JP6542968B1 - Activated carbon and method for producing the same - Google Patents
Activated carbon and method for producing the same Download PDFInfo
- Publication number
- JP6542968B1 JP6542968B1 JP2018183141A JP2018183141A JP6542968B1 JP 6542968 B1 JP6542968 B1 JP 6542968B1 JP 2018183141 A JP2018183141 A JP 2018183141A JP 2018183141 A JP2018183141 A JP 2018183141A JP 6542968 B1 JP6542968 B1 JP 6542968B1
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- chloroform
- treatment
- water
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 339
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000001179 sorption measurement Methods 0.000 claims abstract description 86
- 239000011148 porous material Substances 0.000 claims abstract description 77
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims abstract description 76
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 68
- 238000010998 test method Methods 0.000 claims abstract description 11
- 239000005011 phenolic resin Substances 0.000 claims description 73
- 238000011282 treatment Methods 0.000 claims description 66
- 238000001994 activation Methods 0.000 claims description 47
- 230000004913 activation Effects 0.000 claims description 45
- 238000010438 heat treatment Methods 0.000 claims description 29
- 239000002245 particle Substances 0.000 claims description 19
- 238000012360 testing method Methods 0.000 claims description 19
- 238000003763 carbonization Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 16
- 239000000243 solution Substances 0.000 claims description 13
- 238000001035 drying Methods 0.000 claims description 10
- FIMJSWFMQJGVAM-UHFFFAOYSA-N chloroform;hydrate Chemical compound O.ClC(Cl)Cl FIMJSWFMQJGVAM-UHFFFAOYSA-N 0.000 claims description 8
- 238000010298 pulverizing process Methods 0.000 claims description 8
- 238000004140 cleaning Methods 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 239000012153 distilled water Substances 0.000 claims description 2
- 238000011049 filling Methods 0.000 claims description 2
- 238000000691 measurement method Methods 0.000 claims description 2
- 239000012085 test solution Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 40
- 229960001701 chloroform Drugs 0.000 description 27
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 19
- 229910052799 carbon Inorganic materials 0.000 description 17
- 238000005406 washing Methods 0.000 description 17
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 16
- 239000002994 raw material Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 15
- 238000000227 grinding Methods 0.000 description 12
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 11
- 229920001568 phenolic resin Polymers 0.000 description 11
- 239000001569 carbon dioxide Substances 0.000 description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000003575 carbonaceous material Substances 0.000 description 7
- 230000006872 improvement Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- -1 sawdust Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- GATVIKZLVQHOMN-UHFFFAOYSA-N Chlorodibromomethane Chemical compound ClC(Br)Br GATVIKZLVQHOMN-UHFFFAOYSA-N 0.000 description 2
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- DIKBFYAXUHHXCS-UHFFFAOYSA-N bromoform Chemical compound BrC(Br)Br DIKBFYAXUHHXCS-UHFFFAOYSA-N 0.000 description 2
- 238000010000 carbonizing Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 150000002896 organic halogen compounds Chemical class 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- FMWLUWPQPKEARP-UHFFFAOYSA-N bromodichloromethane Chemical compound ClC(Cl)Br FMWLUWPQPKEARP-UHFFFAOYSA-N 0.000 description 1
- 229950005228 bromoform Drugs 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- OKTJSMMVPCPJKN-YPZZEJLDSA-N carbon-10 atom Chemical class [10C] OKTJSMMVPCPJKN-YPZZEJLDSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000003988 headspace gas chromatography Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Carbon And Carbon Compounds (AREA)
- Water Treatment By Sorption (AREA)
Abstract
【課題】吸着性能に優れた特性を有する活性炭を提供すること。【解決手段】本発明の活性炭は、BET比表面積が650m2/g以上、1250m2/g以下、全細孔容積が0.25cm3/g以上、平均細孔径が1.8nm以上、4.0nm以下、通水試験方法におけるクロロホルム通水量が71L/g以上である。【選択図】図3An object of the present invention is to provide activated carbon having excellent adsorption performance. The activated carbon of the present invention has a BET specific surface area of 650 m 2 / g or more and 1250 m 2 / g or less, a total pore volume of 0.25 cm 3 / g or more, and an average pore diameter of 1.8 nm or more and 4.0 nm or less The chloroform flow rate in the water flow test method is 71 L / g or more. [Selected figure] Figure 3
Description
本発明は活性炭、及び該活性炭の製造方法に関する。 The present invention relates to activated carbon and a method for producing the activated carbon.
活性炭は吸着材、キャパシタ用電極材料、触媒などとして広範な分野で利用されている。また活性炭の原料としては、おが屑、木材チップ、ヤシ殻などの植物系材料;フェノール樹脂、ポリアクリロニトリル、ポリイミド、及びこれらの複合物(紙フェノール樹脂など)などの高分子材料;石炭、石油、コークス、各種ピッチなどの鉱物系材料などが用いられている。 Activated carbon is used in a wide range of fields as an adsorbent, an electrode material for capacitors, a catalyst and the like. Moreover, as raw materials of activated carbon, plant materials such as sawdust, wood chips, coconut shells; polymer materials such as phenol resin, polyacrylonitrile, polyimide, and composites thereof (such as paper phenol resin); coal, petroleum, coke And mineral-based materials such as various pitches are used.
本発明者らは、紙フェノール樹脂は賦活条件を制御することで形成されるメソ孔とミクロ孔をコントロールできることに着目し、被吸着物に適した細孔構造を有する活性炭を提案している(特許文献1)。具体的には有機ハロゲン化合物に対する平衡吸着量だけでなく、通水条件下でも優れた吸着性能を発揮する活性炭として、細孔径2nm以下の細孔容積比率、及び2nm超10nm以下の細孔容積比率を制御した活性炭を開示している。 The present inventors have noted that paper phenolic resin can control mesopores and micropores formed by controlling activation conditions, and propose activated carbon having a pore structure suitable for the substance to be adsorbed ( Patent Document 1). Specifically, as an activated carbon that exhibits not only the equilibrium adsorption amount to organic halogen compounds but also excellent adsorption performance even under water flow conditions, the pore volume ratio of pore diameter 2 nm or less and the pore volume ratio of more than 2 nm and 10 nm or less Is disclosed activated carbon.
本発明者らは上記特許文献1に開示した活性炭を開発した後も、活性炭の吸着性能をより一層向上させることを目的として研究を重ねた。 The inventors of the present invention conducted research for the purpose of further improving the adsorption performance of activated carbon even after developing the activated carbon disclosed in Patent Document 1 above.
本発明は上記の様な事情に着目してなされたものであって、その目的は、吸着性能に優れた特性を有する活性炭、及び該活性炭の製造方法を提供することにある。 The present invention has been made focusing on the above circumstances, and an object thereof is to provide activated carbon having excellent adsorption performance and a method for producing the activated carbon.
[1]上記課題を解決し得た本発明の活性炭は、
BET比表面積が650m2/g以上、1250m2/g以下、
全細孔容積が0.25cm3/g以上、
平均細孔径が1.8nm以上、4.0nm以下、
下記通水試験方法におけるクロロホルム通水量が71L/g以上である。
通水試験方法:粒子径53〜180μmの活性炭2.0gを充填したカラムに試験用水を通過させて、カラム通過前後のクロロホルム濃度を測定し、破過点までの総ろ過水量(L)から活性炭1g当たりのクロロホルム通水量(L/g)を求めてクロロホルム通水量とする。
試験用水:クロロホルム濃度0.06mg/Lの蒸留水
空間速度(SV):500h-1
クロロホルム濃度測定方法:ヘッドスペースガスクロマトグラフ
破過点:カラム流入水に対するカラム流出水のクロロホルムの水中濃度が20%を越えた時点
[1] The activated carbon of the present invention which has solved the above problems is:
BET specific surface area is 650 m 2 / g or more and 1250 m 2 / g or less,
Total pore volume is 0.25 cm 3 / g or more,
An average pore diameter of 1.8 nm or more and 4.0 nm or less,
The chloroform water flow rate in the following water flow test method is 71 L / g or more.
Water passing test method: Test water is passed through a column packed with 2.0 g of activated carbon having a particle diameter of 53 to 180 μm, chloroform concentration before and after passing through the column is measured, and total filtered water amount up to the breakthrough point (L) The chloroform water flow rate (L / g) per 1 g is determined to obtain a chloroform water flow rate.
Test water: Distilled water with a chloroform concentration of 0.06 mg / L Space velocity (SV): 500 h -1
Chloroform concentration measurement method: Head space gas chromatograph Breakthrough point: When the concentration of chloroform in the column effluent to the column inlet water exceeds 20%
[2]また本発明の活性炭は下記平衡試験方法におけるクロロホルム平衡吸着量が4.5mg/g以上である[1]に記載の活性炭であることも好ましい。
平衡試験方法:下記所定量の活性炭と攪拌子を入れた100mLの三角フラスコにクロロホルム溶液を満水充填し、密栓した後、20℃で14時間攪拌した後、三角フラスコ内容物をろ別し、ろ過液を上記クロロホルム濃度測定方法でクロロホルムの平衡濃度(mg/L)、及び活性炭1g当たりのクロロホルム平衡吸着量(mg/g)を求めると共に吸着等温線を作成し、平衡濃度0.06mg/Lにおける平衡吸着量(mg/g)とする。
試験溶液:濃度0.06mg/Lのクロロホルム溶液
三角フラスコの質量:クロロホルム溶液の充填前後で三角フラスコの質量を測定
活性炭粒径:粒子径180μm以下
各試験における活性炭量:0.013g、0.026g、0.065g、0.130g、0.260g
吸着等温線:前記活性炭の各所定量で前記平衡濃度と前記平衡吸着量を測定し、その結果に基づいて前記吸着等温線を作成する
[2] The activated carbon of the present invention is also preferably the activated carbon described in [1], which has a chloroform equilibrium adsorption amount of 4.5 mg / g or more in the following equilibrium test method.
Equilibrium test method: Fill a chloroform solution in a 100 mL Erlenmeyer flask containing a predetermined amount of activated carbon and a stirrer in full water, seal the plug, and stir at 20 ° C for 14 hours, filter out the contents of the Erlenmeyer flask, and filter Determine the equilibrium concentration (mg / L) of chloroform and the chloroform equilibrium adsorption amount (mg / g) per 1 g of activated carbon by the above-mentioned method for measuring the concentration of chloroform and create an adsorption isotherm, and at an equilibrium concentration of 0.06 mg / L The equilibrium adsorption amount (mg / g).
Test solution: Chloroform solution with a concentration of 0.06 mg / L Mass of Erlenmeyer: Measure the mass of Erlenmeyer before and after filling with chloroform solution Particle size of activated carbon: Particle size of 180 μm or less Amount of activated carbon in each test: 0.013 g, 0.026 g , 0.065 g, 0.130 g, 0.260 g
Adsorption isotherm: The equilibrium concentration and the equilibrium adsorption amount are measured for each predetermined amount of the activated carbon, and the adsorption isotherm is created based on the results.
[3]前記活性炭は、密度1.3g/cm3以下の紙フェノール樹脂積層体を炭化処理した後、ガス賦活処理して得られたものである上記[1]または[2]に記載の活性炭。 [3] The activated carbon according to the above [1] or [2], which is obtained by subjecting a paper phenol resin laminate having a density of 1.3 g / cm 3 or less to carbonization treatment and then subjecting it to gas activation treatment. .
[4]本発明の活性炭の好適な製造方法は、密度1.3g/cm3以下の紙フェノール樹脂積層体を炭化処理した後、ガス賦活処理することを特徴とする。 [4] A preferred method for producing the activated carbon of the present invention is characterized in that the paper phenol resin laminate having a density of 1.3 g / cm 3 or less is carbonized and then subjected to gas activation treatment.
[5]前記ガス賦活処理後に、洗浄処理、乾燥処理、粉砕処理、及び加熱処理よりなる群から選ばれる少なくとも1つを行うものである上記[4]に記載の活性炭の製造方法。 [5] The method for producing activated carbon according to the above [4], wherein at least one selected from the group consisting of cleaning treatment, drying treatment, pulverization treatment, and heat treatment is performed after the gas activation treatment.
[6]前記炭化処理して得られる前記紙フェノール樹脂積層体の炭化物の細孔径1〜10μmの細孔容積が、0.15cm3/g以上である上記[4]または[5]に記載の活性炭の製造方法。 [6] The pore volume of the pore diameter of 1 to 10 μm of the carbide of the paper phenol resin laminate obtained by the carbonization treatment is 0.15 cm 3 / g or more according to the above [4] or [5] Method of producing activated carbon.
[7]上記[4]〜[6]のいずれかに記載の製造方法で得られた浄水器用活性炭。 [7] Activated carbon for water purifier obtained by the method according to any one of the above [4] to [6].
本発明によれば従来技術の活性炭よりも吸着性能に優れた特性を有する活性炭、及び該活性炭の製造方法を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the activated carbon which has the characteristic more excellent in adsorption performance than the prior art activated carbon, and the manufacturing method of this activated carbon can be provided.
本発明者らは従来の活性炭よりも吸着性能を向上させるために検討を重ねた結果、炭素原料として使用する紙フェノール樹脂積層体を改良することで上記課題を解決できることを突き止めた。従来から活性炭の炭素原料には電子部品などでプリント基板として汎用されている紙フェノール樹脂積層体の端材が使用されている。プリント基板用の紙フェノール樹脂積層体には耐久性など諸特性を向上させるために高密度化されているが、意外にも従来よりも密度を低く制御した紙フェノール樹脂積層体を炭素原料とした活性炭によって吸着性能を向上できることを見出し、本発明に至った。以下、本発明について説明する。 As a result of repeating studies to improve adsorption performance compared to conventional activated carbon, the present inventors have found that the above problems can be solved by improving a paper phenol resin laminate used as a carbon material. Conventionally, an end of a paper phenol resin laminate widely used as a printed circuit board in electronic parts and the like is used as a carbon source of activated carbon. Paper phenolic resin laminates for printed circuit boards are densified to improve various properties such as durability, but surprisingly, paper phenolic resin laminates whose density has been controlled to be lower than conventional are used as carbon raw materials It has been found that the adsorption performance can be improved by activated carbon, and the present invention has been made. Hereinafter, the present invention will be described.
本発明の活性炭は、公知の活性炭と同様に各種物質を被吸着対象とするが、好ましくはクロロホルム、トリフルオロメタン、クロロジフルオロメタン、ブロモジクロロメタン、ジブロモクロロメタン、トリブロモメタンなどのトリハロメタン類、トリクロロエタン、トリクロロエチレンなどの有機ハロゲン化合物、より好ましくはトリハロメタン類、更に好ましくはクロロホルムに対して優れた吸着性能を有する。本発明において吸着性能とは、該被吸着物に対して好ましくは通水条件下での優れた吸着性能(以下、通水吸着性能ということがある)を有することであり、より好ましくは更に平衡吸着量にも優れていることである(以下、平衡吸着性能ということがある)。以下、吸着性能とは通水吸着性能をいうが、好ましくは平衡吸着性能も含む。 The activated carbon of the present invention has various substances to be adsorbed in the same manner as known activated carbons, but is preferably chloroform, trifluoromethane, chlorodifluoromethane, bromodichloromethane, trihalomethanes such as dibromochloromethane, tribromomethane, etc., trichloroethane, It has excellent adsorption performance to organic halogen compounds such as trichloroethylene, more preferably trihalomethanes, still more preferably chloroform. In the present invention, the adsorption performance is to have an excellent adsorption performance (hereinafter sometimes referred to as water adsorption performance) to the substance to be adsorbed under preferably water passing conditions, and more preferably, it is more equilibrated. The adsorption amount is also excellent (hereinafter, sometimes referred to as equilibrium adsorption performance). Hereinafter, the adsorption performance refers to the water adsorption performance, but preferably also includes the equilibrium adsorption performance.
本発明の活性炭は、BET比表面積が650m2/g以上、1250m2/g以下、細孔容積が0.25cm3/g以上、平均細孔径が1.8nm以上、4.0nm以下、実施例記載の通水試験方法におけるクロロホルム通水量が71L/g以上を有する。 The activated carbon of the present invention has a BET specific surface area of 650 m 2 / g or more and 1250 m 2 / g or less, a pore volume of 0.25 cm 3 / g or more, an average pore diameter of 1.8 nm or more and 4.0 nm or less, Examples The chloroform water flow rate in the water flow test method described has 71 L / g or more.
通水吸着性能
本発明の活性炭は従来の活性炭と比べて優れた通水吸着性能を有する。本発明の優れた通水吸着性能は後記するように従来とは異なる新規な炭素原料に由来しているが、製造された活性炭を調べても炭素原料に由来する物理的構造を特定することは困難である。しかしながら通水吸着性能は従来の活性炭と比べて優れていることから物理的構造にも違いがあり、活性炭としても新規であることは明らかなため、解明困難な物理的構造を表す指標としクロロホルム通水量で規定した。具体的に本発明の活性炭は、後記実施例の通水試験に基づくクロロホルムの除去率80%以上を維持できる通水量として71L/g以上、好ましくは75L/g以上、より好ましくは78L/g以上、更に好ましくは80L/g以上、より更に好ましくは85L/g以上、最も好ましくは95L/g以上である。
Water Flow Adsorption Performance The activated carbon of the present invention has superior water flow adsorption performance compared to conventional activated carbon. As described later, the excellent water-flowing adsorption performance of the present invention is derived from a novel carbon source different from the conventional one, but it is possible to identify the physical structure derived from the carbon source even by examining the produced activated carbon Have difficulty. However, since the water adsorption performance is superior to that of conventional activated carbon, there is also a difference in physical structure, and it is clear that it is novel as activated carbon. It regulated by the amount of water. Specifically, the activated carbon of the present invention is 71 L / g or more, preferably 75 L / g or more, more preferably 78 L / g or more as a water flow amount capable of maintaining a removal rate of 80% or more of chloroform based on the water flow test in Examples described later. More preferably, it is 80 L / g or more, still more preferably 85 L / g or more, and most preferably 95 L / g or more.
平衡吸着性能
また本発明の活性炭は従来の活性炭と比べて優れた平衡吸着性能を有する。本発明の優れた平衡吸着性能も通水吸着性能と同様、新規な炭素原料に由来するものであるが、解明困難な物理的構造を表す他の指標としクロロホルム平衡吸着量で規定した。具体的に本発明の活性炭は、後記実施例の平衡試験に基づく活性炭1g当たりのクロロホルム吸着量は、好ましくは4.5mg/g以上、より好ましくは5.0mg/g以上、更に好ましくは5.5mg/g以上、より更に好ましくは6.0mg/g以上である。本発明の活性炭は上記通水吸着性能のみを満足していてもよいが、好ましくは通水吸着性能と平衡吸着性能の両方を満足することである。
Equilibrium adsorption performance The activated carbon of the present invention also has superior equilibrium adsorption performance as compared to conventional activated carbon. The excellent equilibrium adsorption performance of the present invention is also derived from a novel carbon raw material, as is the water adsorption performance, but is defined by the chloroform equilibrium adsorption amount as another index indicating a physical structure that is difficult to elucidate. Specifically, the activated carbon of the present invention preferably has a chloroform adsorption amount of 4.5 mg / g or more, more preferably 5.0 mg / g or more, further preferably 5. It is 5 mg / g or more, more preferably 6.0 mg / g or more. The activated carbon of the present invention may satisfy only the above water adsorption performance, but preferably it satisfies both the water adsorption performance and the equilibrium adsorption performance.
活性炭のBET比表面積
活性炭のBET比表面積は十分な吸着量を確保するために650m2/g以上、好ましくは700m2/g以上、より好ましくは750m2/g以上、更に好ましくは800m2/g以上、より更に好ましくは850m2/g以上、最も好ましくは900m2/g以上である。一方、吸着量向上に寄与するミクロ孔容積比率と拡散速度向上に寄与するメソ孔容積比率とのバランスを図ると共に活性炭の充填密度を考慮するとBET比表面積は1250m2/g以下、より好ましくは1200m2/g以下、更に好ましくは1150m2/g以下、より更に好ましくは1100m2/g以下、最も好ましくは1050m2/g以下である。
BET specific surface area of activated carbon The BET specific surface area of activated carbon is 650 m 2 / g or more, preferably 700 m 2 / g or more, more preferably 750 m 2 / g or more, still more preferably 800 m 2 / g to ensure sufficient adsorption amount The above, still more preferably 850 m 2 / g or more, most preferably 900 m 2 / g or more. On the other hand, the BET specific surface area is 1250 m 2 / g or less, more preferably 1200 m, in consideration of the balance between the micropore volume ratio contributing to the improvement of the adsorption amount and the mesopore volume ratio contributing to the diffusion rate improvement. It is 2 or less, more preferably 1150 m 2 / g or less, still more preferably 1100 m 2 / g or less, and most preferably 1050 m 2 / g or less.
活性炭の全細孔容積
本発明の活性炭の全細孔容積とは細孔径30nm以下の細孔容積である。十分な吸着量を確保するために全細孔容積は0.25cm3/g以上、好ましくは0.30cm3/g以上、より好ましくは0.35cm3/g以上、更に好ましくは0.40cm3/g以上、より更に好ましくは0.45cm3/g以上である。全細孔容積の上限は好ましくは0.80cm3/g以下、より好ましくは0.75cm3/g以下、更に好ましくは0.70cm3/g以下、より更に好ましくは0.60cm3/g以下である。
Total Pore Volume of Activated Carbon The total pore volume of the activated carbon of the present invention is a pore volume with a pore diameter of 30 nm or less. Sufficient total pore volume in order to ensure the adsorption of 0.25 cm 3 / g or more, preferably 0.30 cm 3 / g or more, more preferably 0.35 cm 3 / g or more, more preferably 0.40 cm 3 / G or more, more preferably 0.45 cm 3 / g or more. The upper limit of the total pore volume is preferably not more than 0.80 cm 3 / g, more preferably 0.75 cm 3 / g or less, more preferably 0.70 cm 3 / g or less, even more preferably 0.60 cm 3 / g or less It is.
活性炭の平均細孔径
活性炭の平均細孔径は活性炭内部への被吸着物の導入効率を向上させる観点から、1.80nm以上、より好ましくは1.82nm以上、更に好ましくは1.85nm以上、より更に好ましくは1.87nm以上、最も好ましくは1.90nm以上である。一方、平均細孔径が大きくなりすぎると、充填密度が低下することがあるため、4.0nm以下、好ましくは3.5nm以下、より好ましくは3.0nm以下である。
Average pore diameter of activated carbon The average pore diameter of activated carbon is 1.80 nm or more, more preferably 1.82 nm or more, still more preferably 1.85 nm or more, from the viewpoint of improving the introduction efficiency of the adsorbate to the inside of activated carbon. Preferably, it is 1.87 nm or more, most preferably 1.90 nm or more. On the other hand, if the average pore size is too large, the packing density may be reduced, so that it is 4.0 nm or less, preferably 3.5 nm or less, more preferably 3.0 nm or less.
活性炭の平均粒径
本発明の活性炭は用途に応じた形状、サイズにできる。浄水器用途などに活性炭を使用する場合は、接触効率を考慮すると粉末状、粒状、またはこれらの造粒物が好ましい。活性炭の平均粒径(すなわち、粉末状、粒状、またはこれらの造粒物の平均粒子径)は上記接触効率を考慮すると好ましくは10μm以上、より好ましくは20μm以上、更に好ましくは30μm以上であって、好ましくは500μm以下、より好ましくは300μm以下、更に好ましくは200μm以下である。
Average Particle Size of Activated Carbon The activated carbon of the present invention can be shaped and sized according to the application. When using activated carbon for a water purifier application etc., powdery, granular, or these granulated materials are preferable in consideration of the contact efficiency. The average particle size of the activated carbon (ie, the average particle size of the powdery, granular or granulated product thereof) is preferably 10 μm or more, more preferably 20 μm or more, still more preferably 30 μm or more in consideration of the contact efficiency. Preferably it is 500 micrometers or less, More preferably, it is 300 micrometers or less, More preferably, it is 200 micrometers or less.
本発明の優れた通水吸着性能、及び平衡吸着性能は、本発明の所定の炭素原料に由来するものである。したがってBET比表面積、全細孔容積、及び平均細孔径が上記範囲内であっても異なる炭素原料を使用した場合は本発明の所定の炭素原料を由来とする活性炭とは異なる物理的構造となるため、本発明の通水吸着性能や平衡吸着性能は達成できない。 The excellent water flow adsorption performance and equilibrium adsorption performance of the present invention are derived from the predetermined carbon raw material of the present invention. Therefore, even when the BET specific surface area, the total pore volume, and the average pore diameter are within the above ranges, when different carbon raw materials are used, the physical structure is different from that of the activated carbon derived from the predetermined carbon raw material of the present invention. Therefore, the water adsorption performance and equilibrium adsorption performance of the present invention can not be achieved.
本発明の活性炭は、密度1.3g/cm3以下の紙フェノール樹脂積層体(以下、低密度紙フェノール樹脂積層体ということがある)を炭素原料とするものである。具体的に本発明の上記活性炭は、低密度紙フェノール樹脂積層体を炭化処理した後、ガス賦活処理して得られたものが好ましい。低密度紙フェノール樹脂積層体由来の活性炭は、従来の密度1.3g/cm3超の紙フェノール樹脂積層体(以下、高密度紙フェノール樹脂積層体ということがある)由来の活性炭よりも優れた吸着性能を有する。そのため低密度紙フェノール樹脂積層体由来の活性炭は、高密度紙フェノール樹脂積層体由来の活性炭とは異なる特異な物理的構造を有すると考えられるが、例えば図5に示す実施例4と比較例2の電子顕微鏡(SEM)写真から発明例の活性炭の物理的構造の特徴を比較例と区別可能な程度に特定することは困難であり、活性炭の断面形状を調べても活性炭毎に異なるため特定することは困難である。また活性炭の細孔径分布についても図6に示すように発明例と比較例の活性炭を区別することは難しく、他の各種分析装置で調べても本発明に係る活性炭の特徴を特定することは困難である。したがって本発明の活性炭は、好ましくは特定の炭素原料に由来する活性炭であることを特徴の一つとする。また従来の高密度紙フェノール樹脂積層体由来の活性炭では本発明の優れた吸着性能が得られないため、得られる効果の程度を規定することで従来の活性炭と区別可能である。 The activated carbon of the present invention uses a paper phenol resin laminate having a density of 1.3 g / cm 3 or less (hereinafter sometimes referred to as a low density paper phenol resin laminate) as a carbon material. Specifically, the above-mentioned activated carbon of the present invention is preferably one obtained by subjecting a low density paper phenol resin laminate to carbonization treatment and then performing gas activation treatment. The activated carbon derived from the low density paper phenolic resin laminate is superior to the activated carbon derived from the conventional paper phenolic resin laminate having a density of more than 1.3 g / cm 3 (hereinafter sometimes referred to as high density paper phenolic resin laminated) It has adsorption performance. Therefore, the activated carbon derived from the low density paper phenol resin laminate is considered to have a unique physical structure different from the activated carbon derived from the high density paper phenolic resin laminate. For example, Example 4 and Comparative Example 2 shown in FIG. It is difficult to identify the characteristic of the physical structure of the activated carbon of the invention example to the extent that it can be distinguished from the comparative example from the electron microscope (SEM) picture of the present invention. It is difficult. Further, it is difficult to distinguish the activated carbons of the invention example and the comparative example as shown in FIG. 6 with regard to the pore size distribution of the activated carbon, and it is difficult to identify the characteristics of the activated carbon according to the present invention It is. Therefore, one of the features of the activated carbon of the present invention is that it is preferably activated carbon derived from a specific carbon source. Further, since the activated carbon derived from the conventional high density paper phenol resin laminate can not obtain the excellent adsorption performance of the present invention, it can be distinguished from the conventional activated carbon by defining the degree of the obtained effect.
紙フェノール樹脂積層体
本発明では炭素原料として低密度紙フェノール樹脂積層体を用いる。紙フェノール樹脂積層体は比較的大きい細孔が形成されやすい紙基材(以下、メソ孔形成原料という)と、比較的小さい細孔が形成されやすいフェノール樹脂(以下、ミクロ孔形成原料)の複合体である。そして低密度紙フェノール樹脂積層体の炭化物をガス賦活処理すると、通水吸着性能や平衡吸着性能向上に寄与する細孔構造を有する活性炭が得られる。本発明で規定する紙フェノール樹脂積層体の密度は既知の紙フェノール樹脂積層体の密度よりも低密度であり、新規な材料である。そしてこのような新規な紙フェノール樹脂積層体の炭化物を賦活処理すると従来の高密度紙フェノール樹脂積層体とは異なる物理的構造を有する活性炭が得られる。
Paper Phenolic Resin Laminate In the present invention, a low density paper phenolic resin laminate is used as a carbon material. A paper phenol resin laminate is a composite of a paper base (hereinafter referred to as mesopore-forming raw material) in which relatively large pores are easily formed and a phenol resin (hereinafter, micropore-forming raw material) in which relatively small pores are easily formed. It is a body. When the carbides of the low density paper phenol resin laminate are subjected to gas activation treatment, activated carbon having a pore structure contributing to the improvement of the water flow adsorption performance and the equilibrium adsorption performance can be obtained. The density of the paper phenol resin laminate specified in the present invention is lower than the density of the known paper phenol resin laminate, which is a novel material. Then, when the carbide of such a novel paper phenol resin laminate is activated, an activated carbon having a physical structure different from that of the conventional high density paper phenol resin laminate can be obtained.
本発明では低密度紙フェノール樹脂積層体を炭化処理するが、低密度紙フェノール樹脂積層体由来の炭化物は、高密度紙フェノール樹脂積層体由来の炭化物と比べて図1に示す様に細孔径1〜10μmの細孔容積が顕著に発達している。そしてこのような特異な細孔構造を有する低密度紙フェノール樹脂積層体由来の炭化物は、高密度紙フェノール樹脂積層体由来の炭化物とはガス賦活処理時の該炭化物内でのガスの拡散態様が異なると考えられる。すなわち、低密度紙フェノール樹脂積層体由来の炭化物は密度が低いためガス賦活処理すると内部でのガス拡散性が高く、形成される細孔や細孔構造に影響を及ぼすと考えられる。このような細孔や細孔構造の形成過程の相違に起因して低密度紙フェノール樹脂積層体由来の活性炭は、同一条件で炭化処理、賦活処理した高密度紙フェノール樹脂積層体由来の活性炭とは物理的な構造が相違し、その相違が吸着性能の差となって現れていると考えられる。このような相違を発現する本発明の紙フェノール樹脂積層体の密度は1.30g/cm3以下、好ましくは1.25g/cm3以下、より好ましくは1.20g/cm3以下、更に好ましくは1.15g/cm3以下である。紙フェノール樹脂積層体の密度の下限は好ましくは0.70g/cm3以上、より好ましくは0.80g/cm3以上、更に好ましくは0.90g/cm3以上、最も好ましくは1.00g/cm3以上である。 In the present invention, the low density paper phenol resin laminate is carbonized, but the carbide derived from the low density paper phenol resin laminate has a pore diameter of 1 as shown in FIG. 1 as compared to the carbide derived from the high density paper phenol resin laminate. A pore volume of ̃10 μm is significantly developed. And the carbide derived from the low density paper phenol resin laminate having such a unique pore structure is different from the carbide derived from the high density paper phenol resin laminate from the gas diffusion mode in the carbide at the time of gas activation processing. It is considered to be different. That is, since the carbide derived from the low density paper phenol resin laminate has a low density, it is considered that the gas diffusivity in the inside is high when the gas activation treatment is performed, which affects the formed pores and the pore structure. The activated carbon derived from the low density paper phenol resin laminate is derived from the high density paper phenol resin laminate activated carbonized and activated under the same conditions due to the difference in the formation process of such pores and pore structures. It is considered that the physical structure is different, and the difference appears as a difference in adsorption performance. Such density of paper phenol resin laminate of the present invention expressing a difference 1.30 g / cm 3 or less, preferably 1.25 g / cm 3 or less, more preferably 1.20 g / cm 3 or less, more preferably It is 1.15 g / cm 3 or less. The lower limit of the density of the paper phenol resin laminate is preferably 0.70 g / cm 3 or more, more preferably 0.80 g / cm 3 or more, still more preferably 0.90 g / cm 3 or more, and most preferably 1.00 g / cm 3 or more.
本発明の低密度紙フェノール樹脂積層体を構成する原料は、従来のプリント基板などに用いられる紙フェノール樹脂積層体と同様の紙、及びフェノール樹脂を用いることができ、その他の添加剤、及び組成も限定されない。また低密度紙フェノール樹脂積層体の製造方法は従来の製造方法に準拠して製造することが可能であるが、上記密度となるように製造条件を調整する必要がある。例えば紙基材にフェノール樹脂を含浸させて得られる紙フェノール樹脂(プリプレグ)の積層体を成形プレスする際のプレス圧力を調整することで紙フェノール樹脂積層体の密度を所望の低密度に調整できる。なお、電子部品用プリント基板などに適した強度や耐久性を付与するために紙フェノール樹脂積層体は高プレス圧力で成形されている。そのため既知の紙フェノール樹脂成成形体は高密度化されており、いずれも本発明の所定の密度を超えている。一方、プレス圧力を低減させることで本発明の低密度紙フェノール樹脂積層体が得られるが、密度が低いため強度や耐久性が低くプリント基板用途には適さないが、浄水器用途など吸着材として要求される強度や耐久性は備えている。 As the raw material constituting the low density paper phenol resin laminate of the present invention, the same paper as the paper phenol resin laminate used for conventional printed circuit boards and the like, and phenol resin can be used, and other additives and compositions Nor is it limited. Moreover, although the manufacturing method of a low density paper phenol resin laminated body can be manufactured based on the conventional manufacturing method, it is necessary to adjust manufacturing conditions so that it may become the said density. For example, the density of the paper phenol resin laminate can be adjusted to a desired low density by adjusting the pressing pressure when molding and pressing a laminate of paper phenol resin (prepreg) obtained by impregnating a paper substrate with a phenol resin. . In addition, in order to provide the intensity | strength and durability suitable for the printed circuit board etc. for electronic components, the paper phenol resin laminated body is shape | molded by the high press pressure. Therefore, the known paper phenolic resin molded articles are densified, and all exceed the predetermined density of the present invention. On the other hand, the low density paper phenol resin laminate of the present invention can be obtained by reducing the pressing pressure, but the density is low, so the strength and durability are low and it is not suitable for printed circuit board applications. It has the required strength and durability.
粉砕工程1
本発明では炭化処理前に低密度紙フェノール樹脂積層体の粉砕処理を行ってもよい。例えば低密度紙フェノール樹脂積層体を微細化することで、短時間で均一な炭化処理や賦活処理が可能となるため、炭化炉のサイズに応じて適宜粉砕すればよい。例えば粉砕後の低密度紙フェノール樹脂積層体の好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上が、好ましくは粒径5.0mm以下、より好ましくは4.0mm以下、更に好ましくは3.35mm以下であることが望ましい。下限は取り扱い性等を考慮して適宜決定すればよい。
Pulverization process 1
In the present invention, the low density paper phenol resin laminate may be ground before carbonization. For example, by refining the low density paper phenol resin laminate, it becomes possible to carry out uniform carbonization treatment and activation treatment in a short time, and therefore, it may be appropriately crushed according to the size of the carbonization furnace. For example, preferably 70% or more, more preferably 75% or more, still more preferably 80% or more of the low density paper phenol resin laminate after grinding, preferably the particle size is 5.0 mm or less, more preferably 4.0 mm or less, More preferably, it is 3.35 mm or less. The lower limit may be appropriately determined in consideration of handling and the like.
炭化処理工程
炭化処理工程は低密度紙フェノール樹脂積層体を炭化処理して炭化物を得る工程である。低密度紙フェノール樹脂積層体を炭化処理して得られた炭化物(以下、低密度炭化物ということがある)は、細孔径1〜10μmの細孔容積(以下、マクロ細孔容積ということがある)が顕著に発達する。マクロ孔容積が発達した低密度炭化物をガス賦活処理するとガス賦活時のガス拡散性が向上し、得られる活性炭は吸着性能向上に寄与する細孔構造を有する。このような効果を奏する低密度炭化物のマクロ細孔容積は、好ましくは0.13cm3/g以上、より好ましくは0.15cm3/g以上、更に好ましくは0.20cm3/g以上である。
Carbonization Treatment Step The carbonization treatment step is a step of carbonizing the low density paper phenol resin laminate to obtain carbides. The carbide obtained by carbonizing the low density paper phenol resin laminate (hereinafter sometimes referred to as low density carbide) has a pore volume of 1 to 10 μm in pore diameter (hereinafter sometimes referred to as macropore volume) Develop significantly. When the low density carbide in which the macro pore volume is developed is subjected to gas activation treatment, the gas diffusion property at the time of gas activation is improved, and the obtained activated carbon has a pore structure which contributes to the improvement of the adsorption performance. Macropore volume of low density carbide exert such an effect, preferably 0.13 cm 3 / g or more, more preferably 0.15 cm 3 / g or more, further preferably 0.20 cm 3 / g or more.
また低密度炭化物の全マクロ孔容積に対する1〜10μmのマクロ孔容積の比率は、好ましくは40%以上、より好ましくは45%以上、更に好ましくは50%以上、より更に好ましくは55%以上である。マクロ孔容積比率が高いほど、賦活処理時のガス拡散性が向上し、得られる活性炭の吸着性能向上に寄与する細孔構造が得られるため好ましい。 The ratio of the macro pore volume of 1 to 10 μm to the total macro pore volume of low density carbide is preferably 40% or more, more preferably 45% or more, still more preferably 50% or more, still more preferably 55% or more . The higher the macro pore volume ratio, the better the gas diffusibility during activation processing, and the pore structure contributing to the improvement of the adsorption performance of the obtained activated carbon is obtained, which is preferable.
炭化処理条件は上記マクロ孔容積を有する低密度炭化物が得られるように炭化処理条件を適宜調整することが望ましい。炭化処理時の雰囲気は、窒素ガス、ヘリウム、アルゴンガス等の不活性ガス雰囲気とすることが望ましい。また低密度紙フェノール樹脂積層体が燃焼しない温度、時間で加熱処理することが望ましく、炭化処理の温度(炉内温度)は、好ましくは500℃以上、より好ましくは550℃以上であって、好ましくは1000℃以下、より好ましくは950℃以下である。該炭化処理温度での保持時間は、好ましくは1分以上、より好ましくは5分以上、更に好ましくは10分以上であって、好ましくは10時間以下、より好ましくは8時間以下、更に好ましくは6時間以下である。 It is desirable that carbonization treatment conditions be appropriately adjusted so as to obtain low density carbide having the above-mentioned macro pore volume. The atmosphere at the time of carbonization is preferably an inert gas atmosphere such as nitrogen gas, helium, argon gas and the like. The heat treatment is preferably performed at a temperature and a time at which the low density paper phenol resin laminate does not burn, and the temperature of the carbonization (in-furnace temperature) is preferably 500 ° C. or more, more preferably 550 ° C. or more. Is 1000 ° C. or less, more preferably 950 ° C. or less. The holding time at the carbonization temperature is preferably 1 minute or more, more preferably 5 minutes or more, still more preferably 10 minutes or more, preferably 10 hours or less, more preferably 8 hours or less, more preferably 6 It is less than time.
ガス賦活処理工程
ガス賦活処理工程は、低密度炭化物をガス賦活処理して活性炭を得る工程である。低密度炭化物をガス賦活処理して得られた活性炭は、具体的な細孔構造は不明であるが、通水吸着性能、及び平衡吸着性能に優れた特異な細孔構造を有する。
Gas Activation Treatment Step The gas activation treatment step is a step of gas activation treatment of low density carbide to obtain activated carbon. Activated carbon obtained by gas activation treatment of low density carbide has a unique pore structure excellent in water adsorption performance and equilibrium adsorption performance, although the specific pore structure is unknown.
ガス賦活処理工程の条件は上記活性炭が得られるように適宜調整すればよい。ガス賦活処理とは炭化物を所定の温度まで加熱した後、賦活ガスを供給することにより賦活処理を行う方法である。ガス賦活処理を行う際の温度(炉内温度)は好ましくは400℃以上、より好ましくは500℃以上、更に好ましくは600℃以上であって、好ましくは1500℃以下、より好ましくは1300℃以下、更に好ましくは1100℃以下である。この際の昇温速度は好ましくは1℃/分以上、より好ましくは2℃/分以上、更に好ましくは6℃/分以上であって、好ましくは100℃/分以下、より好ましくは50℃/分以下、更に好ましくは25℃/分以下である。また加熱保持時間は好ましくは0.1時間以上、より好ましくは0.25時間以上であって、好ましくは10時間以下、より好ましくは7.5時間以下である。 The conditions of the gas activation process may be appropriately adjusted so as to obtain the activated carbon. The gas activation treatment is a method of performing activation treatment by heating the carbide to a predetermined temperature and supplying an activation gas. The temperature at which the gas activation treatment is carried out (temperature in the furnace) is preferably 400 ° C. or more, more preferably 500 ° C. or more, still more preferably 600 ° C. or more, preferably 1500 ° C. or less, more preferably 1300 ° C. or less More preferably, it is 1100 ° C. or less. The temperature rising rate at this time is preferably 1 ° C./minute or more, more preferably 2 ° C./minute or more, still more preferably 6 ° C./minute or more, preferably 100 ° C./minute or less, more preferably 50 ° C./minute. Or less, more preferably 25 ° C./minute or less. The heating and holding time is preferably 0.1 hours or more, more preferably 0.25 hours or more, and preferably 10 hours or less, more preferably 7.5 hours or less.
賦活ガスとしては、水蒸気、空気、炭酸ガス、酸素、燃焼ガス、およびこれらの混合ガスを用いることができる。以下、水蒸気を例示して記載するが、炭酸ガスなど他の賦活ガスにも同様に適用できる。水蒸気を供給する場合、賦活処理中に供給する水蒸気濃度は、好ましくは40Vol%以上、より好ましくは50Vol%以上、更に好ましくは60Vol%以上であって、好ましくは100Vol%以下、より好ましくは90Vol%以下、更に好ましくは85Vol%以下である。供給する水蒸気濃度が上記範囲内であれば、賦活反応による細孔形成がより良好となると共に、賦活反応がより効率良く進行し、生産性を向上できる。 As the activating gas, water vapor, air, carbon dioxide gas, oxygen, combustion gas, and mixed gas thereof can be used. Hereinafter, although steam is illustrated and described, it is applicable similarly to other activation gas, such as carbon dioxide gas. When steam is supplied, the steam concentration supplied during activation treatment is preferably 40 Vol% or more, more preferably 50 Vol% or more, still more preferably 60 Vol% or more, preferably 100 Vol% or less, more preferably 90 Vol% The content is more preferably 85 vol% or less. When the water vapor concentration to be supplied is in the above range, the formation of pores by the activation reaction becomes better, the activation reaction can proceed more efficiently, and the productivity can be improved.
水蒸気を供給する態様としては、水蒸気を希釈せずに供給する態様、水蒸気を不活性ガスで希釈して供給する態様のいずれも可能であるが、賦活反応を効率良く進行させるために、不活性ガスで希釈して供給する態様が好ましい。水蒸気を不活性ガスで希釈して供給する場合、該混合ガス(全圧101.3kPa)中の水蒸気分圧は40kPa以上が好ましく、より好ましくは50kPa以上、さらに好ましくは70kPa以上である。 As an aspect of supplying water vapor, either an embodiment of supplying water vapor without dilution or an embodiment of supplying water vapor diluted with an inert gas is possible, but in order to allow the activation reaction to proceed efficiently, it is inert The aspect which dilutes and supplies with gas is preferable. When steam is diluted with an inert gas and supplied, the partial pressure of steam in the mixed gas (total pressure 101.3 kPa) is preferably 40 kPa or more, more preferably 50 kPa or more, and still more preferably 70 kPa or more.
ガス賦活処理後の処理
水蒸気賦活後の活性炭は、(a)洗浄処理、(b)乾燥処理、(c)粉砕処理2、及び(d)加熱処理よりなる群から選ばれる少なくとも1つの処理を行ってもよい。(a)洗浄処理は、水蒸気賦活後の活性炭を、水や酸溶液またはアルカリ溶液などの公知の溶媒を用いて行う。活性炭を洗浄することにより、灰分などの不純物を除去できる。(b)乾燥処理は、水蒸気賦活後あるいは洗浄後の活性炭に含まれる水等を除去する工程である。乾燥処理は活性炭を常温下、又は加熱下に所定時間晒して乾燥させればよい。(c)粉砕処理2は、活性炭の粒径を用途に応じたサイズに調整する工程である。粉砕処理2はディスクミル、ボールミル、ビーズミルなどを用いて行うことができ、更に必要に応じて分級などにより所定の粒度に調整してもよい。(d)加熱処理は、不活性雰囲気下で活性炭を高温加熱処理する工程である。加熱処理することで活性炭の酸性官能基量を低減乃至除去できる。本発明の低密度紙フェノール樹脂積層体由来の活性炭は酸性官能基量を低減させると、吸着性能を向上できるため(d)加熱処理を行うことが好ましい。加熱処理時の不活性雰囲気は炭化処理工程と同様である。また加熱処理は酸性官能基を低減できる温度、時間であればよく、好ましくは400℃以上、より好ましくは600℃以上であって、好ましくは1300℃以下、より好ましくは1200℃以下である。また加熱保持時間は好ましくは0.5時間以上、より好ましくは1時間以上、更に好ましくは1.5時間以上であって、好ましくは10時間以下、より好ましくは8時間以下である。
Treatment after gas activation treatment Activated carbon after steam activation is subjected to at least one treatment selected from the group consisting of (a) washing treatment, (b) drying treatment, (c) grinding treatment 2 and (d) heat treatment May be (A) The cleaning treatment is performed using activated carbon after steam activation using a known solvent such as water, an acid solution or an alkali solution. By washing the activated carbon, impurities such as ash can be removed. (B) The drying treatment is a step of removing water and the like contained in activated carbon after steam activation or washing. The drying process may be performed by exposing the activated carbon under normal temperature or under heating for a predetermined time. (C) The grinding process 2 is a step of adjusting the particle size of the activated carbon to a size according to the application. The pulverization treatment 2 can be performed using a disk mill, a ball mill, a bead mill or the like, and may be adjusted to a predetermined particle size by classification or the like, if necessary. (D) The heat treatment is a step of subjecting the activated carbon to a high temperature heat treatment under an inert atmosphere. The heat treatment can reduce or remove the amount of acidic functional groups of the activated carbon. The activated carbon derived from the low density paper phenol resin laminate of the present invention can improve its adsorption performance when the amount of acidic functional groups is reduced, so that (d) heat treatment is preferably performed. The inert atmosphere at the time of heat treatment is the same as in the carbonization treatment step. The heat treatment may be performed at any temperature and time that can reduce the acidic functional group, and is preferably 400 ° C. or more, more preferably 600 ° C. or more, and preferably 1300 ° C. or less, more preferably 1200 ° C. or less. The heating and holding time is preferably 0.5 hours or more, more preferably 1 hour or more, still more preferably 1.5 hours or more, preferably 10 hours or less, more preferably 8 hours or less.
上記ガス賦活処理後の処理は、単独、或いは2以上の処理を任意に組み合わせて行ってもよい。洗浄処理と他の処理を組み合わせる場合、洗浄処理は粉砕処理の前後いずれで行ってもよいが、洗浄処理は乾燥処理や加熱処理の前に行うことが望ましい。複数の処理の好ましい組み合わせは(i)粉砕処理−洗浄処理、(ii)洗浄処理−粉砕処理であり、より好ましい組み合わせは(iii)粉砕処理−洗浄処理−乾燥処理、(iv)洗浄処理−粉砕処理−乾燥処理であり、更に好ましい組み合わせは(v)粉砕処理−洗浄処理−加熱処理、(vi)洗浄処理−粉砕処理−加熱処理である。なお、乾燥処理後に加熱処理を行っても良いが、加熱処理によって活性炭を乾燥できるため、処理効率を考慮すると乾燥処理を省略してもよい。また上記好ましい組み合わせ(iii)〜(vi)において粒度調整等が不要であれば粉砕処理を省略してもよい。また粒度を調整するために必要に応じて篩等による分級処理を行ってもよく、上記処理後の最終工程として分級処理を行ってもよい。 The process after the gas activation process may be performed alone or in combination of two or more processes. When the washing treatment and other treatments are combined, the washing treatment may be performed before or after the grinding treatment, but the washing treatment is preferably performed before the drying treatment or the heat treatment. A preferred combination of multiple treatments is (i) grinding treatment-washing treatment, (ii) washing treatment-grinding treatment, and a more preferred combination is (iii) grinding treatment-washing treatment-drying treatment, (iv) washing treatment-grinding Treatment-drying treatment, and a further preferable combination is (v) grinding treatment-washing treatment-heat treatment, (vi) washing treatment-grinding treatment-heat treatment. Although the heat treatment may be performed after the drying treatment, since the activated carbon can be dried by the heat treatment, the drying treatment may be omitted in consideration of the treatment efficiency. Further, the pulverizing process may be omitted as long as the particle size adjustment and the like are unnecessary in the preferable combinations (iii) to (vi). Moreover, in order to adjust a particle size, classification processing with a sieve etc. may be performed as needed, and classification processing may be performed as a final process after the said processing.
本発明の活性炭は大気中、水中に存在する被吸着物の吸着材として使用できる。特に水道水や工業廃水に含まれる下記被吸着物の除去に好適であり、より好ましくは浄水器用活性炭としての使用である。本発明の活性炭を使用する浄水器の形態は特に限定されず、各種公知の浄水器に適用できる。 The activated carbon of the present invention can be used as an adsorbent of a substance to be adsorbed which is present in the air or water. In particular, it is suitable for the removal of the following adsorptive substances contained in tap water and industrial wastewater, and is more preferably used as an activated carbon for water purifiers. The form of the water purifier using the activated carbon of the present invention is not particularly limited, and can be applied to various known water purifiers.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be more specifically described by way of examples. However, the present invention is of course not limited by the following examples, and appropriate modifications may be made as long as the present invention can be applied to the purpose. Of course, implementation is also possible, and all of them are included in the technical scope of the present invention.
実施例1
炭素原料:紙フェノール樹脂(プリプレグ)の積層体を成形プレスする際のプレス圧力を調整し、密度が1.1g/cm3の紙フェノール樹脂積層体を炭素原料として使用した。
粉砕工程1:上記炭素原料を粉砕機(ダイコー精器社製DAS−20)に充填して炭素原料の粉砕を行った。その際、該粉砕機内のスクリーンを直径8mmとして3.35mm以下の割合が80%以上となるように炭素原料を粉砕した。
炭化処理工程:粉砕した炭素原料200gをマッフル炉(光洋サーモ社製)に投入し、窒素流通下(2L/min)、炉内温度を700℃まで昇温(昇温速度:10℃/min)した後、2時間保持して炭素原料の炭化物を得た。
賦活処理工程:上記炭化物50gをロータリーキルン炉(タナカテック社製)に投入して炉内温度910℃まで昇温(10℃/min)した後、該温度を保持しながら水蒸気を窒素(1L/min)と共に炉内に流通させ(水蒸気濃度70vol%)、水蒸気賦活を20分間行って活性炭を得た。
粉砕工程2:得られた活性炭の粒子径が180μm以下となるまで乳鉢で粉砕した。
洗浄工程:粉砕した活性炭を5.0%の塩酸(60℃)で洗浄した後、温水(60℃)洗浄して活性炭1を製造した。
Example 1
Carbon raw material: A press pressure at the time of molding and pressing a laminate of paper phenol resin (prepreg) was adjusted, and a paper phenol resin laminate having a density of 1.1 g / cm 3 was used as a carbon material.
Grinding step 1: The carbon raw material was charged into a grinder (DAS-20 manufactured by Daiko Seiki Co., Ltd.) to grind the carbon raw material. At that time, the carbon raw material was ground so that the ratio of 3.35 mm or less was 80% or more, assuming that the screen in the grinder was 8 mm in diameter.
Carbonization treatment step: 200 g of pulverized carbon raw material is put into a muffle furnace (manufactured by Koyo Thermo Co., Ltd.), and the temperature in the furnace is raised to 700 ° C. under nitrogen flow (2 L / min) (heating rate: 10 ° C./min) After holding, it was held for 2 hours to obtain a carbide of carbon material.
Activation treatment step: After 50 g of the above carbide is charged into a rotary kiln furnace (manufactured by TANAKA TEC Co., Ltd.) and heated up to a furnace temperature of 910 ° C. (10 ° C./min), steam is held under nitrogen (1 L / min) ) And was allowed to flow through the furnace (water vapor concentration 70 vol%), steam activation was performed for 20 minutes, and activated carbon was obtained.
Grinding step 2: The obtained activated carbon was ground in a mortar until the particle size of the obtained activated carbon became 180 μm or less.
Washing step: The pulverized activated carbon was washed with 5.0% hydrochloric acid (60 ° C.) and then washed with warm water (60 ° C.) to produce activated carbon 1.
実施例2
水蒸気賦活時間を9分間に変更した以外は実施例1と同様にして得られた活性炭に下記処理を行って活性炭2を製造した。
加熱処理工程:洗浄後の活性炭をマッフル炉(光洋サーモ社製)に投入し、窒素流通下(2L/min)、900℃まで昇温(昇温速度:10℃/min)した後、2時間保持して活性炭2を製造した。
Example 2
The activated carbon obtained in the same manner as in Example 1 except that the steam activation time was changed to 9 minutes was subjected to the following treatment to produce an activated carbon 2.
Heat treatment process: The activated carbon after washing is put into a muffle furnace (manufactured by Koyo Thermo Co., Ltd.), heated to 900 ° C. (heating rate: 10 ° C./min) under nitrogen flow (2 L / min), and then for 2 hours The activated carbon 2 was produced by holding.
実施例3
水蒸気賦活時間を15分間に変更した以外は実施例2と同様にして活性炭3を製造した。
Example 3
Activated carbon 3 was produced in the same manner as in Example 2 except that the steam activation time was changed to 15 minutes.
実施例4
実施例1の活性炭1に下記処理を行って活性炭4を製造した。
加熱処理工程:洗浄後の活性炭をマッフル炉に投入し、窒素流通下(2L/min)、900℃まで昇温(昇温速度:10℃/min)した後、2時間保持して活性炭4を製造した。
Example 4
The activated carbon 1 of Example 1 was subjected to the following treatment to produce an activated carbon 4.
Heat treatment process: The activated carbon after washing is put into a muffle furnace, heated to 900 ° C. (temperature rising rate: 10 ° C./min) under nitrogen flow (2 L / min), and then held for 2 hours to hold the activated carbon 4 Manufactured.
実施例5
水蒸気賦活時間を30分間に変更した以外は実施例2と同様にして活性炭5を製造した。
Example 5
Activated carbon 5 was produced in the same manner as in Example 2 except that the steam activation time was changed to 30 minutes.
実施例6
実施例1の炭化した炭素原料50gをロータリーキルン炉に投入し、窒素ガス流通下(1L/min)、炉内温度を910℃まで昇温(昇温速度:10℃/min)した後、該温度を保持しながら炭酸ガス(2.3L/min)を窒素ガス(1.0L/min)と共に炉内に流通させ(炭酸ガス濃度70vol%)、炭酸ガス賦活を32分間行って活性炭を得た。
粉砕工程2:得られた活性炭の粒子径が180μm以下となるまで乳鉢で粉砕して活性炭を得た。
粉砕した活性炭に実施例2と同じ条件で洗浄工程、加熱処理工程を行って活性炭6を製造した。
Example 6
After charging 50 g of carbonized carbon raw material of Example 1 into a rotary kiln furnace and raising the temperature in the furnace to 910 ° C. (heating rate: 10 ° C./min) under nitrogen gas flow (1 L / min), the temperature Carbon dioxide gas (2.3 L / min) was circulated in the furnace together with nitrogen gas (1.0 L / min) (carbon dioxide gas concentration of 70 vol%), and carbon dioxide gas activation was performed for 32 minutes to obtain activated carbon.
Pulverization step 2: The activated carbon was pulverized in a mortar until the particle diameter of the obtained activated carbon became 180 μm or less, to obtain an activated carbon.
The crushed activated carbon was subjected to the washing step and the heat treatment step under the same conditions as in Example 2 to produce activated carbon 6.
比較例1
炭素原料:特許文献1の実施例で使用した活性炭No.1と同じ炭素原料を使用した。具体的には紙フェノール樹脂(プリプレグ)の積層体を成形プレスする際のプレス圧力を調整し、密度が1.44g/cm3の紙フェノール樹脂積層体を炭素原料として使用した。実施例1と同様にして粉砕工程1、炭化処理工程、賦活処理工程、粉砕工程2を行って活性炭を得た。得られた活性炭を実施例2と同様にして洗浄工程、加熱処理工程を行って活性炭7を製造した。なお、比較例1〜3は特許文献1の発明例を模擬した活性炭である。
Comparative Example 1
Carbon raw material: Activated carbon No. 1 used in the example of Patent Document 1 The same carbon source as 1 was used. Specifically, the press pressure at the time of molding and pressing a laminate of paper phenol resin (prepreg) was adjusted, and a paper phenol resin laminate having a density of 1.44 g / cm 3 was used as a carbon material. In the same manner as in Example 1, the pulverizing step 1, the carbonization treatment step, the activation treatment step, and the pulverizing step 2 were performed to obtain an activated carbon. The obtained activated carbon was subjected to the washing step and the heat treatment step in the same manner as in Example 2 to produce activated carbon 7. Comparative Examples 1 to 3 are activated carbon simulating the invention example of Patent Document 1.
比較例2
水蒸気賦活時間を30分間に変更した以外は比較例1と同様にして活性炭8を製造した。
Comparative example 2
Activated carbon 8 was produced in the same manner as in Comparative Example 1 except that the steam activation time was changed to 30 minutes.
比較例3
水蒸気賦活時間を45分間に変更した以外は比較例1と同様にして活性炭9を製造した。
Comparative example 3
Activated carbon 9 was produced in the same manner as in Comparative Example 1 except that the steam activation time was changed to 45 minutes.
比較例4
水蒸気を炭酸ガス(2.3L/min)に変更して窒素(1L/min)と共に炉内に流通させ(炭酸ガス濃度70vol%)、炭酸ガス賦活を60分間行った以外は比較例1と同様にして活性炭10を製造した。
Comparative example 4
Water vapor was changed to carbon dioxide gas (2.3 L / min), it was circulated in the furnace with nitrogen (1 L / min) (carbon dioxide concentration 70 vol%), and it was the same as comparative example 1 except carbon dioxide gas activation was performed for 60 minutes The activated carbon 10 was manufactured.
本実施例における各種特性の測定条件は以下の通りである。測定結果は表1に記載した。 The measurement conditions of various characteristics in this example are as follows. The measurement results are shown in Table 1.
[紙フェノール樹脂積層体の密度]
下記式に基づいて紙フェノール樹脂積層体の密度を算出した。
紙フェノール樹脂積層体の密度(g/cm3)=紙フェノール樹脂積層体の質量(g)/紙フェノール樹脂積層体の体積(縦cm×横cm×厚みcm)
[Density of paper phenolic resin laminate]
The density of the paper phenol resin laminate was calculated based on the following equation.
Density of paper phenol resin laminate (g / cm 3 ) = mass of paper phenol resin laminate (g) / volume of paper phenol resin laminate (long cm × horizontal cm × thickness cm)
[炭化物のマクロ孔容積]
水銀ポロシメータ(マイクロメトリックス社製Auto Pore IV 9520)を用いて水銀圧入圧力0.152〜414MPaの範囲における粒径0.5mm以上の試料(炭化物)を測定した。マクロ孔容積の解析には細孔径0.05μm〜107μmにおける水銀圧入量の積算値を用いてマクロ孔容積を求めた。
また試料の細孔径1〜10μmにおける水銀圧入量の積算値を用いて細孔径1〜10μmまでのマクロ孔容積を求めた。
測定結果に基づく細孔径分布を図1に示した。
[Macro pore volume of carbide]
A sample (carbide) having a particle diameter of 0.5 mm or more in a mercury injection pressure range of 0.152 to 414 MPa was measured using a mercury porosimeter (Auto Pore IV 9520 manufactured by Micrometrics). For the analysis of the macro pore volume, the macro pore volume was determined using the integrated value of the mercury intrusion amount at pore diameters of 0.05 μm to 107 μm.
Moreover, the macro pore volume to 1 to 10 micrometers of pore diameters was calculated | required using the integration value of the mercury intrusion amount in 1 to 10 micrometers of pore diameters of a sample.
The pore size distribution based on the measurement results is shown in FIG.
[活性炭の細孔分布]
得られた各活性炭は活性炭0.2gを200℃にて真空乾燥後、ASAP2400(株式会社島津製作所製)を用いて、N2ガス吸着法による吸着等温線からBJH法により解析し、細孔径分布を求めた。結果を図6に示す。
[Pore distribution of activated carbon]
Each of the obtained activated carbon was vacuum dried at 200 ° C. from 0.2 g of activated carbon and then analyzed by the BJH method from the adsorption isotherm by the N 2 gas adsorption method using ASAP 2400 (manufactured by Shimadzu Corporation) I asked for. The results are shown in FIG.
[活性炭の比表面積]
試料(活性炭)0.2gを250℃にて真空加熱した後、窒素吸着装置(マイクロメリティックス社製ASAP−2400)を用いて、吸着等温線を求め、BET法により比表面積(m2/g)を算出した。
[Specific surface area of activated carbon]
After vacuum heating of 0.2 g of the sample (activated carbon) at 250 ° C., an adsorption isotherm is determined using a nitrogen adsorption device (ASAP-2400 manufactured by Micromeritics), and the specific surface area (m 2 / m is determined by the BET method. g) was calculated.
[活性炭の全細孔容積]
窒素吸着等温線から相対圧(p/p0)=0.93における窒素吸着量を全細孔容積(cm3/g)とした。
[Total pore volume of activated carbon]
From the nitrogen adsorption isotherm, the nitrogen adsorption amount at relative pressure (p / p0) = 0.93 was taken as the total pore volume (cm 3 / g).
[活性炭の平均細孔径]
平均細孔径は、活性炭に形成された細孔の形状をシリンダー状と仮定して下記式に基づいて算出した。
平均細孔径(nm)=(4×全細孔容積(cm3/g))/比表面積(m2/g)×1000
[Average pore size of activated carbon]
The average pore diameter was calculated based on the following equation, assuming that the shape of the pores formed in the activated carbon is cylindrical.
Average pore size (nm) = (4 × total pore volume (cm 3 / g)) / specific surface area (m 2 / g) × 1000
[通水試験]
微粉による圧力損失を低減させるため、活性炭の粒径を53〜180μmの範囲内に調整した活性炭2.0gをカラム(直径15mm)に充填し、JIS S 3201(2010年:家庭用浄水器試験法)に準じて通水試験を行った。具体的にはクロロホルム濃度が0.06mg/Lとなるように調整した原水を空間速度(SV)500h-1でカラムに通過させた。カラム通過前後のクロロホルム濃度をヘッドスペースガスクロマトグラム法にて定量測定を行った。破過点をカラム流入水に対する流出水のトリクロロメタン濃度20%とし、破過点に達した時点のトリクロロメタン通水量(=[破過点までの総ろ過水量(L)/活性炭質量(g)])を算出し、ろ過性能とした。なお、ヘッドスペースはパーキンエルマー社製TurboMatrixHS、ガスクロマトグラム質量分析計は島津製作所社製QP2010を用いた。
[Water flow test]
In order to reduce the pressure loss due to fine powder, 2.0 g of activated carbon prepared by adjusting the particle size of activated carbon in the range of 53 to 180 μm is packed in a column (diameter 15 mm), JIS S 3201 (2010: household water purifier test method) The water flow test was performed according to. Specifically, raw water adjusted to have a chloroform concentration of 0.06 mg / L was passed through the column at a space velocity (SV) of 500 h −1 . The concentration of chloroform before and after passage through the column was quantitatively measured by head space gas chromatography. Assuming that the breakthrough point is 20% of the trichloromethane concentration of the effluent water to the column inflow water, the amount of trichloromethane water flow when the breakthrough point is reached (= [total filtered water amount to breakthrough point (L) / mass of activated carbon (g) ] Was calculated and it was set as filtration performance. The head space used was TurboMatrixHS manufactured by Perkin Elmer, and the gas chromatogram mass spectrometer used was QP2010 manufactured by Shimadzu Corporation.
[平衡試験]
クロロホルム(CHCl3)0.5gをメタノール50mLで稀釈した後、更にメタノールで10倍稀釈し、試験原液とした。試験原液2mLを純水で稀釈し、濃度2mg/Lのクロロホルム溶液を調製した。容量100mLの褐色三角フラスコに攪拌子と各試験毎に粒径を180μm以下に調整した活性炭を所定量(各試験における活性炭量は0.013g:0.026g:0.065g:0.130g:0.260g)を入れた後、クロロホルム溶液で満水にし、テフロングリスを塗布したガラス栓で密栓し、クリップで固定した。また注水前後のフラスコの質量を測定してフラスコ内のクロロホルム溶液の質量を算出した。その後20℃に維持した恒温槽に三角フラスコを載置し、マグネチックスターラーを用いて14時間攪拌した。攪拌後、三角フラスコ内の活性炭と溶液をシリンジフィルターでろ別し、得られたろ過液を上記通水試験と同様のヘッドスペースガスクロマトグラム法にてクロロホルムの平衡濃度(mg/L)、および使用した活性炭質量で除した活性炭1g当たりの平衡吸着量(mg/g)を求めて吸着等温線を作成し、平衡濃度0.06mg/Lにおける平衡吸着量を算出し、クロロホルムに対する吸着量とした。結果を表の「平衡吸着量(mg/g)」欄に記載した。なお、吸着等温線は活性炭の上記所定量における平衡濃度と平衡吸着量を測定し、その結果に基づいて吸着等温線を作成した後、上記平衡濃度における平衡吸着量を算出した。
[Equilibrium test]
After 0.5 g of chloroform (CHCl 3 ) was diluted with 50 mL of methanol, it was further diluted 10 times with methanol to prepare a test stock solution. 2 mL of the test stock solution was diluted with pure water to prepare a 2 mg / L chloroform solution. A predetermined amount of activated carbon with a particle size adjusted to 180 μm or less for each test in a 100 mL brown Erlenmeyer flask (a quantity of activated carbon in each test is 0.013 g: 0.026 g: 0.065 g: 0.130 g: 0) After adding .260 g), the solution was filled with chloroform solution, sealed with a Teflon grease-coated glass stopper, and fixed with a clip. In addition, the mass of the flask before and after water injection was measured to calculate the mass of the chloroform solution in the flask. Thereafter, the Erlenmeyer flask was placed in a constant temperature bath maintained at 20 ° C., and stirred using a magnetic stirrer for 14 hours. After stirring, the activated carbon and the solution in the Erlenmeyer flask were filtered off with a syringe filter, and the obtained filtrate was used for the equilibrium concentration (mg / L) of chloroform in the same head space gas chromatogram method as the water passing test above. An adsorption isotherm was prepared by determining the equilibrium adsorption amount (mg / g) per 1 g of activated carbon divided by the activated carbon mass, and the equilibrium adsorption amount at an equilibrium concentration of 0.06 mg / L was calculated and used as the adsorption amount to chloroform. The results are shown in the "Equilibrium adsorption amount (mg / g)" column of the table. In addition, the adsorption isotherm measured the equilibrium concentration and equilibrium adsorption amount in the said predetermined quantity of activated carbon, and after creating an adsorption isotherm based on the result, the equilibrium adsorption amount in the said equilibrium concentration was computed.
図1、図2に示す様に、低密度紙フェノール樹脂積層体(実施例1〜6)由来の低密度炭化物の1〜10μmのマクロ孔容積は高密度紙フェノール樹脂積層体(比較例1〜4)由来の高密度炭化物よりも顕著に増大していることがわかる。更に表1に示す様に実施例1〜6の活性炭と比較例1〜4を各グループ同士で比べると比表面積、細孔容積、平均細孔径といった物理的構造において明確な差異は見いだせないが、図3に示す通水試験結果や図4に示す平衡試験結果において顕著な効果が得られている。したがってこの結果からも炭素原料である紙フェノール樹脂積層体の密度に起因して活性炭の物理的構造に違いが生じており、これが通水吸着性能や平衡吸着性能向上に有効に作用していることがわかる。 As shown in FIGS. 1 and 2, the macro pore volume of the low density carbide derived from the low density paper phenol resin laminate (Examples 1 to 6) is 1 to 10 .mu.m. 4) It can be seen that it is significantly increased over the high density carbide derived from. Furthermore, as shown in Table 1, when the activated carbons of Examples 1 to 6 and Comparative Examples 1 to 4 are compared between each group, no clear difference can be found in physical structure such as specific surface area, pore volume and average pore diameter A remarkable effect is obtained in the water flow test results shown in FIG. 3 and the equilibrium test results shown in FIG. Therefore, also from this result, the physical structure of the activated carbon is different due to the density of the paper phenol resin laminate, which is a carbon material, and it is effective to improve the water adsorption performance and the equilibrium adsorption performance. I understand.
また実施例1と実施例4は賦活処理後の加熱処理の有無が異なる活性炭である。両者は活性炭の比表面積、細孔容積、平均細孔径がほぼ同一であり、これらに基づく物理的構造に差異は見いだせない。しかしながら加熱処理を行った実施例4の活性炭はより優れた通水吸着性能、及び平衡吸着性能を示しており、加熱処理によって酸性官能基量を低減させることが吸着性能向上に寄与していることがわかる。 Moreover, Example 1 and Example 4 are activated carbons which the presence or absence of the heat processing after activation processing differs. Both have almost the same specific surface area, pore volume and average pore size of activated carbon, and no difference can be found in the physical structure based on them. However, the activated carbon of Example 4 subjected to the heat treatment shows superior water passing adsorption performance and equilibrium adsorption performance, and that the reduction of the amount of acidic functional groups by the heat treatment contributes to the improvement of the adsorption performance. I understand.
実施例4と比較例1、実施例5と比較例2は同一の賦活条件であるが、低密度紙フェノール樹脂積層体由来の活性炭(実施例4、5)は高密度紙フェノール樹脂積層体(比較例1、2)由来の活性炭よりも比表面積、細孔容積、及び平均細孔径共に増大する傾向が示されており、更に通水吸着性能、及び平衡吸着性能も顕著に向上している。この結果からも同一条件で賦活処理しても低密度紙フェノール樹脂積層体由来の活性炭は吸着性能向上に有効な物理的構造を有していることがわかる。 Example 4 and Comparative Example 1 and Example 5 and Comparative Example 2 have the same activation conditions, but the activated carbon derived from the low density paper phenol resin laminate (Examples 4 and 5) is a high density paper phenol resin laminate ( The specific surface area, the pore volume, and the average pore diameter tend to increase as compared with the activated carbon derived from Comparative Examples 1 and 2), and the water adsorption performance and the equilibrium adsorption performance are also significantly improved. From this result as well, it is understood that the activated carbon derived from the low density paper phenol resin laminate has a physical structure effective for the improvement of the adsorption performance even if activation treatment is performed under the same conditions.
Claims (7)
全細孔容積が0.25cm3/g以上、
平均細孔径が1.8nm以上、4.0nm以下、
下記通水試験方法におけるクロロホルム通水量が71L/g以上である活性炭。
通水試験方法:粒子径53〜180μmの活性炭2.0gを充填したカラムに試験用水を通過させて、カラム通過前後のクロロホルム濃度を測定し、破過点までの総ろ過水量(L)から活性炭1g当たりのクロロホルム通水量(L/g)を求めてクロロホルム通水量とする。
試験用水:クロロホルム濃度0.06mg/Lの蒸留水
空間速度(SV):500h-1
クロロホルム濃度測定方法:ヘッドスペースガスクロマトグラフ
破過点:カラム流入水に対するカラム流出水のクロロホルムの水中濃度が20%を越えた時点 BET specific surface area is 650 m 2 / g or more and 1250 m 2 / g or less,
Total pore volume is 0.25 cm 3 / g or more,
An average pore diameter of 1.8 nm or more and 4.0 nm or less,
Activated carbon whose chloroform water flow rate is 71 L / g or more in the following water flow test method.
Water passing test method: Test water is passed through a column packed with 2.0 g of activated carbon having a particle diameter of 53 to 180 μm, chloroform concentration before and after passing through the column is measured, and total filtered water amount up to the breakthrough point (L) The chloroform water flow rate (L / g) per 1 g is determined to obtain a chloroform water flow rate.
Test water: Distilled water with a chloroform concentration of 0.06 mg / L Space velocity (SV): 500 h -1
Chloroform concentration measurement method: Head space gas chromatograph Breakthrough point: When the concentration of chloroform in the column effluent to the column inlet water exceeds 20%
平衡試験方法:下記所定量の活性炭と攪拌子を入れた100mLの三角フラスコにクロロホルム溶液を満水充填し、密栓した後、20℃で14時間攪拌した後、三角フラスコ内容物をろ別し、ろ過液を上記クロロホルム濃度測定方法でクロロホルムの平衡濃度(mg/L)、及び活性炭1g当たりのクロロホルム平衡吸着量(mg/g)を求めると共に吸着等温線を作成し、平衡濃度0.06mg/Lにおける平衡吸着量(mg/g)とする。
試験溶液:濃度0.06mg/Lのクロロホルム溶液
三角フラスコの質量:クロロホルム溶液の充填前後で三角フラスコの質量を測定
活性炭粒径:粒子径180μm以下
各試験における活性炭量:0.013g、0.026g、0.065g、0.130g、0.260g
吸着等温線:前記活性炭の各所定量で前記平衡濃度と前記平衡吸着量を測定し、その結果に基づいて前記吸着等温線を作成する The activated carbon according to claim 1, wherein the chloroform equilibrium adsorption amount in the following equilibrium test method is 4.5 mg / g or more.
Equilibrium test method: Fill a chloroform solution in a 100 mL Erlenmeyer flask containing a predetermined amount of activated carbon and a stirrer in full water, seal the plug, and stir at 20 ° C for 14 hours, filter out the contents of the Erlenmeyer flask, and filter Determine the equilibrium concentration (mg / L) of chloroform and the chloroform equilibrium adsorption amount (mg / g) per 1 g of activated carbon by the above-mentioned method for measuring the concentration of chloroform and create an adsorption isotherm, and at an equilibrium concentration of 0.06 mg / L The equilibrium adsorption amount (mg / g).
Test solution: Chloroform solution with a concentration of 0.06 mg / L Mass of Erlenmeyer: Measure the mass of Erlenmeyer before and after filling with chloroform solution Particle size of activated carbon: Particle size of 180 μm or less Amount of activated carbon in each test: 0.013 g, 0.026 g , 0.065 g, 0.130 g, 0.260 g
Adsorption isotherm: The equilibrium concentration and the equilibrium adsorption amount are measured for each predetermined amount of the activated carbon, and the adsorption isotherm is created based on the results.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018183141A JP6542968B1 (en) | 2018-09-28 | 2018-09-28 | Activated carbon and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018183141A JP6542968B1 (en) | 2018-09-28 | 2018-09-28 | Activated carbon and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6542968B1 true JP6542968B1 (en) | 2019-07-10 |
JP2020049451A JP2020049451A (en) | 2020-04-02 |
Family
ID=67212158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018183141A Active JP6542968B1 (en) | 2018-09-28 | 2018-09-28 | Activated carbon and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6542968B1 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6270215A (en) * | 1985-09-21 | 1987-03-31 | Showa Denko Kk | Production of molded carbon article |
JP5202460B2 (en) * | 2009-07-17 | 2013-06-05 | 関西熱化学株式会社 | Activated carbon and electric double layer capacitor using the activated carbon |
JP5936423B2 (en) * | 2012-04-19 | 2016-06-22 | フタムラ化学株式会社 | Activated carbon for water purifier and activated carbon cartridge using the same |
CN105555714B (en) * | 2014-04-03 | 2020-01-14 | 关西热化学株式会社 | Activated carbon for water purifier |
JP5886383B2 (en) * | 2014-07-25 | 2016-03-16 | 関西熱化学株式会社 | Activated carbon with excellent adsorption performance and method for producing the same |
JP6144655B2 (en) * | 2014-09-12 | 2017-06-07 | 株式会社タカギ | Molded adsorbent and water purifier using the same |
JP6695764B2 (en) * | 2016-09-09 | 2020-05-20 | 大阪ガスケミカル株式会社 | Activated carbon for water purifier and cartridge for water purifier using the same |
-
2018
- 2018-09-28 JP JP2018183141A patent/JP6542968B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020049451A (en) | 2020-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102050343B1 (en) | Activated carbon for water purifier | |
Wu et al. | Post-enrichment of nitrogen in soft-templated ordered mesoporous carbon materials for highly efficient phenol removal and CO 2 capture | |
US10105680B2 (en) | Activated carbon with excellent adsorption performance and process for producing same | |
KR20190093960A (en) | Method for manufacturing activated carbon | |
Goel et al. | Synthesis of nitrogen doped mesoporous carbons for carbon dioxide capture | |
EP2960206B1 (en) | Granular activated carbon having many mesopores, and manufacturing method for same | |
US9802824B2 (en) | Granular activated carbon, and manufacturing method for same | |
CN104583119B (en) | Activated carbon having basic functional group and method for producing same | |
JP6379325B1 (en) | Activated carbon and manufacturing method thereof | |
JP7491506B2 (en) | Activated charcoal | |
WO2020065930A1 (en) | Activated carbon and method for producing said activated carbon | |
Yu et al. | Single and bicomponent anionic dyes adsorption equilibrium studies on magnolia-leaf-based porous carbons | |
JP6542968B1 (en) | Activated carbon and method for producing the same | |
JP2008194600A (en) | Adsorbent material made up of active carbon with high specific surface area using waste as raw material | |
KR20220133445A (en) | manufacturing method of ACTIVATED CARBON to improve TO IMPROVE MESOPORE RATIO AND SPECIFC SURFACE AREA by SURFACE OXIDATION OF PETROLEUM RESIDUE PITCH OR COAL TAR PITCH and activated carbon manufactured thereby | |
Merzougui et al. | Effect of activation method on the pore structure of activated carbon from date pits application to the treatment of water | |
RU2184080C1 (en) | Method of production of activated carbon | |
KR20150025183A (en) | Bamboo activationcarbon and fabricating method thereof | |
Glushankov et al. | Improvement of technology for producing fine-grained activated carbon AG-5 | |
TWI343832B (en) | Organic compound absorbent and manufacturing method thereof | |
Pastor-Villegas et al. | Preparation of activated carbon from rockrose char. Influence of activation temperature | |
RU2578147C1 (en) | Method of producing carbon molecular sieve | |
KR102496791B1 (en) | Activated carbon and method for manufacturing the same | |
Liao et al. | Defect-rich N doped porous carbon derived from Camellia shells for chlorobenzene adsorption | |
CN117899816A (en) | Preparation method and application of porous biochar for efficiently adsorbing perfluorinated compounds in water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180928 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20180928 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190111 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190613 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6542968 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R157 | Certificate of patent or utility model (correction) |
Free format text: JAPANESE INTERMEDIATE CODE: R157 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |