JP6541949B2 - Spectrofluorometer and method of acquiring three-dimensional fluorescence spectrum using the same - Google Patents

Spectrofluorometer and method of acquiring three-dimensional fluorescence spectrum using the same Download PDF

Info

Publication number
JP6541949B2
JP6541949B2 JP2014190499A JP2014190499A JP6541949B2 JP 6541949 B2 JP6541949 B2 JP 6541949B2 JP 2014190499 A JP2014190499 A JP 2014190499A JP 2014190499 A JP2014190499 A JP 2014190499A JP 6541949 B2 JP6541949 B2 JP 6541949B2
Authority
JP
Japan
Prior art keywords
fluorescence
wavelength
excitation
filter
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014190499A
Other languages
Japanese (ja)
Other versions
JP2016053560A (en
Inventor
純 堀込
純 堀込
中村 孝一
孝一 中村
佐藤 洋一
洋一 佐藤
道成 上妻
道成 上妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
Hitachi High Tech Science Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Science Corp filed Critical Hitachi High Tech Science Corp
Priority to JP2014190499A priority Critical patent/JP6541949B2/en
Publication of JP2016053560A publication Critical patent/JP2016053560A/en
Application granted granted Critical
Publication of JP6541949B2 publication Critical patent/JP6541949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自動でカットフィルタが挿入される機構を備えた分光蛍光光度計に関するものであり、測定試料の蛍光測定に不要な高次光の発生を抑制するために、測定条件に応じてカットフィルタ挿入波長と測定シーケンスを判定し実行することで、3次元蛍光スペクトルの測定時間を短縮化することに寄与する。  The present invention relates to a spectrofluorimeter equipped with a mechanism in which a cut filter is automatically inserted, and in order to suppress the generation of high-order light unnecessary for fluorescence measurement of a measurement sample, the cut filter is inserted according to measurement conditions Determining and executing the wavelength and measurement sequence contributes to shortening the measurement time of the three-dimensional fluorescence spectrum.

分光蛍光光度計は、光度計部、データ処理部、インターフェイス部から構成される。光源からの連続光を励起側分光器で分光された励起光として測定試料に照射する。試料から放出された蛍光は、蛍光側分光器にて単色光に分光され、検知器にて光を検出しA/D変換機を経てコンピュータに信号強度として取り込まれ、モニタにて測定結果が表示される。  The spectrofluorometer comprises a photometer unit, a data processing unit, and an interface unit. Continuous light from a light source is irradiated to a measurement sample as excitation light dispersed by an excitation side spectroscope. The fluorescence emitted from the sample is split into monochromatic light by the fluorescence spectrometer, detected by the detector, passed through the A / D converter, taken into the computer as signal intensity, and the measurement result is displayed on the monitor. Be done.

一般に、測定試料に対し励起波長を変化させた際の蛍光強度を測定する励起スペクトルは、励起側分光器を測定開始波長から測定終了波長まで変化させ、各波長の励起光を測定試料に照射し、その時の固定波長に設定された蛍光側分光器を経て得られる特定波長の蛍光強度の変化を検知器で検出し、A/D変換機を経てコンピュータに信号強度として取り込まれ、モニタに測定結果として励起波長と蛍光強度の2次元のスペクトルが表示される。  In general, the excitation spectrum for measuring the fluorescence intensity when the excitation wavelength is changed with respect to the measurement sample, changes the excitation side spectroscope from the measurement start wavelength to the measurement end wavelength, and irradiates the measurement sample with excitation light of each wavelength. At that time, the change in the fluorescence intensity of the specific wavelength obtained through the fluorescence side spectroscope set to the fixed wavelength is detected by the detector, taken into the computer as the signal intensity through the A / D converter, and the measurement result in the monitor A two-dimensional spectrum of excitation wavelength and fluorescence intensity is displayed as

また、測定試料に対し、固定波長の励起光を照射し、蛍光波長を変化させた際の波長毎の蛍光強度を測定する蛍光スペクトルは、固定波長に設定された励起側分光器からの励起光を測定試料に照射し、その時の蛍光を蛍光側分光器にて、測定開始波長から測定終了波長まで変化させ、波長毎の蛍光の変化を検知器で検出し、A/D変換機を経てコンピュータに信号強度として取り込まれ、モニタにて測定結果が蛍光波長と蛍光強度の2次元のスペクトルとして表示される。  In addition, the fluorescence spectrum for measuring the fluorescence intensity for each wavelength when irradiating the excitation light of the fixed wavelength to the measurement sample and changing the fluorescence wavelength is the excitation light from the excitation side spectroscope set to the fixed wavelength The measurement sample is irradiated, the fluorescence at that time is changed from the measurement start wavelength to the measurement end wavelength by the fluorescence side spectroscope, the change of the fluorescence for each wavelength is detected by the detector, and the computer passes through the A / D converter The measurement results are displayed as a two-dimensional spectrum of fluorescence wavelength and fluorescence intensity on a monitor.

一方、3次元蛍光スペクトルは、励起波長を固定した際の蛍光スペクトルを測定し、蛍光スペクトル走査が終了したら、蛍光波長を測定開始波長に戻し、励起波長を所定の波長間隔だけ駆動、次の励起波長における蛍光スペクトルを測定する。得られた蛍光スペクトルを励起波長、蛍光波長、蛍光強度の3次元で記憶し、励起波長が最終の波長に達するまで繰り返すことにより、3次元の蛍光スペクトルを取得する。得られた3次元蛍光スペクトルは、同一の蛍光強度をそれぞれ線で結び、等高線図や鳥瞰図として描写される。等高線で山となる励起波長および蛍光波長が測定試料の最適な励起波長、特徴的な蛍光波長となり、測定試料の測定範囲内の励起波長と蛍光波長の蛍光特性が一目で分かる特徴がある。3次元蛍光スペクトルから、測定試料中の蛍光物質の成分数や成分の同定など多くの情報を得ることが出来る利点がある。  On the other hand, the three-dimensional fluorescence spectrum measures the fluorescence spectrum when the excitation wavelength is fixed, and when the fluorescence spectrum scanning is finished, the fluorescence wavelength is returned to the measurement start wavelength, the excitation wavelength is driven by a predetermined wavelength interval, and the next excitation Measure the fluorescence spectrum at the wavelength. The three-dimensional fluorescence spectrum is acquired by storing the obtained fluorescence spectrum in three dimensions of the excitation wavelength, the fluorescence wavelength, and the fluorescence intensity and repeating the excitation wavelength until reaching the final wavelength. The obtained three-dimensional fluorescence spectrum is drawn as a contour map or a bird's-eye view by connecting the same fluorescence intensities respectively. The excitation wavelength and the fluorescence wavelength that form a mountain in the contour line become the optimum excitation wavelength and the characteristic fluorescence wavelength of the measurement sample, and the fluorescence characteristics of the excitation wavelength and the fluorescence wavelength within the measurement range of the measurement sample can be seen at a glance. There is an advantage that much information such as the number of components of the fluorescent substance in the measurement sample and the identification of the components can be obtained from the three-dimensional fluorescence spectrum.

分光蛍光光度計にて上記、励起スペクトル、蛍光スペクトル、3次元蛍光スペクトルを測定する上で、目的の蛍光以外の光として高次光の発生が問題となる。励起光の散乱光、ラマン散乱光、目的波長よりも短波長の蛍光などの光が蛍光側分光器に入射されることで高次光が生じる。通常、ロングパスフィルタやバンドパスフィルタなどのカットフィルタを用いて、高次光の要因となる短波長側の光を透過させず、目的の蛍光を分光器に導くことで高次光を抑制する。カットフィルタは、透過限界波長毎に複数用意し、発生要因となる光を遮断するフィルタを選択し、試料と蛍光側分光器の間に挿入する必要がある。一方、励起側分光器では、設定した励起波長よりも短波長側に生じる高次光が問題となる。蛍光スペクトル測定の際、測定試料に励起光以外の高次光が照射されると目的の励起光から励起されて放出された蛍光か高次光から励起されて放出された蛍光かどちらか区別ができない問題が発生する。そこで、設定した励起波長よりも短波長側に生じる高次光を防ぐために、高次光を透過させず目的の励起光を透過するカットフィルタを励起側分光器と蛍光側分光器の間に挿入する。これらは従来、高次光の知識を基に、分析者がサンプルの蛍光のみを得るために適切なカットフィルタを選択して挿入していたが、カットフィルタを間違える場合もあり、また広波長範囲の測定の際には、測定の途中でカットフィルタを入れ替えるなど煩雑でもあった。  When measuring an excitation spectrum, a fluorescence spectrum, and a three-dimensional fluorescence spectrum with a spectrofluorimeter, the generation of high-order light becomes a problem as light other than the target fluorescence. Light such as scattered light of excitation light, Raman scattered light, and fluorescence having a wavelength shorter than the target wavelength is incident on the fluorescence-side spectroscope to generate high-order light. In general, a cut filter such as a long pass filter or a band pass filter is used to suppress high-order light by guiding the target fluorescence to a spectroscope without transmitting light on the short wavelength side which is a factor of high-order light. A plurality of cut filters should be prepared for each transmission limit wavelength, and it is necessary to select a filter that blocks light as a generation factor and to insert it between the sample and the fluorescence side spectrometer. On the other hand, in the excitation-side spectroscope, high-order light generated on the shorter wavelength side than the set excitation wavelength becomes a problem. When measuring the fluorescence spectrum, if the measurement sample is irradiated with high-order light other than the excitation light, there is a problem that it is not possible to distinguish between the fluorescence emitted from the target excitation light and the fluorescence emitted from the high-order light. Do. Therefore, in order to prevent high-order light generated on the shorter wavelength side than the set excitation wavelength, a cut filter that transmits the target excitation light without transmitting high-order light is inserted between the excitation-side spectroscope and the fluorescence-side spectroscope. Conventionally, based on the knowledge of higher-order light, analysts have selected and inserted appropriate cut filters in order to obtain only the fluorescence of the sample. However, there are cases where the cut filters are mistaken, and measurement in a wide wavelength range At that time, it was also troublesome to replace the cut filter in the middle of the measurement.

この問題を防ぐために自動挿入機構が備えられた分光光度計の場合、高次光力ットフィルタは、分光器の波長走査と連動して切替る制御方法が採用されている。その際、波長走査を一旦止めてカットフィルタを切替えて、波長走査を再開する。(特許文献1)  In order to prevent this problem, in the case of a spectrophotometer provided with an automatic insertion mechanism, a control method is employed in which a high-order light filter is switched in conjunction with wavelength scanning of a spectrometer. At that time, the wavelength scanning is temporarily stopped, the cut filter is switched, and the wavelength scanning is restarted. (Patent Document 1)

また、得られたスペクトルにおけるピークが、蛍光を示すピークであるか、レーリー散乱光を示すピークであるかを識別するために、カットフィルタを備えた分光蛍光光度計を用いて判別する方法が知られている(特許文献2)。励起波長に基づいて、任意のカットフィルタが蛍光側分光器の前方に配置され、回折格子を回転させながら、光検出器(本願では検知器と標記)からの光強度信号(本願では蛍光強度と標記)を取得していくことで、試料から放出されるレーリー散乱の2次光が除かれたスペクトルが取得される制御がなされる。  In addition, in order to identify whether the peak in the obtained spectrum is a peak showing fluorescence or a peak showing Rayleigh scattered light, a method of discriminating using a spectrofluorimeter equipped with a cut filter is known. (Patent Document 2). Based on the excitation wavelength, an optional cut filter is placed in front of the fluorescence side spectroscope, and while rotating the diffraction grating, a light intensity signal (in the present application, fluorescence intensity and By acquiring the mark, control is performed to acquire a spectrum from which secondary light of Rayleigh scattering emitted from the sample is removed.

特開昭61−105430JP 61-105430 特開2012−631438JP 2012-631438

分光蛍光光度計にて、励起スペクトル、蛍光スペクトル、3次元蛍光スペクトルを測定する上で、目的の蛍光以外の光として、高次光の発生が問題となる。  When measuring an excitation spectrum, a fluorescence spectrum, and a three-dimensional fluorescence spectrum with a spectrofluorimeter, the generation of high-order light becomes a problem as light other than the target fluorescence.

励起スペクトルの場合、固定の蛍光波長に応じたカットフィルタを一つ選択し、当該カットフィルタを測定試料と蛍光側分光器の間に挿入して、励起スペクトルを得ることで高次光が抑制される。蛍光スペクトルの場合、固定の励起波長に応じたカットフィルタを一つ選択し、当該カットフィルタを測定試料と蛍光側分光器の間に挿入して、蛍光スペクトルを得ることで高次光が抑制される。励起スペクトル、蛍光スペクトルにて高次光を抑制するためには、一つのカットフィルタを選択・挿入して測定するので測定自体は容易である。  In the case of the excitation spectrum, one cut filter corresponding to a fixed fluorescence wavelength is selected, and the cut filter is inserted between the measurement sample and the fluorescence-side spectroscope to obtain an excitation spectrum, whereby high-order light is suppressed. In the case of a fluorescence spectrum, one cut filter corresponding to a fixed excitation wavelength is selected, and the cut filter is inserted between the measurement sample and the fluorescence side spectroscope to obtain a fluorescence spectrum, whereby high-order light is suppressed. In order to suppress high-order light in the excitation spectrum and fluorescence spectrum, the measurement itself is easy because one cut filter is selected and inserted.

一方、3次元蛍光スペクトルは、所定の波長間隔の励起波長間隔分の蛍光スペクトルを取得することとなり、分析者が設定する励起波長毎にカットフィルタを逐一選択して、挿入することを要し、非常に煩雑である。また、複数の励起波長における蛍光スペクトルを取得することから、通常の蛍光スペクトル測定よりも時間を要する分析であるため、分析者が長時間拘束されるなどの不都合がある。  On the other hand, for the three-dimensional fluorescence spectrum, it is necessary to acquire fluorescence spectra for excitation wavelength intervals of predetermined wavelength intervals, and it is necessary to select and insert cut filters one by one for each excitation wavelength set by the analyst. It is very complicated. In addition, since fluorescence spectra at a plurality of excitation wavelengths are acquired, analysis is more time-consuming than ordinary fluorescence spectrum measurement, and thus there is a disadvantage that the analyst is restricted for a long time.

例えば、特許文献1の方法で高次光カットフィルタを用いる場合には、蛍光スペクトルの測定中に、波長走査を一旦止めて励起波長に対応したカットフィルタに切替る必要がある。この時、所定の励起波長間隔分の測定回数に相当するフィルタ切替が生じるため、測定時間が延長する問題がある。また、測定時間短縮のために高速の波長走査条件を用いた場合には、一旦停止に伴う波長駆動系への負荷、波長や蛍光強度値への段差が生じる等の課題が生じる。For example, in the case of using the high-order light cut filter according to the method of Patent Document 1, it is necessary to temporarily stop the wavelength scanning and switch to the cut filter corresponding to the excitation wavelength during measurement of the fluorescence spectrum. At this time, filter switching corresponding to the number of times of measurement corresponding to a predetermined excitation wavelength interval occurs, which causes a problem of prolonging the measurement time. In addition, when high-speed wavelength scanning conditions are used to shorten the measurement time, there are problems such as load on the wavelength drive system and a step to the wavelength and fluorescence intensity value due to the temporary stop.

特許文献2では、複数の中から選択した単一のレーリーカットフィルタを、蛍光側分光器の前方に配置する構成が記載されている。当該レーリーカットフィルタは、設定励起波長に基づいて、遮断波長以下の光を遮断する目的で配置される。そして、蛍光ピークの判定において、任意のレーリーカットフィルタを蛍光側分光器の前方に配置した上で、設定励起波長と異なる長波長側の光を段階的に変化させながら試料に照射して、その際に試料から放出される蛍光スペクトルを測定すると記載されている。また、複数のレーリーカットフィルタから、設定励起波長よりも長波長側で且つ最も励起波長との波長数の差が小さいレーリーカットフィルタを選択して使用することで、より正確に判定を行うことができると記載されている。Patent Document 2 describes a configuration in which a single Rayleigh cut filter selected from among a plurality of filters is disposed in front of a fluorescence side spectrometer. The Rayleigh cut filter is disposed for the purpose of blocking light having a cutoff wavelength or less based on the set excitation wavelength. Then, in the determination of the fluorescence peak, an arbitrary Rayleigh cut filter is disposed in front of the fluorescence side spectroscope, and then the sample is irradiated while changing stepwise the light on the long wavelength side different from the set excitation wavelength, It is described that the fluorescence spectrum emitted from the sample is measured. In addition, it is possible to make a more accurate determination by selecting and using a Rayleigh cut filter having a wavelength difference longer than the set excitation wavelength and having the smallest number of wavelengths with the excitation wavelength from among a plurality of Rayleigh cut filters. It is stated that it can.

しかし、この方法でカットフィルタを選択した場合、レーリー散乱由来の高次光を含めたピーク、ラマン散乱由来の高次光を含めたピークを判定することは可能であるが、下記の課題があるため、本発明の目的である測定試料の蛍光測定に不要となる高次光の影響を抑制したデータは得られない。  However, when a cut filter is selected by this method, it is possible to determine a peak including high-order light derived from Rayleigh scattering and a peak including high-order light derived from Raman scattering, but the present invention has the following problems. The data which suppressed the influence of the high-order light which becomes unnecessary in the fluorescence measurement of the measurement sample which is the objective of is not obtained.

第一の課題として、蛍光の2次光が考慮されていない。例えば励起波長200nmにて300nmの蛍光ピークを有する試料の測定をした際、レーリーカットフィルタにより、励起波長200nmのレーリー散乱光は蛍光分光器に入射されないことから、400nmに出現するレーリー散乱光の2次光など、レーリー散乱光に由来する高次光は観測されない。しかしながら、蛍光分光器には300nmの蛍光によって、600nmに蛍光の2次光が観測されることになる。  As a first problem, secondary light of fluorescence is not considered. For example, when a sample having a fluorescence peak of 300 nm is measured at an excitation wavelength of 200 nm, the Rayleigh cut light with an excitation wavelength of 200 nm is not incident on a fluorescence spectrometer by a Rayleigh cut filter, so 2 of the Rayleigh scattered light appearing at 400 nm Higher-order light derived from Rayleigh scattered light such as secondary light is not observed. However, in the fluorescence spectrometer, secondary light of fluorescence is observed at 600 nm due to the fluorescence of 300 nm.

第二の課題として、励起分光器による高次光の影響が考慮されていない。例えば、励起波長440nmとした際、励起光には1/2次光として220nmの光が含まれる。この時、第一の例に示した試料を測定すると、蛍光波長300nmに1/2次光で励起された蛍光と、600nmに蛍光の2次光が観測される。いずれも、440nmで励起されて出現した蛍光ではない。  The second problem is that the influence of high-order light from the excitation spectrometer is not taken into consideration. For example, when the excitation wavelength is 440 nm, the excitation light includes light of 220 nm as 1⁄2-order light. At this time, when the sample shown in the first example is measured, fluorescence excited by 1⁄2-order light at a fluorescence wavelength of 300 nm and secondary light of fluorescence at 600 nm are observed. None of the fluorescence is excited and appeared at 440 nm.

第三の課題として、カットフィルタの透過率が加味されていない。通常、レーリーカットフィルタに用いられるロングパスフィルタやバンドパスフィルタは透過率が100%ではないため、光の損失が生じる。ロングパスフィルタの場合、透過領域にて80〜90%程度の透過率である。また、遮断波長域から透過波長域に移行する波長範囲では透過率の急激な変化があるため、測定データに適用することは不適切であるが考慮されていない。  The third problem is that the transmittance of the cut filter is not taken into consideration. In general, long pass filters and band pass filters used for Rayleigh cut filters do not have 100% transmittance, so light loss occurs. In the case of a long pass filter, the transmittance is about 80 to 90% in the transmission region. In addition, since there is an abrupt change in transmittance in the wavelength range which shifts from the cutoff wavelength range to the transmission wavelength range, application to measurement data is not considered, although it is inappropriate.

なお、特許文献2に記載の励起波長・蛍光波長・蛍光強度を3次元にて等高線表示することにより表示した3次元蛍光スペクトルでは、上記、第一から第三の課題のため、本発明の目的であるサンプルの蛍光測定に不要な高次光の発生を抑制する3次元蛍光スペクトルデータは得られない。
以上のように従来技術には、係る課題として以下のようにまとめられる。
In the three-dimensional fluorescence spectrum displayed by three-dimensionally displaying the excitation wavelength, the fluorescence wavelength, and the fluorescence intensity as described in Patent Document 2, the objects of the present invention can be achieved for the first to third problems described above. It is not possible to obtain three-dimensional fluorescence spectrum data that suppresses the generation of high-order light that is unnecessary for the fluorescence measurement of the sample.
As described above, the related art can be summarized as the problems as follows.

つまり、上記従来の分光蛍光光度計による3次元蛍光スペクトル取得時には、分析者がカットフィルタを経験や知識に基づいて選択するため、誤った選択をする可能性があった。また、測定中に波長走査を一旦停止してフィルタの挿入・交換を行うため、測定時間の延長が避けられず、これを軽減するために高速波長走査を行うと、波長駆動系への負荷が大きくなり、波長や蛍光強度に誤差や段差が生じるなどの不具合があった。更に、設定した励起波長に基づいて、励起波長以下の光を遮断するフィルタを使用すると、蛍光の2次光及び励起分光器の高次光の影響を抑制した3次元蛍光スペクトルの取得ができない。また、波長合成時にもカットフィルタの透過率が加味されていないという課題があった。  That is, at the time of acquiring the three-dimensional fluorescence spectrum by the above-mentioned conventional spectrofluorimeter, there is a possibility that the analyst makes an erroneous selection because the cut filter is selected based on experience and knowledge. In addition, since wavelength scanning is temporarily stopped during measurement to insert and replace filters, it is inevitable to extend the measurement time, and if high-speed wavelength scanning is performed to reduce this, the load on the wavelength drive system There is a problem such as an increase in size and an error or a step in the wavelength or the fluorescence intensity. Furthermore, using a filter that blocks light below the excitation wavelength based on the set excitation wavelength makes it impossible to obtain a three-dimensional fluorescence spectrum in which the effects of secondary light of fluorescence and high-order light of the excitation spectrometer are suppressed. In addition, there is a problem that the transmittance of the cut filter is not added even at the time of wavelength synthesis.

上記の目的を達成するために、本発明の分光蛍光分析装置では、光源の光を励起光に分光する励起側分光器と試料との間に、励起光に基づく高次光を遮断する複数の励起側フィルタから測定条件に応じてフィルタを選択する励起側フィルタ選択手段により選択された励起側フィルタを光学的に配置する励起側フィルタ移動機構および、試料と、励起光の照射により試料から放出された蛍光を分光する蛍光側分光器との間に、蛍光に基づく高次光を遮断する複数の蛍光側フィルタから測定条件に応じてフィルタを選択する蛍光側フィルタ選択手段により選択された蛍光側フィルタを光学的に配置する蛍光側フィルタ移動機構を有する。上記により、蛍光側フィルタと蛍光側分光器通過後の蛍光を検知する検出器では、励起側高次光と蛍光側高次光の影響を抑制した3次元蛍光スペクトルデータを得ることができる。In order to achieve the above object, in the spectrofluorimetric analyzer of the present invention, a plurality of excitation sides for blocking high-order light based on excitation light between an excitation side spectroscope for separating light of a light source into excitation light and a sample Excitation-side filter moving mechanism for optically arranging the excitation-side filter selected by the excitation-side filter selection means that selects the filter according to the measurement conditions from the filter, the sample, and fluorescence emitted from the sample by the irradiation of the excitation light The fluorescence side filter selected by the fluorescence side filter selection means which selects a filter according to measurement conditions from a plurality of fluorescence side filters that block high-order light based on fluorescence, between the fluorescence side spectroscope that disperses It has the fluorescence side filter moving mechanism to arrange. As described above, in the detector for detecting the fluorescence after passing through the fluorescence filter and the fluorescence spectrometer, it is possible to obtain three-dimensional fluorescence spectrum data in which the influence of the excitation high-order light and the fluorescence high-order light is suppressed.

上記の3次元蛍光スペクトルデータ取得方法は以下のステップを有する。励起光及び蛍光に係る条件を特定する測定条件設定ステップと、装置に備えた複数の励起側及び蛍光側フィルタの条件を特定するフィルタ条件設定ステップと、励起光の波長範囲と蛍光の波長範囲とにより決定する波長領域を、測定条件設定ステップとフィルタ条件設定ステップからの計算に基づいて、励起側及び蛍光側の各フィルタの組み合わせからなるフィルタ群と当該フィルタで測定可能な範囲とを一組とする一領域として複数の領域に区分し、各領域の境界に関わる励起光波長及び蛍光波長をそれぞれ励起側フィルタ切替波長及び蛍光側フィルタ切替波長として認識する波長範囲の照合ステップと、区分された複数の領域ごとに、励起側及び蛍光側のそれぞれ測定開始波長から測定終了波長までの範囲に当該領域が含まれるか否かの判定を行う判定ステップと、判定ステップに従った領域を照合ステップにより決定したフィルタ群を用いて測定する測定ステップと、測定スップにより取得したデータに使用したフィルタの透過率を補正するフィルタ補正ステップと、補正ステップにて補正した後の各領域のデータを合成することで全測定範囲のデータとするデータ合成ステップ。The above three-dimensional fluorescence spectrum data acquisition method has the following steps. A measurement condition setting step of specifying conditions relating to excitation light and fluorescence; a filter condition setting step of specifying conditions of a plurality of excitation side and fluorescence side filters provided in the apparatus; a wavelength range of excitation light and a wavelength range of fluorescence; Based on the calculation from the measurement condition setting step and the filter condition setting step, the wavelength range determined by the filter is a set of filters consisting of a combination of the excitation-side and fluorescence-side filters and the range that can be measured by the filters A step of comparing the wavelength range in which the excitation light wavelength and the fluorescence wavelength related to the boundary of each region are recognized as the excitation side filter switching wavelength and the fluorescence side filter switching wavelength respectively Whether the region is included in the range from the measurement start wavelength to the measurement end wavelength for each of the excitation side and the fluorescence side A determination step of determining, a measurement step of measuring a region according to the determination step using a filter group determined by the collation step, and a filter correction step of correcting the transmittance of the filter used for the data acquired by the measurement step A data synthesis step of combining data of the respective areas after the correction in the correction step to obtain data of the entire measurement range.

また、上記の3次元蛍光スペクトルデータ取得方法においては、フィルタ補正ステップとデータ合成ステップの過程で発生した励起光による測定試料の劣化に伴う蛍光強度の低下を強度補正する。In the above three-dimensional fluorescence spectrum data acquisition method, the decrease in the fluorescence intensity caused by the deterioration of the measurement sample due to the excitation light generated in the process of the filter correction step and the data synthesis step is intensity corrected.

上記のフィルタ条件設定ステップでは、任意に選択した測定開始波長及び測定終了波長と蛍光側フィルタ切替波長の大小を比較して、蛍光側の測定開始波長及び前記測定終了波長を決定することもできる。In the above-described filter condition setting step, the measurement start wavelength and the measurement end wavelength on the fluorescence side can be determined by comparing the magnitudes of the arbitrarily selected measurement start wavelength and measurement end wavelength with the fluorescence side filter switching wavelength.

本発明の分光蛍光光度計によれば、測定条件に応じたフィルタ挿入波長及び測定シーケンスを判定して実行することで、必要なカットフィルタを自動で挿入・交換する機構を備えることにより、高い効率で、サンプルの蛍光測定に不要な高次光の発生を抑制することができる。そのため、測定時間を効率的に短縮して高次光の発生を抑制した3次元蛍光スペクトルを取得することができる。
また、必要なカットフィルタの挿入・交換が自動で行えるため、分析者の拘束時間を低減すると共にヒューマンエラーをも防止することができる。
According to the spectrofluorimeter of the present invention, it is possible to achieve high efficiency by providing a mechanism for automatically inserting and replacing the necessary cut filter by determining and executing the filter insertion wavelength and the measurement sequence according to the measurement conditions. Thus, it is possible to suppress the generation of high-order light unnecessary for the fluorescence measurement of the sample. Therefore, it is possible to obtain a three-dimensional fluorescence spectrum in which the generation of high-order light is suppressed by effectively shortening the measurement time.
In addition, since the necessary cut filters can be inserted and exchanged automatically, the restraint time of the analyst can be reduced and human error can be prevented.

本発明の実施例における装置構成図Device configuration in the embodiment of the present invention 励起スペクトルの説明図Illustration of excitation spectrum 蛍光スペクトルの説明図Illustration of fluorescence spectrum 3次元蛍光スペクトルの説明図Illustration of 3D fluorescence spectrum 励起側カットフィルタ使用波長域の概念図Conceptual diagram of excitation side cut filter use wavelength range 蛍光側カットフィルタ使用波長域の概念図Conceptual diagram of the wavelength range used for the fluorescence side cut filter カットフィルタの構成例Configuration example of cut filter 3次元蛍光測定の判定フローチャートDetermination flow chart of 3D fluorescence measurement 第2の実施例における3次元蛍光測定の判定フローチャートDetermination flow chart of three-dimensional fluorescence measurement in the second embodiment 蛍光強度の補正概念図(補正前)Correction concept of fluorescence intensity (before correction) 蛍光強度の補正概念図(補正後)Correction concept of fluorescence intensity (after correction)

以下、本発明に係る分光蛍光光度計の一実施形態を図1〜図8を参照しながら説明する。  Hereinafter, one embodiment of a spectrofluorimeter according to the present invention will be described with reference to FIGS. 1 to 8.

分光蛍光光度計は、図1に示すように、光度計部100、データ処理部101、インターフェイス部102から構成される。光源1からの連続光を励起側分光器2で励起光として分光し、ビームスプリッタ3を経て試料設置部5に設置された測定試料6に照射される。この時、ビームスプリッタ3で一部の分割された励起光は、モニタ検知器4にて光量を測定し光源の変動の補正がなされている。試料から放出された蛍光は、蛍光側分光器7にて単色光に分光され、検知器8にて光を検出しA/D変換機9を経てコンピュータ10に信号強度として取り込まれ、モニタ17にて測定結果が表示される。  As shown in FIG. 1, the spectrofluorometer comprises a photometer unit 100, a data processing unit 101, and an interface unit 102. The continuous light from the light source 1 is split as excitation light by the excitation side spectroscope 2, and it is irradiated to the measurement sample 6 installed in the sample installation unit 5 through the beam splitter 3. At this time, the monitor detector 4 measures the light quantity of the excitation light partially divided by the beam splitter 3 to correct the fluctuation of the light source. The fluorescence emitted from the sample is split into monochromatic light by the fluorescence side spectroscope 7, the light is detected by the detector 8, passes through the A / D converter 9, and is taken into the computer 10 as a signal intensity and is sent to the monitor 17. Measurement results are displayed.

波長駆動系について説明する。コンピュータ10の指令によって、励起側パルスモーター12が駆動することで、目的の波長位置に励起側分光器2がセットされる。また、蛍光側分光器7は、コンピュータ10の指令によって蛍光側パルスモーター11が駆動することで、目的の波長位置にセットされる。励起側分光器2や蛍光側分光器7については、回折格子やプリズムなどの光学素子が用いられており、励起側パルスモーター12や蛍光側パルスモーター11を動力とし、ギヤとカムによって、それらを回転運動させることでスペクトルスキャンされている。励起側分光器2と測定試料6の間に励起側フィルタ15が配置される。励起側フィルタ15は複数のカットフィルタが備えられており、励起側フィルタパルスモーター13にて単一のカットフィルタが挿入される。測定試料6と蛍光側分光器7の間に蛍光側フィルタ16が配置される。蛍光側フィルタ16は複数のカットフィルタが備えられており、蛍光側フィルタパルスモーター14にて単一のカットフィルタが挿入される。  The wavelength drive system will be described. The excitation side pulse motor 12 is driven by the command of the computer 10 to set the excitation side spectroscope 2 at the target wavelength position. In addition, the fluorescence side spectroscope 7 is set at a target wavelength position by driving the fluorescence side pulse motor 11 according to a command of the computer 10. The excitation side spectroscope 2 and the fluorescence side spectroscope 7 use optical elements such as a diffraction grating and a prism, and are driven by the excitation side pulse motor 12 and the fluorescence side pulse motor 11 by gears and cams. The spectrum is scanned by rotating it. An excitation filter 15 is disposed between the excitation spectrometer 2 and the measurement sample 6. The excitation filter 15 is provided with a plurality of cut filters, and a single cut filter is inserted in the excitation filter pulse motor 13. A fluorescence filter 16 is disposed between the measurement sample 6 and the fluorescence spectrometer 7. The fluorescence side filter 16 is provided with a plurality of cut filters, and a single cut filter is inserted in the fluorescence side filter pulse motor 14.

一般に、測定試料6に対し励起波長を変化させた際の蛍光強度を測定する励起スペクトルは、励起側分光器2を測定開始波長から測定終了波長まで変化させ、各波長の励起光を測定試料に照射し、その時の固定波長に設定された蛍光側分光器7を経て特定波長の蛍光の変化を検知器8で検出し、A/D変換機9を経てコンピュータ10に信号強度として取り込まれ、モニタ17にて測定結果として、励起波長と蛍光強度の図2に示されるような2次元のスペクトルが表示される。  Generally, the excitation spectrum for measuring the fluorescence intensity when changing the excitation wavelength to the measurement sample 6 changes the excitation side spectroscope 2 from the measurement start wavelength to the measurement end wavelength, and uses the excitation light of each wavelength as the measurement sample The change in fluorescence of a specific wavelength is detected by the detector 8 through the fluorescence side spectroscope 7 set to the fixed wavelength at that time, and the signal intensity is taken into the computer 10 through the A / D converter 9 and monitored. As a measurement result at 17, a two-dimensional spectrum as shown in FIG. 2 of the excitation wavelength and the fluorescence intensity is displayed.

また、測定試料に対し、固定波長の励起光を照射し、蛍光波長を変化させた際の波長毎の蛍光強度を測定する蛍光スペクトルは、固定波長に設定された励起側分光器2からの励起光を測定試料に照射し、その時の蛍光を蛍光側分光器7にて、測定開始波長から測定終了波長まで変化させ波長毎の蛍光の変化を検知器8で検出し、A/D変換機9を経てコンピュータ10に信号強度として取り込まれ、モニタ17にて測定結果が蛍光波長と蛍光強度の図3に示されるような2次元のスペクトルが表示される。  Further, the fluorescence spectrum for measuring the fluorescence intensity for each wavelength when irradiating the excitation light of the fixed wavelength to the measurement sample and changing the fluorescence wavelength is the excitation from the excitation-side spectroscope 2 set to the fixed wavelength The light is irradiated to the measurement sample, the fluorescence at that time is changed from the measurement start wavelength to the measurement end wavelength by the fluorescence side spectroscope 7, the change of the fluorescence for each wavelength is detected by the detector 8, and the A / D converter 9 The signal intensity is taken into the computer 10 as a signal intensity, and the monitor 17 displays a two-dimensional spectrum as shown in FIG.

3次元蛍光スペクトルは、固定波長に設定された励起側分光器2からの励起光を測定試料6に照射し、蛍光側分光器7をスペクトル走査することで蛍光スペクトルを測定し、蛍光スペクトルスキャン走査が終了したら、蛍光波長を開始波長に戻し、励起波長を所定の波長間隔だけ駆動し、次の励起波長における蛍光スペクトルを測定する。得られた蛍光スペクトルを励起波長、蛍光波長、蛍光強度の3次元で記憶し、励起波長が所定の範囲の最終の波長に対する蛍光スペクトルを得るまで前述の動作を繰り返すことにより、図4に示すような等高線図として3次元の蛍光スペクトルを表示する。
次に、励起側フィルタ15の選択について図を用いて説明する。
まず、本発明における励起側フィルタの選択方法について説明する。
図5には、本発明における励起側フィルタ使用波長域の概念図を記す。
In the three-dimensional fluorescence spectrum, the excitation light from the excitation-side spectroscope 2 set to a fixed wavelength is irradiated to the measurement sample 6, and the fluorescence-side spectroscope 7 is subjected to spectrum scanning to measure the fluorescence spectrum. Then, the fluorescence wavelength is returned to the start wavelength, the excitation wavelength is driven by a predetermined wavelength interval, and the fluorescence spectrum at the next excitation wavelength is measured. As shown in FIG. 4, the obtained fluorescence spectrum is stored in three dimensions of excitation wavelength, fluorescence wavelength, and fluorescence intensity, and the above operation is repeated until the fluorescence spectrum for the final wavelength of the predetermined range is obtained. 3D fluorescence spectrum is displayed as a simple contour map.
Next, selection of the excitation filter 15 will be described with reference to the drawings.
First, a method of selecting an excitation-side filter in the present invention will be described.
FIG. 5 shows a conceptual diagram of the excitation-side filter used wavelength range in the present invention.

原点から右斜め上部に伸びる破線Wrsはレーリー散乱波長、励起波長軸上のWex1〜3は励起フィルタ15の切替波長、当該切替波長で区切られるAex0〜3は使用する励起側フィルタ15の波長領域を示す。ここで、励起側フィルタ15は、励起側フィルタNo.0(励起側フィルタ無し)あるいは励起側フィルタNo.1〜3のいずれかである構成を示す。励起側フィルタパルスモーター13にて、挿入される。  The broken line Wrs extending obliquely upward to the right from the origin is the Rayleigh scattering wavelength, Wex1-3 on the excitation wavelength axis is the switching wavelength of the excitation filter 15, and Aex0-3 divided by the switching wavelength is the wavelength range of the excitation side filter 15 used. Show. Here, the excitation side filter 15 includes excitation side filter no. 0 (without excitation filter) or excitation filter No. The structure which is any one of 1-3 is shown. It is inserted by the excitation side filter pulse motor 13.

励起側フィルタは、各フィルタの仕様(種類)により、励起光の使用波長に応じて選択される。選択する際は、(1)励起光の1/2次光の波長領域を吸収し遮蔽すること(吸収判定)、(2)高い透過率の波長領域であること(高透過判定)、の2つの判定を同時に満たすことが条件となる。
以下に、該当励起側フィルタ15の上記2つの判定について説明する。
The excitation side filter is selected according to the used wavelength of excitation light according to the specification (type) of each filter. (1) Absorbing and shielding the wavelength region of half-order light of excitation light (absorption determination), and (2) being a wavelength region of high transmittance (high transmission determination) The condition is to simultaneously satisfy one judgment.
The above two determinations of the corresponding excitation filter 15 will be described below.

(1)吸収判定(1) Absorption judgment

吸収判定における励起側フィルタ15の選択は、次の判定式を満たすことを条件とする。この判定式を満たしているフィルタであれば、いずれのフィルタを用いても構わない。
[式1]

Figure 0006541949
Figure 0006541949
よって、式1を満たすカットフィルタは、Wex(nm)以下の励起光波長であれば、不要な1/2次光に該当する信号が除去できることになる。Selection of the excitation-side filter 15 in the absorption determination is on the condition that the following determination formula is satisfied. Any filter may be used as long as the filter satisfies the determination formula.
[Equation 1]
Figure 0006541949
Figure 0006541949
Therefore, the cut filter satisfying Expression 1 can remove the signal corresponding to the unnecessary half-order light if the excitation light wavelength is less than Wex (nm).

当該励起側フィルタ15については、JIS B7113に規定されたシャープカットフィルタもしくは相当品を使用することができる。なお、JIS B7113記載の吸収限界波長は透過率が5%の波長が挙げられており、これでは励起光の1/2次光が透過してしまうため判定に適用することができない。そのため、

Figure 0006541949
係数α(例えば0〜20nm)を用い、設定された励起波長Wex(nm)における励起側フィルタの完全吸収される波長域を導くことが必要となる。As the excitation-side filter 15, a sharp cut filter or equivalent product defined in JIS B7113 can be used. The absorption limit wavelength described in JIS B7113 is a wavelength having a transmittance of 5%, which can not be applied to the determination because half-order light of excitation light is transmitted. for that reason,
Figure 0006541949
It is necessary to use a coefficient α (for example, 0 to 20 nm) to derive a wavelength range in which the excitation-side filter is completely absorbed at the set excitation wavelength Wex (nm).

(2)高透過判定
高透過判定における励起光の透過のための励起側フィルタ15の選択には、次の判定式を満たすことを条件とする。
[式2]

Figure 0006541949
(2) High Transmission Judgment Selection of the excitation-side filter 15 for transmission of excitation light in high transmission judgment is made on the condition that the following judgment formula is satisfied.
[Formula 2]
Figure 0006541949

よって、式2を満たすカットフィルタは、励起波長Wex(nm)について概ね90%以上の高い透過率を有し、該当する領域に出現する信号を低い損失にて得ることが可能になる。この判定により、設定された励起波長Wex(nm)における励起側フィルタの高透過波長域を導く。従って、励起波長Wex(nm)において、励起側フィルタ短波長判定条件かつ高透過判定条件を満たすフィルタが選択されることとなる。  Therefore, the cut filter satisfying Expression 2 has a high transmittance of about 90% or more with respect to the excitation wavelength Wex (nm), and it is possible to obtain a signal appearing in the corresponding region with low loss. This determination leads to the high transmission wavelength range of the excitation-side filter at the set excitation wavelength Wex (nm). Therefore, at the excitation wavelength Wex (nm), a filter satisfying the excitation side filter short wavelength determination condition and the high transmission determination condition is selected.

ここで、励起光の1/2次光は、真空紫外域に相当する185nmより短くなると空気中の窒素の強い吸収により出現しない。そのため、1/2次光が185nm以下に存在する場合は、その領域を吸収し遮断する励起側フィルタ15は不要となる。  Here, the half-order light of the excitation light does not appear due to the strong absorption of nitrogen in the air when it is shorter than 185 nm corresponding to the vacuum ultraviolet region. Therefore, when the 1⁄2-order light exists at 185 nm or less, the excitation-side filter 15 that absorbs and blocks the region becomes unnecessary.

このような考え方に基づいて、図5の励起側フィルタの波長領域Aex0〜3で使用するカットフィルタは、図7に記載した励起側のフィルタから選定した。これらのフィルタは市販されているものを利用した。  Based on such a concept, the cut filters used in the wavelength regions Aex0 to Aex3 of the excitation side filter of FIG. 5 are selected from the filters on the excitation side described in FIG. 7. These filters used what was marketed.

より具体的には、一般的な分光蛍光光度計の最大の励起スリット幅20nmを

Figure 0006541949
G295フィルタ)にて、調整係数をα7.5nmとした場合、励起波長Wex(nm)に相当する励起側フィルタ1切替波長Wex1(nm)は、式2より340nmに設定可能である。また、式1より520nm以下の励起光であれば1/2次光を透過しない。従って、WG295フィルタは、励起光波長が340〜520nmの領域において、吸収判定の式1および高透過判定の式2を同時に満たすため励起側フィルタ15として利用できる。More specifically, the maximum excitation slit width of 20 nm of a general spectrofluorimeter
Figure 0006541949
In the G295 filter, when the adjustment coefficient is α7.5 nm, the excitation-side filter 1 switching wavelength Wex1 (nm) corresponding to the excitation wavelength Wex (nm) can be set to 340 nm from Expression 2. Further, according to Equation 1, if the excitation light is 520 nm or less, the half-order light is not transmitted. Therefore, the WG 295 filter can be used as the excitation-side filter 15 because it simultaneously satisfies Equation 1 for absorption determination and Equation 2 for high transmission determination in a region where the excitation light wavelength is 340 to 520 nm.

また、励起側フィルタ1切替波長Wex1が340(nm)であれば、それ以下の励起光波長による1/2次光は概ね200nmよりも小さく、一般的な励起光として利用範囲外であり、Wex1よりも短波長の励起光を照射する際は励起側フィルタが不要となる。  In addition, if the excitation-side filter 1 switching wavelength Wex1 is 340 (nm), the half-order light with a smaller excitation light wavelength is smaller than approximately 200 nm, and is outside the usable range as general excitation light. When irradiating excitation light having a shorter wavelength than the excitation light, the excitation filter is not necessary.

Figure 0006541949
(Y44フィルタ)にて調整係数αを7.5nmとした場合、励起波長Wex(nm)に相当する波長は式2より485nm、また、1/2次光を遮蔽可能な波長は式1より810nmとなる。従って、Y44フィルタは、励起光波長が485〜810nmの励起光波長の範囲において、吸収判定の式1および高透過判定の式2を同時に満たすため励起側フィルタ15として利用できる。ここで、WG295フィルタとの組み合わせにおいては、当該フィルタの式1に基づく520nmの励起光波長をY44フィルタへの切替波長Wex2に設定することができる。
Figure 0006541949
Assuming that the adjustment coefficient α is 7.5 nm in (Y44 filter), the wavelength corresponding to the excitation wavelength Wex (nm) is 485 nm according to Equation 2, and the wavelength capable of shielding the 1⁄2-order light is 810 nm according to Equation 1. It becomes. Therefore, the Y44 filter can be used as the excitation-side filter 15 because it simultaneously satisfies Equation 1 for absorption determination and Equation 2 for high transmission determination in the excitation light wavelength range of 485 to 810 nm. Here, in the combination with the WG 295 filter, the excitation light wavelength of 520 nm based on Equation 1 of the filter can be set as the switching wavelength Wex2 for switching to the Y44 filter.

Figure 0006541949
ルタ(Y50フィルタ)にて調整係数αを7.5nmとした場合、式2より545nm及び式1より930nmとなり、励起光波長が545〜930nmの励起光波長の範囲において励起側フィルタ15として利用できる。そして、Y44フィルタとの組み合わせにおいては、当該フィルタの式1に基づいて800nmの励起光波長をY50フィルタへの切替波長Wex3に設定することができる。
Figure 0006541949
When the adjustment coefficient α is 7.5 nm in Luta (Y50 filter), it becomes 545 nm from Equation 2 and 930 nm from Equation 1, and can be used as the excitation side filter 15 in the excitation light wavelength range of 545 to 930 nm. . Then, in combination with the Y44 filter, the excitation light wavelength of 800 nm can be set to the switching wavelength Wex3 for switching to the Y50 filter based on Expression 1 of the filter.

以上より、励起側フィルタ無し波長領域Aex0は、分光蛍光光度計で設定可能な最小の励起波長から励起側フィルタ1切替波長Wex1までの励起波長範囲とし励起側フィルタ15は励起側フィルタパルスモーター13にて励起側フィルタNo.0(励起側フィルタ無し)が光学系上に挿入される。励起側フィルタ1波長領域Aex1は、励起側フィルタ1切替波長Wex1から励起側フィルタ2切替波長Wex2までの励起波長範囲とし、励起側フィルタ15は励起側フィルタパルスモーター13にて励起側フィルタNo.1(WG295フィルタ)が光学系上に挿入される。励起側フィルタ2波長領域Aex2は、励起側フィルタ2切替波長Wex2から励起側フィルタ3切替波長Wex3までの励起波長範囲とし、励起側フィルタ15は励起側フィルタパルスモーター13にて励起側フィルタNo.2(Y44フィルタ)が光学系上に挿入される。励起側フィルタ3波長領域Aex3は、励起側フィルタ3切替波長Wex3から分光蛍光光度計で設定可能な最長の励起波長までの波長範囲とし励起側フィルタ15は励起側フィルタパルスモーター13にて励起側フィルタNo.3(Y50フィルタ)が光学系上に挿入される。
次に、蛍光測定に関して説明する。
From the above, the excitation side filterless wavelength range Aex0 is set as the excitation wavelength range from the smallest excitation wavelength settable by the spectrofluorimeter to the excitation side filter 1 switching wavelength Wex1, and the excitation side filter 15 is used as the excitation side filter pulse motor 13 Excitation side filter No. 0 (without excitation filter) is inserted on the optical system. The excitation-side filter 1 wavelength region Aex1 is in the excitation wavelength range from the excitation-side filter 1 switching wavelength Wex1 to the excitation-side filter 2 switching wavelength Wex2. 1 (WG 295 filter) is inserted on the optical system. The excitation-side filter 2 wavelength region Aex2 is in the excitation wavelength range from the excitation-side filter 2 switching wavelength Wex2 to the excitation-side filter 3 switching wavelength Wex3. 2 (Y44 filter) is inserted on the optical system. The excitation side filter 3 wavelength range Aex3 is a wavelength range from the excitation side filter 3 switching wavelength Wex3 to the longest excitation wavelength settable by the spectrofluorometer, and the excitation side filter 15 is the excitation side filter at the excitation side filter pulse motor 13 No. 3 (Y50 filter) is inserted on the optical system.
Next, fluorescence measurement will be described.

図6には、本発明における蛍光側フィルタ使用波長域の概念図を示す。
原点から右斜め上部に伸びる一点破線Wrsはレーリー散乱光の波長、蛍光波長軸中央付近から右斜め上部に伸びる破線Wreはレーリー散乱光の2次光に相当する波長、励起波長軸上のWex12・13は蛍光側フィルタ16の切り替え判定に係る励起波長、当該切り替え波長で区切られるAem0〜3は使用する蛍光側フィルタ16の波長領域を示す。ここで、蛍光側フィルタ16は、蛍光側フィルタNo.0(蛍光側フィルタ無し)あるいは蛍光側フィルタNo.1〜No.3のいずれかである構成を示す。これらの蛍光側フィルタのうち後述する判定により適切なものが選択され、測定する試料と蛍光側分光器の間の光学系に蛍光側フィルタパルスモーター14にて挿入される。
FIG. 6 is a conceptual view of the wavelength range used by the fluorescence filter in the present invention.
The dashed-dotted line Wrs extending obliquely upward to the right from the origin is the wavelength of the Rayleigh scattered light, the broken line Wre extending obliquely from the center to the upper right of the fluorescence wavelength axis is the wavelength corresponding to the secondary light of the Rayleigh scattered light, Wex12 on the excitation wavelength axis The reference numeral 13 denotes an excitation wavelength related to the switching determination of the fluorescence side filter 16, and Aem0 to Aem3 divided by the switching wavelength indicate the wavelength range of the fluorescence side filter 16 to be used. Here, the fluorescence side filter 16 is the same as the fluorescence side filter no. 0 (no fluorescence side filter) or fluorescence side filter No. 1 to No. The structure which is any of 3 is shown. Of these filters on the fluorescence side, an appropriate one is selected by determination described later, and the filter on the fluorescence side is inserted into the optical system between the sample to be measured and the spectroscope on the fluorescence side by the fluorescence side filter pulse motor 14.

蛍光側フィルタ16は、各フィルタの仕様(種類)により、励起光の使用波長及び蛍光波長に応じて選択される。選択する際は、(1)励起光の散乱光の波長領域を吸収し遮蔽すること(蛍光側吸収判定)、(2)蛍光を高い割合で透過する波長領域であること(蛍光側高透過判定)、の2つの判定を同時に満たすことが条件となる。以下に、当該蛍光側フィルタ16の上記2つの判定について詳細を説明する。  The fluorescence side filter 16 is selected according to the use wavelength and fluorescence wavelength of excitation light by the specification (type) of each filter. (1) Absorbing and shielding the wavelength range of the scattered light of excitation light (fluorescence side absorption determination), (2) A wavelength range transmitting fluorescence at a high ratio (fluorescence side high transmission determination The condition is to simultaneously satisfy the two judgments of. Hereinafter, the above two determinations of the fluorescence side filter 16 will be described in detail.

(1)蛍光側吸収判定
吸収判定における蛍光側フィルタ16の選択には、次の判定式を満たすことを条件とする。吸収判定式は以下の通りである。
[式3]

Figure 0006541949
(1) Fluorescence-side absorption determination The selection of the fluorescence-side filter 16 in absorption determination is based on the condition that the following determination formula is satisfied. The absorption determination formula is as follows.
[Equation 3]
Figure 0006541949

当該蛍光側フィルタ16については、励起側フィルタ15と同様に、JIS B7113に規定されたシャープカットフィルタもしくはその相当品を使用することができる。なお、JIS B7113記載の吸収限界波長は励起側フィルタの説明の通り、透過率が0%ではない(5%)ため、励起光の散乱光が透過してしまい判定に適用することができない。そのため、蛍光側フィルタ16の判定には、

Figure 0006541949
された励起波長Wex(nm)における蛍光側フィルタ16の完全吸収される波長域を導くことが必要となる。As with the excitation-side filter 15, a sharp cut filter defined in JIS B7113 or the like can be used for the fluorescence-side filter 16. As the absorption limit wavelength described in JIS B7113 is not 0% (5%), as described for the excitation filter, scattered light of excitation light is transmitted and can not be applied for determination. Therefore, for the determination of the fluorescence side filter 16,
Figure 0006541949
It is necessary to derive a wavelength range in which the fluorescence-side filter 16 is completely absorbed at the specified excitation wavelength Wex (nm).

(2)蛍光側高透過判定
高透過判定における蛍光の透過のための蛍光側フィルタ16の選択時は、次の判定式を満たすことを条件とする。
[式4]

Figure 0006541949
なお、“β”は、装置間の2次光の裾の出現状況の差異を調整する係数であり、蛍光調整係数(例えば、0〜20nm)である。(2) Determination of high-transmission on the fluorescence side When selecting the fluorescence-side filter 16 for transmission of fluorescence in high-transmission determination, it is assumed that the following determination formula is satisfied.
[Equation 4]
Figure 0006541949
Note that “β” is a coefficient for adjusting the difference in appearance of secondary light tails between devices, and is a fluorescence adjustment coefficient (for example, 0 to 20 nm).

よって、式4を満たすカットフィルタは、励起波長Wex(nm)における試料に基づく蛍光について概ね90%以上の高い透過率を有し、該当する領域に出現する信号を低い損失にて得ることが可能になる。従って、この判定により、設定された励起波長Wexにおける試料に基づく蛍光に対する蛍光側フィルタ16の高透過波長域を導く。  Therefore, the cut filter satisfying Equation 4 has high transmittance of about 90% or more for sample-based fluorescence at the excitation wavelength Wex (nm), and can obtain a signal appearing in the corresponding region with low loss. become. Therefore, this determination leads to the high transmission wavelength range of the fluorescence-side filter 16 for sample-based fluorescence at the set excitation wavelength Wex.

このような考え方に基づき、図6の蛍光側フィルタの波長領域Aem0〜3で使用するカットフィルタは、図7に記載した蛍光側フィルタから選定した。これらも、励起側フィルタ同様に市販されているものを利用した。具体的な選定について、上記の2つの判定式(式3及び4)を用いて説明する  Based on such a concept, the cut filters used in the wavelength regions Aem0 to Aem3 of the fluorescence side filter of FIG. 6 are selected from the fluorescence side filters described in FIG. These also used what was marketed similarly to the excitation side filter. The specific selection will be described using the above two judgment formulas (Equations 3 and 4).

一般的な分光蛍光光度計の最大の励起スリット幅20nmを基に、蛍光側フィ

Figure 0006541949
ルタを用い、蛍光調整係数βを7.5nmとした場合、蛍光側フィルタ2切替判定のための励起波長Wex12は250nmに設定可能である。蛍光側フィルタ
Figure 0006541949
を用い、調整係数αを7.5nmとした場合、蛍光側フィルタ3切替判定のための励起波長Wex13は350nmに設定可能である。Based on the maximum excitation slit width of 20 nm of a common spectrofluorometer,
Figure 0006541949
When the fluorescence adjustment coefficient β is set to 7.5 nm using a filter, the excitation wavelength Wex12 can be set to 250 nm for the fluorescence side filter 2 switching determination. Fluorescent side filter
Figure 0006541949
If the adjustment coefficient α is set to 7.5 nm using the above, the excitation wavelength Wex 13 for the fluorescence side filter 3 switching determination can be set to 350 nm.

蛍光側フィルタ1切替判定波長Wem1は、(励起波長Wex(nm)−励起スリット幅Sex(nm))×2−蛍光調整係数β(nm)で決定される。蛍光側フィルタ2切替判定波長Wem2は、蛍光側フィルタ2切替判定のための励起波長Wex12と蛍光側フィルタ1切替判定波長Wem1の交点に対応する蛍光波長である。蛍光側フィルタ2切替判定波長Wem2は、分光蛍光光度計で設定可能な最長の蛍光波長の1/2倍の蛍光を透過しないフィルタを用いる。例えば、最大の蛍光波長が750nmとした場合、蛍光側フィルタNo.2として、透過

Figure 0006541949
できる。The fluorescence side filter 1 switching determination wavelength Wem1 is determined by (excitation wavelength Wex (nm)-excitation slit width Sex (nm)) x 2-fluorescence adjustment coefficient β (nm). The fluorescence side filter 2 switching judgment wavelength Wem2 is a fluorescence wavelength corresponding to the intersection of the excitation wavelength Wex12 for the fluorescence side filter 2 switching judgment and the fluorescence side filter 1 switching judgment wavelength Wem1. The fluorescence side filter 2 switching determination wavelength Wem2 uses a filter which does not transmit fluorescence half of the longest fluorescence wavelength which can be set by the spectrofluorimeter. For example, when the maximum fluorescence wavelength is 750 nm, the fluorescence side filter No. Transparent as 2
Figure 0006541949
it can.

蛍光側フィルタ無し波長領域Aem0は、蛍光側フィルタ1切替判定波長Wem1よりも蛍光波長が短波長に相当し、蛍光側フィルタ16は蛍光側フィルタパルスモーター14にて蛍光側フィルタNo.0(蛍光側フィルタ無し)が光学系上に挿入される。蛍光側フィルタ1波長領域Aem1は、蛍光側フィルタ1切替判定波長Wem1よりも蛍光波長が長波長であり、蛍光側フィルタ2切替判定波長Wem2よりも短波長であり、励起波長は分光蛍光光度計で設定可能な最小の励起波長から蛍光側フィルタ2切替判定のための励起波長Wex12の波長範囲に相当し、蛍光側フィルタ16は蛍光側フィルタパルスモーター14にて蛍光側フィルタNo.1が光学系上に挿入される。蛍光側フィルタ2波長領域Aem2は、蛍光側フィルタ1切替判定波長Wem1よりも蛍光波長が長波長であり、蛍光側フィルタ2切替判定波長Wem2よりも長波長であり、励起波長は分光蛍光光度計で設定可能な最小の励起波長から蛍光側フィルタ3切替判定のための励起波長Wex13の波長範囲に相当し、蛍光側フィルタ16は蛍光側フィルタパルスモーター14にて蛍光側フィルタNo.2が光学系上に挿入される。蛍光側フィルタ3波長領域Aem3は、蛍光側フィルタ1切替判定波長Wem1よりも蛍光波長が長波長であり、励起波長は蛍光側フィルタ3切替判定のための励起波長Wex13よりも長波長の波長範囲に相当し、蛍光側フィルタ16は蛍光側フィルタパルスモーター14にて蛍光側フィルタNo.3が光学系上に挿入される。  In the fluorescence side filterless wavelength region Aem 0, the fluorescence wavelength corresponds to a shorter wavelength than the fluorescence side filter 1 switching determination wavelength Wem 1, and the fluorescence side filter 16 controls the fluorescence side filter No. 0 (no fluorescence side filter) is inserted on the optical system. The fluorescence side filter 1 wavelength region Aem1 has a fluorescence wavelength longer than that of the fluorescence side filter 1 switching judgment wavelength Wem1, is a shorter wavelength than the fluorescence side filter 2 switching judgment wavelength Wem2, and the excitation wavelength is a spectrofluorimeter The fluorescence side filter 16 corresponds to the wavelength range of the excitation wavelength Wex 12 for determining the switching of the fluorescence side filter 2 from the smallest possible excitation wavelength, and the fluorescence side filter 16 uses the fluorescence side filter No. 1 is inserted on the optical system. The fluorescence side filter 2 wavelength region Aem2 has a fluorescence wavelength longer than that of the fluorescence side filter 1 switching judgment wavelength Wem1, and a wavelength longer than that of the fluorescence side filter 2 switching judgment wavelength Wem2, and the excitation wavelength is a spectrofluorimeter The fluorescence side filter 16 corresponds to the wavelength range of the excitation wavelength Wex 13 for determining the switching of the fluorescence side filter 3 from the smallest possible excitation wavelength. 2 is inserted on the optical system. In the fluorescence side filter three wavelength region Aem3, the fluorescence wavelength is longer than the fluorescence side filter 1 switching determination wavelength Wem1, and the excitation wavelength is in the wavelength range longer than the excitation wavelength Wex13 for the fluorescence side filter 3 switching determination. The fluorescence side filter 16 corresponds to the fluorescence side filter No. 1 by the fluorescence side filter pulse motor 14. 3 is inserted on the optical system.

図7に本発明におけるカットフィルタの構成例を記す。前記励起側フィルタ15の励起側フィルタ吸収判定(式1)および励起側フィルタ高透過判定(式2)、蛍光側フィルタ16の蛍光側フィルタ吸収判定(式3)および蛍光側フィルタ高透過判定(式4)の判定条件を満たす構成となっている。なお、前記励起側フィルタ15の励起側フィルタ吸収判定(式1)および励起側フィルタ高透過判定(式2)、蛍光側フィルタ16の蛍光側フィルタ吸収判定定(式3)および蛍光側フィルタ高透過判定(式4)の判定条件を満たせばこの限りでない。  FIG. 7 shows a configuration example of the cut filter in the present invention. The excitation-side filter absorption determination (formula 1) and the excitation-side filter high transmission determination (formula 2) of the excitation-side filter 15, the fluorescence-side filter absorption determination (formula 3) of the fluorescence-side filter 16 and the fluorescence side filter high transmission determination (formula It is configured to satisfy the judgment condition of 4). The excitation-side filter absorption determination of the excitation-side filter 15 (formula 1) and the excitation-side filter high transmission determination (formula 2), the fluorescence-side filter absorption determination of the fluorescence side filter 16 (formula 3), and the fluorescence side filter high transmission If the judgment condition of the judgment (equation 4) is satisfied, it is not this limitation.

図7に示す励起側フィルタについて説明する。励起側フィルタNo.1には、WG295フィルタを例示する。このフィルタの透過限界波長λTは295 n

Figure 0006541949
ィルタを例示する。このフィルタの透過限界波長λTは440 nm、波長傾斜
Figure 0006541949
nmである。透過スペクトルを測定し、目的の波長域を遮蔽していることを確認する。The excitation side filter shown in FIG. 7 will be described. Excitation side filter No. Example 1 WG 295 filter is illustrated. The transmission limit wavelength λT of this filter is 295 n
Figure 0006541949
The filter is illustrated. Transmission limit wavelength λT of this filter is 440 nm, wavelength tilt
Figure 0006541949
nm. Measure the transmission spectrum and confirm that the target wavelength range is blocked.

同様に図7に示す蛍光側フィルタについて説明する。蛍光側フィルタNo.1には、WG295フィルタを例示する。このフィルタの透過限界波長λTは29

Figure 0006541949
42フィルタを例示する。このフィルタの透過限界波長λTは420 nm、波
Figure 0006541949
は25 nmである。励起側フィルタと同様に透過スペクトルを測定し、目的の波
Figure 0006541949
と5%に該当する波長の波長間隔で得る。透過限界波長λTは、波長傾斜幅の中点に該当する波長で得る。
図8に本発明における3次元蛍光スペクトル測定のフローチャートを記す。Similarly, the fluorescence side filter shown in FIG. 7 will be described. Fluorescence side filter No. Example 1 WG 295 filter is illustrated. The transmission limit wavelength λT of this filter is 29
Figure 0006541949
42 filters are illustrated. Transmission limit wavelength λT of this filter is 420 nm, wave
Figure 0006541949
Is 25 nm. Measure the transmission spectrum in the same way as the excitation filter, and
Figure 0006541949
And at wavelength intervals of wavelengths corresponding to 5%. The transmission limit wavelength λT is obtained at a wavelength corresponding to the middle point of the wavelength tilt width.
FIG. 8 shows a flowchart of three-dimensional fluorescence spectrum measurement in the present invention.

ステップ501として、操作パネル18より、光度計部100の3次元蛍光スペクトル測定の条件として、励起側測定開始波長Wexs、励起側測定終了波長Wexe(nm)、励起データ間隔Dex(nm)、蛍光側測定開始波長Wems(nm)、蛍光側測定終了波長Weme(nm)、蛍光データ間隔Dem(nm)、励起スリット幅Sex(nm)、蛍光スリット幅Sem(nm)を入力する。As step 501, from the operation panel 18, as a condition of the three-dimensional fluorescence spectrum measurement of the photometer unit 100, the excitation side measurement start wavelength Wexs, the excitation side measurement end wavelength Wexe (nm), the excitation data interval Dex (nm), the fluorescence side The measurement start wavelength Wems (nm), the fluorescence measurement end wavelength Weme (nm), the fluorescence data interval Dem (nm), the excitation slit width Sex (nm), and the fluorescence slit width Sem (nm) are input.

ステップ502として、搭載されているフィルタに相当するフィルタ条件を入力する。このとき、フィルタ条件は、搭載された励起側フィルタ15におけるX

Figure 0006541949
m)、調整係数αexxとする。予め搭載された蛍光側フィルタ16におけるY番目
Figure 0006541949
蛍光調整係数βemyとする。入力されたフィルタ条件より、励起側遮断/透過波長および蛍光側遮断/透過波長が導かれ、Aex1励起側フィルタ1波長領域Aex2 励起側フィルタ2波長領域、Aex3 励起側フィルタ3波長領域、Aem0 蛍光側フィルタ無し波長領域、Aem1 蛍光側フィルタ1波長領域、Aem2 蛍光側フィルタ2波長領域、Aem3 蛍光側フィルタ3波長領域が決定される。ここで、ステップ501とステップ502の順番は問わない。In step 502, filter conditions corresponding to the mounted filter are input. At this time, the filter condition is X in the excitation-side filter 15 mounted.
Figure 0006541949
m) Let an adjustment coefficient α exx. Y-th in the fluorescence side filter 16 mounted in advance
Figure 0006541949
The fluorescence adjustment coefficient is βemy. The excitation side cutoff / transmission wavelength and the fluorescence side cutoff / transmission wavelength are derived from the input filter conditions, Aex1 excitation side filter 1 wavelength range Aex2 excitation side filter 2 wavelength range, Aex3 excitation side filter 3 wavelength range, Aem0 fluorescence side A non-filtered wavelength region, Aem1 fluorescence side filter 1 wavelength region, Aem2 fluorescence side filter 2 wavelength region, Aem3 fluorescence side filter 3 wavelength region are determined. Here, the order of step 501 and step 502 does not matter.

ステップ503は波長範囲の照合である。501で入力された測定波長範囲と502の入力値にて決定されたAem0蛍光側フィルタ無し波長領域、Aem1蛍光側フィルタ1波長領域、Aem2 蛍光側フィルタ2波長領域、Aem3 蛍光側フィルタ3波長領域を照合し、504測定開始が実行されると、505〜512の判定ステップに移る。  Step 503 is the collation of the wavelength range. Aem0 fluorescence side unfiltered wavelength region, Aem1 fluorescence side filter 1 wavelength region, Aem2 fluorescence side filter 2 wavelength region, Aem3 fluorescence side filter 3 wavelength region determined by the measurement wavelength range input in 501 and the input value in 502 After collating and 504 measurement start is executed, it moves to the judgment step of 505-512.

操作パネル18より、ステップ504である測定開始が実行された際、判定1(ステップ505)として、励起側測定開始波長Wexs、励起側測定終了波長Wexe(nm)、蛍光側測定開始波長Wems(nm)、蛍光側測定終了波長Weme(nm)からなる3次元蛍光スペクトルの測定波長範囲に、蛍光側フィルタ無し波長領域Aem0 が含まれているかを判定する。ここで、3次元蛍光スペクトルの測定波長範囲に、蛍光側フィルタ無し波長領域Aem0 が含まれている場合、蛍光側フィルタ16は、蛍光側フィルタパルスモーター14にて蛍光側フィルタNo.0(蛍光側フィルタ無し)が光学系上に挿入される。蛍光側フィルタ16が無い状態で入力された測定条件の全測定波長範囲の3次元蛍光スペクトルが取得される(ステップ506)。この時、励起側フィルタ15は、図5における励起側カットフィルタ使用波長域に基づき、励起波長に併せて励起側フィルタ15を切替て3次元蛍光スペクトルを取得する。3次元蛍光スペクトルの測定波長範囲に、蛍光側フィルタ無し波長領域Aem0 が含まれていない場合は、次の判定に進む。  When the measurement start which is step 504 is executed from the operation panel 18, as the determination 1 (step 505), the excitation side measurement start wavelength Wexs, the excitation side measurement end wavelength Wexe (nm), the fluorescence side measurement start wavelength Wems (nm It is determined whether the fluorescence side unfiltered wavelength region Aem0 is included in the measurement wavelength range of the three-dimensional fluorescence spectrum consisting of the fluorescence side measurement end wavelength Weme (nm). Here, in the case where the fluorescence side filterless wavelength region Aem0 is included in the measurement wavelength range of the three-dimensional fluorescence spectrum, the fluorescence side filter 16 controls the fluorescence side filter No. 1 by the fluorescence side filter pulse motor 14. 0 (no fluorescence side filter) is inserted on the optical system. A three-dimensional fluorescence spectrum of the entire measurement wavelength range of the measurement conditions input without the fluorescence side filter 16 is acquired (step 506). At this time, the excitation-side filter 15 switches the excitation-side filter 15 in accordance with the excitation wavelength based on the excitation-side cut filter use wavelength range in FIG. 5 to acquire a three-dimensional fluorescence spectrum. If the fluorescence side unfiltered wavelength region Aem0 is not included in the measurement wavelength range of the three-dimensional fluorescence spectrum, the process proceeds to the next determination.

次に、判定2(ステップ507)として、3次元蛍光スペクトルの測定波長範囲に、蛍光側フィルタ1波長領域Aem1が含まれているかを判定する。3次元蛍光スペクトルの測定波長範囲に、蛍光側フィルタ1波長領域Aem1が含まれている場合、蛍光側フィルタ16は蛍光側フィルタパルスモーター14にて蛍光側フィルタNo1が挿入され、3次元蛍光スペクトルの測定波長範囲に、蛍光側フィルタ1波長領域Aem1が含まれている波長範囲の3次元蛍光スペクトルを取得する。この時、励起側フィルタ15は、図5における励起側カットフィルタ使用波長域に基づき、励起波長に併せて励起側フィルタ15を切替えて3次元蛍光スペクトル(ステップ508)を取得する。3次元蛍光スペクトルの測定波長範囲に、蛍光側フィルタ1波長領域Aem1が含まれていない場合は、次の判定に進む。  Next, as determination 2 (step 507), it is determined whether the fluorescence-side filter one wavelength region Aem1 is included in the measurement wavelength range of the three-dimensional fluorescence spectrum. When the fluorescence side filter 1 wavelength region Aem1 is included in the measurement wavelength range of the three-dimensional fluorescence spectrum, the fluorescence side filter No. 1 is inserted in the fluorescence side filter 16 by the fluorescence side filter pulse motor 14, and the three-dimensional fluorescence spectrum The three-dimensional fluorescence spectrum of the wavelength range in which the fluorescence side filter one wavelength region Aem1 is included in the measurement wavelength range is acquired. At this time, the excitation-side filter 15 switches the excitation-side filter 15 in accordance with the excitation wavelength based on the excitation-side cut filter use wavelength region in FIG. 5 to acquire a three-dimensional fluorescence spectrum (step 508). When the fluorescence side filter 1 wavelength region Aem1 is not included in the measurement wavelength range of the three-dimensional fluorescence spectrum, the process proceeds to the next determination.

次に、判定3(ステップ509)として、3次元蛍光スペクトルの測定波長範囲に、蛍光側フィルタ2波長領域Aem2が含まれているかを判定する。3次元蛍光スペクトルの測定波長範囲に、蛍光側フィルタ2波長領域Aem2が含まれている場合、蛍光側フィルタ16は蛍光側フィルタパルスモーター14にて蛍光側フィルタNo2が挿入され、3次元蛍光スペクトルの測定波長範囲に、蛍光側フィルタ2波長領域Aem2が含まれている波長範囲の3次元蛍光スペクトル(ステップ510)を取得する。3次元蛍光スペクトルの測定波長範囲に、蛍光側フィルタ2波長領域Aem2が含まれていない場合は、次の判定に進む。  Next, as determination 3 (step 509), it is determined whether the fluorescence side filter two wavelength region Aem2 is included in the measurement wavelength range of the three-dimensional fluorescence spectrum. When the fluorescence side filter 2 wavelength region Aem2 is included in the measurement wavelength range of the three dimensional fluorescence spectrum, the fluorescence side filter No. 2 is inserted by the fluorescence side filter pulse motor 14 of the fluorescence side filter 16 and the three dimensional fluorescence spectrum A three-dimensional fluorescence spectrum (step 510) of the wavelength range in which the fluorescence side filter two wavelength region Aem2 is included in the measurement wavelength range is acquired. When the fluorescence side filter two wavelength region Aem2 is not included in the measurement wavelength range of the three-dimensional fluorescence spectrum, the process proceeds to the next determination.

次に、判定4(ステップ511)として、3次元蛍光スペクトルの測定波長範囲に、蛍光側フィルタ3波長領域Aem3が含まれているかを判定する。3次元蛍光スペクトルの測定波長範囲に、蛍光側フィルタ3波長領域Aem3が含まれている場合、蛍光側フィルタ16は蛍光側フィルタパルスモーター14にて蛍光側フィルタNo3が挿入され、3次元蛍光スペクトルの測定波長範囲に、蛍光側フィルタ3波長領域Aem3が含まれている波長範囲の3次元蛍光スペクトル(ステップ512)を取得する。3次元蛍光スペクトルの測定波長範囲に、蛍光側フィルタ3波長領域Aem3が含まれていない場合は、次のステップに進む。  Next, as determination 4 (step 511), it is determined whether the fluorescence side filter three wavelength region Aem3 is included in the measurement wavelength range of the three-dimensional fluorescence spectrum. When the fluorescence side filter three wavelength region Aem3 is included in the measurement wavelength range of the three dimensional fluorescence spectrum, the fluorescence side filter No. 3 is inserted in the fluorescence side filter 16 by the fluorescence side filter pulse motor 14, and the three dimensional fluorescence spectrum A three-dimensional fluorescence spectrum (step 512) of the wavelength range in which the fluorescence side filter three wavelength region Aem3 is included in the measurement wavelength range is acquired. When the fluorescence side filter three wavelength region Aem3 is not included in the measurement wavelength range of the three-dimensional fluorescence spectrum, the process proceeds to the next step.

次のステップ(ステップ513)ではフィルタ透過率の補正を実施する。判定2〜4で測定(ステップ507〜512)された3次元蛍光スペクトルは、蛍光側フィルタ16に蛍光側フィルタNo.1〜3のカットフィルタが挿入されている状態であり、カットフィルタの吸収による蛍光強度のロスが生じている。そのため、各波長のフィルタ透過率の逆数を蛍光スペクトルに掛け算し、蛍光強度のロス分を補正する。同様に励起側フィルタ15に励起側フィルタNo.1〜3のカットフィルタが挿入されて測定された波長範囲には、励起側フィルタ15の各波長のフィルタ透過率の逆数を蛍光スペクトルに掛け算し、蛍光強度のロス分を補正する。  In the next step (step 513), correction of the filter transmittance is performed. The three-dimensional fluorescence spectrum measured in steps 2 to 4 (steps 507 to 512) is used as the fluorescence side filter No. In the state in which 1 to 3 cut filters are inserted, a loss of fluorescence intensity occurs due to the absorption of the cut filters. Therefore, the reciprocal of the filter transmittance of each wavelength is multiplied by the fluorescence spectrum to correct the loss of the fluorescence intensity. Similarly, in the excitation side filter 15, the excitation side filter No. In the wavelength range measured by inserting one to three cut filters, the reciprocal of the filter transmittance of each wavelength of the excitation-side filter 15 is multiplied by the fluorescence spectrum to correct the loss of the fluorescence intensity.

次のステップ(ステップ515)では、判定1〜判定4(ステップ505〜512)にて取得された各波長域の3次元蛍光スペクトルを合成し、測定波長の全範囲における単一の3次元蛍光スペクトル測定データとする。
本発明の効果について説明する。
In the next step (step 515), the three-dimensional fluorescence spectrum of each wavelength range acquired in determination 1 to determination 4 (steps 505 to 512) is synthesized, and a single three-dimensional fluorescence spectrum in the entire range of measurement wavelengths is obtained. It is taken as measurement data.
The effects of the present invention will be described.

励起側測定開始波長200nm、励起側測定終了波長750nm、励起波長間隔5nmとし、蛍光側測定開始波長200nm、蛍光側測定終了波長750nm、蛍光波長間隔5nmとし、蛍光側測定終了波長750nmと高次光カットフィルタ切替波長200の交点を励起波長400nmとした場合、従来のフィルタ制御方法である特許文献1の方法で3次元蛍光スペクトルを測定した場合、フィルタ切替回数は、(400−200)/5+1=41(回)となる。フィルタ切替時間に伴う停止時間を3秒とすると、フィルタ切替に123秒要することとなる。波長走査速度60,000nm/minで全波長範囲を測定した場合、フィルタ切替をしない実測時間は235秒であり、これにフィルタ切替時間を加えると358秒となる。Excitation side measurement start wavelength 200 nm, excitation side measurement end wavelength 750 nm, excitation wavelength interval 5 nm, fluorescence side measurement start wavelength 200 nm, fluorescence side measurement end wavelength 750 nm, fluorescence wavelength interval 5 nm, fluorescence side measurement end wavelength 750 nm and high-order light cut filter Assuming that the cross point of the switching wavelength 200 is the excitation wavelength of 400 nm, when the three-dimensional fluorescence spectrum is measured by the method of Patent Document 1 which is the conventional filter control method, the number of filter switching is (400−200) / 5 + 1 = 41 ( Times). Assuming that the stop time associated with the filter switching time is 3 seconds, it takes 123 seconds to switch the filter. When the entire wavelength range is measured at a wavelength scanning speed of 60,000 nm / min, the actual measurement time without filter switching is 235 seconds, and adding this to the filter switching time results in 358 seconds.

本発明の場合、判定1(ステップ505)の蛍光側フィルタ無しで全波長域測定の際、励起側フィルタ15の切替回数は2回である。実測定時間235秒にフィルタ切替時間6秒を加算し、判定1の蛍光側フィルタ無しの測定時間は241秒となる。  In the case of the present invention, in the case of measuring the entire wavelength range without the fluorescence side filter of the determination 1 (step 505), the number of times of switching of the excitation side filter 15 is two. The filter switching time of 6 seconds is added to the actual measurement time of 235 seconds, and the measurement time without the fluorescence-side filter of determination 1 is 241 seconds.

判定2〜判定4(ステップ507〜512)の蛍光側フィルタ有における測定は、励起側測定開始波長200nm、励起側測定終了波長400nm、励起波長間隔5nm、蛍光側測定開始波長200nm、蛍光側測定終了波長750nm、蛍光波長間隔5nmにおいて、蛍光側フィルタ1切替判定波長Wem1よりも長波長の蛍光波長範囲を測定する。フィルタの切替回数は励起側フィルタ1回、蛍光側フィルタ3回である。このときの3次元蛍光スペクトル実測定時間は44秒にフィルタ切替時間12秒を加算すると、判定2〜判定4(ステップ507〜512)の測定時間は56秒となる。判定1(ステップ505・506)と判定2〜判定4(ステップ507〜512)の測定時間を加えると297秒となる。従来のフィルタ制御方法では、358秒要していたが、本発明により、測定時間は61秒短縮され、297秒で測定可能となる。
次に図9〜図11を参照しながら第2の実施例を説明する。
Determination 2 to determination 4 (steps 507 to 512) in the fluorescence filter has an excitation measurement start wavelength of 200 nm, an excitation measurement end wavelength of 400 nm, an excitation wavelength interval of 5 nm, a fluorescence measurement start wavelength of 200 nm, and a fluorescence measurement end A fluorescence wavelength range longer than the fluorescence side filter 1 switching judgment wavelength Wem 1 is measured at a wavelength of 750 nm and a fluorescence wavelength interval of 5 nm. The number of times the filter is switched is one excitation filter and three fluorescence filters. When the filter switching time of 12 seconds is added to 44 seconds, the measurement time of determination 2 to determination 4 (steps 507 to 512) is 56 seconds. It becomes 297 seconds if the measurement time of the determination 1 (steps 505 and 506) and the determination 2 to the determination 4 (steps 507 to 512) is added. The conventional filter control method requires 358 seconds, but according to the present invention, the measurement time is reduced by 61 seconds and can be measured in 297 seconds.
Next, a second embodiment will be described with reference to FIGS.

判定1(ステップ505)における蛍光側フィルタNo.0における蛍光側フィルタ無し測定(ステップ506)と判定2〜4における蛍光側フィルタNo.1〜3における蛍光側フィルタ有り測定(ステップ507〜511)を行う際、励起光による測定試料の劣化により、蛍光強度が低下することがある。この状態でデータ合成を行うと判定1(ステップ505)における蛍光側フィルタ無し測定結果(ステップ506)と判定2〜4における蛍光側フィルタ有り測定結果(ステップ507〜512)で蛍光強度に段差が生じる。  The fluorescence side filter No. 1 in the judgment 1 (step 505). Measurement with no fluorescence side filter at 0 (Step 506) and judgments from 2 to 4 for the fluorescence side filter No. When performing the fluorescence side filter presence measurement (steps 507 to 511) in 1 to 3, the fluorescence intensity may decrease due to the deterioration of the measurement sample by the excitation light. If data synthesis is performed in this state, a step occurs in the fluorescence intensity based on the result of measurement without a fluorescence filter (step 506) in judgment 1 (step 505) and the result of measurement with a fluorescence filter in judgments 2 to 4 (steps 507 to 512) .

図9に第2の実施例における3次元蛍光測定の判定フローチャートを記す。このような場合、フィルタ補正とデータ合成の間の過程(ステップ514)にて強度補正することで測定試料の劣化に伴う蛍光強度の段差を解消する。  FIG. 9 shows a determination flowchart of three-dimensional fluorescence measurement in the second embodiment. In such a case, the step of the fluorescence intensity due to the deterioration of the measurement sample is eliminated by performing the intensity correction in the process (step 514) between the filter correction and the data synthesis.

図10及び11に蛍光強度補正の概念図を記す。概念説明のために3次元蛍光スペクトルから切り出した励起波長Wex(nm)における2次元の蛍光スペクトルを記している。この時、図10に示す合成波長Wem3は蛍光側フィルタ1切替判定波長Wem1もしくは、蛍光側フィルタ1切替判定波長Wem2である。合成波長Wem3が蛍光側フィルタ1切替判定波長Wem1の場合、合成波長Wem3を境界に判定1(ステップ505)における蛍光側フィルタ無し測定(ステップ506)が短波長側に、判定2〜4における蛍光側フィルタ有り測定(ステップ507〜512)データが長波長側にスペクトル表示される。合成波長Wem3が蛍光側フィルタ2切替判定波長Wem2の場合、合成波長Wem3を境界に判定2(ステップ507)における蛍光側フィルタ有り測定(ステップ508)が短波長側に、判定3(ステップ509)における蛍光側フィルタ有り測定(ステップ510)データが長波長側にスペクトル表示される。10 and 11 show conceptual diagrams of fluorescence intensity correction. The two-dimensional fluorescence spectrum at the excitation wavelength Wex (nm) cut out from the three-dimensional fluorescence spectrum is described for conceptual explanation. At this time, the synthetic wavelength Wem3 shown in FIG. 10 is the fluorescence side filter 1 switching judgment wavelength Wem1 or the fluorescence side filter 1 switching judgment wavelength Wem2. When the synthetic wavelength Wem3 is the fluorescence side filter 1 switching judgment wavelength Wem1, the fluorescence side filter absence measurement (step 506) in the judgment 1 (step 505) at the synthetic wavelength Wem3 is on the short wavelength side, the fluorescence side in the judgment 2 to 4 The measurement data with filter (steps 507 to 512) is displayed in spectrum on the long wavelength side. When the synthetic wavelength Wem3 is the fluorescence side filter 2 switching judgment wavelength Wem2, the fluorescence wavelength filter present measurement in the judgment 2 (step 507) at the synthetic wavelength Wem3 (step 508) is on the short wavelength side in the judgment 3 (step 509) The fluorescence side filter presence measurement (step 510) data is spectrally displayed on the long wavelength side.

この時、合成波長Wem3には短波長側の蛍光強度データFsと長波長側の蛍光強度データFlがそれぞれ存在する。図10に示すように蛍光強度の段差が生じた場合、蛍光強度補正値fcとして、Fs/Flを取得する。この蛍光強度補正値fcを長波長側で得られた蛍光強度に掛け合わせることで蛍光強度が補正される(図11)。なお、この蛍光強度補正値fcは3次元蛍光スペクトルのそれぞれの励起波長Wex(nm)において取得し、蛍光強度補正する。測定条件や測定試料によって影響が異なることがあるため、蛍光強度補正シーケンスの有無は、ソフトウェアから選択しても良い。
次に第3の実施例を説明する。
At this time, fluorescence intensity data Fs on the short wavelength side and fluorescence intensity data Fl on the long wavelength side exist in the synthetic wavelength Wem3. As shown in FIG. 10, when a step of the fluorescence intensity occurs, Fs / Fl is acquired as the fluorescence intensity correction value fc. The fluorescence intensity is corrected by multiplying the fluorescence intensity correction value fc by the fluorescence intensity obtained on the long wavelength side (FIG. 11 ). The fluorescence intensity correction value fc is acquired at each excitation wavelength Wex (nm) of the three-dimensional fluorescence spectrum, and the fluorescence intensity is corrected. Since the influence may differ depending on the measurement conditions and the measurement sample, the presence or absence of the fluorescence intensity correction sequence may be selected from software.
A third embodiment will now be described.

実施例1において、判定2(ステップ507)として、3次元蛍光スペクトルの測定波長範囲に、蛍光側フィルタ1波長領域Aem1が含まれている場合、蛍光側フィルタNo1が挿入され、当該波長領域の3次元蛍光スペクトルを取得するが、この時、蛍光側フィルタ1波長領域Aem1における蛍光側測定開始波長Wems(nm)は、分析者が設定しようとしている測定開始波長及び測定終了波長と蛍光側フィルタ切替判断波長の大小を比較して、ステップ507、509、511における実際の蛍光側測定開始波長を決定する。
Wems≧Wem1
Wems:蛍光側測定開始波長 nm
Wem1:蛍光側フィルタ1切替判定波長nm
この場合は、分析者により設定された蛍光側測定開始波長Wems(nm)を選択する。
Wems<Wem1
となる場合は、判定波長Wem1を蛍光側測定開始波長とする。
同様に、蛍光側測定終了波長Weme(nm)は、
Weme≧Wem
の場合は、Wem2(nm)となる。 Weme<Wem2
の場合は、分析者により設定された蛍光側測定開始波長Weme(nm)となる。
蛍光側測定開始波長Wems(nm)に判定波長Wem1を適用することで、測定時間の短縮が図られる。
In Example 1, as the determination 2 (step 507), when the fluorescence side filter 1 wavelength range Aem1 is included in the measurement wavelength range of the three-dimensional fluorescence spectrum, the fluorescence side filter No1 is inserted, and 3 of the wavelength range At this time, the fluorescence side measurement start wavelength Wems (nm) in the fluorescence side filter 1 wavelength region Aem1 is determined as the measurement start wavelength and measurement end wavelength that the analyst intends to set, and the fluorescence side filter switching The magnitudes of the wavelengths are compared to determine the actual fluorescence-side measurement start wavelength in steps 507, 509, and 511.
Wems W Wem1
Wems: Fluorescence start measurement wavelength nm
Wem1: Fluorescence side filter 1 switching judgment wavelength nm
In this case, the fluorescence side measurement start wavelength Wems (nm) set by the analyst is selected.
Wems <Wem1
In the case of the above, the determination wavelength Wem1 is set as the fluorescence side measurement start wavelength.
Similarly, the fluorescence measurement end wavelength Weme (nm) is
Weme W Wem 2
In the case of, it becomes Wem2 (nm). Weme <Wem2
In the case of, the fluorescence side measurement start wavelength Weme (nm) set by the analyzer is obtained.
By applying the determination wavelength Wem1 to the fluorescence side measurement start wavelength Wems (nm), the measurement time can be shortened.

ここで、蛍光側測定開始波長Wems(nm)に蛍光側フィルタ1切替判定波長Wem1を適用せず、分析者により設定された蛍光側測定開始波長Wems(nm)を適用してもよい。  Here, the fluorescence side measurement start wavelength Wems (nm) may not be applied to the fluorescence side measurement start wavelength Wems (nm), and the fluorescence side measurement start wavelength Wems (nm) set by the analyst may be applied.

測定波長範囲が異なると蛍光側分光器7由来の機械的な波長誤差が生じることがある。蛍光側測定開始波長Wems(nm)に蛍光側フィルタ1切替判定波長Wem1を適用せず、分析者により設定された蛍光側測定開始波長Wems(nm)を適用することで、励起波長Wex(nm)に依存せず、常に一定の蛍光波長範囲となることから、機械的な波長精度を一定に保つことができる。その結果、データ合成における誤差を低下することができる。これは、判定3(ステップ509)、判定4(ステップ511)においても同様である。判定3(ステップ509)の場合は、以下の2式より蛍光側測定開始波長に設定されたWems(nm)を適用する。
Wems<Wem1
Wems<Wem2
If the measurement wavelength range is different, mechanical wavelength error derived from the fluorescence side spectroscope 7 may occur. By applying the fluorescence side measurement start wavelength Wems (nm) set by the analyst without applying the fluorescence side filter 1 switching judgment wavelength Wem1 to the fluorescence side measurement start wavelength Wems (nm), the excitation wavelength Wex (nm) The mechanical wavelength accuracy can be kept constant because the fluorescence wavelength range is always constant. As a result, errors in data synthesis can be reduced. The same applies to determination 3 (step 509) and determination 4 (step 511). In the case of determination 3 (step 509), Wems (nm) set to the fluorescence-side measurement start wavelength is applied according to the following two equations.
Wems <Wem1
Wems <Wem2

実施例1と実施例3における蛍光側測定開始波長の適用値の設定は、測定条件や測定試料によって影響が異なることがあるため、ソフトウェアから選択しても良い。  The setting of the application value of the fluorescence-side measurement start wavelength in the first embodiment and the third embodiment may be selected from software because the influence may differ depending on the measurement conditions and the measurement sample.

以上、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、本願の実施例においては、励起側カットフィルタあるいは蛍光側カットフィルタについて、それぞれ3種類を備えた例を示したが、それ以上備えてもかまわない。
As described above, the technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the present invention.
For example, in the embodiment of the present application, an example in which three types are provided for each of the excitation-side cut filter and the fluorescence-side cut filter has been shown, but more may be provided.

1 光源
2 励起側分光器
3 ビームスプリッタ
4 モニタ検知器
5 試料設置部(セル)
6 測定試料
7 蛍光側分光器
8 検知器
9 A/D変換器
10 コンピュータ
11 蛍光側パルスモーター
12 励起側パルスモーター
13 励起側フィルタパルスモーター
14 蛍光側フィルタパルスモーター
15 励起側フィルタ
16 蛍光側フィルタ
17 モニタ
18 操作パネル
100 光度計部
101 データ処理部
102 インターフェイス
Wrs レーリー散乱波長
Wre レーリー散乱光の2次光に相当する波長
Wex1 励起側フィルタ1切替波長
Wex2 励起側フィルタ2切替波長
Wex3 励起側フィルタ3切替波長
Wem1 蛍光側フィルタ1切替判定波長
Wem2 蛍光側フィルタ2切替判定波長
Aex0 励起側フィルタ無し波長領域
Aex1 励起側フィルタ1波長領域
Aex2 励起側フィルタ2波長領域
Aex3 励起側フィルタ3波長領域
Aem0 蛍光側フィルタ無し波長領域
Aem1 蛍光側フィルタ1波長領域
Aem2 蛍光側フィルタ2波長領域
Aem3 蛍光側フィルタ3波長領域
Wex12 蛍光側フィルタ2切替判定のための励起波長
Wex13 蛍光側フィルタ3切替判定のための励起波長
Wem3 合成波長
1 light source 2 excitation side spectroscope 3 beam splitter 4 monitor detector 5 sample setting part (cell)
6 measurement sample 7 fluorescence side spectroscope 8 detector 9 A / D converter 10 computer 11 fluorescence side pulse motor 12 excitation side pulse motor 13 excitation side filter pulse motor 14 fluorescence side filter pulse motor 15 excitation side filter 16 fluorescence side filter 17 Monitor 18 Operation panel 100 Photometer unit 101 Data processing unit 102 Interface Wrs Rayleigh scattering wavelength Wre Wavelength equivalent to secondary light of Rayleigh scattered light Wex1 Excitation filter 1 switching wavelength Wex2 Excitation filter 2 switching wavelength Wex3 Excitation filter 3 switching Wavelength Wem1 Fluorescence side filter 1 switching judgment wavelength Wem2 Fluorescence side filter 2 switching judgment wavelength Aex0 Excitation side filter without wavelength range Aex1 Excitation side filter 1 wavelength range Aex2 Excitation side filter 2 wavelength range Aex3 Excitation side filter 3 wavelength range Aem0 Fluorescence side filterless wavelength range Aem1 Fluorescence side filter 1 wavelength range Aem2 Fluorescence side filter 2 wavelength range Aem3 Fluorescence side filter 3 wavelength range Wex12 Excitation wavelength Wex13 for fluorescence side filter 2 switching judgment Excitation wavelength Wex13 for fluorescence side filter 3 switching judgment Excitation wavelength Wem3 synthetic wavelength

Claims (6)

測定する試料に照射される励起光の光源と
前記試料を設置する試料設置部と、
前記光源の光を前記励起光に分光する励起側分光器と、
前記励起光に基づく高次光を遮断する複数の励起側フィルタと、
当該複数の励起側フィルタから測定条件に応じて(1)励起光の1/2次光の波長領域を吸収し遮蔽すること(吸収判定)、(2)高い透過率の波長領域であること(高透過判定)、の2つの判定を同時に満たす該励起側フィルタを選択する励起側フィルタ選択手段と
選択した前記励起側フィルタを前記試料と前記光源との間の光学系に配置する励起側フィルタ移動機構と、
前記励起光の照射により前記試料から放出された蛍光を分光する蛍光側分光器と、
前記蛍光に基づく高次光を遮断する複数の蛍光側フィルタと、
当該複数の蛍光側フィルタから測定条件に応じて(1)励起光の散乱光の波長領域を吸収し遮蔽すること(蛍光側吸収判定)、(2)蛍光を高い割合で透過する波長領域であること(蛍光側高透過判定)、の2つの判定を同時に満たす該蛍光側フィルタを選択する選択手段と
選択した前記蛍光側フィルタを前記試料と前記蛍光側分光部との間の光学系に配置する蛍光側フィルタ移動機構と、
前記蛍光側フィルタ通過後の蛍光を検知する検知器と、
を備え、
前記励起光に基づく高次光と前記蛍光に基づく高次光の影響を抑制することを特徴とする分光蛍光分析装置。
A light source of excitation light to be irradiated to a sample to be measured, and a sample setting unit for setting the sample;
An excitation-side spectroscope that splits the light of the light source into the excitation light;
A plurality of excitation side filters for blocking high order light based on the excitation light;
(1) Absorb and block the wavelength region of half-order light of excitation light from the plurality of excitation side filters according to measurement conditions (absorption determination) (2) a wavelength region of high transmittance ((1) Excitation-side filter selection means for selecting the excitation-side filter simultaneously satisfying the two determinations (high transmission determination) and excitation-side filter movement for arranging the selected excitation side filter in the optical system between the sample and the light source Mechanism,
A fluorescence side spectroscope that disperses fluorescence emitted from the sample by the irradiation of the excitation light;
A plurality of fluorescent filters that block high-order light based on the fluorescence;
According to the measurement conditions, (1) absorbing and shielding the wavelength range of the scattered light of the excitation light from the plurality of fluorescence side filters (fluorescence side absorption determination), (2) a wavelength range transmitting the fluorescence at a high ratio it is placed in the optical system between the (fluorescent side high transmittance determination), the fluorescence-side filter and the selected selection means for selecting simultaneously satisfy the fluorescence side filter two determined and the sample of the fluorescence side spectroscope unit Fluorescence side filter moving mechanism,
A detector for detecting fluorescence after passing through the fluorescence side filter;
Equipped with
What is claimed is: 1. A spectrofluorimetric analyzer that suppresses the effects of high-order light based on the excitation light and high-order light based on the fluorescence.
前記励起側分光器による波長の範囲が200〜750nmであり、前記励起側フィルタが3種類備わる請求項1に記載の分光蛍光分析装置。 The range of the wavelength by the said excitation side spectroscope is 200-750 nm, The spectrofluorescent analyzer of Claim 1 provided with three types of said excitation side filters. 前記蛍光側分光器による波長の範囲が200〜750nmであり、前記蛍光側フィルタが3種類備わる請求項1又は2に記載の分光蛍光分析装置。 The spectral fluorescence analyzer according to claim 1 or 2, wherein the wavelength range of the fluorescence side spectroscope is 200 to 750 nm, and three types of the fluorescence side filters are provided. 請求項1乃至3に記載の分光蛍光分析装置を用いた3次元蛍光スペクトルの取得方法において、
励起光及び蛍光に関わる条件を特定する測定条件設定ステップと、
当該装置に備えた複数の励起側及び蛍光側のフィルタの条件を特定するフィルタ条件設定ステップと、
前記励起光の波長範囲と前記蛍光の波長範囲とにより決定する領域を前記測定条件設定ステップと前記フィルタ条件設定ステップとから計算に基づき前記励起側及び前記蛍光側の各フィルタの組み合わせからなるフィルタ群と当該フィルタで測定可能な範囲とを一組とする一領域として複数の領域に区分し、各領域の境界に関わる励起光波長及び蛍光波長をそれぞれ励起側フィルタ切替波長及び蛍光側フィルタ切替波長として認識する波長範囲の照合ステップと、
区分された複数の前記領域ごとに、励起側及び蛍光側のそれぞれ測定開始波長から測定終了波長までの範囲に当該領域が含まれるか否かの判定を行う判定ステップと、
前記判定ステップに従った領域を前記照合ステップにより決定した前記フィルタ群を用いて測定する測定ステップと、
前記測定スップにて取得したデータに使用したフィルタの蛍光強度値に基づいて透過率補正するフィルタ補正ステップと、
当該補正ステップにて補正した後の各領域のデータを合成することで全測定の範囲のデータとするデータ合成ステップと、
を含んでなる分光蛍光分析装置を用いた3次元蛍光スペクトルの取得方法。
In the method of acquiring a three-dimensional fluorescence spectrum using the spectrofluorimeter according to any one of claims 1 to 3.
A measurement condition setting step for specifying conditions related to excitation light and fluorescence;
A filter condition setting step of specifying the conditions of a plurality of filters on the excitation side and the fluorescence side provided in the apparatus;
A filter group comprising a combination of the excitation-side and the fluorescence-side filters based on calculations from the measurement condition setting step and the filter condition setting step, a region determined by the wavelength range of the excitation light and the wavelength range of the fluorescence And the range that can be measured by the filter are divided into a plurality of regions as one region, and the excitation light wavelength and the fluorescence wavelength related to the boundary of each region are respectively set as the excitation side filter switching wavelength and the fluorescence side filter switching wavelength Matching step of the wavelength range to be recognized;
A determination step of determining whether or not the area is included in the range from the measurement start wavelength to the measurement end wavelength on the excitation side and the fluorescence side for each of the plurality of divided areas;
Measuring the area according to the determining step using the filter group determined by the comparing step;
A filter correction step of correcting the transmittance based on the fluorescence intensity value of the filter used for the data acquired in the measurement step;
A data combining step of combining data of the respective areas after the correction in the correction step to obtain data of the entire measurement range;
A method of acquiring a three-dimensional fluorescence spectrum using a spectrofluorimeter comprising:
請求項4の3次元蛍光スペクトル取得方法において、前記フィルタ補正ステップと前記データ合成ステップの過程で発生した蛍光強度の低下を強度補正することを特長とした、
3次元蛍光スペクトルの取得方法。
The three-dimensional fluorescence spectrum acquisition method according to claim 4, characterized in that the reduction of the fluorescence intensity generated in the process of the filter correction step and the data synthesis step is intensity corrected.
How to obtain 3D fluorescence spectrum.
請求項4に記載の前記フィルタ条件設定ステップが、任意に選択した測定開始波長及び測定終了波長と蛍光側フィルタ切替波長の大小を比較して、前記蛍光側の測定開始波長及び前記測定終了波長を決定する、
3次元蛍光スペクトルの取得方法。
The filter condition setting step according to claim 4 compares the measurement start wavelength and the measurement end wavelength arbitrarily selected with the fluorescence side filter switching wavelength, and measures the measurement start wavelength and the measurement end wavelength on the fluorescence side. decide,
How to obtain 3D fluorescence spectrum.
JP2014190499A 2014-09-02 2014-09-02 Spectrofluorometer and method of acquiring three-dimensional fluorescence spectrum using the same Active JP6541949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014190499A JP6541949B2 (en) 2014-09-02 2014-09-02 Spectrofluorometer and method of acquiring three-dimensional fluorescence spectrum using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014190499A JP6541949B2 (en) 2014-09-02 2014-09-02 Spectrofluorometer and method of acquiring three-dimensional fluorescence spectrum using the same

Publications (2)

Publication Number Publication Date
JP2016053560A JP2016053560A (en) 2016-04-14
JP6541949B2 true JP6541949B2 (en) 2019-07-10

Family

ID=55745071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014190499A Active JP6541949B2 (en) 2014-09-02 2014-09-02 Spectrofluorometer and method of acquiring three-dimensional fluorescence spectrum using the same

Country Status (1)

Country Link
JP (1) JP6541949B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466158A (en) * 2021-08-12 2021-10-01 江苏省计量科学研究院(江苏省能源计量数据中心) Method for rapidly detecting metering performance of optical filter

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607330A (en) * 1983-06-27 1985-01-16 Shimadzu Corp Spectrophotometer
JPH01126519A (en) * 1987-11-11 1989-05-18 Nikon Corp High speed scanning spectroscope
JPH07198487A (en) * 1993-12-31 1995-08-01 Horiba Ltd Spectroscope
AU2003273668A1 (en) * 2002-10-02 2004-04-23 Ifire Technology Corp.Lumen Health Innovations, Inc. Apparatus and methods relating to high speed spectroscopy and excitation-emission matrices
US8119066B2 (en) * 2006-02-08 2012-02-21 Molecular Devices, Llc Multimode reader
JP5033531B2 (en) * 2007-07-30 2012-09-26 株式会社日立ハイテクノロジーズ Spectrofluorometer
WO2010024397A1 (en) * 2008-08-28 2010-03-04 独立行政法人理化学研究所 Raman scattering measurement device
JP5584488B2 (en) * 2010-02-16 2014-09-03 株式会社相馬光学 Scanning grating spectrometer
US8901513B2 (en) * 2011-03-08 2014-12-02 Horiba Instruments, Incorporated System and method for fluorescence and absorbance analysis

Also Published As

Publication number Publication date
JP2016053560A (en) 2016-04-14

Similar Documents

Publication Publication Date Title
EP2594922B1 (en) Analytical apparatus and analytical method
US7337066B2 (en) System and method for automated baseline correction for Raman spectra
JP6888085B2 (en) Raman spectroscopy and equipment
CN102246015A (en) Monochromator comprising variable wavelength selector in combination with tunable interference filter
JP2016080429A (en) Spectral measurement device
Murphy A note on determining the extent of the water Raman peak in fluorescence spectroscopy
CN106104202B (en) Measuring optics method for measurement and system
JP2012098181A (en) Device and method for detection
US7257289B2 (en) Spectral microscope and method for data acquisition using a spectral microscope
CN110987898A (en) Spatial heterodyne offset Raman spectrum detection device and detection method thereof
JP6541949B2 (en) Spectrofluorometer and method of acquiring three-dimensional fluorescence spectrum using the same
TWI739842B (en) Observation device and observation method
EP2175301B1 (en) Method for imaging a sample using a microscope, microscope and data storage carrier
JP2009047586A (en) X-ray analysis device conducting chemical bonding state analysis
JP4474582B2 (en) Fluorescence detection method
JP2012047502A (en) Spectroscopic image acquisition device and method
US20220187126A1 (en) Broadband pulsed light source apparatus
JP5811956B2 (en) Spectrometer calibration apparatus and calibration method
EP0481823B1 (en) Fluorescence measurement apparatus
JP2014098626A (en) Colorant identification method, and colorant identification apparatus
EP4067842A1 (en) Height measurement apparatus and height measurement method
JP5488360B2 (en) Spectrofluorometer
JP5033531B2 (en) Spectrofluorometer
US8873040B2 (en) Raman apparatus and method for real time calibration thereof
WO2018149607A1 (en) Micro-spectrometer, method, and controller for operating a micro-spectrometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190612

R150 Certificate of patent or registration of utility model

Ref document number: 6541949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250