JP6544456B2 - Composite member having annular bonded magnet and method of manufacturing the same - Google Patents

Composite member having annular bonded magnet and method of manufacturing the same Download PDF

Info

Publication number
JP6544456B2
JP6544456B2 JP2018073347A JP2018073347A JP6544456B2 JP 6544456 B2 JP6544456 B2 JP 6544456B2 JP 2018073347 A JP2018073347 A JP 2018073347A JP 2018073347 A JP2018073347 A JP 2018073347A JP 6544456 B2 JP6544456 B2 JP 6544456B2
Authority
JP
Japan
Prior art keywords
particles
rubber
mass
composite member
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018073347A
Other languages
Japanese (ja)
Other versions
JP2018190962A (en
Inventor
理恵 吉田
理恵 吉田
将裕 阿部
将裕 阿部
久米 道也
道也 久米
公平 井原
公平 井原
秀一 多田
秀一 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to EP18169460.5A priority Critical patent/EP3396685B1/en
Priority to EP20164257.6A priority patent/EP3690901B1/en
Priority to CN201810390942.3A priority patent/CN108806913B/en
Priority to US15/965,300 priority patent/US11056255B2/en
Publication of JP2018190962A publication Critical patent/JP2018190962A/en
Application granted granted Critical
Publication of JP6544456B2 publication Critical patent/JP6544456B2/en
Priority to US17/303,571 priority patent/US11646154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、環状ボンド磁石を備える複合部材およびその製造方法に関する。 The present invention relates to a composite member provided with an annular bonded magnet and a method of manufacturing the same.

自動車や自動二輪車などにおける燃料ポンプの駆動源として、例えば特許文献1に示すような環状の永久磁石を備えたローターが知られている。この部品は金属製のベースとなる回転体に磁石を装着することで構成されている。装着の方法としては、接着などの粘着力を利用する方法や、焼き嵌めやカシメなどの機械的な嵌合力を利用する方法がある。比較的小型の部品では、主としてコストダウンの観点から、ボンド磁石を金属部材に一体成形する手法が採用されている。しかしながら、製造工程中の冷却過程や、自動車や自動二輪車の運転時や、寒冷地での保管時において、金属部材とボンド磁石材の線膨張係数の差に起因して、ボンド磁石が割れることがある。そこで、冷熱サイクルに優れた複合部材が求められており、特許文献1では、金属部材と、磁石粉末と熱可塑性樹脂と熱可塑性エラストマーとを射出成形することにより、環状の永久磁石が円環状の金属部材外周部に一体成形された複合部材が提案されている。 For example, as a driving source of a fuel pump in a car, a motorcycle, etc., a rotor provided with an annular permanent magnet as shown in Patent Document 1, for example, is known. This component is configured by attaching a magnet to a rotating body that is a metal base. As a mounting method, there is a method of utilizing adhesive force such as adhesion or a method of utilizing mechanical fitting force such as shrink fitting or caulking. For relatively small parts, a method of integrally molding a bond magnet on a metal member is adopted mainly from the viewpoint of cost reduction. However, the bond magnet may be broken due to the difference in the coefficient of linear expansion of the metal member and the bond magnet material during the cooling process during the manufacturing process, the operation of a car or a motorcycle, or storage in a cold region is there. Therefore, a composite member excellent in cooling and heating cycles is required, and in Patent Document 1, the annular permanent magnet is annular by injection molding the metal member, the magnet powder, the thermoplastic resin, and the thermoplastic elastomer. A composite member integrally molded on the outer periphery of a metal member has been proposed.

特許文献2では、金属製のローターコア外面に複数枚の焼結磁石を接着する際に、磁極と磁極のすき間をあける構成にすることでローターコアと磁石の間での熱応力を低減できる旨の記載がある。 According to Patent Document 2, when bonding a plurality of sintered magnets to the outer surface of a metal rotor core, the thermal stress between the rotor core and the magnet can be reduced by opening the gap between the magnetic pole and the magnetic pole. There is a description of

特許文献3では、金属製のローターコアと磁石をハンダにより接合させるとともに、熱応力の緩和のためにローターコア表面に、複数のスリット状凹部を設けている旨の記載がある。 Patent Document 3 describes that a metal rotor core and a magnet are joined by solder and that a plurality of slit-like concave portions are provided on the surface of the rotor core for the purpose of relieving thermal stress.

特許文献4では、金属製のシャフトの周囲に異方性のボンド磁石を成形する際に、磁極間部すなわち磁極の切り替わり部とウエルド部が一致しないことを推奨している旨の記載がある。 Patent Document 4 describes that when forming an anisotropic bond magnet around a metal shaft, it is recommended that the inter-pole portion, that is, the switching portion of the magnetic pole and the weld portion do not coincide.

特許文献5では、ボンド磁石で最も使用されるベースレジンであるポリアミドにビス不飽和脂肪酸アミドを混入させることで柔軟性を改良し、その成形物の耐熱衝撃性を向上できる旨の記載がある。 Patent Document 5 describes that flexibility can be improved by mixing a bisunsaturated fatty acid amide in a polyamide, which is a base resin most used in bonded magnets, and the thermal shock resistance of the molded article can be improved.

特許文献6では、同じくベースレジンであるポリアミドに液状ゴムを混入させることで、成形収縮割れが改善する旨の記載がある。 In Patent Document 6, there is a description that molding shrinkage cracking is improved by mixing liquid rubber into polyamide, which is also a base resin.

特許文献7では、アスペクト比を適宜選択した素材を組み合わせることで、成形体の割れカケを回避できる旨の記載がある。 In Patent Document 7, there is a description that it is possible to avoid cracking of a molded body by combining materials having an aspect ratio appropriately selected.

特許文献8では、ローター外周にボンド磁石を一体成形する際に、ローターとボンド磁石に中間層を設け、ここに曲げ歪の大きい材料で構成されたボンド磁石を成形することで、成形収縮割れおよび冷熱サイクル割れを回避できる旨の記載がある。 In Patent Document 8, when the bonded magnet is integrally formed on the outer periphery of the rotor, an intermediate layer is provided on the rotor and the bonded magnet, and a molded shrinkage crack is formed by forming a bonded magnet composed of a material having a large bending strain. There is a statement that cold cycle cracking can be avoided.

これら従来の方法によると、割れ対策として、新たに樹脂の配合を検討したり、磁石粒子配合を大幅に見直す必要があり、そのために、コスト上昇を伴うばかりか、割れ以外の特性を検証する必要があった。つまり、現行の素材をそのまま使うことにより、磁気特性を代表とする磁石特性は保ったまま、あるいは引張特性や接着強度は保ったまま、割れの挙動だけを改善したいという要望がある。 According to these conventional methods, it is necessary to newly consider the resin composition or significantly review the magnet particle composition as a countermeasure against cracking, and for this purpose it is necessary not only to increase costs but also to verify characteristics other than cracking. was there. In other words, there is a demand to improve only the behavior of the crack while maintaining the magnet characteristics represented by the magnetic characteristics or maintaining the tensile characteristics and the adhesive strength by using the current material as it is.

一方、特許文献9では、軟磁性粉末と、ゴムの表面に有機物を含む外周層とを有するフィラーと、前記軟磁性粉末及び前記フィラーを分散した状態で内包する樹脂部とを備える複合材料が開示されている。ゴムを含むフィラーが分散していることで、マイクロクラックから起こる伸展抑制には効果があるが、樹脂と相溶化するためにフィラー自体に別途表面処理等の処方が必要である。また、本発明のように、金属部材との一体成形からなる環状ボンド磁石においては、冷熱衝撃時において、その線膨張係数の差から樹脂に応力がかかるため、母材樹脂に相溶させた状態でゴムを分散させる方法では、その応力を吸収するという点において十分な効果を得ることは難しい。 On the other hand, Patent Document 9 discloses a composite material including a soft magnetic powder, a filler having an outer peripheral layer containing an organic matter on the surface of rubber, and a resin portion containing the soft magnetic powder and the filler in a dispersed state. It is done. Although the filler containing the rubber is dispersed, it is effective in suppressing the extension caused by the micro crack, but in order to be compatible with the resin, the filler itself needs to be separately formulated such as surface treatment. Further, as in the present invention, in the case of an annular bonded magnet formed by integral molding with a metal member, stress is applied to the resin due to the difference in linear expansion coefficient at the time of thermal shock, so that the resin is compatible with the matrix resin. It is difficult to obtain sufficient effect in terms of absorbing the stress by the method of dispersing the rubber by

特開2016−101062号公報Unexamined-Japanese-Patent No. 2016-101062 特開2002−78257号公報JP 2002-78257 A 特表2016−533148号公報Japanese Patent Application Publication No. 2016-533148 gazette 特開2008−172965号公報JP, 2008-172965, A 特開2006−41116号公報JP, 2006-41116, A 特開平6−287445号公報Japanese Patent Laid-Open No. 6-287445 特開2005−72240号公報JP, 2005-72240, A 特開2005−151757号公報JP 2005-151757 A 特開2016―143827号公報JP, 2016-143827, A

本発明は、熱衝撃性に優れた環状ボンド磁石を有する複合部材およびその製造方法を提供する。 The present invention provides a composite member having an annular bonded magnet excellent in thermal shock resistance and a method of manufacturing the same.

本発明の一態様にかかる複合部材は、
略円柱状または略円環状の金属部材と、前記金属部材の外周に設けられた環状ボンド磁石とを備える複合部材であって、前記環状ボンド磁石は、熱可塑性樹脂、磁性粒子およびゴム粒子を含むことを特徴とする。
The composite member according to one aspect of the present invention is
A composite member comprising a substantially cylindrical or substantially annular metal member and an annular bonded magnet provided on the outer periphery of the metal member, wherein the annular bonded magnet includes a thermoplastic resin, magnetic particles, and rubber particles. It is characterized by

本発明の他の一態様にかかる前記複合部材の製造方法は、
熱可塑性樹脂と磁性粒子を混練し、コンパウンドを得る工程、および、
前記コンパウンドとゴム粒子を、略円柱状または略円環状の金属部材と一体成形する工程
を含むことを特徴とする。
According to another aspect of the present invention, there is provided a method of producing the composite member,
Kneading the thermoplastic resin and the magnetic particles to obtain a compound;
It is characterized by including a step of integrally molding the compound and the rubber particles with a substantially cylindrical or substantially annular metal member.

上記態様によれば、熱衝撃性に優れた環状ボンド磁石を有する複合部材およびその製造方法を提供することができる。 According to the above aspect, it is possible to provide a composite member having an annular bonded magnet excellent in thermal shock resistance and a method of manufacturing the same.

本発明の一態様にかかるボンド磁石の断面写真を示す図である。It is a figure which shows the cross-sectional photograph of the bonded magnet concerning 1 aspect of this invention. 本発明の一態様にかかるゴム磁石粒子を含むボンド磁石の模式図である。FIG. 2 is a schematic view of a bonded magnet including rubber magnet particles according to one embodiment of the present invention.

以下、本発明の実施の形態について説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するためのものであって、本発明を以下のものに特定するものではない。なお、本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 Hereinafter, embodiments of the present invention will be described. However, the embodiments shown below are for embodying the technical idea of the present invention, and the present invention is not specified to the following. In the present specification, when a plurality of substances corresponding to each component are present in the composition, the content of each component in the composition is the total of the plurality of substances present in the composition unless otherwise specified. Means quantity.

(複合部材)
本発明の複合部材は、略円柱状または略円環状の金属部材と、前記金属部材の外周に設けられた環状ボンド磁石とを備える複合部材であって、前記環状ボンド磁石は、熱可塑性樹脂、磁性粒子およびゴム粒子を含む。
(Composite member)
The composite member of the present invention is a composite member including a substantially cylindrical or substantially annular metal member and an annular bonded magnet provided on the outer periphery of the metal member, wherein the annular bonded magnet is a thermoplastic resin, It contains magnetic particles and rubber particles.

従来の金属部材の外周に設けられた環状ボンド磁石を備える複合部材は、冷熱衝撃時に、その線膨張係数の差から樹脂に応力がかかるため、ボンド磁石に割れが発生しやすい。一方、本態様では、弾性部材がゴム粒子として存在することにより、ゴム弾性が十分に発揮され、冷熱サイクル時の膨張収縮の応力を十分に緩和することができると考えられる。 In a composite member provided with an annular bonded magnet provided on the outer periphery of a conventional metal member, a stress is applied to the resin due to the difference in linear expansion coefficient at the time of thermal shock, and thus the bonded magnet is likely to be cracked. On the other hand, in the present embodiment, it is considered that the rubber elasticity is sufficiently exhibited by the presence of the elastic member as rubber particles, and the stress of expansion and contraction during the thermal cycle can be sufficiently relieved.

金属部材の形状は、略円柱状または略円環状である限り、限定されない。略円柱状または略円環状の金属部材の外径は、5mm以上100mm以下が好ましく、高さは、1mm以上30mm以下が好ましい。金属部材の金属はヨークとなるものであれば、特に限定されない。 The shape of the metal member is not limited as long as it is substantially cylindrical or substantially annular. The outer diameter of the substantially cylindrical or substantially annular metal member is preferably 5 mm or more and 100 mm or less, and the height is preferably 1 mm or more and 30 mm or less. The metal of the metal member is not particularly limited as long as it can be a yoke.

環状ボンド磁石を備えた複合部材の形状も、略円柱状または略円環状である限り、限定されない。外径は、6mm以上150mm以下が好ましく、高さは、1mm以上30mm以下が好ましい。 The shape of the composite member provided with the annular bonded magnet is also not limited as long as it is substantially cylindrical or substantially annular. The outer diameter is preferably 6 mm or more and 150 mm or less, and the height is preferably 1 mm or more and 30 mm or less.

熱可塑性樹脂としては、特に制限は無く、例えば、ポリプロピレン、ポリエチレン、ポリ塩化ビニル、ポリエステル、ポリアミド、ポリカーボネート、ポリフェニレンサルファイド、アクリル樹脂などが挙げられる。その中でもポリアミド、特にポリアミド12が好ましい。ポリアミド12は、比較的低融点で、吸水率が低く、結晶性樹脂であるため成形性が良い。また、これらを適宜混合して使用することも可能である。 The thermoplastic resin is not particularly limited, and examples thereof include polypropylene, polyethylene, polyvinyl chloride, polyester, polyamide, polycarbonate, polyphenylene sulfide and acrylic resin. Among them, polyamide, particularly polyamide 12 is preferable. The polyamide 12 has a relatively low melting point, a low water absorption rate, and is a crystalline resin so that the moldability is good. Moreover, it is also possible to mix and use these suitably.

環状ボンド磁石は、更に熱可塑性エラストマーを含むことが好ましい。熱可塑性エラストマーを含むことにより、流動性を損なうことなく初期強度を向上させることができる。熱可塑性エラストマーとしては、ポリスチレン系、ポリオレフィン系、ポリエステル系、ポリウレタン系、ポリアミド系などが挙げられる。また、これらを適宜混合して使用してもよい。これらの中でも、耐薬品性に優れているポリアミド系熱可塑性エラストマーが好ましい。 The annular bonded magnet preferably further contains a thermoplastic elastomer. By including the thermoplastic elastomer, the initial strength can be improved without impairing the flowability. Examples of the thermoplastic elastomer include polystyrenes, polyolefins, polyesters, polyurethanes and polyamides. Moreover, you may mix and use these suitably. Among these, polyamide-based thermoplastic elastomers which are excellent in chemical resistance are preferable.

環状ボンド磁石は、更にリン系酸化防止剤などの酸化防止剤を含んでいても良い。リン系酸化防止剤を含むことにより、複合部材が高温にさらされた場合にも強度の経時変化を小さくすることができる。リン系酸化防止剤としては、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト等が挙げられる。 The annular bonded magnet may further contain an antioxidant such as a phosphorus-based antioxidant. By including the phosphorus-based antioxidant, the change in strength with time can be reduced even when the composite member is exposed to high temperatures. Examples of phosphorus-based antioxidants include tris (2,4-di-tert-butylphenyl) phosphite and the like.

磁性粒子としては、フェライト系と、希土類系であるNd−Fe−B系、Sm−Co系、Sm−Fe−N系とがある。中でも、Sm−Fe−N系を用いるのが好ましい。Sm−Fe−N系は、一般的にSmFe17で表される。Sm−Fe−N系は、フェライト系に比べると磁力が強く、比較的少ない量でも高磁力を発生することができる。また、Sm−Fe−N系は、Nd−Fe−B系やSm−Co系といった他の希土類系と比べると、粒子径が小さく、母材樹脂へのフィラーとして適していることや、錆び難くいという特長がある。 Magnetic particles include ferrite-based and rare earth-based Nd--Fe--B-based, Sm--Co-based, and Sm--Fe--N based. Among them, it is preferable to use Sm-Fe-N system. Sm-Fe-N system is generally represented by the Sm 2 Fe 17 N 3. The Sm-Fe-N system has a stronger magnetic force than a ferrite system, and can generate a high magnetic force even with a relatively small amount. In addition, Sm-Fe-N is smaller in particle diameter than other rare earths such as Nd-Fe-B and Sm-Co, and is suitable as a filler for base resin, and resistant to rusting. It has the feature of

磁性粒子は、異方性のもの及び等方性のもののいずれか一方又は両方を用いることができる。より強力な磁気特性を得る観点から、異方性のもの(異方性磁性粒子)が好ましい。具体的には、異方性を有するSm−Fe−N系の磁性粒子(異方性Sm−Fe−N系磁性粒子)が好ましい。磁性粒子としてSm−Fe−N系磁性粒子を用いれば、当該磁性粒子は磁力が強いので、より磁気特性に優れたものとすることができる。 The magnetic particles may be either anisotropic or isotropic or both. From the viewpoint of obtaining stronger magnetic properties, anisotropic particles (anisotropic magnetic particles) are preferred. Specifically, Sm-Fe-N-based magnetic particles (anisotropic Sm-Fe-N-based magnetic particles) having anisotropy are preferable. When an Sm—Fe—N based magnetic particle is used as the magnetic particle, the magnetic particle has a strong magnetic force, so that the magnetic particle can be made more excellent.

磁性粒子の平均粒径は、10μm以下が好ましく、1μm以上5μm以下がより好ましい。10μm以下であれば、製品の表面に凹凸部や亀裂等が発生し難く、外観的に優れたものとすることができ、さらに、低コスト化を図ることができる。平均粒径が10μmよりも大きいと、製品の表面に凹凸部や亀裂等が発生して外観的に劣るおそれがある。一方で、平均粒径が1μmよりも小さいと、磁性粒子のコストが高くなるので、低コスト化の観点から好ましくない。 10 micrometers or less are preferable and, as for the average particle diameter of a magnetic particle, 1 micrometer or more and 5 micrometers or less are more preferable. If it is 10 μm or less, uneven parts, cracks and the like do not easily occur on the surface of the product, and the appearance can be excellent. Further, cost reduction can be achieved. If the average particle size is larger than 10 μm, irregularities and cracks may be generated on the surface of the product and the appearance may be deteriorated. On the other hand, when the average particle diameter is smaller than 1 μm, the cost of the magnetic particles is increased, which is not preferable from the viewpoint of cost reduction.

ゴム粒子は市販品を使用してもよく、ゴム原料を架橋し、粉砕したものを使用してもよい。ゴム原料としては、特に限定されないが、熱衝撃性の点から、耐熱性が120℃以上、耐寒性が−40℃以下を有するゴムが好ましく、例えばシリコーンゴム(シリコーン生ゴム)、フッ素ゴム、エチレン酢酸ビニルゴムなどが挙げられる。シリコーンゴムが、適度な可撓性と化学的安定性、耐熱性、耐寒性の点から特に好ましい。 The rubber particles may be commercially available products, or may be used after crosslinking and grinding a rubber material. The raw material for the rubber is not particularly limited, but from the viewpoint of thermal shock resistance, rubber having heat resistance of 120 ° C. or more and cold resistance of −40 ° C. or less is preferable, for example, silicone rubber (silicone raw rubber), fluoro rubber, ethylene acetic acid Vinyl rubber etc. are mentioned. Silicone rubber is particularly preferred in view of moderate flexibility and chemical stability, heat resistance and cold resistance.

ゴム粒子は、磁束密度の点から、少なくとも一部が磁性粒子を含むゴム磁石粒子であることが好ましい(図2参照)。磁性粒子としては、前述の磁性粒子を使用することができる。ゴム磁石粒子中の磁性粒子の含有量は、50質量%以上99質量%以下が好ましく、高い磁気特性を得る点から80質量%以上98質量%以下がより好ましい。 The rubber particles are preferably rubber magnet particles containing at least a part of magnetic particles in view of magnetic flux density (see FIG. 2). The magnetic particles described above can be used as the magnetic particles. The content of the magnetic particles in the rubber magnet particles is preferably 50% by mass to 99% by mass, and more preferably 80% by mass to 98% by mass from the viewpoint of obtaining high magnetic properties.

ゴム粒子の平均粒径は、レーザー回折式粒径分布測定装置を用いて、乾式条件で測定される体積基準の累積粒度分布において、小径側からの累積50%に対応する粒径として求められる。ゴム粒子の平均粒径は、0.7μm超1mm未満が好ましく、熱衝撃性の点から2μm以上900μm以下がより好ましく、成形時の流動性の点から11μm以上500μm以下が特に好ましい。ゴム粒子が磁性粒子を含むゴム磁石粒子の場合、磁束密度の点から、0.7μm超1mm未満が好ましく、50μm以上900μm以下が好ましく、成型時の流動性の点から100μm以上800μm以下が特に好ましい。 The average particle diameter of the rubber particles is determined as a particle diameter corresponding to 50% of accumulation from the small diameter side in a volume-based cumulative particle size distribution measured under dry conditions using a laser diffraction type particle size distribution measuring device. The average particle diameter of the rubber particles is preferably more than 0.7 μm and less than 1 mm, more preferably 2 μm or more and 900 μm or less from the viewpoint of thermal shock resistance, and particularly preferably 11 μm or more and 500 μm or less. In the case of rubber magnet particles containing magnetic particles, the rubber particles preferably have a diameter of more than 0.7 μm and less than 1 mm, preferably 50 μm to 900 μm, and particularly preferably 100 μm to 800 μm. .

環状ボンド磁石中の磁性粒子の含有量は、高い磁気特性を得る点から80質量%以上95質量%以下が好ましく、90質量%以上95質量%未満がより好ましい。環状ボンド磁石中の熱可塑性樹脂の含有量は、流動性を確保する観点から3質量%以上20質量%以下が好ましく、5質量%以上15質量%以下がより好ましい。更に熱可塑性エラストマーを含む場合には、環状ボンド磁石中の熱可塑性エラストマーの含有量は、熱可塑性樹脂と熱可塑性エラストマーとの質量比率が90:10から50:50の範囲であることが好ましく、耐衝撃性の点から90:10から70:30範囲がより好ましい。更にリン系酸化防止剤を含む場合には、環状ボンド磁石中のリン系酸化防止剤の含有量は、0.1質量%以上2質量%以下が好ましい。環状ボンド磁石中のゴム粒子の含有量は、熱衝撃性の点から0.3質量%以上10質量%以下が好ましく、0.5質量%以上5.5質量%以下が好ましい。ここで、ゴム粒子が磁性材料を含まない場合、0.3質量%以上1.0質量%以下がさらに好ましく、ゴム粒子が磁性材料を含むゴム磁石粒子の場合、0.3質量%以上10質量%以下がさらに好ましい。 The content of the magnetic particles in the annular bonded magnet is preferably 80% by mass or more and 95% by mass or less, and more preferably 90% by mass or more and less than 95% by mass from the viewpoint of obtaining high magnetic properties. The content of the thermoplastic resin in the annular bonded magnet is preferably 3% by mass or more and 20% by mass or less, and more preferably 5% by mass or more and 15% by mass or less from the viewpoint of securing fluidity. Furthermore, when the thermoplastic elastomer is contained, the content of the thermoplastic elastomer in the annular bonded magnet is preferably such that the mass ratio of the thermoplastic resin to the thermoplastic elastomer is in the range of 90:10 to 50:50, The range of 90:10 to 70:30 is more preferable from the point of impact resistance. Furthermore, in the case where a phosphorus-based antioxidant is contained, the content of the phosphorus-based antioxidant in the annular bonded magnet is preferably 0.1% by mass or more and 2% by mass or less. The content of the rubber particles in the annular bonded magnet is preferably 0.3% by mass or more and 10% by mass or less, and preferably 0.5% by mass or more and 5.5% by mass or less from the viewpoint of thermal shock resistance. Here, when the rubber particles do not contain a magnetic material, 0.3% by mass or more and 1.0% by mass or less is more preferable, and when the rubber particles are rubber magnet particles containing a magnetic material, 0.3% by mass or more and 10% by mass % Or less is more preferable.

(複合部材の製造方法)
本発明に係る複合部材の製造方法は、熱可塑性樹脂と磁性粒子を混練し、コンパウンドを得る工程、および、前記コンパウンドとゴム粒子を、略円柱状または略円環状の金属部材と一体成形する工程を含むことを特徴とする。
(Method of manufacturing composite member)
The method for producing a composite member according to the present invention comprises the steps of kneading a thermoplastic resin and magnetic particles to obtain a compound, and integrally molding the compound and rubber particles with a substantially cylindrical or substantially annular metal member. It is characterized by including.

本態様では、予め熱可塑性樹脂と磁性粒子とを含むコンパウンドを、ゴム粒子とは別に準備する。熱可塑性樹脂と磁性粒子とともに、ゴム粒子を混練すると、コンパウンド時と一体成形時の双方でゴム粒子に熱がかかるため、ゴム粒子の弾性や強度が低下するおそれがある。また、成形時の計量トルクが上昇するため、成形温度を高くする必要があり、成形温度が高くなって、熱可塑性樹脂の劣化が起こるため、熱衝撃性が低下するおそれがある。しかし、本態様であれば、ゴム粒子に熱がかるのは一体成形する際だけであるため、ゴム粒子の特性も低下しにくく、最終的に得られる複合部材において、ゴム粒子の弾性と強度を維持できる。 In this embodiment, a compound containing a thermoplastic resin and magnetic particles is prepared separately from the rubber particles. When the rubber particles are kneaded together with the thermoplastic resin and the magnetic particles, heat is applied to the rubber particles both during compounding and during integral molding, so that the elasticity and strength of the rubber particles may be reduced. In addition, since the measuring torque at the time of molding is increased, it is necessary to increase the molding temperature, and the molding temperature is increased to cause deterioration of the thermoplastic resin, which may lower the thermal shock resistance. However, in the case of this embodiment, since the heat is applied to the rubber particles only at the time of integral molding, the characteristics of the rubber particles are hardly deteriorated, and the elasticity and the strength of the rubber particles are maintained in the finally obtained composite member. it can.

(コンパウンドの準備)
熱可塑性樹脂と磁性粒子を混練し、コンパウンドを得る工程では、熱可塑性樹脂と、磁性粒子を十分に混練し、得られた混練物を単軸混練機、二軸混練機等の混練機に投入し、冷却後、適当な大きさに切断することで得ることができる。ここで、熱可塑性樹脂と磁性粒子は、前述した通りである。
(Preparation of compound)
In the step of kneading the thermoplastic resin and the magnetic particles to obtain a compound, the thermoplastic resin and the magnetic particles are sufficiently kneaded, and the resulting kneaded product is fed into a kneader such as a single-screw kneader or a twin-screw kneader. After cooling, it can be obtained by cutting to an appropriate size. Here, the thermoplastic resin and the magnetic particles are as described above.

熱可塑性樹脂と磁性粒子とともに、熱可塑性エラストマー、リン系酸化防止剤などの酸化防止剤を同時に混練することができる。 An antioxidant such as a thermoplastic elastomer and a phosphorus-based antioxidant can be simultaneously kneaded together with the thermoplastic resin and the magnetic particles.

コンパウンド中の磁性粒子の含有量は、80質量%以上95質量%以下が好ましく、高い磁気特性を得る点から、90質量%以上95質量以下がより好ましい。一方、コンパウンド中の熱可塑性樹脂の含有量は、3質量%以上20質量%以下が好ましく、流動性を確保する観点から5質量%以上15質量%以下がより好ましい。更に熱可塑性エラストマーを含む場合には、熱可塑性樹脂と熱可塑性エラストマーとの質量比率が90:10から50:50の範囲が好ましく、耐衝撃性の点から90:10から70:30の範囲がより好ましい。更にリン系酸化防止剤を含む場合には、コンパウンド中のリン系酸化防止剤の含有量は、0.1質量%以上2質量%以下が好ましい。 80 mass% or more and 95 mass% or less are preferable, and, as for content of the magnetic particle in a compound, 90 mass% or more and 95 mass or less are more preferable from the point which acquires a high magnetic characteristic. On the other hand, the content of the thermoplastic resin in the compound is preferably 3% by mass to 20% by mass, and more preferably 5% by mass to 15% by mass from the viewpoint of securing fluidity. Furthermore, when the thermoplastic elastomer is contained, the mass ratio of the thermoplastic resin to the thermoplastic elastomer is preferably in the range of 90:10 to 50:50, and from the point of impact resistance, the range of 90:10 to 70:30 is More preferable. Furthermore, when it contains phosphorus antioxidant, 0.1 mass% or more and 2 mass% or less of content of phosphorus antioxidant in a compound are preferable.

(ゴム粒子の準備)
ゴム粒子は、市販品を用いても良い。ゴム粒子を作製する場合は、ゴム原料とゴム原料に併せて適宜加硫剤と架橋剤とをミキシングロール、ニーダー、バンバリーミキサーなどの混練機を用いて混練し、かかる混練物を押出成形機に投入し紐状の成形品を得る。続いてそれら成形品を必要に応じて加熱硬化し、冷却したのち、目的の大きさに粉砕することでゴム粒子を得ることができる。
(Preparation of rubber particles)
Commercially available rubber particles may be used. In the case of producing rubber particles, a rubber raw material and a rubber raw material are combined with a vulcanizing agent such as a mixing roll, a kneader or a Banbury mixer, and a vulcanizing agent and a crosslinking agent are appropriately mixed. Input and obtain a string-like molded article. Subsequently, these molded articles are heat-cured as necessary, cooled, and then crushed to a desired size to obtain rubber particles.

磁束密度の点から、ゴム粒子のうち少なくとも一部が磁性粒子を含むゴム磁石粒子であることが好ましい。ゴム磁石粒子の作製方法は磁性粒子とゴム原料とゴム原料に併せて適宜加硫剤と架橋剤とをミキシングロール、ニーダー、バンバリーミキサーなどの混練機を用いて混練し、かかる混練物を押出成形機に投入し紐状の成形品を得る。続いてそれら成形品を必要に応じて加熱硬化し、冷却したのち目的の大きさに粉砕することでゴム磁石粒子を得ることができる。なお、磁性粒子とゴム原料については前述にて説明した通りである。ゴム粒子のうち少なくとも一部が磁性粒子を含むゴム磁石粒子とは、ゴム粒子がゴム磁石粒子と、磁性材料を含まないゴム粒子とを混合して使用してもよいことを意味する。 From the viewpoint of magnetic flux density, it is preferable that at least a part of the rubber particles be rubber magnet particles including magnetic particles. The rubber magnet particles are prepared by combining the magnetic particles, the rubber raw material and the rubber raw material with a vulcanizing agent such as a mixing roll, a kneader or a Banbury mixer, and appropriately vulcanizing the vulcanizing agent and the crosslinking agent. It is put into a machine to obtain a string-like molded article. Subsequently, these molded articles are heat-cured as necessary, cooled, and then crushed to a desired size to obtain rubber magnet particles. The magnetic particles and the rubber material are as described above. The rubber magnet particle in which at least a part of the rubber particle contains a magnetic particle means that the rubber particle may be used by mixing the rubber magnet particle and the rubber particle not containing a magnetic material.

(成形工程)
前記コンパウンドとゴム粒子を、略円柱状または略円環状の金属部材と一体成形する工程では、射出成形機の金型中に略円柱状又は略円環状の金属部材を配置し、コンパウンドとゴム粒子を射出成形機に投入し、射出一体成形することにより得られる。
(Molding process)
In the step of integrally molding the compound and the rubber particles with the substantially cylindrical or substantially annular metal member, the substantially cylindrical or substantially annular metal member is disposed in the mold of the injection molding machine, and the compound and the rubber particles are formed. Obtained by injection molding into an injection molding machine.

コンパウンドに対するゴム粒子の質量比率は、特に限定されないが、前記コンパウンド100質量部に対して0.3質量部以上10質量部以下が好ましく、0.5質量部以上5.5質量部以下がより好ましい。0.3質量部より低いと熱衝撃性が不十分となり、10質量部より高いと磁束密度が小さくなる傾向がある。ここで、ゴム粒子が磁性粒子を含まない場合、コンパウンド100質量部に対してゴム粒子は、0.3質量部以上1.0質量部以下がさらに好ましく、ゴム粒子が磁性粒子を含むゴム磁石粒子の場合、0.3質量部以上10質量部以下がさらに好ましい。 The mass ratio of the rubber particles to the compound is not particularly limited, but 0.3 to 10 parts by mass is preferable with respect to 100 parts by mass of the compound, and 0.5 to 5.5 parts by mass is more preferable. . When the amount is less than 0.3 parts by mass, the thermal shock resistance is insufficient, and when the amount is more than 10 parts by mass, the magnetic flux density tends to be reduced. Here, when the rubber particles do not contain magnetic particles, the rubber particles are more preferably 0.3 parts by mass or more and 1.0 parts by mass or less with respect to 100 parts by mass of the compound, and the rubber particles contain magnetic particles In the case of, 0.3 to 10 parts by mass is more preferable.

本発明の複合部材は、自動車や自動二輪車などにおける燃料ポンプの駆動源として、環状の永久磁石を備えたローターなどに使用することができる。 The composite member of the present invention can be used as a drive source of a fuel pump in a car, a two-wheeled motor vehicle, etc., for a rotor or the like provided with an annular permanent magnet.

以下、本発明に係る実施例を具体的に説明する。なお、平均粒径については、レーザー回折式粒径分布測定装置(日本レーザー製HELOS&RODOS)を用いて、体積基準の累積粒度分布を測定し、小径側からの累積50%に対応する粒径として求めた。 Examples according to the present invention will be specifically described below. The average particle size is determined by measuring the cumulative particle size distribution based on volume using a laser diffraction type particle size distribution measuring device (HELOS & RODOS manufactured by Nippon Laser Co., Ltd.) and determining the particle size corresponding to the cumulative 50% from the small diameter side. The

実施例では、以下の材料を使用した。
磁性粒子:異方性のSm−Fe−N系(平均粒子径3μm)
熱可塑性樹脂:ポリアミド12
ゴム粒子A:モメンティブ・パフォーマンス・マテリアルズ製のシリコーンゴム微粒子トスパール120(平均粒子径2μm)
ゴム粒子B:モメンティブ・パフォーマンス・マテリアルズ製のシリコーンゴム微粒子トスパール145(平均粒子径4.5μm)
ゴム粒子C:モメンティブ・パフォーマンス・マテリアルズ製のシリコーンゴム微粒子トスパール1110(平均粒子径11μm)
ゴム粒子D:モメンティブ・パフォーマンス・マテリアルズ製のシリコーンゴム微粒子トスパールXC99−A8808(平均粒子径0.7μm)
The following materials were used in the examples.
Magnetic particles: anisotropic Sm-Fe-N system (average particle size 3 μm)
Thermoplastic resin: Polyamide 12
Rubber particles A: Silicone rubber fine particles Tospearl 120 (average particle diameter 2 μm) manufactured by Momentive Performance Materials
Rubber particles B: Silicone rubber fine particles Tospearl 145 (average particle diameter 4.5 μm) manufactured by Momentive Performance Materials
Rubber particle C: Silicone rubber fine particle Tospearl 1110 (average particle diameter 11 μm) manufactured by Momentive Performance Materials
Rubber particles D: Silicone rubber fine particles Tospearl XC99-A8808 (average particle diameter 0.7 μm) manufactured by Momentive Performance Materials

(実施例1)
Sm−Fe−N系磁性材料をエチルシリケートおよびシランカップリング剤で表面処理した。表面処理したSm−Fe−N系磁性材料91質量%と、ポリアミド12を9質量%とをミキサーで混合する。得られた混合粉を、2軸混練機を用いて220℃で混練し、冷却後、適当な大きさに切断しペレット状のコンパウンドを得た。
Example 1
Sm-Fe-N based magnetic materials were surface-treated with ethyl silicate and a silane coupling agent. 91% by mass of the surface-treated Sm-Fe-N-based magnetic material and 9% by mass of polyamide 12 are mixed by a mixer. The obtained mixed powder was kneaded at 220 ° C. using a twin-screw kneader, and after cooling, was cut into a suitable size to obtain a pellet-like compound.

コンパウンド100質量部に対してゴム粒子A0.5質量部を射出成形機に投入した。金型内に円環状の金属部材(外径φ14mm×高さ20mm)を挿入し、金属部材の外周を囲繞する型キャビティにコンパウンドとゴム粒子を金属部材と一体になるように射出成形し、環状ボンド磁石を金属部材の外周に形成した。なお、複合部材の寸法を外径φ21mmとし、また射出成形時には、成形後の環状ボンド磁石へラジアル方向に磁場配向をかけながら成形した。 0.5 parts by mass of rubber particles A was introduced into an injection molding machine with respect to 100 parts by mass of the compound. Insert an annular metal member (outside diameter φ 14 mm × height 20 mm) into the mold, and injection-mold the compound and rubber particles in one piece with the metal member in the mold cavity surrounding the outer periphery of the metal member Bonded magnets were formed on the outer periphery of the metal member. The dimensions of the composite member were 21 mm in outer diameter, and during injection molding, molding was performed while applying magnetic field orientation in the radial direction to the annular bonded magnet after molding.

(実施例2)
ゴム粒子Aの代わりに、ゴム粒子Bを用いたこと以外は実施例1と同様に行い、複合部材を得た。
(Example 2)
A composite member was obtained in the same manner as in Example 1 except that rubber particles B were used instead of the rubber particles A.

(実施例3)
ゴム粒子Aの代わりに、ゴム粒子Cを用いたこと以外は実施例1と同様に行い、複合部材を得た。
(Example 3)
A composite member was obtained in the same manner as in Example 1 except that rubber particles C were used instead of the rubber particles A.

(実施例4)
ゴム粒子Aの代わりに、ゴム粒子Dを用いたこと以外は実施例1と同様に行い、複合部材を得た。
(Example 4)
A composite member was obtained in the same manner as in Example 1 except that rubber particles D were used instead of the rubber particles A.

(比較例1)
ゴム粒子を用いないこと以外は実施例1と同様に行い、複合部材を得た。
(Comparative example 1)
A composite member was obtained in the same manner as in Example 1 except that rubber particles were not used.

<評価1:熱衝撃試験>
複合部材各10個について、「−40℃(15分)、160℃(2時間)、ダンバ切り替えによる160℃または−40℃への到達時間:1分」を1サイクルとした32サイクルの熱衝撃試験を行った。
今回の試験では、加速劣化試験を行った。実使用環境−40℃から120℃に対し、その際500サイクルで割れが確認されるかを想定した。10℃倍速の法則から、本試験では2の4乗の速度で加速劣化を行ったことになる。500サイクル÷2の4乗=31.25より、本試験では32サイクル後にローターの外観確認を行い、割れが確認されなかった個数を数えた。得られた結果を表1に示す。
<Evaluation 1: Thermal shock test>
For each 10 composite members, 32 cycles of thermal shock with one cycle of "-40 ° C (15 minutes), 160 ° C (2 hours), time to reach 160 ° C or -40 ° C by damper switching: 1 minute" The test was done.
In this test, an accelerated aging test was conducted. Actual use environment-It was assumed whether a crack was confirmed by 500 cycles with respect to -40 degreeC to 120 degreeC in that case. According to the 10 ° C. double speed law, in this test, acceleration degradation is performed at a speed of 2 4. From 500 cycles ÷ 2 of the fourth power = 31.25, in this test, the appearance of the rotor was checked after 32 cycles, and the number of cracks not counted was counted. The obtained results are shown in Table 1.

<評価2:磁束密度Br>
各実施例および各比較例で用いたコンパウンドとゴム粒子を用いてΦ10mm−高さ7mmの円柱状のボンド磁石を作製した。磁束密度BrはBHカーブトレーサー(理研電子製)により測定した。比較例1にて測定した磁束密度Brを100として相対比較を行った結果を表1に示す。
<Evaluation 2: Magnetic flux density Br>
A cylindrical bonded magnet having a diameter of 10 mm and a height of 7 mm was manufactured using the compound and rubber particles used in each of the examples and the comparative examples. The magnetic flux density Br was measured by a BH curve tracer (manufactured by Riken Denshi). Table 1 shows the results of relative comparison with the magnetic flux density Br measured in Comparative Example 1 as 100.

Figure 0006544456
Figure 0006544456

表1より、比較例1と比べて、実施例1〜4はゴム粒子を含むことにより、磁束密度Brの低下を抑制しつつ、熱衝撃性が向上することを確認した。 From Table 1, in comparison with Comparative Example 1, it was confirmed that the thermal shock resistance is improved while the lowering of the magnetic flux density Br is suppressed by containing the rubber particles in Examples 1-4.

(実施例5)
実施例1と同様にしてコンパウンドを作製した。シリコーン生ゴム(耐寒‐120℃、耐熱280℃)22質量%に対して、付加型加硫剤0.1質量%、架橋剤0.4質量%、表面処理を行ったSm−Fe−N系磁性材料77.5質量%を配合し、押出成形機を使用して均一に混合した。次いで、押出成形機にて直径2mm以上4mm以下程度の紐状に成形し、150℃で2時間熱処理してシリコーンゴム磁石を得た。次いで、液体窒素中にてゴム磁石を粉砕し、平均粒径が150μmのゴム磁石粒子を得た。コンパウンド100質量部に対するゴム磁石粒子の質量比率が5.0質量部になるようにコンパウンドとゴム粒子を射出成形機に投入したこと以外は実施例1と同様に行い、複合部材を得た。
(Example 5)
A compound was prepared in the same manner as Example 1. Sm-Fe-N magnetism which surface-treated with 0.1 mass% of addition type vulcanizing agents, 0.4 mass% of crosslinking agents, 22 mass% of silicone raw rubber (cold resistance-120 degrees C, heat resistance 280 degrees C) 77.5% by weight of the material was compounded and uniformly mixed using an extruder. Subsequently, it was formed into a cord shape having a diameter of about 2 mm or more and 4 mm or less by an extrusion molding machine, and heat treated at 150 ° C. for 2 hours to obtain a silicone rubber magnet. Next, the rubber magnet was crushed in liquid nitrogen to obtain rubber magnet particles having an average particle diameter of 150 μm. A composite member was obtained in the same manner as in Example 1 except that the compound and the rubber particles were charged into the injection molding machine such that the mass ratio of the rubber magnet particles to 100 parts by mass of the compound was 5.0 parts by mass.

(実施例6)
平均粒径が300μmのゴム磁石粒子を得ること以外は実施例5と同様に行い、複合部材を得た。
(Example 6)
A composite member was obtained in the same manner as in Example 5 except that rubber magnet particles having an average particle diameter of 300 μm were obtained.

(実施例7)
平均粒径が500μmのゴム磁石粒子を得ること以外は実施例5と同様に行い、複合部材を得た。
(Example 7)
A composite member was obtained in the same manner as in Example 5 except that rubber magnet particles having an average particle diameter of 500 μm were obtained.

(実施例8)
平均粒径が1mmのゴム磁石粒子を得ること以外は実施例5と同様に行い、複合部材を得た。
(Example 8)
A composite member was obtained in the same manner as in Example 5 except that rubber magnet particles having an average particle diameter of 1 mm were obtained.

(比較例2)
実施例5と同様にしてゴム磁石粒子を得た。実施例1と同様に表面処理を行ったSm−Fe−N系磁性材料91質量%、ポリアミド12を9質量%と得られた平均粒径150μmのゴム磁石粒子を実施例5で加えた量と同等量をミキサーで混合し、得られた混合粉を、2軸混練機を用いて240℃で混練したこと以外は、実施例1と同様にしてコンパウンドを得た。得られたコンパウンドを用いて、実施例1と同様に射出成形を行い、複合部材を得た。
(Comparative example 2)
Rubber magnet particles were obtained in the same manner as in Example 5. 91% by mass of Sm-Fe-N magnetic material surface-treated in the same manner as in Example 1 and 9% by mass of polyamide 12 The amount of rubber magnet particles having an average particle diameter of 150 μm obtained in Example 5 and The same amount was mixed by a mixer, and a compound was obtained in the same manner as Example 1 except that the obtained mixed powder was kneaded at 240 ° C. using a twin-screw kneader. The obtained compound was used for injection molding in the same manner as in Example 1 to obtain a composite member.

実施例5〜8、比較例2について、前述と同様にして熱衝撃性および磁束密度Brを測定した結果を表2に示す。 The thermal shock resistance and the magnetic flux density Br of Examples 5 to 8 and Comparative Example 2 were measured in the same manner as described above, and the results are shown in Table 2.

Figure 0006544456
Figure 0006544456

表2より、表1の比較例1と比べて、実施例5〜8はゴム磁石粒子を含むことにより、磁束密度Brを維持しつつ、熱衝撃性が向上することを確認した。また、同じゴム磁石を用いた実施例5と比較例2を比べた場合に、実施例5は熱衝撃性が向上することを確認した。比較例2においては、ゴム磁石粒子を予め加えると、射出成形時の計量トルクが上昇するため、成形温度を高くする必要があった。これにより、熱可塑性樹脂が高温により劣化してしまったため、熱衝撃性の低下を引き起こしたと考えられる。また、射出成形時の圧力が20%ほど高くなった原因は、コンパウンドとゴム磁石粒子を混練する際に、シリコーンゴムの二次加硫が起こり、ゴムの硬度があがったためと考えられる。 From Table 2, compared with Comparative Example 1 of Table 1, Examples 5 to 8 confirmed that the thermal shock resistance is improved while maintaining the magnetic flux density Br by including the rubber magnet particles. Moreover, when Example 5 and the comparative example 2 which used the same rubber magnet were compared, Example 5 confirmed that a thermal shock property improves. In Comparative Example 2, when rubber magnet particles are added in advance, the measuring torque at the time of injection molding is increased, so it was necessary to increase the molding temperature. As a result, the thermoplastic resin is deteriorated due to the high temperature, which is considered to cause a decrease in thermal shock resistance. Further, the reason why the pressure at the time of injection molding is increased by about 20% is considered to be because the secondary vulcanization of the silicone rubber occurred when kneading the compound and the rubber magnet particles, and the hardness of the rubber increased.

(実施例9)
Sm−Fe−N系磁性材料をエチルシリケートおよびシランカップリング剤で表面処理を行った。表面処理を行ったSm−Fe−N系磁性材料91質量%、ポリアミド12を7質量%、ポリアミドエラストマー2質量%をミキサーで混合する。得られた混合粉を、2軸混練機を用いて220℃で混練し、冷却後、適当な大きさに切断しペレット状のコンパウンドを得た。得られたコンパウンドと実施例1と同じゴム粒子を用いて、実施例1と同様に射出成形を行い、複合部材を得た。
(Example 9)
The Sm-Fe-N magnetic material was surface-treated with ethyl silicate and a silane coupling agent. 91% by mass of the surface-treated Sm-Fe-N magnetic material, 7% by mass of polyamide 12, and 2% by mass of polyamide elastomer are mixed by a mixer. The obtained mixed powder was kneaded at 220 ° C. using a twin-screw kneader, and after cooling, was cut into a suitable size to obtain a pellet-like compound. Injection molding was performed in the same manner as in Example 1 using the obtained rubber particles and the same rubber particles as in Example 1 to obtain a composite member.

(実施例10)
実施例9で得られたコンパウンドと実施例2と同じゴム粒子を用いて、実施例1と同様に射出成形を行い、複合部材を得た。
(Example 10)
Injection molding was performed in the same manner as in Example 1 using the compound obtained in Example 9 and the same rubber particles as in Example 2 to obtain a composite member.

(実施例11)
実施例9で得られたコンパウンドと実施例3と同じゴム粒子を用いて、実施例1と同様に射出成形を行い、複合部材を得た。
(Example 11)
Injection molding was performed in the same manner as in Example 1 using the compound obtained in Example 9 and the same rubber particles as in Example 3 to obtain a composite member.

(比較例3)
実施例9で用いたコンパウンドを用いて、実施例1と同様に射出成形を行い、複合部材を得た。
(Comparative example 3)
The compound used in Example 9 was injection molded in the same manner as in Example 1 to obtain a composite member.

実施例9〜11および比較例3について、前述と同様にして熱衝撃性および磁束密度を測定した結果を表3に示す。 The thermal shock resistance and the magnetic flux density of Examples 9 to 11 and Comparative Example 3 were measured in the same manner as described above, and the results are shown in Table 3.

Figure 0006544456
Figure 0006544456

表3より、比較例3と比べて、実施例9〜11はゴム粒子を含むことにより、磁束密度の低下を抑制しつつ、熱衝撃性が向上することを確認した。 From Table 3, it was confirmed that Examples 9 to 11 improve the thermal shock resistance while suppressing the decrease in the magnetic flux density by containing the rubber particles, as compared with Comparative Example 3.

(実施例12)
実施例9で用いたコンパウンドと実施例5と同じゴム磁石粒子を用いて、実施例1と同様に射出成形を行い、複合部材を得た。
(Example 12)
Injection molding was performed in the same manner as in Example 1 using the compound used in Example 9 and the same rubber magnet particles as in Example 5 to obtain a composite member.

(実施例13)
実施例9で用いたコンパウンドと実施例6と同じゴム磁石粒子を用いて、実施例1と同様に射出成形を行い、複合部材を得た。
(Example 13)
Injection molding was performed in the same manner as in Example 1 using the compound used in Example 9 and the same rubber magnet particles as in Example 6 to obtain a composite member.

(実施例14)
実施例9で用いたコンパウンドと実施例7と同じゴム磁石粒子を用いて、実施例1と同様に射出成形を行い、複合部材を得た。
(Example 14)
Injection molding was performed in the same manner as in Example 1 using the compound used in Example 9 and the same rubber magnet particles as in Example 7 to obtain a composite member.

実施例12〜14について前述と同様にして熱衝撃性および磁束密度を測定した結果を表4に示す。 The thermal shock resistance and the magnetic flux density of Examples 12 to 14 were measured in the same manner as described above, and the results are shown in Table 4.

Figure 0006544456
Figure 0006544456

表4より実施例12〜14はゴム磁石粒子を含むことにより、磁束密度を維持しつつ、より熱衝撃性が向上することを確認した。 From Table 4, Examples 12-14 confirmed that a thermal shock property improves more, maintaining a magnetic flux density by including rubber magnet particle | grains.

実施例7で作製したボンド磁石の光学顕微鏡による断面写真を図1に示す。図1より磁性粉末と熱可塑性樹脂とゴム磁石粒子を含むボンド磁石の中に、ゴム磁石6が粒子として存在することを確認した。 The cross-sectional photograph by the optical microscope of the bonded magnet produced in Example 7 is shown in FIG. It was confirmed from FIG. 1 that the rubber magnet 6 was present as particles in the bonded magnet including the magnetic powder, the thermoplastic resin and the rubber magnet particles.

これらの結果より、ボンド磁石内にゴム粒子が存在することにより、熱衝撃性に優れた環状ボンド磁石を有する複合部材およびその製造方法を提供できることを確認した。 From these results, it was confirmed that the presence of the rubber particles in the bonded magnet can provide a composite member having an annular bonded magnet excellent in thermal shock resistance and a method for producing the same.

本発明の態様によって得られる環状ボンド磁石を有する複合部材を用いると、熱衝撃性に優れたモーター等の回転機器を得ることが可能となる。そのため、得られる回転機器は、自動車や自動二輪車などにおける燃料ポンプの駆動源として好適に利用可能である。 By using the composite member having the annular bonded magnet obtained according to the aspect of the present invention, it is possible to obtain a rotating device such as a motor excellent in thermal shock resistance. Therefore, the obtained rotating device can be suitably used as a driving source of a fuel pump in a car, a motorcycle, or the like.

1:金属部材
2:ボンド磁石
3:磁性粒子
4:熱可塑性樹脂
5:ゴム
6:ゴム磁石粒子
1: Metal member 2: Bond magnet 3: Magnetic particle 4: Thermoplastic resin 5: Rubber 6: Rubber magnet particle

Claims (9)

略円柱状または略円環状の金属部材と、前記金属部材の外周に設けられた環状ボンド磁石とを備える複合部材であって、
前記環状ボンド磁石は、熱可塑性樹脂、磁性粒子およびゴム粒子を含み、
前記ゴム粒子が磁性材料を含まず、前記環状ボンド磁石中の含有量が0.3質量%以上1.0質量%以下である複合部材。
A composite member comprising: a substantially cylindrical or substantially annular metal member; and an annular bonded magnet provided on an outer periphery of the metal member,
It said annular bonded magnet, the thermoplastic resin, magnetic particles and rubber particles observed including,
The composite member, wherein the rubber particles do not contain a magnetic material, and the content in the annular bonded magnet is 0.3% by mass or more and 1.0% by mass or less .
略円柱状または略円環状の金属部材と、前記金属部材の外周に設けられた環状ボンド磁石とを備える複合部材であって、
前記環状ボンド磁石は、熱可塑性樹脂、磁性粒子およびゴム粒子を含み、
前記ゴム粒子のうち少なくとも一部が磁性粒子を含むゴム磁石粒子である複合部材。
A composite member comprising: a substantially cylindrical or substantially annular metal member; and an annular bonded magnet provided on an outer periphery of the metal member,
The annular bonded magnet comprises a thermoplastic resin, magnetic particles and rubber particles,
Double coupling member at least partially Ru Oh rubber magnet particles comprising magnetic particles of the rubber particles.
前記ゴム粒子が、シリコーンゴムを含む請求項1または2に記載の複合部材。 The composite member according to claim 1, wherein the rubber particles include silicone rubber. 前記ゴム粒子の平均粒径が0.7μm超1mm未満である請求項1〜3のいずれか1項に記載の複合部材。 The composite member according to any one of claims 1 to 3, wherein an average particle size of the rubber particles is more than 0.7 μm and less than 1 mm. 略円柱状または略円環状の金属部材と、前記金属部材の外周に設けられた環状ボンド磁石とを備え、前記環状ボンド磁石は、熱可塑性樹脂、磁性粒子およびゴム粒子を含む複合部材の製造方法であって、
熱可塑性樹脂と磁性粒子を混練し、コンパウンドを得る工程、および、
前記コンパウンドとゴム粒子を、略円柱状または略円環状の金属部材と一体成形する工程
を含むことを特徴とする複合部材の製造方法。
A method of manufacturing a composite member including a substantially cylindrical or annular metal member and an annular bonded magnet provided on the outer periphery of the metal member, the annular bonded magnet including a thermoplastic resin, magnetic particles, and rubber particles. And
Kneading the thermoplastic resin and the magnetic particles to obtain a compound;
The compound and the rubber particles, method for producing a multi coupling member you comprising a substantially cylindrical or substantially annular metallic member and the step of integrally molding.
前記ゴム粒子の添加量が、前記コンパウンド100質量部に対して0.3質量部以上10質量部以下である請求項5に記載の製造方法。 The method according to claim 5, wherein the addition amount of the rubber particles is 0.3 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the compound. 前記磁性材料を含まないゴム粒子の平均粒径が2μm以上900μm以下である請求項1、3又は4に記載の複合部材。The composite member according to claim 1, wherein an average particle diameter of the rubber particles not containing the magnetic material is 2 μm or more and 900 μm or less. 前記磁性材料を含まないゴム粒子の平均粒径が11μm以上500μm以下である請求項7に記載の複合部材。The composite member according to claim 7, wherein an average particle diameter of the rubber particles not containing the magnetic material is 11 μm or more and 500 μm or less. 前記ゴム磁石粒子の平均粒径が50μm以上900μm以下である請求項2〜4のいずれか1項に記載の複合部材。The composite member according to any one of claims 2 to 4, wherein an average particle diameter of the rubber magnet particles is 50 μm or more and 900 μm or less.
JP2018073347A 2017-04-28 2018-04-05 Composite member having annular bonded magnet and method of manufacturing the same Active JP6544456B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18169460.5A EP3396685B1 (en) 2017-04-28 2018-04-26 Composite component comprising ring-shaped bonded magnet and method of manufacturing the same
EP20164257.6A EP3690901B1 (en) 2017-04-28 2018-04-26 Composite component comprising ring-shaped bonded magnet and method of manufacturing the same
CN201810390942.3A CN108806913B (en) 2017-04-28 2018-04-27 Composite member having ring-shaped bonded magnet and method for manufacturing same
US15/965,300 US11056255B2 (en) 2017-04-28 2018-04-27 Composite component comprising ring-shaped bonded magnet and method of manufacturing the same
US17/303,571 US11646154B2 (en) 2017-04-28 2021-06-02 Composite component comprising ring-shaped bonded magnet and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017089571 2017-04-28
JP2017089571 2017-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019109500A Division JP7189445B2 (en) 2017-04-28 2019-06-12 Composite member with annular bonded magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2018190962A JP2018190962A (en) 2018-11-29
JP6544456B2 true JP6544456B2 (en) 2019-07-17

Family

ID=64480280

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018073347A Active JP6544456B2 (en) 2017-04-28 2018-04-05 Composite member having annular bonded magnet and method of manufacturing the same
JP2019109500A Active JP7189445B2 (en) 2017-04-28 2019-06-12 Composite member with annular bonded magnet and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019109500A Active JP7189445B2 (en) 2017-04-28 2019-06-12 Composite member with annular bonded magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (2) JP6544456B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469648A (en) * 1987-09-09 1989-03-15 Japan Synthetic Rubber Co Ltd Magnetic substance/resin composition
JP4581217B2 (en) 2000-10-23 2010-11-17 Nok株式会社 Manufacturing method of magnetic rubber material
JP2003318051A (en) * 2002-04-19 2003-11-07 Hitachi Metals Ltd Anisotropic sheet magnet, and method and apparatus for manufacturing the same
JP2005241289A (en) * 2004-02-24 2005-09-08 Nsk Ltd Magnetic encoder and rolling bearing equipped with same
US7671582B2 (en) 2005-05-10 2010-03-02 Nsk Ltd. Magnetic encoder and roller bearing unit having magnetic encoder
JP2008309917A (en) * 2007-06-13 2008-12-25 Panasonic Corp Plasma display device, and method of driving plasma display panel
JP2008309717A (en) * 2007-06-15 2008-12-25 Nsk Ltd Magnetic encoder and rolling bearing unit equipped with the magnetic encoder
JP6403093B2 (en) 2015-02-04 2018-10-10 住友電気工業株式会社 COMPOSITE MATERIAL, MAGNETIC CORE FOR MAGNETIC COMPONENT, REACTOR, CONVERTER, AND POWER CONVERTER

Also Published As

Publication number Publication date
JP2018190962A (en) 2018-11-29
JP2019192926A (en) 2019-10-31
JP7189445B2 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
US11646154B2 (en) Composite component comprising ring-shaped bonded magnet and method of manufacturing the same
CN1167989A (en) Rare earth binding magnet and composition for same
JP6544455B1 (en) Motor and field element
JP6544456B2 (en) Composite member having annular bonded magnet and method of manufacturing the same
JP2006344768A (en) Composite for bonded magnet and its manufacturing method, and rotor magnet and brushless motor using the same
US20100321139A1 (en) Permanent magnet and method of producing permanent magnet
US20190259524A1 (en) Composite material molded article, reactor, and method for manufacturing composite material molded article
US20220103036A1 (en) Yoke for rotor of axial gap motor
JP4501574B2 (en) Bonded magnet composition and bonded magnet
JP2008010460A (en) Composition for bond magnet, bond magnet employing it, and its production process
JP2002343623A (en) Plastic sheet magnet molded body and manufacturing method therefor
WO2015019588A1 (en) Bonded magnet and motor
JP4702396B2 (en) Bonded magnet composition and bonded magnet using the same
WO2021200517A1 (en) Compressed bonded magnet, manufacturing method therefor, and field coil
US6680000B2 (en) Polyamide plastic magnetic material and magnet made of same
WO2023120184A1 (en) Resin composition for bonded magnets and bonded magnets using same
JP2017085837A (en) Electric motor element, method of manufacturing electric motor element, electric motor and device
US20160027567A1 (en) Manufacturing Method for Bonded Magnet and Motor Using the Magnet
JP3864374B2 (en) Polyamide-based plastic magnetic material and magnet made therefrom
JPH09115714A (en) Composition for bond magnet and bond magnet
JP2017046409A (en) Electric motor element, method for manufacturing electric motor element, electric motor element, and apparatus
JP2005303041A (en) Resin bonded magnet composition, and resin bonded magnet using the same
JP2023005421A (en) Preform, preforming method, and method for manufacturing compressed bond magnet
TW202412024A (en) Resin composition for bonded magnet and molded article containing the same
JP2010251545A (en) Resin composition for bond magnet, and molding using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R150 Certificate of patent or registration of utility model

Ref document number: 6544456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250