JP6544543B2 - 畳み込みニューラルネットワークに基づいたフルリファレンス画像品質評価方法 - Google Patents
畳み込みニューラルネットワークに基づいたフルリファレンス画像品質評価方法 Download PDFInfo
- Publication number
- JP6544543B2 JP6544543B2 JP2017563173A JP2017563173A JP6544543B2 JP 6544543 B2 JP6544543 B2 JP 6544543B2 JP 2017563173 A JP2017563173 A JP 2017563173A JP 2017563173 A JP2017563173 A JP 2017563173A JP 6544543 B2 JP6544543 B2 JP 6544543B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- reference image
- distortion
- similarity
- neural network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24133—Distances to prototypes
- G06F18/24137—Distances to cluster centroïds
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0495—Quantised networks; Sparse networks; Compressed networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/98—Detection or correction of errors, e.g. by rescanning the pattern or by human intervention; Evaluation of the quality of the acquired patterns
- G06V10/993—Evaluation of the quality of the acquired pattern
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/19—Recognition using electronic means
- G06V30/191—Design or setup of recognition systems or techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06V30/19173—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/19—Recognition using electronic means
- G06V30/192—Recognition using electronic means using simultaneous comparisons or correlations of the image signals with a plurality of references
- G06V30/194—References adjustable by an adaptive method, e.g. learning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N17/00—Diagnosis, testing or measuring for television systems or their details
- H04N17/004—Diagnosis, testing or measuring for television systems or their details for digital television systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/154—Measured or subjectively estimated visual quality after decoding, e.g. measurement of distortion
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20021—Dividing image into blocks, subimages or windows
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30168—Image quality inspection
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Multimedia (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Quality & Reliability (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/732,518 | 2015-06-05 | ||
| US14/732,518 US9741107B2 (en) | 2015-06-05 | 2015-06-05 | Full reference image quality assessment based on convolutional neural network |
| PCT/US2016/035868 WO2016197026A1 (en) | 2015-06-05 | 2016-06-03 | Full reference image quality assessment based on convolutional neural network |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2018516412A JP2018516412A (ja) | 2018-06-21 |
| JP2018516412A5 JP2018516412A5 (enExample) | 2019-06-13 |
| JP6544543B2 true JP6544543B2 (ja) | 2019-07-17 |
Family
ID=57441857
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2017563173A Active JP6544543B2 (ja) | 2015-06-05 | 2016-06-03 | 畳み込みニューラルネットワークに基づいたフルリファレンス画像品質評価方法 |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US9741107B2 (enExample) |
| EP (1) | EP3292512B1 (enExample) |
| JP (1) | JP6544543B2 (enExample) |
| KR (1) | KR101967089B1 (enExample) |
| CN (1) | CN107636690B (enExample) |
| WO (1) | WO2016197026A1 (enExample) |
Families Citing this family (102)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11263432B2 (en) * | 2015-02-06 | 2022-03-01 | Veridium Ip Limited | Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices |
| US9424458B1 (en) | 2015-02-06 | 2016-08-23 | Hoyos Labs Ip Ltd. | Systems and methods for performing fingerprint based user authentication using imagery captured using mobile devices |
| US9734567B2 (en) * | 2015-06-24 | 2017-08-15 | Samsung Electronics Co., Ltd. | Label-free non-reference image quality assessment via deep neural network |
| US10410330B2 (en) * | 2015-11-12 | 2019-09-10 | University Of Virginia Patent Foundation | System and method for comparison-based image quality assessment |
| US10356343B2 (en) * | 2016-03-18 | 2019-07-16 | Raytheon Company | Methods and system for geometric distortion correction for space-based rolling-shutter framing sensors |
| US9904871B2 (en) * | 2016-04-14 | 2018-02-27 | Microsoft Technologies Licensing, LLC | Deep convolutional neural network prediction of image professionalism |
| US10043254B2 (en) | 2016-04-14 | 2018-08-07 | Microsoft Technology Licensing, Llc | Optimal image transformation based on professionalism score of subject |
| US10043240B2 (en) | 2016-04-14 | 2018-08-07 | Microsoft Technology Licensing, Llc | Optimal cropping of digital image based on professionalism score of subject |
| WO2018033137A1 (zh) * | 2016-08-19 | 2018-02-22 | 北京市商汤科技开发有限公司 | 在视频图像中展示业务对象的方法、装置和电子设备 |
| US10360494B2 (en) * | 2016-11-30 | 2019-07-23 | Altumview Systems Inc. | Convolutional neural network (CNN) system based on resolution-limited small-scale CNN modules |
| US10834406B2 (en) * | 2016-12-12 | 2020-11-10 | Netflix, Inc. | Device-consistent techniques for predicting absolute perceptual video quality |
| US11113800B2 (en) | 2017-01-18 | 2021-09-07 | Nvidia Corporation | Filtering image data using a neural network |
| US11537869B2 (en) * | 2017-02-17 | 2022-12-27 | Twitter, Inc. | Difference metric for machine learning-based processing systems |
| WO2018152741A1 (en) * | 2017-02-23 | 2018-08-30 | Nokia Technologies Oy | Collaborative activation for deep learning field |
| CN106920215B (zh) * | 2017-03-06 | 2020-03-27 | 长沙全度影像科技有限公司 | 一种全景图像配准效果的检测方法 |
| CN108304755B (zh) * | 2017-03-08 | 2021-05-18 | 腾讯科技(深圳)有限公司 | 用于图像处理的神经网络模型的训练方法和装置 |
| CN107103331B (zh) * | 2017-04-01 | 2020-06-16 | 中北大学 | 一种基于深度学习的图像融合方法 |
| WO2018186991A1 (en) * | 2017-04-04 | 2018-10-11 | Board Of Regents, The University Of Texas System | Assessing quality of images or videos using a two-stage quality assessment |
| US10699160B2 (en) | 2017-08-23 | 2020-06-30 | Samsung Electronics Co., Ltd. | Neural network method and apparatus |
| CN107644415B (zh) * | 2017-09-08 | 2019-02-22 | 众安信息技术服务有限公司 | 一种文本图像质量评估方法及设备 |
| CN107705299B (zh) * | 2017-09-25 | 2021-05-14 | 安徽睿极智能科技有限公司 | 基于多属性特征的图像质量分类方法 |
| CN107679490B (zh) * | 2017-09-29 | 2019-06-28 | 百度在线网络技术(北京)有限公司 | 用于检测图像质量的方法和装置 |
| US10540589B2 (en) * | 2017-10-24 | 2020-01-21 | Deep North, Inc. | Image quality assessment using similar scenes as reference |
| CN108171256A (zh) * | 2017-11-27 | 2018-06-15 | 深圳市深网视界科技有限公司 | 人脸图像质评模型构建、筛选、识别方法及设备和介质 |
| US10740659B2 (en) * | 2017-12-14 | 2020-08-11 | International Business Machines Corporation | Fusing sparse kernels to approximate a full kernel of a convolutional neural network |
| CN108074239B (zh) * | 2017-12-30 | 2021-12-17 | 中国传媒大学 | 一种基于先验感知质量特征图的无参考图像质量客观评价方法 |
| CN108335289A (zh) * | 2018-01-18 | 2018-07-27 | 天津大学 | 一种全参考融合的图像客观质量评价方法 |
| US10721477B2 (en) * | 2018-02-07 | 2020-07-21 | Netflix, Inc. | Techniques for predicting perceptual video quality based on complementary perceptual quality models |
| US10887602B2 (en) | 2018-02-07 | 2021-01-05 | Netflix, Inc. | Techniques for modeling temporal distortions when predicting perceptual video quality |
| CN108389192A (zh) * | 2018-02-11 | 2018-08-10 | 天津大学 | 基于卷积神经网络的立体图像舒适度评价方法 |
| US11216698B2 (en) * | 2018-02-16 | 2022-01-04 | Spirent Communications, Inc. | Training a non-reference video scoring system with full reference video scores |
| US10916003B2 (en) * | 2018-03-20 | 2021-02-09 | Uber Technologies, Inc. | Image quality scorer machine |
| US11361416B2 (en) | 2018-03-20 | 2022-06-14 | Netflix, Inc. | Quantifying encoding comparison metric uncertainty via bootstrapping |
| CN108259893B (zh) * | 2018-03-22 | 2020-08-18 | 天津大学 | 基于双流卷积神经网络的虚拟现实视频质量评价方法 |
| CN108875904A (zh) * | 2018-04-04 | 2018-11-23 | 北京迈格威科技有限公司 | 图像处理方法、图像处理装置和计算机可读存储介质 |
| EP3779873A4 (en) * | 2018-04-04 | 2021-06-02 | Panasonic Intellectual Property Management Co., Ltd. | IMAGE PROCESSING DEVICE AND IMAGE PROCESSING METHOD |
| CN108596890B (zh) * | 2018-04-20 | 2020-06-16 | 浙江科技学院 | 一种基于视觉测量率自适应融合的全参考图像质量客观评价方法 |
| CN108648180B (zh) * | 2018-04-20 | 2020-11-17 | 浙江科技学院 | 一种基于视觉多重特征深度融合处理的全参考图像质量客观评价方法 |
| CN108596902B (zh) * | 2018-05-04 | 2020-09-08 | 北京大学 | 基于选通卷积神经网络的多任务全参考图像质量评价方法 |
| US10628708B2 (en) * | 2018-05-18 | 2020-04-21 | Adobe Inc. | Utilizing a deep neural network-based model to identify visually similar digital images based on user-selected visual attributes |
| CN108665460B (zh) * | 2018-05-23 | 2020-07-03 | 浙江科技学院 | 基于组合神经网络和分类神经网络的图像质量评价方法 |
| KR102184755B1 (ko) * | 2018-05-31 | 2020-11-30 | 서울대학교 산학협력단 | 안면 특화 초 고화질 심층 신경망 학습 장치 및 방법 |
| CN108986075A (zh) * | 2018-06-13 | 2018-12-11 | 浙江大华技术股份有限公司 | 一种优选图像的判断方法及装置 |
| CN109360183B (zh) * | 2018-08-20 | 2021-05-11 | 中国电子进出口有限公司 | 一种基于卷积神经网络的人脸图像质量评估方法和系统 |
| US11704791B2 (en) * | 2018-08-30 | 2023-07-18 | Topcon Corporation | Multivariate and multi-resolution retinal image anomaly detection system |
| JP6925474B2 (ja) * | 2018-08-31 | 2021-08-25 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像装置、情報処理システム、固体撮像装置の動作方法及びプログラム |
| JP6697042B2 (ja) * | 2018-08-31 | 2020-05-20 | ソニーセミコンダクタソリューションズ株式会社 | 固体撮像システム、固体撮像方法及びプログラム |
| JP7075012B2 (ja) * | 2018-09-05 | 2022-05-25 | 日本電信電話株式会社 | 画像処理装置、画像処理方法及び画像処理プログラム |
| US11055819B1 (en) * | 2018-09-27 | 2021-07-06 | Amazon Technologies, Inc. | DualPath Deep BackProjection Network for super-resolution |
| CN111105357B (zh) * | 2018-10-25 | 2023-05-02 | 杭州海康威视数字技术股份有限公司 | 一种失真图像的去失真方法、装置及电子设备 |
| US11132586B2 (en) * | 2018-10-29 | 2021-09-28 | Nec Corporation | Rolling shutter rectification in images/videos using convolutional neural networks with applications to SFM/SLAM with rolling shutter images/videos |
| CN109685772B (zh) * | 2018-12-10 | 2022-06-14 | 福州大学 | 一种基于配准失真表示的无参照立体图像质量评估方法 |
| US11557107B2 (en) | 2019-01-02 | 2023-01-17 | Bank Of America Corporation | Intelligent recognition and extraction of numerical data from non-numerical graphical representations |
| CN109801273B (zh) * | 2019-01-08 | 2022-11-01 | 华侨大学 | 一种基于极平面线性相似度的光场图像质量评价方法 |
| US10325179B1 (en) * | 2019-01-23 | 2019-06-18 | StradVision, Inc. | Learning method and learning device for pooling ROI by using masking parameters to be used for mobile devices or compact networks via hardware optimization, and testing method and testing device using the same |
| CN109871780B (zh) * | 2019-01-28 | 2023-02-10 | 中国科学院重庆绿色智能技术研究院 | 一种人脸质量判决方法、系统及人脸识别方法、系统 |
| US11308598B2 (en) * | 2019-02-14 | 2022-04-19 | Sharif University Of Technology | Quality assessment of an image |
| US11405695B2 (en) | 2019-04-08 | 2022-08-02 | Spirent Communications, Inc. | Training an encrypted video stream network scoring system with non-reference video scores |
| US12335579B2 (en) | 2019-04-08 | 2025-06-17 | Spirent Communications, Inc. | Cloud gaming benchmark testing |
| CN110033446B (zh) * | 2019-04-10 | 2022-12-06 | 西安电子科技大学 | 基于孪生网络的增强图像质量评价方法 |
| KR102420104B1 (ko) * | 2019-05-16 | 2022-07-12 | 삼성전자주식회사 | 영상 처리 장치 및 그 동작방법 |
| KR102825811B1 (ko) | 2019-05-21 | 2025-06-27 | 삼성전자주식회사 | 이미지 신호 프로세서의 모델링 방법, 및 전자 기기 |
| US11521011B2 (en) | 2019-06-06 | 2022-12-06 | Samsung Electronics Co., Ltd. | Method and apparatus for training neural network model for enhancing image detail |
| CN110517237B (zh) * | 2019-08-20 | 2022-12-06 | 西安电子科技大学 | 基于膨胀三维卷积神经网络的无参考视频质量评价方法 |
| CN110766657B (zh) * | 2019-09-20 | 2022-03-18 | 华中科技大学 | 一种激光干扰图像质量评价方法 |
| US10877540B2 (en) * | 2019-10-04 | 2020-12-29 | Intel Corporation | Content adaptive display power savings systems and methods |
| CN110796651A (zh) * | 2019-10-29 | 2020-02-14 | 杭州阜博科技有限公司 | 图像质量的预测方法及装置、电子设备、存储介质 |
| CN110751649B (zh) * | 2019-10-29 | 2021-11-02 | 腾讯科技(深圳)有限公司 | 视频质量评估方法、装置、电子设备及存储介质 |
| KR102395038B1 (ko) * | 2019-11-20 | 2022-05-09 | 한국전자통신연구원 | 기계 학습 기반 특징과 지식 기반 특징을 이용한 비디오 화질 자동 측정 방법 및 이를 위한 장치 |
| CN111127587B (zh) * | 2019-12-16 | 2023-06-23 | 杭州电子科技大学 | 一种基于对抗生成网络的无参考图像质量地图生成方法 |
| CN111192258A (zh) * | 2020-01-02 | 2020-05-22 | 广州大学 | 一种图像质量评估方法及装置 |
| CN111524123B (zh) * | 2020-04-23 | 2023-08-08 | 北京百度网讯科技有限公司 | 用于处理图像的方法和装置 |
| CN111833326B (zh) * | 2020-07-10 | 2022-02-11 | 深圳大学 | 图像质量评价方法、装置、计算机设备及存储介质 |
| US11616959B2 (en) * | 2020-07-24 | 2023-03-28 | Ssimwave, Inc. | Relationship modeling of encode quality and encode parameters based on source attributes |
| US11341682B2 (en) * | 2020-08-13 | 2022-05-24 | Argo AI, LLC | Testing and validation of a camera under electromagnetic interference |
| KR102801501B1 (ko) | 2020-09-29 | 2025-04-29 | 삼성전자주식회사 | 비디오 품질 평가 방법 및 장치 |
| CN112419242B (zh) * | 2020-11-10 | 2023-09-15 | 西北大学 | 基于自注意力机制gan网络的无参考图像质量评价方法 |
| CN112330650B (zh) * | 2020-11-12 | 2024-06-28 | 李庆春 | 一种检索视频质量评价方法 |
| DE102020216017A1 (de) * | 2020-12-16 | 2022-06-23 | Siemens Healthcare Gmbh | Bereitstellen von korrigierten medizinischen Bilddaten |
| CN112784698B (zh) * | 2020-12-31 | 2024-07-02 | 杭州电子科技大学 | 基于深层次时空信息的无参考视频质量评价方法 |
| CN112700425B (zh) * | 2021-01-07 | 2024-04-26 | 云南电网有限责任公司电力科学研究院 | 一种用于电力设备x射线图像质量的判定方法 |
| US11521639B1 (en) | 2021-04-02 | 2022-12-06 | Asapp, Inc. | Speech sentiment analysis using a speech sentiment classifier pretrained with pseudo sentiment labels |
| CN115205188A (zh) * | 2021-04-13 | 2022-10-18 | 腾讯科技(深圳)有限公司 | 基于逼近值评估图像视频质量的方法和相关装置 |
| WO2022217496A1 (zh) * | 2021-04-14 | 2022-10-20 | 中国科学院深圳先进技术研究院 | 影像数据质量评估方法、装置、终端设备及可读存储介质 |
| CN117157985A (zh) | 2021-06-12 | 2023-12-01 | 谷歌有限责任公司 | 用于确定视频内容项的感知质量指标的方法、系统和介质 |
| US20220415037A1 (en) * | 2021-06-24 | 2022-12-29 | Meta Platforms, Inc. | Video corruption detection |
| US11763803B1 (en) | 2021-07-28 | 2023-09-19 | Asapp, Inc. | System, method, and computer program for extracting utterances corresponding to a user problem statement in a conversation between a human agent and a user |
| CN113505854B (zh) * | 2021-07-29 | 2023-08-15 | 济南博观智能科技有限公司 | 一种人脸图像质量评价模型构建方法、装置、设备及介质 |
| KR20230073871A (ko) | 2021-11-19 | 2023-05-26 | 삼성전자주식회사 | 영상 처리 장치 및 그 동작 방법 |
| US12067363B1 (en) | 2022-02-24 | 2024-08-20 | Asapp, Inc. | System, method, and computer program for text sanitization |
| CN114332088B (zh) * | 2022-03-11 | 2022-06-03 | 电子科技大学 | 一种基于运动估计的全参考视频质量评估方法 |
| CN114638793B (zh) * | 2022-04-19 | 2024-07-02 | 深圳闪回科技有限公司 | 一种屏幕老化程度检测方法及装置 |
| CN115661114B (zh) * | 2022-11-09 | 2025-03-14 | 重庆大学 | 一种基于Conformer和元学习的全参考图像质量评价方法 |
| CN116152183B (zh) * | 2023-01-10 | 2025-09-05 | 杭州电子科技大学 | 一种基于失真先验学习的无参考图像质量评价方法 |
| KR102722242B1 (ko) * | 2023-02-16 | 2024-10-24 | 연세대학교 원주산학협력단 | 영상의 품질을 정량화하는 방법 및 장치, 그리고 광학 촬영 시스템의 품질을 측정하는 영상 촬영 장치 |
| US20240394835A1 (en) * | 2023-05-23 | 2024-11-28 | Constructor Autonomous AG | Automatically enhancing image quality in machine learning training dataset by using deep generative models |
| CN117152092B (zh) * | 2023-09-01 | 2024-05-28 | 国家广播电视总局广播电视规划院 | 全参考图像评价方法、装置、电子设备和计算机存储介质 |
| KR20250124609A (ko) * | 2024-02-13 | 2025-08-20 | 서울대학교산학협력단 | 근사 알고리즘 기반 umcm 회로를 이용한 컨볼루션 연산 장치 및 그 설계 방법 |
| KR20250138460A (ko) | 2024-03-13 | 2025-09-22 | 재단법인대구경북과학기술원 | 비전-언어 모델을 이용한 이미지 추천 장치 및 방법 |
| CN118096770B (zh) * | 2024-04-29 | 2024-06-28 | 江西财经大学 | 非视口依赖的抗畸变无参考全景图像质量评价方法与系统 |
| CN118864369B (zh) * | 2024-06-28 | 2025-05-13 | 宁夏大学 | 基于多层次特征分布的图像质量评价方法 |
| CN119251341B (zh) * | 2024-10-15 | 2025-11-14 | 安徽大学 | 基于泊松流生成模型的ct图像质量评估方法 |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| MXPA05004956A (es) | 2002-11-06 | 2005-09-20 | Agency Science Tech & Res | Un metodo para generar un mapa de significancia orientado a la calidad, para valorar la calidad de una imagen o video. |
| EP1727088A1 (en) * | 2005-05-25 | 2006-11-29 | Thomson Licensing | Method for assessing image quality |
| CN100588271C (zh) | 2006-08-08 | 2010-02-03 | 安捷伦科技有限公司 | 基于分组度量和图像度量两者测量视频质量的系统和方法 |
| US8295565B2 (en) * | 2007-03-16 | 2012-10-23 | Sti Medical Systems, Llc | Method of image quality assessment to produce standardized imaging data |
| KR101092650B1 (ko) * | 2010-01-12 | 2011-12-13 | 서강대학교산학협력단 | 양자화 코드를 이용한 화질 평가 방법 및 장치 |
| RU2431889C1 (ru) * | 2010-08-06 | 2011-10-20 | Дмитрий Валерьевич Шмунк | Способ суперразрешения изображений и нелинейный цифровой фильтр для его осуществления |
| CN102497576B (zh) * | 2011-12-21 | 2013-11-20 | 浙江大学 | 基于Gabor特征互信息的全参考图像质量评价方法 |
| US8942512B2 (en) * | 2011-12-24 | 2015-01-27 | Ecole De Technologie Superieure | Methods and systems for processing a first image with reference to a second image |
| WO2013177779A1 (en) * | 2012-05-31 | 2013-12-05 | Thomson Licensing | Image quality measurement based on local amplitude and phase spectra |
| US20150341667A1 (en) | 2012-12-21 | 2015-11-26 | Thomson Licensing | Video quality model, method for training a video quality model, and method for determining video quality using a video quality model |
-
2015
- 2015-06-05 US US14/732,518 patent/US9741107B2/en not_active Expired - Fee Related
-
2016
- 2016-06-03 CN CN201680032412.0A patent/CN107636690B/zh active Active
- 2016-06-03 JP JP2017563173A patent/JP6544543B2/ja active Active
- 2016-06-03 EP EP16804582.1A patent/EP3292512B1/en active Active
- 2016-06-03 KR KR1020177034859A patent/KR101967089B1/ko active Active
- 2016-06-03 WO PCT/US2016/035868 patent/WO2016197026A1/en not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| US9741107B2 (en) | 2017-08-22 |
| CN107636690A (zh) | 2018-01-26 |
| US20160358321A1 (en) | 2016-12-08 |
| CN107636690B (zh) | 2021-06-22 |
| JP2018516412A (ja) | 2018-06-21 |
| KR20180004208A (ko) | 2018-01-10 |
| KR101967089B1 (ko) | 2019-04-08 |
| EP3292512A1 (en) | 2018-03-14 |
| WO2016197026A1 (en) | 2016-12-08 |
| EP3292512A4 (en) | 2019-01-02 |
| EP3292512B1 (en) | 2021-01-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6544543B2 (ja) | 畳み込みニューラルネットワークに基づいたフルリファレンス画像品質評価方法 | |
| Sun et al. | Blind quality assessment for in-the-wild images via hierarchical feature fusion and iterative mixed database training | |
| Li et al. | No-reference image quality assessment with deep convolutional neural networks | |
| US11514694B2 (en) | Teaching GAN (generative adversarial networks) to generate per-pixel annotation | |
| CN114067168B (zh) | 基于改进的变分自编码器网络的布匹缺陷图像生成系统及方法 | |
| JP2018101406A (ja) | ニューラルネットワークにトレーニングデータを提供するための画像解析アルゴリズムの使用 | |
| De Fauw et al. | Hierarchical autoregressive image models with auxiliary decoders | |
| JP2018516412A5 (enExample) | ||
| JP2022514580A (ja) | 機械学習による光学補正 | |
| Fu et al. | Blind image quality assessment for multiply distorted images via convolutional neural networks | |
| Athar et al. | Degraded reference image quality assessment | |
| CN119537816A (zh) | 一种基于扩散模型的时间序列缺失值填补方法及系统 | |
| Jiang et al. | Multi-focus image fusion method based on adaptive weighting and interactive information modulation | |
| CN117951605B (zh) | 扩散模型的量化方法、装置、计算机设备及存储介质 | |
| EP4521763A1 (en) | Method for imaging a sample with an imaging device | |
| US20240144432A1 (en) | Image processing apparatus, image processing method, and storage medium | |
| CN113313021A (zh) | 一种基于低质量影像识别的深度学习模型构建方法 | |
| JP2022029262A (ja) | 画像処理装置、画像処理方法、画像処理プログラム、および学習装置 | |
| CN116953808B (zh) | 一种地磁信号噪声压制方法及系统 | |
| Kalatehjari et al. | A new reduced-reference image quality assessment based on the SVD signal projection | |
| De et al. | No-reference image contrast measure using image statistics and random forest | |
| Gao et al. | Image quality assessment using image description in information theory | |
| Siniukov et al. | Unveiling the limitations of novel image quality metrics | |
| JP2018116672A (ja) | 情報処理装置、情報処理方法およびプログラム | |
| CN119963491B (zh) | 一种基于扩散修复技术的盲图像质量评价方法及设备 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171205 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190110 |
|
| A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20190308 |
|
| A524 | Written submission of copy of amendment under article 19 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A524 Effective date: 20190510 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190522 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190604 |
|
| R151 | Written notification of patent or utility model registration |
Ref document number: 6544543 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |