the above-mentioned measurement member sent out in the above-mentioned rotation grasping part.

上記発明において,前記表示部は、前記測定部材が挿通されて内部の測定部材の変位が視認可能な透明部分を有する筒状体を備え、
前記筒状体には、前記測定部材の変位を測定する目盛りが記されている
ことが好ましい。
In the above invention, the display unit includes a cylindrical body having a transparent portion through which the measurement member is inserted and the displacement of the measurement member inside can be visually recognized.
It is preferable that a scale for measuring the displacement of the measuring member is marked on the cylindrical body.

上記発明において、前記測定部材はワイヤ部材であり、
前記回転把持部は、前記ワイヤ部材を把持する一対の回転体と、前記回転体の回転を一方向のみに規制する規制部材とを有する
ことが好ましい。
In the above invention, the measuring member is a wire member,
It is preferable that the said rotation holding part has a pair of rotary body holding the said wire member, and the control member which restrict | limits rotation of the said rotary body only to one direction.

本発明によれば、リスクが大きな惨事に発展する前に定量化することができ、これにより適切な手立てを準備することができる。すなわち、地震で受けた構造体の基本構造部の最大変形量、及び地震後に残った残留変形等の構造体のストレスを、メンテナンスフリーで永続的に計測し記憶しておき、構造体の安全レベルを確保し、その定量的情報によって個人や社会に対して完全性を担保していることを示して、安心感が与えられる。本発明では、計測装置を設置した後そのまま20年、30年放置しておいても安定に正確に動作させることが可能であるため、計測者の負担をより少なくして永続的な計測を可能とする。   According to the present invention, risks can be quantified before they develop into major disasters, which can prepare appropriate measures. That is, the maximum deformation of the basic structure of the structure received due to the earthquake, and the stress of the structure such as residual deformation remaining after the earthquake are permanently measured and stored maintenance free, and the safety level of the structure Security is given by showing that the quantitative information secures the integrity to the individual and society. According to the present invention, since it is possible to operate stably and accurately even if it is left for 20 or 30 years after installing the measuring device, the burden on the measuring person can be further reduced and permanent measurement is possible. I assume.

詳述すると、本発明では、保守や電源などのエネルギー源を不要とし、必要なときには誰でもが簡単に最大変位と残留変位が確認でき、リセットが可能となっており、リセットした後で初期の状態と比べて0に戻らない場合は初期状態から残留変形を受けたことを示す。   More specifically, in the present invention, no energy source such as maintenance or power source is required, and when necessary the maximum displacement and residual displacement can be easily confirmed, and reset is possible. If it does not return to 0 compared with the state, it indicates that residual deformation has been received from the initial state.

本発明による計測結果を用いて、構造物を補修し、最大変位に伴い抜けた釘やボルトを元に戻し、残留変形を解消し(許容できる範囲の場合にはそのままで)、構造物の補修後にはこの装置がリセットされ、次の地震における最大変位を計測するスタンバイ状態に設定することができる。
特に、本発明では、回転把持部が基台部に対して回転可能に取付けられているため、計測部材が回転把持部内に挿通される方向と、計測部材が計測点に向けて張設される張設方向とを一致させることができ、計測部材が構造物側に固定された端点から、回転把持部に対して真っ直ぐに張設されることとなり、不要なテンションが計測部材に作用するのを回避でき、記録されるデータの偏りをなくし、データの信頼度を高めることができる。また、回転把持部が自由に回転することから、装置本体の取り付け位置も自由度が増し、その取り付け作業を容易なものとしつつ、計測値の精度を高めることができる。
Using the measurement results according to the present invention, the structure is repaired, and the nails and bolts removed due to the maximum displacement are put back, the residual deformation is eliminated (in the case of the allowable range, as it is), the structure is repaired Later, this device is reset and can be set to a standby state to measure the maximum displacement in the next earthquake.
In particular, in the present invention, since the rotary grip portion is rotatably attached to the base portion, the direction in which the measurement member is inserted into the rotary grip portion and the measurement member is stretched toward the measurement point The tensioning direction can be made to coincide, and from the end point where the measuring member is fixed to the structure side, it will be stretched straight to the rotating grip part, so that unnecessary tension acts on the measuring member. It can be avoided, bias of recorded data can be eliminated, and data reliability can be increased. In addition, since the rotation grip portion is freely rotated, the mounting position of the device body is also more flexible, and the accuracy of the measurement value can be enhanced while making the mounting operation easy.

本発明の一実施の形態における相対変位計測装置の構成及び動作を示す上面図である。It is a top view which shows the structure and operation | movement of the relative displacement measuring device in one embodiment of this invention. 同装置を構造物に設置した状態を示す斜視図である。It is a perspective view which shows the state which installed the same apparatus in a structure. 同装置を構造物に設置した状態を示す斜視図である。It is a perspective view which shows the state which installed the same apparatus in a structure. 同装置のラッチ構造の例を示す断面図である。It is sectional drawing which shows the example of the latch structure of the same apparatus. 同装置が適用される多層構造物(建物)の概略構成を示す概念図である。It is a conceptual diagram which shows schematic structure of the multilayer structure (building) to which the same apparatus is applied. 同装置が適用される多層構造物(建物)の層間変位と多層構造物(建物)の変形の程度を示す概念図である。It is a conceptual diagram which shows the interlayer displacement of the multilayer structure (building) to which the said apparatus is applied, and the deformation | transformation degree of a multilayer structure (building). 同装置が適用される多層構造物(建物)の層間変位と多層構造物(建物)の変形の程度を示す側面図である。It is a side view which shows the interlayer displacement of the multilayer structure (building) to which the same device is applied, and the deformation degree of the multilayer structure (building). 同装置を用いた相対変位計測方法の手順を示すフロー図である。It is a flowchart which shows the procedure of the relative displacement measuring method which used the same apparatus.

(相対変位計測装置の全体構成)
以下に添付図面を参照して、本発明に係る相対変位計測装置の実施形態を詳細に説明する。図1は、本実施形態に係る相対変位計測装置の全体構成を示す上面図である。なお、以下に示す実施の形態は、この発明の技術的思想を具体化するための装置等を例示するものであって、この発明の技術的思想は、各構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。
(Overall configuration of relative displacement measuring device)
Hereinafter, an embodiment of a relative displacement measuring device according to the present invention will be described in detail with reference to the attached drawings. FIG. 1 is a top view showing the overall configuration of the relative displacement measuring device according to the present embodiment. The embodiment described below is an example of an apparatus for embodying the technical idea of the present invention, and the technical idea of the present invention includes the material, shape, structure, and the like of each component. The arrangement etc. are not specified to the following. Various changes can be added to the technical idea of the present invention within the scope of the claims.

図1及び図2に示すように、相対変位計測記録装置1は、多層構造物の外力による変形を計測するための所定の2点間15a,15bに設置され、この所定の2点間15a,15bの相対変位量を計測し、多層構造物の変形の状態を記録及び表示するもので、多層構造物Bldの任意の位置(図示した例では、柱2及び梁3)に設置される。   As shown in FIGS. 1 and 2, the relative displacement measurement and recording apparatus 1 is installed between predetermined two points 15a and 15b for measuring deformation of the multilayer structure due to external force, and the predetermined two points 15a, The relative displacement amount of 15b is measured, and the state of deformation of the multilayer structure is recorded and displayed, and it is installed at an arbitrary position (the pillar 2 and the beam 3 in the illustrated example) of the multilayer structure Bld.

この相対変位計測記録装置1は、測定点の一方(ここでは、測定点15b側)に固定される基台部10と、2点の測定点の他方(ここでは、測定点15a)に固定されて、2点の測定点15a,15b間に張設されるワイヤ15と、水平面内において回転可能に基台部10上に保持され、ワイヤ15の一端15b側を把持する回転把持部13とを備えている。 The relative displacement measurement and recording apparatus 1 is fixed to the base portion 10 fixed to one of the measurement points (here, the measurement point 15b side) and to the other of the two measurement points (here, the measurement point 15a) A wire 15 stretched between two measurement points 15a and 15b, and a rotary grip 13 held on the base 10 rotatably in a horizontal plane and gripping one end ( 15b side ) of the wire 15 And have.

回転把持部13は、他方の測定点15a側からの張力によってワイヤ15が引っ張られたときに、張力に応じて不可逆的にワイヤ15を一端(測定点15a側へ送り出す機構を備えた回転把持部13が設けられている。相対変位計測記録装置1では、多層構造物bldが外力を受け、多層構造物bldの変形を計測するための所定の2点間15a、15bが拡大するような相対変位量が生じたときに、所定の2点間で引張られるワイヤ15が回転把持部13から不可逆的に送り出される。 Rotating the grip portion 13, rotary engagement with when the wire 15 by the tension from the other measuring point 15a side is pulled, a mechanism for feeding the irreversibly wire 15 according to the tension to one end (the measurement point 15a side) The part 13 is provided. In the relative displacement measurement and recording apparatus 1 , when the multilayer structure bld receives an external force, and a relative displacement amount occurs such that the predetermined two points 15a and 15b for measuring the deformation of the multilayer structure bld are expanded, The wire 15 pulled between two predetermined points is irreversibly fed from the rotary grip 13.

この回転把持部13の不可逆機構としては、例えば図4(a)に示すように、楔形を連続させて連結させた楔部131と、内部に楔部131の楔形と合致する内部空間132aが形成されたストッパー132とから構成することができる。楔部131はワイヤ15に嵌合され、ワイヤ15とともにストッパー132aの内部空間132a内に挿通されており、連続された楔形が、内部空間132aの楔形空間に引っかかるようになっており、図中矢印方向には容易に移動するが、矢印の反対方向に対しては、楔形一つずつに順次引っかかるため、ワイヤ15が段階的に回転把持部13内を不可逆的に移動するようになっている。   For example, as shown in FIG. 4 (a), as an irreversible mechanism of the rotary gripping portion 13, there are formed a collar portion 131 in which a ridge shape is continuously connected and an internal space 132a which matches the ridge shape of the collar portion 131 inside. And the stopper 132. The collar portion 131 is fitted to the wire 15, and is inserted into the inner space 132a of the stopper 132a together with the wire 15, and the continuous wedge shape is hooked to the wedge shape space of the inner space 132a. The wire 15 can be moved irreversibly in a stepwise manner in the rotary grip 13 because it is easily moved in the direction but is hooked one by one in the direction opposite to the arrow.

また、回転把持部13の他の不可逆機構としては、例えば図4(b)に示すように、テーパー型の内部空間133aを内部に有し、その内部空間133a内に一対のボール体134を有したラッチ機構としてもよい。一対のボール体134はワイヤ15を挟持するように内部空間133a内に配置され、ワイヤ15が図中矢印方向に引っ張られると、一対のボール体134がテーパー部分から離されて、ワイヤ15に対する挟持が緩むため容易に送り出される。逆に、図中矢印と反対の方向にワイヤ15が引っ張られるとワイヤ15とともに内部空間133a内を移動して、テーパー部分の先細部分に向けて押しつけられて内部空間133a内でワイヤ15を強固に挟持するようになっている。この結果、矢印の反対方向に対しては、ボール体がワイヤ15を挟持するため、その摩擦力によりワイヤ15が回転把持部13に不可逆的に固定されることとなる。   In addition, as another irreversible mechanism of the rotary grip 13, for example, as shown in FIG. 4B, it has a tapered internal space 133a inside, and has a pair of ball bodies 134 in the internal space 133a. It is good also as a latch mechanism. The pair of ball bodies 134 is disposed in the internal space 133 a so as to sandwich the wire 15, and when the wire 15 is pulled in the direction of the arrow in the figure, the pair of ball bodies 134 is separated from the tapered portion to sandwich the wire 15. It is easily delivered because it loosens. Conversely, when the wire 15 is pulled in the direction opposite to the arrow in the figure, it moves in the inner space 133a together with the wire 15 and is pushed toward the tapered portion of the tapered portion to firmly fix the wire 15 in the inner space 133a. It is supposed to hold it. As a result, since the ball holds the wire 15 in the direction opposite to the arrow, the frictional force irreversibly fixes the wire 15 to the rotary grip 13.

本実施形態において、ワイヤ15は可撓性及びある一定の剛性を有するステンレス製のワイヤ部材であり、回転把持部13は、ワイヤであるワイヤ15を把持する一対の回転把持部13と、回転把持部13の回転を一方向のみに規制する規制部材(図示せず)とを有する。   In the present embodiment, the wire 15 is a stainless steel wire member having flexibility and a certain rigidity, and the rotational gripping portion 13 includes a pair of rotational gripping portions 13 for gripping the wire 15, which is a wire, And a restricting member (not shown) for restricting the rotation of the portion 13 in only one direction.

回転把持部13は、ワイヤの稼働に伴う静止摩擦力を調整する締め付け具であり、例えばホースクリップなどで実現することができる。この回転把持部13の締め付け強さは、ワイヤ15の引っ張り方向にかかる常時微動最大加速度と、ワイヤ15の質量の積で与えられる常時微動により作用する力より強い静止摩擦力となるように、半固定される。   The rotating grip 13 is a clamp that adjusts a static friction force associated with the operation of the wire, and can be realized by, for example, a hose clip. The tightening strength of the rotation gripping portion 13 is half a static friction force stronger than the force exerted by the constant fine movement given by the product of the mass of the constant fine movement maximum acceleration in the pulling direction of the wire 15 and the mass of the wire 15 It is fixed.

なお、基台部10には、回転把持部において送り出されたワイヤ15の長さを表示する表示部としてのチューブ型尺14が備えられている。この前記チューブ型尺14は、本実施形態では、ワイヤ15が挿通され、内部のワイヤ15の変位が外部から視認可能な透明部分を有するチューブ型尺14で構成されている。   The base unit 10 is provided with a tube type scale 14 as a display unit for displaying the length of the wire 15 fed out in the rotary grip unit. In this embodiment, in the present embodiment, the wire 15 is inserted into the tube size 14, and the tube size 14 is formed of a tube size 14 having a transparent portion in which the displacement of the wire 15 inside can be visually recognized from the outside.

このチューブ型尺14には、ワイヤ15の変位を測定する最大変位計測尺14aの目盛りが記されているとともに、ワイヤ15側にも目盛りとして残留変位計測尺14bが付されており、設置当初は、最大変位計測尺14aの目盛りの原点(0点)と14bの原点(0点)とを合致させ、これらの最大変位計測尺14aと残留変位計測尺14bの相対的な変位によって、送り出されたワイヤ15の送り出し量を測定する。具体的には、計測期間中にワイヤ15が移動した最大変位と、原点マークよりワイヤ15が内側にあることを計測する残留変位を計測することができる。   The scale of the maximum displacement measuring scale 14a for measuring the displacement of the wire 15 is described on the tube scale 14, and the residual displacement measuring scale 14b is affixed on the wire 15 side as a scale. , The origin (0 point) of the scale of the maximum displacement measuring scale 14a is matched with the origin (0 point) of 14b, and it is sent out by the relative displacement of these maximum displacement measuring scale 14a and residual displacement measuring scale 14b. The feed amount of the wire 15 is measured. Specifically, it is possible to measure the maximum displacement of the wire 15 during the measurement period, and the residual displacement that measures that the wire 15 is inside the origin mark.

(相対変位計測装置の動作)
以上説明した相対変位計測装置を動作させることによって、本発明の相対変位計測方法を実施することができる。図7は、相対変位計測装置の動作を示すフロー図である。なお、以下で説明する処理手順は一例に過ぎず、各処理は可能な限り変更されてもよい。また、以下で説明する処理手順について、実施の形態に応じて、適宜、ステップの省略、置換及び追加が可能である。
(Operation of relative displacement measuring device)
The relative displacement measuring method of the present invention can be implemented by operating the relative displacement measuring device described above. FIG. 7 is a flow chart showing the operation of the relative displacement measuring device. In addition, the process sequence demonstrated below is only an example, and each process may be changed as much as possible. In addition, according to the embodiment, steps may be omitted, replaced, or added as appropriate, according to the embodiment.

同図に示すように、まず相対変位計測装置を所定の個所に設置し(ステップS101)、計測を開始する(S102)。計測が開始され、地震等の事象が発生し、多層構造物Bldに変形が発生すると(S103)、構造物の変形に伴いワイヤ15に張力が作用し、回転把持部13から引き出される方向に引っ張られることとなる。このときの引張力が回転把持部13のラッチ機構の許容範囲内であれば、測定部材の送り出しは行われず(ステップS104における「なし」)、引張力が回転把持部13のラッチ機構の許容範囲を超えると、測定部材が送り出されることとなる(ステップS104における「あり」)。これらステップS103〜S105は計測期間中繰り返され(ステップS106における「N」)、計測期間が終了した際に(ステップS106における「Y」)、最終的な累積変形量を読み取って確認する。
以下に各ステップにおける作業を詳述する。
As shown in the figure, first, the relative displacement measuring device is installed at a predetermined position (step S101), and measurement is started (S102). When measurement starts and an event such as an earthquake occurs and deformation occurs in the multilayer structure Bld (S103), tension acts on the wire 15 along with the deformation of the structure, and the wire 15 is pulled in the direction of being pulled out from the rotating grip 13 It will be If the tensile force at this time is within the allowable range of the latch mechanism of the rotary grip 13, the measurement member is not delivered ("None" in step S104), and the tensile force is within the allowable range of the latch mechanism of the rotary grip 13. If the value of f.sub.2 is exceeded, the measuring member will be delivered ("YES" at step S104). These steps S103 to S105 are repeated during the measurement period ("N" in step S106), and when the measurement period ends ("Y" in step S106), the final cumulative deformation amount is read and confirmed.
The work in each step will be described in detail below.

(1)設置時の手順
上記ステップS101及びS102では、例えば、図5〜図7に示すような、多層構造の建物A1にあっては、各階層の柱2や梁3等の構造材における各対角間を、建物A1の変形を計測するための所定の2点間とし、各対角線に沿ってワイヤ15が基台部10とともに取り付けられる。このとき、計測したい部位2点(測定点15a及び15b)にワイヤ15を設置する際、回転把持部13の締め付けを緩めて、ワイヤ端(測定点15b側)を引き、その後の回転把持部13のラッチ機構131,132或いは133,134で締め付ける。その後、この状態のままで放置する。
(1) Installation procedure In the above steps S101 and S102, for example, in a multi-layered building A1 as shown in FIG. 5 to FIG. 7, each of the structural materials such as the columns 2 and beams 3 in each layer Between the diagonals is a predetermined two points for measuring the deformation of the building A1, and the wires 15 are attached together with the base 10 along each diagonal. At this time, when installing the wire 15 at two points (measurement points 15a and 15b ) to be measured , the tightening of the rotary grip 13 is loosened and the wire end (the measurement point 15b side) is pulled. Are tightened by the latch mechanism 131, 132 or 133, 134. After that, leave it in this state.

このとき、ワイヤ15は構造体の内部(家屋の場合には筋交い部)に設置し、容易にワイヤ15が引っ張られないようにする。また基台部10は、例えば予め設置した計測ボックス内に収納し、風雨に晒されないようにする。この計測ボックスには、必要に応じて鍵のある蓋が付き蓋内部に記録ステッカーを貼り付ける。なお、この計測ボックスとしては、例えば、電源コンセントを壁内に取付ける際に設置される配電ボックスとすることができる。この場合には、電源コンセントの保守管理の機構を、本発明の変位測定と合わせて行うことができる。   At this time, the wire 15 is installed inside the structure (in the case of a house, a brace portion) so that the wire 15 is not easily pulled. Moreover, the base part 10 is accommodated, for example in the measurement box installed beforehand, and it is made not to be exposed to wind and rain. In this measurement box, a keyed lid is attached as needed, and a recording sticker is attached to the inside of the lid. In addition, as this measurement box, it can be used as a distribution box installed, for example, when attaching a power outlet to a wall. In this case, the maintenance management mechanism of the power outlet can be performed together with the displacement measurement of the present invention.

なお、例えば、図3に示すような、コンクリート製の土台と木材の柱の間の相対変位を計測する場合にも、本装置を用いることができる。例えば、ワイヤ15の両端それぞれ、例えば土台と柱に設置固定する。直下型地震のように木材が土台から離れた場合、そのとき飛び跳ねた最大変位から少しズレとなった残留変位はワイヤ計測部の変化した長さから直接読み取ることができる。 In addition, for example, as shown in FIG. 3, this apparatus can be used also when measuring the relative displacement between the base made of concrete, and the pillar of wood. For example, both ends of the wire 15 are installed and fixed to, for example, the base and the column. When the lumber is separated from the base, as in the case of a direct earthquake, the residual displacement slightly offset from the jumped maximum displacement can be read directly from the changed length of the wire measurement unit.

(2)事象発生時における手順
そして、上記ステップS103〜S105のように、多層構造物bldの変形により引っ張られ、送り出されたワイヤ15は、回転把持部13によって不可逆的に把持され、多層構造物bldの変形が進行して、さらに送り出されることはあっても、多層構造物bldの構造材の変形が戻され、2点間15a、15bの間隔が縮小されたときにも、ワイヤ15は回転把持部13内を逆方向に退行することはない。この構造材の変形が戻された場合、ワイヤ15は、2点15a、15b間で緩んだり弛んだりした状態となる。
(2) Procedure at the time of event occurrence And, as in the above-mentioned steps S103 to S105, the wire 15 pulled and sent out by the deformation of the multilayer structure bld is irreversibly gripped by the rotary gripping portion 13, and the multilayer structure Even if the deformation of bld proceeds and is further fed out, the deformation of the structural material of the multilayer structure bld is returned, and the wire 15 rotates even when the distance between the two points 15a and 15b is reduced. It does not retreat in the reverse direction in the grip portion 13. When the deformation of the structural material is returned, the wire 15 is in a state of loosening or sagging between the two points 15a and 15b.

詳述すると、地震等構造変形の原因となる事象が発生したとき、この振動による変形が所定量以上であれば、その変形により回転把持部13で不可逆的に半固定されたワイヤ15が、図1における測定点15a方向に滑り移動し、送り出される(S104における「Y」)。このとき、逆方向(測定点15b方向)にはワイヤが緩むのみで引張力が生じないため、ワイヤ15の送り出し移動は生じない。 More specifically, when an event causing structural deformation such as earthquake occurs, the wire 15 irreversibly semi-fixed by the rotating grip portion 13 due to the deformation if the deformation due to the vibration is a predetermined amount or more, It slides in the direction of the measurement point 15a at 1 and is sent out ("Y" in S104). At this time, since the wire is only loosened in the reverse direction (direction of the measurement point 15b) and no tensile force is generated, the wire 15 does not move out.

その後、この地震等の事象が止まり静止すると、ワイヤは滑って送り出された位置で保持されることとなる(S105)。次に再度事象が発生し、最初の事象より変形が大きければ再度ワイヤ15は滑って送り出されて保持される。この再度の変形が、最初の変形より小さければ、ワイヤ15は送り出されることなく以前の状態(目盛り位置)を保持する。このようにして、前回の計測から、今回のワイヤの移動を計測する間に受けた構造体の最大変形が計測され、記憶される。計測終了後は計測日、事象の原因と推定されること例えば地震などとその程度の情報を記載し、把持部の締め付けを緩めてワイヤ15の端を引っ張ってリセットする。このとき、ワイヤ15が元の位置に戻り原点(0点)マーカーが尺の0に戻れば、その構造体には残留変形はないことになる。もし引っ張ったワイヤが正の方向で止まる場合には、構造体2点間は拡大し、負の方向で止まる場合は、構造体の2点間は縮まったこととなる。残留変形を修復しないままの場合には、その位置をその日の原点として再度計測を始める。   Thereafter, when the event such as the earthquake stops and stands still, the wire is slipped and held at the position where it is sent out (S105). Next, an event occurs again, and if the deformation is larger than the first event, the wire 15 is slipped out and held again. If this second deformation is smaller than the first deformation, the wire 15 retains its previous state (tick position) without being delivered. In this way, from the previous measurement, the maximum deformation of the structure received while measuring the movement of the wire this time is measured and stored. After the measurement is completed, the measurement date, information that is presumed to be the cause of the event, for example, an earthquake, and the degree of the information is described, and the tightening of the grip portion is loosened and the end of the wire 15 is pulled and reset. At this time, if the wire 15 returns to the original position and the origin (0 point) marker returns to 0 of the scale, there is no residual deformation in the structure. If the pulled wire stops in the positive direction, the distance between two points in the structure expands, and if the wire stops in the negative direction, the distance between two points in the structure shrinks. If the residual deformation is not repaired, measurement is started again with the position as the origin of the day.

(3)角度と変位の計測
各値の具体的な計測方法について説明する。図1に示すように、平常時から、水平方向の梁3に対して鉛直に立つ柱2の角度と鉛直構造体の上部の変位を計測する。Vは家屋の右端下端から上端の高さで上端のワイヤ15を取り付け、そこから水平にHだけ左の場所に基台部10を設置し計測を開始する。
(3) Measurement of angle and displacement A specific method of measuring each value will be described. As shown in FIG. 1, the angle of the column 2 standing vertically to the horizontal beam 3 and the displacement of the upper portion of the vertical structure are measured from normal times. V mounts the wire 15 of the upper end at the height of the upper end from the lower end of the house, and mounts the base portion 10 horizontally at a position left by H and starts measurement.

その後、計測開始から次の計測までの間に地震が発生し図6及び図7に示すように、垂直柱が右に傾き、復元してほぼ元の状態に戻ったとする。地震による力は家屋の質量を考慮すると数ton・fになり相対変位計測記録装置1の回転把持部13の締め付けに伴う静止摩擦力より遙かに大きく、ワイヤは最大傾きの大きさに計測開始から次の計測までの間に地震が発生し図6及び図7に示すように、柱2が右に傾き、復元してほぼ元の状態に戻ったとする。地震による垂直場下の傾きに伴う力は家屋の質量を考慮すると数ton・fにおよび、回転把持部13の締め付けに伴う静止摩擦力より遙かに大きく、ワイヤは最大傾きの大きさに相当する長さだけ滑りそこで保持される。この滑り保持されたワイヤ長さをXとする。このときの最大傾き角度をθ、家屋上部の最大変位をLとする。 Thereafter, an earthquake occurs between the start of measurement and the next measurement, and as shown in FIG. 6 and FIG. 7, it is assumed that the vertical column tilts to the right and is restored to almost its original state. Considering the mass of the house, the force by the earthquake is several ton · f, which is much larger than the static friction force associated with the tightening of the rotary grip unit 13 of the relative displacement measuring and recording device 1 , and the wire starts measuring to the maximum inclination size It is assumed that an earthquake occurs between the time of and the next measurement, and as shown in FIG. 6 and FIG. The force associated with the inclination under the vertical field due to the earthquake is several ton · f in consideration of the mass of the house, much larger than the static friction force associated with the tightening of the rotary grip 13, and the wire corresponds to the maximum inclination It is held there sliding by the length it does. Let X be the length of the wire held in sliding. The maximum inclination angle at this time is θ, and the maximum displacement at the top of the house is L.

図6及び図7において底辺の長さがH、高さ方向の長さがVとこれらの辺のなす角90°+θの三角形に余弦定理を適応する。斜辺の長さは元の直角三角形の斜辺の長さに伸びた部分の長さ?を足した長さであり、

となる。上式より、

となり、
となる。ここでステンレスワイヤの元の長さ
に比べ、滑り長さLは十分短く、その半分はさらに短い、従って上式の右辺分子で近似できる。
In FIG. 6 and FIG. 7, the cosine theorem is applied to a triangle having a base length of H and a height direction length of V and an angle of 90 ° + θ formed by these sides. The length of the hypotenuse is the length of the original hypotenuse of the right triangle plus the length of the extended part,

It becomes. From the above equation

And
It becomes. Here the original length of the stainless steel wire
, The slip length L is sufficiently short, half of which is even shorter, and thus can be approximated by the right-hand numerator of the above equation.

またsinθもθがπ/4 (45度) 以下であればsinθがθと近似し、傾き角度θは次のようになる。
Also, if θ is equal to or less than π / 4 (45 degrees), sin θ approximates θ, and the inclination angle θ is as follows.

すなわち、ワイヤ15を弛みなく張って、相対変位計測記録装置1で計測・記憶された長さLの計測値より、上式より傾き角度が計算できる。 That is, the inclination angle can be calculated from the above equation from the measurement value of the length L measured and stored by the relative displacement measurement and recording apparatus 1 by stretching the wire 15 without slack.

また家屋上部の最大移動変位Lは、
となる。
Also, the maximum displacement L at the top of the house is
It becomes.

長さlについて、具体的に考えると、上式より、θが与えられときの緩み長さlは、


である。
Considering specifically the length l, according to the above equation, the slack length l when θ is given is


It is.

いま建物一層部と二層部の筋交いの近くにワイヤを設置するとして、
高さをV= 2.4m、半間分の水平長さをH=0.9mの場合を想定する。このとき上式は、国土交通省告示の新築傾斜許容範囲は3mm/1000mmであることから、
であり、この傾きを上式に代入すると、

となる。
Now, I will install a wire near the brace of the building one layer part and two layers part,
It is assumed that the height is V = 2.4 m and the half-horizontal length is H = 0.9 m. At this time, the above formula is based on the fact that the new construction inclination allowance of the notification of the Ministry of Land, Infrastructure, Transport and Tourism is 3 mm / 1000 mm
And when this slope is substituted into the above equation,

It becomes.

物理的限界も考慮しなければならない。広く使われるsus304のステンレスワイヤの熱膨張係数は16.0x10-6[1/℃]である。いまこのステンレスワイヤの置かれる環境温度の最大変化量を50℃、V= 2.4m、H=0.9mのステンレスワイヤ長さは2.56mであり、温度変化によりワイヤの伸びlτは、
Physical limitations must also be considered. The thermal expansion coefficient of the widely used stainless steel of sus304 is 16.0 × 10 −6 [1 / ° C.]. Now, the maximum change of the environmental temperature where this stainless wire is placed is 50 ° C, V = 2.4 m, H = 0.9 m stainless wire length is 2.56 m, and the temperature change of the wire by the temperature change, l τ is

である。従って、すなわちV= 2.4m、H=0.9mとなるようにステンレスワイヤを張ったとき、国土交通省告示から計測値2.5mm以下は許容範囲であり、sus304のステンレスワイヤを使いとして温度変化が50℃とすれば、熱膨張により2mmはワイヤの膨張によるものであり、2.5mm以下程度の計測値は許容範囲内である。残留傾き、すなわち地震が発生して静止した状態でθ= 20/1200以下、すなわち相対変位計測記録装置1でl=0.843θ=13mm以下はAランクであり、θ= (20~60)/1200の範囲、すなわち相対変位計測記録装置1でl=13mm~39mmの範囲ではBランクとなる。また、θ= 60/1200以上、すなわち相対変位計測記録装置1でl=39mm以上はCランクである。 It is. Therefore, when the stainless steel wire is stretched so as to be V = 2.4 m, H = 0.9 m, the measurement value of 2.5 mm or less from the notification of the Ministry of Land, Infrastructure, Transport and Tourism is within the allowable range. Assuming that ° C., 2 mm due to thermal expansion is due to expansion of the wire, and a measured value of about 2.5 mm or less is within the allowable range. The residual inclination, that is, θ = 20/1200 or less in a stationary state in which an earthquake occurs, that is, l = 0.843θ = 13 mm or less in the relative displacement measurement recording device 1 is A rank, θ = (20 to 60) / 1200 In the relative displacement measurement and recording apparatus 1 , the B rank is obtained in the range of l = 13 mm to 39 mm. Further, θ = 60/1200 or more, that is, l = 39 mm or more in the relative displacement measurement recording device 1 is C rank.

これらの値は地震で被害を受け残留変形した家屋の値であるが最大変形はもっと大きな値になるであろう。V= 2.4m、H=0.9mにワイヤを設置したとき、残留変形においてBランクでl=0.843θ=39mm以上である。上記新築傾斜許容範囲及びsus304の熱膨張を考慮して、計測レンジは2.5mm~50mm(100mm)で十分であると考えられる。   These values are the values of damaged and damaged houses due to earthquakes, but the maximum deformation will be much larger. When the wire is installed at V = 2.4 m and H = 0.9 m, the residual deformation is l = 0.843θ = 39 mm or more in B rank. In consideration of the above-mentioned new construction inclination tolerance and the thermal expansion of sus 304, it is considered that a measuring range of 2.5 mm to 50 mm (100 mm) is sufficient.

本実施形態における方式は1方向の変形の最大値と残留値が計測できる。この装置を図5に示すように、x−y−z方向の3次元方向に設置すればよい。   The method in this embodiment can measure the maximum value and residual value of deformation in one direction. This device may be installed in a three-dimensional direction of the xyz direction as shown in FIG.

(実施例)
確実性の高い幾何学の応用あり、実験の検証は不要であるが、V=0.582m、H=0.28mで傾き角度1°としてlを実測と計算を行った。計算では、
となる。図5に示す模型で計測すると実測値で4.5mmである。
(Example)
There is an application of geometry with high certainty, and verification of the experiment is unnecessary, but I measured and calculated l with an inclination angle of 1 ° at V = 0.582 m and H = 0.28 m. In the calculation
It becomes. It is 4.5 mm in actual value when it measures with the model shown in FIG.

(作用・効果)
このように、本実施形態に係る相対変位計測記録装置1では、多層構造物(建物A1)が外力を受けて、多層構造物(建物A1)の変形を計測するための所定の2点間の距離が拡大するような変形が発生したときに、所定の2点間で引張られるワイヤ15が不可逆的に回転把持部13から送り出される。この送り出されたワイヤ15の長さを計測することで、その計測期間に発生した変形の最大値が記録されたこととなる。この変形を測定することにより、専門の技術者でなくても、地震時の多層構造物(建物A1)の最大変形(層間変位)量を求め、多層構造物(建物A1)の損傷状況、及びその安全性を簡易に確認、判断することができる。
(Action / effect)
As described above, in the relative displacement measurement and recording apparatus 1 according to the present embodiment, the multilayer structure (building A1) receives an external force, and between two predetermined points for measuring the deformation of the multilayer structure (building A1). When deformation occurs such that the distance increases, the wire 15 pulled between predetermined two points is irreversibly fed out from the rotary grip 13. By measuring the length of the wire 15 sent out, it is possible to record the maximum value of the deformation generated in the measurement period. By measuring this deformation, the amount of maximum deformation (interlayer displacement) of the multilayer structure (building A1) at the time of earthquake is determined, even if not a specialized engineer, and the damage status of the multilayer structure (building A1), Its safety can be easily confirmed and judged.

詳述すると、本実施形態の相対変位計測装置によれば、振動ストレスに晒される構造体において、ある期間中に発生した2点間の相対最大変位及び残留変位を計測記憶することで、所定の期間内に受けたストレスを評価するデータを供給することができる。   More specifically, according to the relative displacement measuring device of the present embodiment, the predetermined maximum displacement and residual displacement between two points generated in a certain period are measured and stored in the structure exposed to the vibration stress. Data can be provided to assess the stress received during the period.

例えば、地震時において、この相対変位計測装置により
(1)地震時の家屋のある構造部間の最大変位及び残留変位が計測できると地震による潜在的或いは隠蔽されているダメージが評価でき、補修の要不要、要の場合その情報を知ることができる。
(2)これらの情報は必要とする者の間で共有できる。
(3)情報の共有及び、補修が必要な場合には補修することで関係者の信頼が形成され関係者に安心・安全を提供できる。また情報共有により安心安全を担保する新たな事業が展開できる。
例えば、道路、橋梁、ダムなど社会構造インフラの場合には、定期的な検査が可能となり、合理的な保守が行える。また、例えば、ビル建築或いは補修の足場などのような仮設的な構造体では、危険な最大変位が計測された時点でアラームを発生し安全性の確保ができる。
特に、本実施形態では、回転把持部13が基台部10に対して回転可能に取付けられているため、ワイヤ15が回転把持部13内に挿通される方向と、ワイヤ15が計測点15aに向けて張設される張設方向とを一致させることができ、ワイヤ15が多層構造物Bld側に固定された計測点15aから、回転把持部13に対して真っ直ぐに張設されることとなり、不要なテンションがワイヤ15に作用するのを回避でき、記録されるデータの偏りをなくし、データの信頼度を高めることができる。また、回転把持部13が自由に回転することから、装置本体の取り付け位置も自由度が増し、その取り付け作業を容易なものとしつつ、計測値の精度を高めることができる。
For example, at the time of an earthquake, if the relative displacement measuring device can measure the maximum displacement and residual displacement between structural parts of a house at the time of the earthquake (1), potential or concealed damage due to the earthquake can be evaluated. Necessary information, if necessary, can know the information.
(2) These information can be shared among those who need it.
(3) By sharing information and repairing it when necessary, the trust of the concerned person is formed, and the concerned person can be provided with safety and security. In addition, new businesses can be developed to secure security and security by sharing information.
For example, in the case of social infrastructure such as roads, bridges, dams, etc., regular inspections become possible and rational maintenance can be performed. Further, for example, in a temporary structure such as a building construction or a scaffolding for repair, an alarm can be generated when the dangerous maximum displacement is measured to ensure safety.
In particular, in the present embodiment, since the rotary grip portion 13 is rotatably attached to the base portion 10, the direction in which the wire 15 is inserted into the rotary grip portion 13 and the wire 15 at the measurement point 15a. Since the wire 15 can be made to coincide with the stretching direction to be stretched, the wire 15 is stretched straight from the measurement point 15a fixed on the multi-layered structure Bld side to the rotary gripping portion 13, Unnecessary tension can be avoided from acting on the wire 15, bias of the recorded data can be eliminated, and data reliability can be enhanced. In addition, since the rotation grip 13 freely rotates, the mounting position of the device body is also more flexible, and the accuracy of the measurement value can be increased while making the mounting operation easy.

(変形例1)
なお、以上説明した各実施形態の説明は、本発明の一例である。このため、本発明は上述した実施形態に限定されることなく、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。
(Modification 1)
The description of each embodiment described above is an example of the present invention. Therefore, the present invention is not limited to the above-described embodiment, and various changes can be made according to the design and the like without departing from the technical concept of the present invention.

例えば、上述した実施形態では、変位量を直接計測して目盛りで表示したが、変位量の長さを電気抵抗、静電容量或いは自己インダクタンスに変換して、出力するようにしてもよい。詳述すると、変位測定の動作原理は上述した実施形態に係る機械方式と同じであるが、変位を目盛りではなくスライドボリューム(線形ポテンショメータ)で電気抵抗の値として読み取り、変位の変換する方式である読み取る方式である。ワイヤ15の移動変位をx、ボリュームの端子間抵抗をR、ボリューム長さをLとすれば、xの変位に伴う電気抵抗rは下式のようになる。この抵抗は電気テスターで容易に読み取ることができる。   For example, in the above-described embodiment, the displacement amount is directly measured and displayed on a scale, but the length of the displacement amount may be converted into an electrical resistance, an electrostatic capacitance, or a self-inductance and output. More specifically, the operation principle of displacement measurement is the same as the mechanical method according to the above embodiment, but it is a method of reading displacement as a value of electrical resistance with a slide volume (linear potentiometer) instead of a scale and converting the displacement. It is a reading method. Assuming that the displacement of the wire 15 is x, the resistance between terminals of the volume is R, and the volume length is L, the electrical resistance r associated with the displacement of x is as follows. This resistance can be easily read by an electrical tester.

r=(x/L)R
また、読み取った抵抗値より変位は次のように計測できる。
r = (x / L) R
Moreover, displacement can be measured as follows from the read resistance value.

x=(x/L)L
目盛りを窮屈な姿勢で目視により変位を計測する方式に比べ、この電気方式は抵抗計測端にテスターのプローブを触れるだけで高精度に位置計測が可能となる利点がある。これにより、短いワイヤを張るだけで精度の良い計測ができる。一方家屋などの構造体で床0.9m、立て柱2.5mにワイヤを設置する場合にはセンチオーダーで変形し目視も可能であり、誰もが容易に変形を計測できる利点がある。
x = (x / L) L
This electrical method has an advantage that the position measurement can be performed with high accuracy simply by touching the resistance measurement end with the probe of the tester as compared with the method of measuring the displacement by visual observation in a tight posture of the scale. In this way, accurate measurement can be performed simply by putting a short wire. On the other hand, in the case of installing a wire on a floor 0.9 m and a standing pole 2.5 m in a structure such as a house, it can be deformed by centimeter order and can be visually observed, and there is an advantage that anyone can measure deformation easily.

(変形例2)
さらに、本発明は、様々な物理量の量値を計測・記憶する装置への展開が可能である。例えば、温度、湿度等の物理量は、所定の変換部材を用いることで、本発明で計測可能な変位量に変換でき、種々の物理量の最大値の計測・記憶装置に応用することができる。
(Modification 2)
Furthermore, the present invention can be developed into an apparatus that measures and stores various physical quantity values. For example, physical quantities such as temperature and humidity can be converted into displacement amounts measurable by the present invention by using predetermined conversion members, and can be applied to measurement / storage devices of maximum values of various physical quantities.

(1)温度
原理としては、バイメタルが温度により変形することを応用し、バイメタルと、本発明の変位量計測方法による最大変位計測の考え方を組み合わせて最大温度を機械的に記憶することができる。例えば、ワインや冷凍マグロは輸送中に規定温度を超えると品質に影響することから、輸送期間中に経験した最高温度を記憶することで、品質管理の制度を貯めることができる。
(1) Temperature As the principle, it is possible to mechanically store the maximum temperature by combining the bimetal and the concept of the maximum displacement measurement by the displacement amount measuring method of the present invention, applying that the bimetal is deformed by the temperature. For example, since wine and frozen tuna affect the quality if the specified temperature is exceeded during transport, it is possible to store a system of quality control by storing the highest temperature experienced during the transport period.

(2)湿度
原理としては、湿度で収縮する素材(ナイロン、毛髪等)と、本発明の変位量計測方法による最大変位計測の考え方を組み合わせて最大湿度を機械的に記憶することができる。例えば、大型で重い精密機械を船舶輸送中に赤道を通過するあたりで、大きな湿度ストレスがかかり錆などの原因となり品質に影響することから、輸送期間中に経験した湿度温度を記憶することで、品質管理の精度を高めることができる。
(2) Humidity In principle, the maximum humidity can be stored mechanically by combining materials (such as nylon and hair) that shrink with humidity and the concept of maximum displacement measurement by the displacement amount measurement method of the present invention. For example, by storing a large and heavy precision machine around the equator during ship transportation, it is important to remember the humidity temperature experienced during the transportation period, since it will cause large humidity stress, cause rust etc. and affect the quality. Accuracy of quality control can be improved.

(3)力
原理としては、本発明の変位量計測方法による最大変位計測の考え方を元に、静止摩擦力以上の力が作用したとき保持体と可動体(ここではワイヤ)に相対変位が現れる。これを応用して、バネと組み合わせることで力の量が計測できる。
(3) Force As the principle, based on the idea of measuring the maximum displacement by the displacement amount measuring method of the present invention, when a force of static friction or more acts, relative displacement appears on the holder and the movable body (here, wire) . Applying this, the amount of force can be measured by combining with a spring.

応用;破壊の原因を記録
(4)加速度
原理としては、質量を本発明の変位量計測方法による最大変位計測の可動部に取り付け、加速度×質量が静止摩擦力以上の力となったとき保持体と可動体(ここではワイヤ)に相対変位が現れる。これを応用して。バネと組み合わせることで加速度の量が計測でき、破壊の原因を記録するなどの応用が考えられる。
Application; Record the cause of failure (4) Acceleration In principle, the mass is attached to the movable part of maximum displacement measurement according to the displacement measurement method of the present invention, and when the acceleration x mass becomes a force more than static friction force And relative displacement appears on the movable body (here, the wire). Apply this. By combining with a spring, the amount of acceleration can be measured, and applications such as recording the cause of breakage are conceivable.

L…最大移動変位
r…電気抵抗
A1…建物
Bld…多層構造物
bld…多層構造物
1…相対変位計測記録装置
2…柱
3…梁
10…基台部
13…回転把持部
14…チューブ型尺
14a…最大変位計測尺
14b…残留変位計測尺
15…ワイヤ
15a,15b…測定
L: Maximum movement displacement
r ... Electric resistance A1 ... Building Bld ... Multilayer structure
bld ... Multilayer structure 1 ... relative displacement measurement recording device 2 ... pillar 3 ... beam 10 ... base section 13 ... rotation grip section 14 ... tube type 14a ... maximum displacement measurement 14b ... residual displacement measurement 15 ... wire 15a, 15b ... Measurement point

Claims (5)

構造物の外力による変形を計測するための、少なくとも2点の測定点間に設置され、前記測定点間の相対変位量を計測する相対変位計測装置であって、
前記2点の測定点の一方において前記構造物に固定される基台部と、
前記2点の測定点の他方に固定されて、前記2点の測定点間に張設される測定部材であるワイヤ部材と、
水平面内において回転可能に前記基台部上に保持され、前記測定部材の一端を把持する回転把持部と
前記基台部を収納するとともに、電源コンセントを建造物の壁内に取付けるための配電ボックスと
を備え、
前記回転把持部は、前記他方の測定点側からの張力によって引っ張られたときに、前記張力に応じて不可逆的に前記測定部材を前記一端側へ送り出す
ことを特徴とする相対変位計測装置。
A relative displacement measuring device installed between at least two measurement points for measuring deformation due to external force of a structure and measuring a relative displacement amount between the measurement points,
A base fixed to the structure at one of the two measurement points;
A wire member which is a measurement member fixed to the other of the two measurement points and stretched between the two measurement points;
A rotary grip which is rotatably held on the base in a horizontal plane and grips one end of the measuring member ;
A distribution box for housing the base portion and for mounting a power outlet in a wall of a building ;
The relative displacement measuring device according to claim 1, wherein the rotational grip unit irreversibly delivers the measuring member to the one end side according to the tension when it is pulled by the tension from the other measurement point side.
前記回転把持部において送り出された前記測定部材の長さを表示する表示部をさらに備えることを特徴とする請求項1に記載の相対変位計測装置。   The relative displacement measurement device according to claim 1, further comprising a display unit that displays the length of the measurement member delivered by the rotational gripping unit. 前記表示部は、前記測定部材が挿通されて内部の測定部材の変位が視認可能な透明部分を有する筒状体を備え、
前記筒状体には、前記測定部材の変位を測定する目盛りが記されている
ことを特徴とする請求項2に記載の相対変位計測装置。
The display unit includes a cylindrical body having a transparent portion through which the measurement member is inserted and the displacement of the measurement member inside can be visually recognized.
The relative displacement measuring device according to claim 2, wherein a scale for measuring the displacement of the measuring member is marked on the cylindrical body.
前記回転把持部は、前記ワイヤ部材を把持する一対の回転体と、前記回転体の回転を一方向のみに規制する規制部材とを有する
ことを特徴とする請求項1に記載の相対変位計測装置。
The relative displacement measuring device according to claim 1, wherein the rotation gripping portion includes a pair of rotating bodies gripping the wire member, and a regulating member regulating rotation of the rotating body only in one direction. .
構造物の外力による変形を計測するための、少なくとも2点の測定点間に設置され、前記測定点間の相対変位量を計測する相対変位計測方法であって、
前記2点の測定点の一方において前記構造物に基台部を固定するとともに、前記基台部上の水平面内において回転可能に保持された回転把持部によって、測定部材であるワイヤ部材の一端を把持する工程と、
前記測定部材の他端を、前記2点の測定点の他方に固定して、前記2点の測定点間に前記測定部材を張設する工程と、
前記回転把持部は、前記他方の測定点側からの張力によって引っ張られたときに、前記張力に応じて不可逆的に前記測定部材を前記一端側へ送り出し、一定期間におけるその送り出し量を測定することによって、前記測定点間の相対変位量を計測する工程と
を含み、
前記ワイヤ部材の一端を把持する工程において、基台部は電源コンセントを建造物の壁内に取付けるための配電ボックス内に収納される
ことを特徴とする相対変位計測方法。
A relative displacement measurement method, which is disposed between at least two measurement points for measuring deformation of a structure due to external force, and measures a relative displacement amount between the measurement points,
The base is fixed to the structure at one of the two measurement points, and one end of the wire member, which is a measuring member, is fixed by the rotary grip held rotatably in the horizontal plane on the base. Grasping process,
Fixing the other end of the measurement member to the other of the two measurement points, and stretching the measurement member between the two measurement points;
When the rotating grip portion is pulled by tension from the other measurement point side, the rotation gripping portion irreversibly delivers the measurement member to the one end side according to the tension, and measures the delivery amount in a fixed period. by, it viewed including the step of measuring a relative displacement amount between the measuring points,
The relative displacement measuring method according to any one of the preceding claims, wherein, in the step of holding one end of the wire member, the base portion is housed in a distribution box for mounting a power outlet in a wall of a building .
JP2018101559A 2018-05-28 2018-05-28 Relative displacement measuring device and relative displacement measuring method Expired - Fee Related JP6547181B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018101559A JP6547181B1 (en) 2018-05-28 2018-05-28 Relative displacement measuring device and relative displacement measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018101559A JP6547181B1 (en) 2018-05-28 2018-05-28 Relative displacement measuring device and relative displacement measuring method

Publications (2)

Publication Number Publication Date
JP6547181B1 true JP6547181B1 (en) 2019-07-24
JP2019207122A JP2019207122A (en) 2019-12-05

Family

ID=67390243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018101559A Expired - Fee Related JP6547181B1 (en) 2018-05-28 2018-05-28 Relative displacement measuring device and relative displacement measuring method

Country Status (1)

Country Link
JP (1) JP6547181B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095523A1 (en) 2019-11-15 2021-05-20 日亜化学工業株式会社 Vertical external-cavity surface-emitting laser

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3830647B2 (en) * 1997-12-26 2006-10-04 長野計器株式会社 Maximum value memory sensor mounting structure
US5932810A (en) * 1998-02-25 1999-08-03 Strain Monitor Systems, Inc. Passive peak deflection sensor
JP2001264001A (en) * 2000-03-21 2001-09-26 Kumagai Gumi Co Ltd Deformation recording apparatus for inter-structural member
JP3230205B1 (en) * 2000-12-22 2001-11-19 学校法人 慶應義塾 Maximum value storage sensor and maximum value measurement method
JP2012083320A (en) * 2010-10-06 2012-04-26 Keiji Miyake Wire deflection measuring device
JP6074146B2 (en) * 2012-03-09 2017-02-01 曙ブレーキ工業株式会社 3D displacement measuring device
JP6349267B2 (en) * 2014-04-22 2018-06-27 新日鉄住金エンジニアリング株式会社 3D displacement measuring device and 3D displacement measuring system

Also Published As

Publication number Publication date
JP2019207122A (en) 2019-12-05

Similar Documents

Publication Publication Date Title
KR100210256B1 (en) Strain monitoring apparatus and methods for use in mechanical structures subjected to stress
JP6547181B1 (en) Relative displacement measuring device and relative displacement measuring method
Miskiewicz et al. Structural health monitoring of composite shell footbridge for its design validation
WO2017031064A1 (en) Apparatus and methods for monitoring movement of physical structures by laser deflection
JP2018072126A (en) Monitoring system of bearing and method for monitoring
JP2016109611A (en) Displacement measuring device
US7581450B2 (en) Relaxation modulus sensor, structure incorporating same, and method for use of same
Belvi et al. Practical recommendations for controlling of angular displacements of high-rise and large span elements of civil structures
JP2007205860A (en) Method for evaluating durability of existing sign pole and baseline setting method for executing durability evaluation of existing sign pole
JP6260901B2 (en) Limit type displacement detector
JP4187866B2 (en) Optical fiber sensor
Ren et al. Determination of cable tensions based on frequency differences
Maheshwari et al. Effect of the location and size of a single crack on first fundamental frequency of a cantilever beam using fiber optic polarimetric sensors and characterisation of FBG sensors
Enckell Structural health monitoring using modern sensor technology: long-term monitoring of the New Årsta Railway Bridge
CN101493320A (en) Method for measuring trolley wire by utilizing side-position method
Cuadra et al. Estimation of dynamic properties of traditional wooden structures using new bolt sensor
Quintana et al. Damage detection on a cable stayed bridge using wave propagation analysis
Karsznia et al. The use of a structural monitoring system in deformation surveying of a wooden beam during the destructive test
JP2007016486A (en) Vibration control device
JP6530726B2 (en) Member angle measurement system
RU2809812C1 (en) Set of measurement tools for express assessment of load capacity of road bridges
JP2006053095A (en) Method of measuring opening variation amount of surface crack in structure, method of measuring surface crack depth, and database used therefor
Dutta et al. Creep study of FRP composite rebars for concrete
Badibanga Life prediction of power line damper.
Yin et al. Degradation and buckling of I-beams under cyclic pure bending

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180605

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190604

R150 Certificate of patent or registration of utility model

Ref document number: 6547181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees