JP6541121B2 - Can body and method of manufacturing can body - Google Patents

Can body and method of manufacturing can body Download PDF

Info

Publication number
JP6541121B2
JP6541121B2 JP2014175017A JP2014175017A JP6541121B2 JP 6541121 B2 JP6541121 B2 JP 6541121B2 JP 2014175017 A JP2014175017 A JP 2014175017A JP 2014175017 A JP2014175017 A JP 2014175017A JP 6541121 B2 JP6541121 B2 JP 6541121B2
Authority
JP
Japan
Prior art keywords
slip
steel plate
lid
dynamic friction
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014175017A
Other languages
Japanese (ja)
Other versions
JP2016049987A (en
Inventor
勇治郎 森岡
勇治郎 森岡
小林 伸之
伸之 小林
孝典 尾熊
孝典 尾熊
伊知郎 中山
伊知郎 中山
啓 久保
啓 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014175017A priority Critical patent/JP6541121B2/en
Publication of JP2016049987A publication Critical patent/JP2016049987A/en
Application granted granted Critical
Publication of JP6541121B2 publication Critical patent/JP6541121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rigid Containers With Two Or More Constituent Elements (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、缶体および缶体の製造方法に関する。   The present invention relates to a can and a method of manufacturing the can.

缶用分野では、ラミネート鋼板を用いたラミネート缶への切り替えが進んでいる(例えば、特許文献1を参照)。これは、従来の塗装鋼板等と比較して、ラミネート鋼板は、耐食性、耐疵付性(疵付きにくさ)等に優れ、市場で好評価されているためである。   In the field for cans, the switch to laminated cans using laminated steel plates is in progress (see, for example, Patent Document 1). This is because the laminated steel plate is superior in corrosion resistance, scratch resistance (hardness to wrinkles) and the like compared to the conventional coated steel plate and the like, and is well evaluated in the market.

特開2008−080594号公報JP 2008-080594 A

缶体として、例えば、18L缶や変寸缶(18L缶の高さを変えたもの)が知られている。なお、以下では、特に断りのない限り「18L缶」および「変寸缶」をまとめて「18L缶」と呼ぶ。
ところで、18L缶の分野において、ラミネート鋼板は、缶胴部の部材としては使用されているが、缶蓋部の部材としては使用されていない。缶蓋部は、その一部が接地部となるが、他の部位と同様に、錆等の問題を抱えている。
そこで、本発明者は、18L缶の耐食性を向上させる観点から、缶蓋部の部材としてラミネート鋼板を用いることについて、検討を行なった。
その結果、缶蓋部の部材としてラミネート鋼板を用いた場合に、缶体が滑りやすくなり、缶体の搬送に支障をきたすことが明らかとなった。具体的には、例えば、金属製ロールコンベアで搬送したときに、缶体が搬送ロールに対して滑ることで、搬送ロールが空転し、缶体の搬送が遅れる場合があることが明らかとなった。搬送が遅れると、缶体どうしがライン内で接触したり、接触の衝撃で缶体が転倒したりするなどのトラブルが生じる。また、缶体を固定せずに複数段積層した状態で搬送する場合には、小さな衝撃により缶体がずれたり脱落したりする問題が発生する。
As cans, for example, 18 L cans and scaled cans (the ones with different heights of 18 L cans) are known. In addition, below, unless there is particular notice, "18 L can" and "size change can" are collectively called "18 L can."
By the way, in the field of 18L cans, laminated steel plates are used as members of can barrels, but are not used as members of can lids. Although the can lid part becomes a grounding part in part, it has the problem of rust etc. like the other part.
Then, the present inventor examined using a laminated steel plate as a member of a can lid part from a viewpoint of improving corrosion resistance of an 18L can.
As a result, it has become clear that when the laminated steel plate is used as a member of the can lid, the can becomes slippery, which hinders the conveyance of the can. Specifically, for example, when transported by a metal roll conveyor, it became clear that the transport roll slips due to slippage of the can relative to the transport roll, and the transport of the can may be delayed. . If conveyance is delayed, problems such as the cans coming in contact with each other in the line or the cans falling due to the impact of the contact may occur. Moreover, when conveying in the state which laminated | stacked multiple steps | stages, without fixing a can, the problem in which a can slip | deviates or drops out by small impact generate | occur | produces.

本発明は、以上の点を鑑みてなされたものであり、耐食性および耐滑り性が共に優れた缶体を提供することを目的とする。   This invention is made in view of the above point, and an object of this invention is to provide the can excellent in both corrosion resistance and slip resistance.

本発明者らは、以下の構成を採用することにより、上記目的が達成できることを見出した。すなわち、本発明は、以下の(1)〜(7)を提供する。
(1)円筒形または角筒形である缶胴部と、上記缶胴部の両端面に接合した缶蓋部とを備える缶体であって、上記缶蓋部を構成する部材が、ラミネート鋼板であり、少なくとも一方の上記缶蓋部の一部が接地部であり、上記接地部に滑止塗装が施されており、上記缶蓋部を構成する部材で作製した面に上記接地部を接地させて測定される動摩擦係数が、0.27以上である、缶体。
(2)上記動摩擦係数が、0.30以上である、上記(1)に記載の缶体。
(3)両方の上記缶蓋部に、上記滑止塗装が施された上記接地部を有する、上記(1)または(2)に記載の缶体。
(4)上記滑止塗装に用いる塗料が、滑止成分を含有し、上記滑止成分の固形分の含有量が、上記塗料中の全固形分100質量%に対して3〜10質量%である、上記(1)〜(3)のいずれかに記載の缶体。
(5)上記滑止成分が、松脂である、上記(4)に記載の缶体。
(6)18L缶および変寸缶の少なくともいずれかである、上記(1)〜(5)のいずれかに記載の缶体。
(7)上記(1)〜(6)に記載の缶体を製造する、缶体の製造方法であって、上記缶胴部および上記缶蓋部を有する缶体を準備する工程と、上記準備した缶体が有する上記缶蓋部の一部である上記接地部に上記滑止塗装を施す工程と、を備える缶体の製造方法。
The present inventors have found that the above object can be achieved by adopting the following configuration. That is, the present invention provides the following (1) to (7).
(1) A can comprising a can body having a cylindrical or rectangular shape and a can lid joined to both end surfaces of the can barrel, wherein the member constituting the can lid is a laminated steel plate A portion of at least one of the can lids is a grounding portion, the non-slip coating is applied to the grounding portions, and the grounding portion is grounded to a surface made of a member constituting the can lids. The can body whose dynamic friction coefficient measured by making it be 0.27 or more.
(2) The can according to (1), wherein the dynamic friction coefficient is 0.30 or more.
(3) The can according to the above (1) or (2), which has the above-mentioned ground contact portion on which the above-mentioned anti-slip coating is applied to both of the above-mentioned can lids.
(4) The paint used for the anti-slip coating contains a non-slip component, and the solid content of the non-slip component is 3 to 10% by mass with respect to 100% by mass of the total solid content in the above-mentioned paint The can according to any one of the above (1) to (3).
(5) The can according to the above (4), wherein the non-slip component is rosin.
(6) The can according to any one of the above (1) to (5), which is at least one of an 18 L can and a scaled can.
(7) A method for producing a can according to any one of (1) to (6) above, comprising the steps of: preparing a can having the can body and the can lid; And D. applying the anti-slip coating to the ground contact portion which is a part of the can lid portion of the can body.

本発明によれば、耐食性および耐滑り性が共に優れた缶体を提供できる。   According to the present invention, it is possible to provide a can which is excellent in both corrosion resistance and slip resistance.

缶体を示す斜視図である。It is a perspective view showing a can. 缶体を底面側から見た斜視図である。It is the perspective view which looked at the can from the bottom side. 缶体の一部を示す断面図である。It is a sectional view showing a part of can. 缶体の動摩擦係数を測定するための試験方法を示す模式図である。It is a schematic diagram which shows the test method for measuring the dynamic friction coefficient of a can.

<本発明を完成させるに至った経緯>
まず、本発明者が、本発明を完成させるに至った経緯について説明する。
一般的に、耐滑り性を改善する(滑りにくくする)ためには、形状を変更し、物理的に凹凸が噛み合う機構を設けることが考えられる。缶体でいえば、缶体の構造(形状)を工夫し、積層した際に物理的な引っ掛かりができる構造を採用することが考えられる。しかし、この方法では、缶体どうしの積層時には効力を発揮しても、ロールコンベア上での耐滑り性は改善できない。また、缶体の形状を損なう点も考慮すると採用が難しい。缶体の構造を変えることなく、耐滑り性を改善するためには、表面の摩擦係数を上げる方法が考えられる。
そこで、本発明者は、摩擦係数の指標として平板の静摩擦係数に着目し、ラミネート鋼板の表面改質を試みた。しかしながら、静摩擦係数が例えば従来の塗装鋼板と同等であっても、缶体の耐滑り性は、塗装鋼板を用いた場合と比べて著しく劣ることが明らかとなった。すなわち、平板の静摩擦係数は、缶体の耐滑り性の指標にはならないことが判明した。
例えば、後述する比較例1(塗装鋼板)の平板での静摩擦係数は0.31であり、比較例2(ラミネート鋼板)の平板での静摩擦係数は0.32であり、両者の平板での静摩擦係数はほぼ同等であったが、後者は前者に対して、耐滑り性が劣っていた。このことから、平板の静摩擦係数を評価しても缶体にしたときの耐滑り性を評価できないことがわかった。
<The process to reach the completion of the present invention>
First, the circumstances under which the present inventor has completed the present invention will be described.
Generally, in order to improve the slip resistance (make the slip resistant), it is conceivable to change the shape and to provide a mechanism in which the unevenness is physically engaged. In the case of a can body, it is conceivable to devise a structure (shape) of the can body and adopt a structure in which physical sticking is possible when stacked. However, this method can not improve the slip resistance on the roll conveyor even if it is effective at the time of stacking the cans. In addition, it is difficult to adopt considering that the shape of the can body is impaired. In order to improve the slip resistance without changing the structure of the can, it is conceivable to increase the coefficient of friction of the surface.
Then, the present inventor tried surface modification of a laminated steel plate paying attention to the static friction coefficient of a flat plate as an index of a friction coefficient. However, even if the static friction coefficient is equivalent to that of, for example, a conventional coated steel sheet, it has become clear that the slip resistance of the can is significantly inferior to the case where the coated steel sheet is used. That is, it was found that the static friction coefficient of the flat plate was not an indicator of the slip resistance of the can body.
For example, the static friction coefficient of the flat plate of Comparative Example 1 (painted steel plate) described later is 0.31, the static friction coefficient of the flat plate of Comparative Example 2 (laminated steel plate) is 0.32, and the static friction of both flat plates The coefficients were almost equal, but the latter was inferior to the former in slip resistance. From this, it is understood that the slip resistance of the can body can not be evaluated even by evaluating the static friction coefficient of the flat plate.

摩擦係数の上げ方についても、問題が見出された。摩擦係数を上げる方法としては、例えば、表面エネルギーを高くすること、表面に微細な凹凸を設けること等が挙げられる。そこで、ラミネート鋼板に用いるフィルムとして、ポリプロピレン(PP)等のオレフィンフィルムよりも、表面エネルギーが高いPET(ポリエチレンテレフタレート)フィルムが有利と考えたが、これらに大きな差異はなく、十分な効果が得られなかった。また、ラミネートフィルム表面にレーザー処理で凹凸をつける方法を検討したが、こちらも十分な効果は得られなかった。
また、フィルムそのものに改良を加える場合、特別仕様のフィルムとなるため、著しいコスト増に繋がることも問題となった。すなわち、フィルムの小規模製造は困難であるため、特殊品を製造する場合は非効率となり著しいコスト増となる。
そこで、ラミネート鋼板の表面に塗装を施すという手段を検討することに至った。塗装に用いる塗料は、ラミネートと比較すると、もともとのバリエーションが広く、また、製造プロセス上、小回りも利くため、特殊品であっても比較的安価に製造できる。しかし、いずれにしても、従来材と比較するとコスト増となるのは避けられないため、できるだけ安価に留める工夫が必要であった。
Problems were also found in how to increase the coefficient of friction. Examples of a method of increasing the coefficient of friction include increasing the surface energy and providing fine asperities on the surface. Therefore, we thought that a PET (polyethylene terephthalate) film with higher surface energy is more advantageous than an olefin film such as polypropylene (PP) as a film used for laminated steel plates, but there is no big difference in these and sufficient effects can be obtained It was not. Moreover, although the method of making an unevenness | corrugation on a laminate film surface by laser processing was examined, a sufficient effect was not acquired here.
In addition, when the film itself is improved, it becomes a special specification film, resulting in a significant increase in cost. That is, since the small-scale production of a film is difficult, it is inefficient when producing a special product, resulting in a significant increase in cost.
Then, it came to study the means to paint on the surface of a lamination steel plate. The paint used for coating has a wide range of original variations as compared to the laminate, and can be easily rotated in the manufacturing process, so even special products can be manufactured relatively inexpensively. However, in any case, it is inevitable to increase the cost as compared with the conventional material, so it is necessary to devise to keep the cost as low as possible.

問題点を整理すると、次の3点である。(1)平板での静摩擦係数では、缶体における耐滑り性が評価できない場合がある。(2)ラミネートフィルムの改良はコスト増につながる。(3)ラミネート鋼板の表面に塗装する場合でもコスト増に繋がる。これらの観点から、缶体の滑りについて詳細な調査を実施した。
平板での静摩擦係数では、缶体における耐滑り性が評価できない可能性が高いことから、まず、ラミネート鋼板を用いた缶体と、従来材(塗装TFS、裸ぶりき)を用いた缶体との滑り方の違いを調べた。傾斜面での滑り挙動を観察した結果、従来材を用いた場合は、滑り始めても一挙に滑らず、途中で止まるケースもあったが、ラミネート鋼板を用いた場合は、一旦滑り始めると加速度的に速く滑る結果となった。このことから、ラミネート鋼板が滑りやすいのは、一度滑り始めると止まりにくい特性に起因することが推定された。このような観点から、本発明者は、動摩擦係数が高い材料を用いるという思想に至った。動摩擦係数の高い材料で缶体を試作し、搬送テストを実施したところ、実際の搬送でも滑りにくいことが判明した。
動摩擦係数を上げる方法としては、ラミネート鋼板に滑止塗装する方法を採用した。そして、缶蓋部の接地部にのみ塗装を施すことで、必要のない部分の塗装を省き、経済的にも最小限の負荷となる設計とした。
以上の検討により、改善の概要は定まったが、もう一つの問題が残った。すなわち、平板での動摩擦係数を指標とした場合、同じ動摩擦係数であっても、缶体にした場合には、缶体の種類、形状、製造条件などによって一様に十分な効果を得ることができるとは限らないという問題である。18L缶(変寸缶を含む)では、巻締部の頂点が接地部となるが、巻締部の形状や缶体の歪みにより、設地面積や接地ポイントが異なる。このことから、動摩擦係数の測定を缶体で評価することに思い至った。缶体での動摩擦係数と耐滑り性とを確認したところ、良い相関が得られることが確認された。
The problems are summarized in the following three points. (1) The coefficient of static friction of a flat plate may not be able to evaluate the slip resistance of the can body. (2) The improvement of the laminate film leads to an increase in cost. (3) Even in the case of coating on the surface of a laminated steel sheet, the cost increases. From these viewpoints, a detailed investigation was conducted on the slip of the can.
The coefficient of static friction in flat plates is highly likely that the slip resistance in cans can not be evaluated. First, cans using laminated steel plates and cans using conventional materials (paint TFS, bare-frying) I examined the difference in how to slide. As a result of observing the sliding behavior on the inclined surface, in the case of using the conventional material, it does not slip at once even if it starts sliding, and there is also a case that stops in the middle. The result was a quick slide. From this, it was estimated that the slippage of the laminated steel sheet is due to the characteristic that it is difficult to stop once it starts to slip. From such a point of view, the present inventor came to the idea of using a material having a high coefficient of dynamic friction. When a can was made from a material having a high coefficient of dynamic friction and a transfer test was conducted, it was found that it was difficult to slip even in actual transfer.
As a method of increasing the coefficient of dynamic friction, a method of anti-slip coating on a laminated steel plate was adopted. And by painting only on the grounding part of the can lid part, coating of unnecessary parts is omitted, and it is designed to be economically minimum load.
Although the outline of the improvement was decided by the above examination, another problem remained. That is, when the coefficient of dynamic friction on a flat plate is used as an index, even if the coefficient of dynamic friction is the same, if it is used as a can, uniform effects can be obtained depending on the type, shape and manufacturing conditions of the can. The problem is that it is not always possible. In the case of an 18L can (including a variable-sized can), the top of the wound portion is the ground portion, but the ground area and the ground point are different depending on the shape of the wound portion and the distortion of the can. From this, I came to think of evaluating the measurement of the coefficient of dynamic friction with a can. When the dynamic friction coefficient and the slip resistance in the can body were confirmed, it was confirmed that a good correlation was obtained.

<好適態様>
次に、本発明の好適態様について、図1〜図3に基づいて説明する。図1〜図3では、18L缶(変寸缶を含む)である缶体1を例に示すが、基本的な構造そのものは、従来の18L缶の構造と何ら変わるものではなく、また、その製造方法(製缶方法)も特に限定されず、従来公知の方法を用いることができる。もっとも、本発明は、これに限定されるものではなく、例えば、ペール缶、食缶、飲料缶、その他一般缶などであってもよい。
<Preferred embodiment>
Next, preferred embodiments of the present invention will be described based on FIGS. 1 to 3. Although FIGS. 1 to 3 show an example of the can 1 which is an 18L can (including a variable size can), the basic structure itself is not different from the conventional 18L can, and The manufacturing method (the can making method) is also not particularly limited, and a conventionally known method can be used. However, the present invention is not limited to this, and may be, for example, pails, food cans, beverage cans, and other general cans.

図1は、缶体を示す斜視図である。図2は、缶体を底面側から見た斜視図である。図3は、缶体の一部を示す断面図である。
缶体1は、内部が空洞である四角筒形の缶胴部2を有する。缶胴部2の開口を塞ぐようにして、缶胴部2の両端面には、四角形の缶蓋部3が接合されている。一方の缶蓋部3(缶蓋部3a)には、手環6および充填口7が設けられており(図1参照)、本態様においては、他方の缶蓋部3(缶蓋部3b)が、缶体1の底面側に位置付けられる。
FIG. 1 is a perspective view showing a can. FIG. 2 is a perspective view of the can body as viewed from the bottom side. FIG. 3 is a cross-sectional view showing a part of the can.
The can 1 has a square cylindrical can body 2 whose inside is hollow. A rectangular can lid 3 is joined to both end surfaces of the can barrel 2 so as to close the opening of the can barrel 2. A hand ring 6 and a filling port 7 are provided on one can lid 3 (can lid 3a) (see FIG. 1), and in the present embodiment, the other can lid 3 (can lid 3b) Are positioned on the bottom side of the can 1.

なお、缶体1によっては、缶胴部2の形状は、四角筒形に限定されず、三角筒形やその他の多角筒形であってもよい。また、缶体1がペール缶などである場合は、缶胴部2は円筒形であり、これに接合される缶蓋部3の形状も円形となる。   In addition, depending on the can 1, the shape of the can body 2 is not limited to the square cylinder, and may be a triangular cylinder or another polygonal cylinder. Moreover, when the can 1 is a pail etc., the can body part 2 is cylindrical shape, and the shape of the can lid part 3 joined to this also becomes circular.

図3に示すように、缶蓋部3を構成する部材は、缶胴部2を構成する部材に対して、巻き締めして接合されており、巻締部4が形成されている。巻締部4においては、缶蓋部3を構成する部材が外面に露出している。
巻締部4は、缶蓋部3(缶蓋部3b)が形成する面31に対して、缶体1の高さ方向に突出している。このため、缶蓋部3bを底面側にした状態で缶体1を地面等の平面上に置いたとき、巻締部4の最端部分(缶体1を断面視した場合には巻締部4の頂点)が平面に触れる接地部5となる。換言すれば、巻締部4における缶蓋部3を構成する部材、すなわち、缶蓋部3(缶蓋部3b)の一部が、接地部5となる。
As shown in FIG. 3, the member constituting the can lid portion 3 is wound and joined to the member constituting the can body portion 2, and a wound portion 4 is formed. In the tightening portion 4, a member constituting the can lid 3 is exposed to the outer surface.
The tightening portion 4 protrudes in the height direction of the can 1 with respect to the surface 31 formed by the can lid 3 (the can lid 3 b). For this reason, when the can 1 is placed on a flat surface such as the ground with the can lid 3b on the bottom side, the end portion of the winding clamp 4 (the winding clamp when the can 1 is viewed in cross section) The top of 4) is the ground contact portion 5 touching a plane. In other words, a member constituting the can lid 3 in the winding tightening unit 4, that is, a part of the can lid 3 (can lid 3 b) is the ground contact 5.

上記構造を有する缶体1においては、缶胴部2を構成する部材がラミネート鋼板であり、さらに、缶蓋部3を構成する部材もラミネート鋼板である。なお、缶胴部2および缶蓋部3を構成する部材において、ラミネートは、少なくとも缶体1の外面となる面に被覆されており、内面となる面における被覆の有無については特に限定されない。   In the can 1 which has the said structure, the member which comprises the can trunk | drum 2 is a lamination steel plate, and the member which comprises the can lid part 3 is also a lamination steel plate. In the members constituting the can body 2 and the can lid 3, the laminate is coated at least on the surface to be the outer surface of the can 1, and the presence or absence of the coating on the surface to be the inner surface is not particularly limited.

上述したように、巻締部4においては、缶蓋部3を構成する部材が外面に露出している。このため、缶蓋部3を構成する部材がラミネート鋼板である缶体1においては、ラミネートが外面に露出している。すなわち、接地部5においては、ラミネートが直接的に地面等に接する。
このような缶体1では、缶蓋部3を構成する部材がラミネート鋼板であるため、缶蓋部3、とりわけ、接地部5に発生し得る錆等に対する耐性は良好であり、耐食性に優れる。
As described above, in the tightening portion 4, the member constituting the can lid 3 is exposed to the outer surface. For this reason, in the can 1 in which the member which comprises the can cover part 3 is a laminated steel plate, the laminate is exposed to the outer surface. That is, in the ground portion 5, the laminate is in direct contact with the ground or the like.
In such a can 1, since the member constituting the can lid 3 is a laminated steel plate, the resistance to rust or the like that may occur in the can lid 3, particularly, the ground 5 is good, and the corrosion resistance is excellent.

しかし、接地部5では、ラミネートが直接的に地面等に接するため、缶体1の耐滑り性に問題が生じ得る。
そこで、本発明においては、少なくとも接地部5に、滑止塗装(図示せず)を施すことで、缶体1の動摩擦係数を0.27以上としている。これにより、一般的なロールコンベアでの搬送で遅れが生じない十分な耐滑り性を示す。このことは、後述する[実施例]で示す結果からも明らかである。
However, since the laminate is in direct contact with the ground or the like at the ground contact portion 5, a problem may occur in the slip resistance of the can 1.
Therefore, in the present invention, the dynamic friction coefficient of the can 1 is made 0.27 or more by applying anti-slip coating (not shown) to at least the ground portion 5. This shows sufficient slip resistance which does not produce a delay by conveyance by a general roll conveyor. This is also apparent from the results shown in the below-described Examples.

<動摩擦係数>
缶体1の動摩擦係数は、0.27以上であれば特に限定されないが、耐滑り性がより優れるという理由から、0.30以上が好ましい。動摩擦係数が0.30以上であれば、缶蓋部3(その一部が接地部5となる)を構成する部材として塗装鋼板を用いた場合と同等以上の耐滑り性が得られる。
<Dynamic friction coefficient>
The dynamic friction coefficient of the can 1 is not particularly limited as long as it is 0.27 or more, but is preferably 0.30 or more because the slip resistance is more excellent. If the dynamic friction coefficient is 0.30 or more, the same or higher slip resistance as in the case of using a coated steel plate as a member constituting the can lid 3 (a part of which becomes the ground contact 5) can be obtained.

一方、缶体1の動摩擦係数の上限値は、特に限定されず、必要に応じて上げることができるが、使用環境によっては滑らなさ過ぎることが問題となる場合もあることから、例えば、0.50以下が挙げられ、0.40以下が好ましい。   On the other hand, the upper limit value of the dynamic friction coefficient of the can 1 is not particularly limited and can be increased as necessary, but depending on the use environment, there may be a problem of being too slippery. 50 or less are mentioned and 0.40 or less is preferable.

なお、本発明において、缶体1の動摩擦係数は、缶蓋部3を構成する部材で作製した面に接地部5を接地させて測定される動摩擦係数であり、缶蓋部3を構成する部材で作製した斜面上で缶体1を滑らせたときの動摩擦係数である。
このとき、作製する面(斜面)においては、缶蓋部3を構成する部材が、片面側のみラミネート(後述する比較例1では塗装)された部材である場合には、このラミネート面(塗装面)を、缶体1の接地部5と接する側の面にすることは、言うまでもない。
動摩擦係数のより詳細な測定方法については、後述する[実施例]に記載する。
In the present invention, the dynamic friction coefficient of the can 1 is a dynamic friction coefficient measured by bringing the ground portion 5 into contact with the surface made of the member constituting the can lid 3, and the members constituting the can lid 3 It is a dynamic friction coefficient when the can 1 is slid on the slope produced by above.
At this time, in the surface to be produced (sloped surface), when the member constituting the can lid portion 3 is a member laminated on only one side (painted in Comparative Example 1 described later), this laminated surface (painted surface) It goes without saying that the surface of the can 1 is in contact with the ground 5 of the can 1.
A more detailed measurement method of the dynamic friction coefficient will be described in [Examples] described later.

<ラミネート鋼板>
ラミネート鋼板は、鋼板と、鋼板の少なくとも片面側に被覆されたラミネートフィルムとから構成される。
ラミネート鋼板の基板となる鋼板としては、特に限定されず、従来公知の鋼板を用途に応じて適宜使用できる。例えば、鋼板の表面に各種表面処理を施した表面処理鋼板が挙げられ、なかでも、下層が金属クロム、上層がクロム水酸化物からなる二層皮膜を形成させた表面処理鋼板(いわゆるTFS)等が好適に挙げられるが、これに限定されない。
また、ラミネートされる鋼板としては、従来の塗装材(塗装鋼板)や裸ぶりき材などであってもよい。
基板となる鋼板の板厚は、特に限定されず、缶体の用途に応じて各種板厚を選択できる。一般的な缶体を構成する板厚としては、例えば0.15〜0.60mm程度が挙げられるが、これらの範囲が好適であるのはいうまでもない。
<Laminated steel plate>
The laminated steel plate is composed of a steel plate and a laminated film coated on at least one side of the steel plate.
It does not specifically limit as a steel plate used as a board | substrate of a laminated steel plate, A conventionally well-known steel plate can be used suitably according to a use. For example, a surface-treated steel sheet in which the surface of the steel sheet is subjected to various surface treatments may be mentioned. Among them, a surface-treated steel sheet (so-called TFS) or the like on which a two-layer film in which the lower layer is chromium and the upper layer is chromium hydroxide. Is preferably mentioned, but not limited thereto.
Moreover, as a steel plate to be laminated, a conventional coated material (painted steel plate), a bare iron material or the like may be used.
The thickness of the steel plate as the substrate is not particularly limited, and various thicknesses can be selected according to the application of the can. As a plate thickness which comprises a general can, although about 0.15-0.60 mm is mentioned, it goes without saying that these ranges are suitable.

ラミネートフィルムの樹脂種としては、特に限定されないが、例えば、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート−ポリブチレンテレフタレート共重合体(PET−PBT)、ポリエチレンテレフタレート−ポリエチレンイソフタレート共重合体(PET−PEI)、ポリエチレンテレフタレート−ポリエチレンイソフタレート−ポリブチレンテレフタレート共重合体(PET−PEI−PBT)等が挙げられる。
本発明では、滑止塗装をラミネートフィルム上に施す構成としたので、ラミネートフィルムの厚さは、特に限定されず、缶体として必要な他の性能で決定することができる。一般的な缶体を構成するラミネート鋼板におけるラミネートフィルムの膜厚としては、例えば10〜100μm程度が挙げられるが、これらの範囲が好適であるのはいうまでもない。
なお、鋼板に対するラミネートフィルムの被覆方法も、特に限定されず、例えば、熱圧着法や、溶融押し出し法などの従来公知の方法を用いて行なうことができる。
The resin type of the laminate film is not particularly limited. For example, polyethylene terephthalate (PET), polypropylene (PP), polybutylene terephthalate (PBT), polyethylene terephthalate-polybutylene terephthalate copolymer (PET-PBT), polyethylene terephthalate -Polyethylene isophthalate copolymer (PET-PEI), polyethylene terephthalate-polyethylene isophthalate-polybutylene terephthalate copolymer (PET-PEI-PBT), etc. may be mentioned.
In the present invention, since the anti-slip coating is applied on the laminate film, the thickness of the laminate film is not particularly limited, and can be determined by other performance required as a can. As a film thickness of a lamination film in a lamination steel plate which constitutes a general can, although about 10-100 micrometers are mentioned, it is needless to say that these ranges are suitable.
In addition, the coating method of the laminated film with respect to a steel plate is not specifically limited, either, For example, it can carry out using conventionally well-known methods, such as a thermocompression-bonding method and a melt extrusion method.

<滑止塗装および塗料>
缶体1の接地部5に施される滑止塗装に用いる塗料(以下、「滑止塗料」ともいう)としては、缶体の動摩擦係数が0.27以上になる塗料であれば特に限定されないが、缶体を形成したあとに接地部のみに塗装する作業性を考慮した場合、滑止塗料としては、例えば、酸化重合型アルキッド樹脂、スチレン化アルキッド樹脂などの樹脂を含む1液型常温乾燥塗料;メラミン変性アルキッド樹脂などの樹脂を含む1液型焼付塗料;エポキシ樹脂−ポリアミド樹脂系、ポリエステルポリオール樹脂−イソシアネート系などの2液型常温乾燥塗料;等が好適に挙げられる。
なお、滑止塗料中の溶剤も、特に限定されず、適宜選択される。
<Slip and paint>
The paint used for anti-slip coating applied to the ground portion 5 of the can 1 (hereinafter, also referred to as "non-slip paint") is not particularly limited as long as the dynamic friction coefficient of the can is 0.27 or more However, when considering the workability of coating only on the ground portion after forming the can, as a non-slip coating, for example, one-component room temperature drying including a resin such as an oxidation polymerization alkyd resin or a styrenated alkyd resin Paints: One-component baking coatings containing resins such as melamine-modified alkyd resins; Two-component normal temperature drying paints such as epoxy resin-polyamide resin system, polyester polyol resin-isocyanate system;
In addition, the solvent in a non-slip coating material is not specifically limited, either, It selects suitably.

また、滑止塗料は、例えば、上述した樹脂をベース樹脂として、さらに、滑止成分を含有するのが好ましい。上記滑止成分としては、例えば、松脂、タール等が挙げられ、耐滑り性がより良好になるという理由から、松脂が好ましい。
上記滑止成分の含有量は、塗料中の全固形分100質量部に対して、固形分で、例えば、3〜20質量%が挙げられる。もっとも、上記滑止成分が多すぎても耐滑り性の効果は飽和するためコスト面の観点から、3〜10質量%が好ましく、耐滑り性がより良好になるという理由から、5〜10質量%がより好ましく、7〜10質量%がさらに好ましい。
Moreover, it is preferable that the anti-slip coating further contains an anti-slip component, for example, using the above-mentioned resin as a base resin. Examples of the non-slip component include rosins, tar and the like, and rosins are preferable because they have better anti-slip properties.
The content of the non-slip component is, for example, 3 to 20% by mass in terms of solid content with respect to 100 parts by mass of the total solid content in the paint. However, the effect of slip resistance is saturated even if the amount of the non-slip component is too large, from the viewpoint of cost, 3 to 10% by mass is preferable, and 5 to 10 mass because slip resistance becomes better. % Is more preferable, and 7 to 10% by mass is further preferable.

滑止塗料の塗布方法は特に限定されないが、例えば、ロールコーター、スタンプなどを用いて、製缶後の缶体1における接地部5に塗布する方法が挙げられる。その後、塗料に応じて、常温乾燥または焼付けを行なう。
常温乾燥では、自然乾燥のみならず、ドライヤー等を用いて乾燥してもよい。
また、焼付けを行なう場合の熱処理では、所望の到達温度まで上昇させる。この到達温度(最大温度上昇値)および処理時間は、塗料に応じて適宜選択される。
Although the application method of a non-slip coating material is not specifically limited, For example, the method of apply | coating to the earthing | grounding part 5 in the can 1 after can-making is mentioned using a roll coater, a stamp, etc. Thereafter, depending on the paint, room temperature drying or baking is performed.
In normal temperature drying, not only natural drying but also drying may be performed using a dryer or the like.
In the heat treatment for baking, the temperature is raised to a desired ultimate temperature. The ultimate temperature (maximum temperature increase value) and the treatment time are appropriately selected according to the paint.

なお、滑止塗装としては、動摩擦係数が所定の値になっていれば、塗装手段は限定されず、塗料を用いた塗装以外にも、例えば、PPパウダー、PEパウダー等を用いたパウダー塗装であってもよい。パウダー塗装後、必要に応じて、焼付けを行なう。   In addition, as the non-slip coating, the coating method is not limited as long as the coefficient of dynamic friction is a predetermined value, and in addition to the coating using the paint, for example, the powder coating using PP powder, PE powder, etc. It may be. After powder coating, bake if necessary.

また、滑止塗装は、巻締部4に施される補修塗装を兼ねていてもよい。   The non-slip coating may also serve as a repair coating applied to the winding clamp 4.

<その他の態様>
上述した態様では、一方の缶蓋部3bにだけ、滑止塗装を施した接地部5を設けた例を説明したが、本発明は、これに限定されるものではない。
例えば、他方の缶蓋部3a側を接地させる場合には、缶蓋部3aにおける巻締部4を接地部5とし、この接地部5に滑止塗装を施してもよい。
また、両方の缶蓋部3(缶蓋部3aおよび缶蓋部3b)における巻締部4を接地部5として、両方の接地部5に滑止塗装を施してもよい。缶体1の両面側に、滑止塗装が施された接地部5を設けることで、缶体1を複数段積層した状態でフォークリフト等を用いて搬送する際に、缶体1が脱落等することをより効果的に防止できる。
<Other aspects>
Although the example mentioned above provided the grounding part 5 which gave anti-slip coating only to one can lid part 3b was explained, the present invention is not limited to this.
For example, when the side of the other can lid 3a is to be grounded, the crimped portion 4 of the can lid 3a may be a ground 5 and the ground 5 may be non-slip coated.
Alternatively, both the ground portions 5 may be non-slip coated by using the winding clamps 4 in both the can lids 3 (the can lid 3 a and the can lid 3 b) as the ground portions 5. By providing the ground portions 5 to which anti-slip coating is applied on both sides of the can 1, the can 1 falls off when being transported using a forklift or the like in a state where the cans 1 are stacked in multiple stages. Can be prevented more effectively.

以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these.

<本発明例1〜8および比較例1〜6>
まず、本発明例および比較例の缶体に用いる部材として、ラミネート鋼板を作製した。
具体的には、冷延鋼鈑(調質度 T2CA、0.32mm厚)に、TFSめっき(クロムめっき)を施した後、ポリエチレンテレフタレートフィルム(15μm厚)を缶体の外面となる面にのみ熱圧着法で被覆して、ラミネート鋼板(以下、「PETラミネート鋼板」とも表記する)を作製した。同様にして、ポリプロピレンフィルム(70μm厚)を被覆したラミネート鋼板(以下、「PPラミネート鋼板」とも表記する)、および、ポリエチレンテレフタレート−ポリブチレンテレフタレート共重合フィルム(15μm厚)を被覆したラミネート鋼板(以下、「PET−PBTラミネート鋼板」とも表記する)も作製した。
また、比較例に用いる部材の一つとして、ニス塗装鋼板を作製した。具体的には、冷延鋼板(調質度 T2CA、0.32mm厚)に、TFSめっき(クロムめっき)を施して得られためっき鋼板の全体にニス塗装を施した。ニス塗装は、東洋インキ社製の「F05TKN−1」を用い、160℃×10分の条件で焼付けを行った。
<Invention Examples 1 to 8 and Comparative Examples 1 to 6>
First, laminated steel plates were produced as members used for cans of the invention examples and comparative examples.
Specifically, after applying TFS plating (chromium plating) to a cold-rolled steel plate (refining degree T2CA, 0.32 mm thickness), a polyethylene terephthalate film (15 μm thickness) is only applied to the outer surface of the can body. It coat | covered with the thermocompression-bonding method, and produced the laminated steel plate (it also describes as a "PET laminated steel plate" hereafter). Similarly, a laminated steel plate coated with a polypropylene film (70 μm thick) (hereinafter also referred to as “PP laminated steel plate”), and a laminated steel plate coated with a polyethylene terephthalate-polybutylene terephthalate copolymer film (15 μm thick) , "PET-PBT laminated steel plate" is also produced.
Moreover, a varnish coated steel plate was produced as one of the members used for a comparative example. Specifically, varnish coating was applied to the whole of the plated steel plate obtained by applying TFS plating (chrome plating) to a cold rolled steel plate (refining degree T2CA, 0.32 mm thickness). The varnish coating performed baking on condition of 160 degreeC x 10 minutes using "F05TKN-1" by Toyo Ink Co., Ltd. product.

次に、缶胴部および缶蓋部の部材として、下記第1表に示すラミネート鋼板またはニス塗装鋼板を用いて、図1〜図3に基づいて説明した缶体1と同様の缶体(18L缶)を製缶した。   Next, using the laminated steel plate or varnished steel plate shown in Table 1 below as a member of the can body portion and the can lid portion, the same can (18 L) as the can 1 described based on FIGS. 1 to 3 Made a can).

次に、製缶した缶体において、手環および充填口が設けられた缶蓋部とは反対側の缶蓋部の一部である接地部(図1〜図3における接地部5)に対して、後述する塗料A〜Gのうち、下記第1表に示す塗料を用いて、塗装(滑止塗装)を施した。ただし、比較例1〜3においては、塗装を施さなかった。   Next, with respect to the grounding portion (grounding portion 5 in FIGS. 1 to 3) which is a part of the can lid portion on the opposite side to the can lid portion provided with the hand ring and the filling port in the can made Of the paints A to G described later, the paints shown in Table 1 below were used for coating (non-slip coating). However, in Comparative Examples 1 to 3, painting was not performed.

ここで、各例で使用した塗料A〜Gの詳細を以下に記載する。なお、各塗料における添加成分の量は、塗料中の全固形分を100質量%とした場合の固形分量(単位:質量%)である。また、塗装条件も併せて記載する。
塗料A〜EおよびGの塗装にはロールコーター(N.P.W技研社製「ACSTK−45」)を用い、塗料Fの塗装には一般的な粉体塗装装置を用いた。
Here, the details of the paints A to G used in each example are described below. In addition, the quantity of the addition component in each paint is solid content (unit: mass%) when the total solid in paint is 100 mass%. In addition, paint conditions are also described.
For coating of paints A to E and G, a general powder coating apparatus was used for coating of paint F, using a roll coater (“ACSTK-45” manufactured by NPW Giken Co., Ltd.).

(塗料A)
・ベース樹脂:酸化重合型アルキッド(台湾桜宮化学社製「SK−7001」)
・添加成分:松脂7質量%
・塗装条件:常温乾燥
(Paint A)
Base resin: Oxidized polymerization type alkyd (“SK-7001” manufactured by Taiwan Sakuramiya Chemical Co., Ltd.)
Additives: 7% by weight of pine resin
-Painting conditions: normal temperature drying

(塗料B)
・ベース樹脂:スチレン化アルキッド(台湾桜宮化学社製「SK−8000」)
・添加成分:松脂7質量%
・塗装条件:常温乾燥
(Paint B)
Base resin: styrenated alkyd ("SK-8000" manufactured by Taiwan Sakuramiya Chemical Co., Ltd.)
Additives: 7% by weight of pine resin
-Painting conditions: normal temperature drying

(塗料C)
・ベース樹脂:メラミン変性アルキッド(台湾桜宮化学社製「TS−5623」)
・添加成分:松脂7質量%
・塗装条件:到達温度180℃
(Paint C)
Base resin: melamine modified alkyd (Taiwan Sakuramiya Chemical Co., Ltd. "TS-5623")
Additives: 7% by weight of pine resin
・ Coating condition: Achieved temperature 180 ° C

(塗料D)
・ベース樹脂:酸化重合型アルキッド(台湾桜宮化学社製「SK−7001」)
・添加成分:松脂3質量%
・塗装条件:常温乾燥
(Paint D)
Base resin: Oxidized polymerization type alkyd (“SK-7001” manufactured by Taiwan Sakuramiya Chemical Co., Ltd.)
Additive ingredient: 3% by mass of pine resin
-Painting conditions: normal temperature drying

(塗料E)
・ベース樹脂:酸化重合型アルキッド(台湾桜宮化学社製「SK−7001」)
・添加成分:タール5質量%
・塗装条件:常温乾燥
(Paint E)
Base resin: Oxidized polymerization type alkyd (“SK-7001” manufactured by Taiwan Sakuramiya Chemical Co., Ltd.)
Additives: 5% by weight of tar
-Painting conditions: normal temperature drying

(塗料F)
・ベース樹脂:PEパウダー塗装(三井化学社製「NS101」)
・添加成分:なし
・塗装条件:到達温度190℃
(Paint F)
Base resin: PE powder coating ("NS101" manufactured by Mitsui Chemicals, Inc.)
・ Additional ingredient: None ・ Painting condition: Achieved temperature 190 ° C

(塗料G)
・ベース樹脂:酸化重合型アルキッド(台湾桜宮化学社製「SK−7001」)
・添加成分:なし
・塗装条件:常温乾燥
(Paint G)
Base resin: Oxidized polymerization type alkyd (“SK-7001” manufactured by Taiwan Sakuramiya Chemical Co., Ltd.)
Additives: None Coating conditions: normal temperature drying

<動摩擦係数の測定>
図4は、缶体の動摩擦係数を測定するための試験方法を示す模式図である。
各例の缶体の動摩擦係数を、以下のようにして測定した。まず、25°の平坦な傾斜面を用意し、その傾斜面表面に、缶体に用いた部材(ラミネート鋼板またはニス塗装鋼板)と同じ部材を貼り付けた。このとき、ラミネート面またはニス塗装面を上面側にして、缶体と接触するようにした。上記部材を貼り付けた傾斜面に、滑止塗装を施した接地部(比較例1〜3では滑止塗装なし)を接触させ、この傾斜面上で缶体を滑らせ、所定の距離を滑る時間を計測し、以下に記載する計算によって、動摩擦係数を求めた。
<Measurement of dynamic coefficient of friction>
FIG. 4 is a schematic view showing a test method for measuring the dynamic friction coefficient of the can body.
The dynamic friction coefficient of the can of each example was measured as follows. First, a flat inclined surface of 25 ° was prepared, and the same member as the member used for the can (laminated steel plate or varnished steel plate) was attached to the surface of the inclined surface. At this time, the laminated surface or the varnish-coated surface was on the top side to be in contact with the can. A ground contact portion (non-slip coating in Comparative Examples 1 to 3) applied with anti-slip coating is brought into contact with the inclined surface to which the above member is attached, and the can is slid on this inclined surface to slide a predetermined distance. The time was measured, and the dynamic friction coefficient was determined by the calculation described below.

缶体に働く力 F=ma=mg sinθ−μ mg cosθ
∴ a=g(sinθ−μcosθ) …(1)
加速度 a=(V−V)/t=V/t …(2)
式(1)と(2)より V=tg(sinθ−μcosθ) …(3)
エネルギー収支 mgL sinθ=(1/2)mV+Lμmg cosθ
…(4)
式(4)より V=2gL(sinθ−μcosθ) …(5)
式(3)と(5)より μ=tanθ−2L/(tg cosθ) …(6)
式(6)より 2L=gt(sinθ−μcosθ) …(7)
距離Lを滑った時点での関係式も(7)と同様に考えることができるから、
式(7)より 2L=gt (sinθ−μcosθ) …(8)
式(7)と(8)より 2L/2L=gt (sinθ−μcosθ)/gt(sinθ−μcosθ)
/L=t /t …(9)
式(9)より t=t√(L/L) …(10)
実験によって求められる時間は、t−t=Tであるから、
式(10)より t−t=t(1−√(L/L))=T
よって式(6)より μ=tanθ−2L/((T )((L+√(LL))/(L−L)g cosθ) …(11)
L=1.25、L=0.25、θ=25°の場合は、下記式となる。
μ=0.4663−0.0860/T …(12)
各例において、Tを測定し、式(12)から、動摩擦係数μを求めた。
Force acting on can F = ma = mg sinθ-μmg cosθ
A a = g (sin θ-μ cos θ) (1)
Acceleration a = (V−V 0 ) / t = V / t (2)
From equations (1) and (2), V = tg (sin θ−μ cos θ) (3)
Energy balance mgL sinθ = (1/2) mV 2 + Lμmg cosθ
... (4)
From equation (4), V 2 = 2 g L (sin θ−μ cos θ) (5)
From equations (3) and (5), μ = tan θ- 2 L / (t 2 g cos θ) (6)
From equation (6), 2L = gt 2 (sin θ-μ cos θ) (7)
Since the relational expression at the time of sliding the distance L 1 can be considered in the same manner as (7),
From equation (7), 2L 1 = gt 1 2 (sin θ−μcos θ) (8)
Equation (7) and (8) than 2L 1 / 2L = gt 1 2 (sinθ-μcosθ) / gt 2 (sinθ-μcosθ)
L 1 / L = t 1 2 / t 2 (9)
From equation (9), t 1 = t√ (L 1 / L) (10)
Since the time determined by the experiment is t-t 1 = T E ,
From equation (10), t−t 1 = t (1−√ (L 1 / L)) = T E
Therefore, according to the equation (6), μ = tan θ-2L / ((T E 2 ) ((L + LL (LL 1 )) 2 / (L−L 1 ) 2 ) g cos θ) (11)
In the case of L = 1.25, L 1 = 0.25 and θ = 25 °, the following equation is obtained.
μ = 0.4663-0.0860 / T E 2 ... (12)
In each example, T E was measured, and the dynamic friction coefficient μ was determined from equation (12).

なお、上記式中、各記号は、以下の内容を示す。
m:缶体の質量
a:缶体の加速度
g:重力加速度(=9.80665m/s
θ:傾斜角度(=25°)
L:移動距離(=1.25m)
:移動距離(=0.25m)
t:1.25m移動時間
:0.25m移動時間
:測定される時間
:初速度(=0m/s)
V:1.25m移動後の速度
μ:動摩擦係数
In the above formulas, each symbol indicates the following contents.
m: mass of the can a: acceleration of the can g: gravitational acceleration (= 9.80665 m / s 2 )
θ: Inclination angle (= 25 °)
L: Travel distance (= 1.25 m)
L 1 : Movement distance (= 0.25 m)
t: 1.25 m travel time t 1 : 0.25 m travel time T E : Time to be measured V 0 : Initial speed (= 0 m / s)
V: Speed after moving 1.25 m μ: Dynamic coefficient of friction

<評価>
各例の缶体について、以下のようにして、耐滑り性および耐食性を評価した。結果を下記第1表に示す。
<Evaluation>
The slip resistance and the corrosion resistance were evaluated for the cans of each example as follows. The results are shown in Table 1 below.

(耐滑り性の評価)
作製した缶体を、滑止塗装を施した接地部(比較例1〜3では滑止塗装なし)を下側にして、鉄製のロールコンベアに載せて搬送(金属ロール:35mmφ、搬送速度:20m/min、搬送距離:5m)させて、缶体の搬送遅れの有無を調査した。缶体の搬送遅れは、缶体が搬送ロールに対して滑ること(すなわち、搬送ロールが空転すること)に起因する。
一般的に、金属製ロールコンベアは水平ラインで用いられるため、水平ラインで試験を行ない、より厳しい条件として、傾斜角10°とした傾斜ラインでも試験を行なった。各例において、10缶ずつ試験し、結果を下記基準で示した。結果が「○」または「◎」であれば、耐滑り性に優れるものとして評価できる。
・「×」:水平ラインおよび傾斜ラインのいずれでも搬送遅れが発生した。
・「○」:水平ラインでは搬送遅れはなかったが傾斜ラインでは搬送遅れが発生した。
・「◎」:水平ラインおよび傾斜ラインのいずれでも搬送遅れが発生しなかった。
(Evaluation of slip resistance)
The prepared can body is placed on an iron roll conveyor with the ground portion (non-slip coating in Comparative Examples 1 to 3) with non-slip coating on the lower side and transported (metal roll: 35 mmφ, transport speed: 20 m / Min, conveyance distance: 5 m), and the presence or absence of conveyance delay of the cans was investigated. The conveyance delay of the can results from the can sliding on the conveyance roll (ie, the conveyance roll slips).
Generally, since metal roll conveyors are used in horizontal lines, tests were conducted in horizontal lines, and tests were also performed in inclined lines with an inclination angle of 10 ° as more severe conditions. In each case, 10 cans were tested, and the results are shown based on the following criteria. If a result is "(circle)" or "(double-circle)", it can be evaluated as what is excellent in slip resistance.
"X": The conveyance delay occurred in any of the horizontal line and the inclined line.
・ "O": There was no transport delay in the horizontal line, but a transport delay occurred in the inclined line.
"◎": No conveyance delay occurred in any of the horizontal line and the inclined line.

(耐食性の評価)
接地部の腐食は、例えば搬送時に被覆層が破壊されて下地鋼板が露出することで引き起こされることから、次のようにして、耐食性の評価を実施した。
まず、缶体を5段積層し、トラックにて平均時速35kmで500km搬送した。その後、中段(3段目)の缶を取り出して、硫酸銅(0.8モル/L)および塩酸(1.2モル/L)の水溶液である硫酸銅試験溶液を、缶体の接地部に塗り付けた。目視にてCuの置換析出があるか否かを確認し、結果を下記基準で示した。結果が「○」であれば、耐食性に優れるものとして評価できる。
・「×」:Cuの置換析出あり
・「○」:Cuの置換析出なし
(Evaluation of corrosion resistance)
The corrosion of the ground portion is caused, for example, by the destruction of the coating layer during transportation and the exposure of the base steel plate. Therefore, the corrosion resistance was evaluated as follows.
First, five stages of cans were stacked and transported 500 km at an average speed of 35 km per hour by truck. After that, take out the middle-stage (third-stage) can and apply the copper sulfate test solution, which is an aqueous solution of copper sulfate (0.8 mol / L) and hydrochloric acid (1.2 mol / L), to the ground part of the can. I painted it. It was visually confirmed whether or not there was substitution precipitation of Cu, and the results were shown based on the following criteria. If a result is "(circle)", it can evaluate as what is excellent in corrosion resistance.
-"X": substitution precipitation of Cu is present "○": substitution precipitation of Cu is not present

上記第1表に示す結果から明らかなように、缶蓋部の部材としてラミネート鋼板を使用し、かつ、動摩擦係数が0.27以上である本発明例1〜8の缶体は、いずれも、耐食性および耐滑り性が優れていた。
とりわけ、動摩擦係数が0.30以上である本発明例1〜5および8の缶体は、動摩擦係数が0.27以上0.30未満である本発明例6および7の缶体と比べて、耐滑り性がより優れていた。
As is clear from the results shown in Table 1 above, all of the cans of Invention Examples 1 to 8 of the invention examples 1 to 8 use laminated steel plates as members of the can lid and have a dynamic friction coefficient of 0.27 or more. Corrosion resistance and slip resistance were excellent.
In particular, the cans of the invention examples 1 to 5 and 8 having the dynamic friction coefficient of 0.30 or more have a dynamic friction coefficient of 0.27 or more and less than 0.30, compared with the cans of the invention examples 6 and 7 The slip resistance was better.

一方、缶蓋部の部材としてラミネート鋼板を使用しなかった比較例1の缶体は、耐食性が劣っていた。また、動摩擦係数が0.27未満である比較例2〜6の缶体は、耐滑り性が劣っていた。   On the other hand, the can of the comparative example 1 which did not use a laminated steel plate as a member of a can lid part had inferior corrosion resistance. Moreover, the can of Comparative Examples 2-6 whose dynamic friction coefficient is less than 0.27 was inferior in the slip resistance.

1:缶体
2:缶胴部
3,3a、3b:缶蓋部
31:面
4:巻締部
5:接地部
6:手環
7:充填口
1: Can body 2: Can body 3, 3a, 3b: Can lid 31: Face 4: Winding portion 5: Grounding portion 6: Hand ring 7: Filler

Claims (7)

円筒形または角筒形である缶胴部と、前記缶胴部の両端面に接合した缶蓋部とを備える缶体であって、
前記缶蓋部を構成する部材が、ラミネート鋼板であり、
少なくとも一方の前記缶蓋部の一部が接地部であり、前記接地部に滑止塗装が施されており、
前記缶蓋部を構成する部材で作製した面に前記接地部を接地させて測定される動摩擦係数が、0.27以上である、缶体。
ただし、前記動摩擦係数は、以下のようにして測定する。まず、25°の平坦な傾斜面を用意する。前記傾斜面の表面に、前記ラミネート鋼板を、ラミネート面を上面側にして貼り付ける。前記ラミネート鋼板を貼り付けた前記傾斜面に、前記缶体における前記滑止塗装を施した前記接地部を接触させる。前記ラミネート鋼板を貼り付けた前記傾斜面上で前記缶体を滑らせ、所定の距離を滑る時間を計測することにより、前記動摩擦係数を求める。
A can body comprising: a can body having a cylindrical or rectangular shape; and a can lid joined to both end faces of the can body,
The member constituting the can lid is a laminated steel plate,
A part of at least one of the can lids is a ground contact portion, and the ground contact portion is provided with a non-slip coating,
The can which the dynamic friction coefficient measured by making the said earthing | grounding part be earthed | grounded to the surface produced with the member which comprises the said can cover part is 0.27 or more.
However, the dynamic friction coefficient is measured as follows. First, prepare a flat slope of 25 °. The laminated steel plate is attached to the surface of the inclined surface, with the laminating surface on the top side. The ground contact portion of the can body on which the anti-slip coating is applied is brought into contact with the inclined surface to which the laminated steel plate is attached. The coefficient of dynamic friction is determined by sliding the can body on the inclined surface to which the laminated steel plate is attached and measuring the time of sliding a predetermined distance.
前記動摩擦係数が、0.30以上である、請求項1に記載の缶体。   The can according to claim 1, wherein the dynamic friction coefficient is 0.30 or more. 両方の前記缶蓋部に、前記滑止塗装が施された前記接地部を有する、請求項1または2に記載の缶体。   The can according to claim 1 or 2 which has said grounding part by which said non-slip coating was given to both said can lids. 前記滑止塗装に用いる塗料が、滑止成分を含有し、
前記滑止成分の固形分の含有量が、前記塗料中の全固形分100質量%に対して3〜10質量%である、請求項1〜3のいずれか1項に記載の缶体。
The paint used for the anti-slip coating contains an anti-slip component,
The can according to any one of claims 1 to 3, wherein the solid content of the anti-slip component is 3 to 10% by mass with respect to 100% by mass of the total solid content in the paint.
前記滑止成分が、松脂である、請求項4に記載の缶体。   The can according to claim 4, wherein the non-slip component is rosin. 18L缶および変寸缶の少なくともいずれかである、請求項1〜5のいずれか1項に記載の缶体。   The can according to any one of claims 1 to 5, which is at least one of an 18L can and a variable-sized can. 請求項1〜6に記載の缶体を製造する、缶体の製造方法であって、
前記缶胴部および前記缶蓋部を有する缶体を準備する工程と、
前記準備した缶体が有する前記缶蓋部の一部である前記接地部に前記滑止塗装を施す工程と、を備える缶体の製造方法。
It is a manufacturing method of a can which manufactures a can according to any one of claims 1 to 6,
Preparing a can having the can barrel and the can lid;
Applying the anti-slip coating to the ground contact portion which is a part of the can lid portion of the prepared can body.
JP2014175017A 2014-08-29 2014-08-29 Can body and method of manufacturing can body Active JP6541121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014175017A JP6541121B2 (en) 2014-08-29 2014-08-29 Can body and method of manufacturing can body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014175017A JP6541121B2 (en) 2014-08-29 2014-08-29 Can body and method of manufacturing can body

Publications (2)

Publication Number Publication Date
JP2016049987A JP2016049987A (en) 2016-04-11
JP6541121B2 true JP6541121B2 (en) 2019-07-10

Family

ID=55657797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014175017A Active JP6541121B2 (en) 2014-08-29 2014-08-29 Can body and method of manufacturing can body

Country Status (1)

Country Link
JP (1) JP6541121B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451912A (en) * 1990-06-18 1992-02-20 Mitsutoshi Kashiwazaki Paper cup with antislip
JP2831281B2 (en) * 1994-09-01 1998-12-02 太陽製罐株式会社 Metal can
JPH0987547A (en) * 1995-09-20 1997-03-31 Sumitomo Forestry Co Ltd Antislip coating composition
JPH09117989A (en) * 1996-10-28 1997-05-06 Toyo Kohan Co Ltd Laminated steel plate, boiler drum, laminated boiler and manufacture thereof
JP3248450B2 (en) * 1997-04-28 2002-01-21 東洋紡績株式会社 Polyester film laminated metal plate and metal container
JP3043662U (en) * 1997-05-22 1997-11-28 川鉄コンテイナー株式会社 Drum
WO2007091743A1 (en) * 2006-02-07 2007-08-16 Sun Bong Mun The can-receptacle possibility carrying plural stratum structure

Also Published As

Publication number Publication date
JP2016049987A (en) 2016-04-11

Similar Documents

Publication Publication Date Title
JP2008517158A5 (en)
EP2857465A1 (en) Coating composition, and coated metal plate, metal container and metal lid formed by coating with said coating composition
WO2017138230A1 (en) Organic resin-coated steel sheet, method for producing same, and can and can lid each using said organic resin-coated steel sheet
NZ765227A (en) Resin-coated metal sheet for container
JP6037777B2 (en) Resin-coated metal plate for squeezed iron can, squeezed iron can and method for producing squeezed iron can
JP2022130381A (en) Multi-layered finishes for can ends
JP6541121B2 (en) Can body and method of manufacturing can body
WO2011057781A3 (en) Coating composition for metal food containers
AU2016228802B2 (en) Container coating compositions
WO2021183212A3 (en) Aluminium alloys, coated aluminium alloy product, clad aluminium alloy product with high corrosion resistance
JP2017007093A (en) Polyester resin-coated metal sheet and container using the same
JP6514525B2 (en) Thermosetting top coat varnish for metal containers
JP5530436B2 (en) Composite Al material for squeezing and ironing can and method for producing squeezing and ironing can
US20050153157A1 (en) Resin coated steel sheet and can formed by pressing the same
JP3065390B2 (en) Film-laminated steel sheet for food cans
JP2012171636A (en) Container
JP6643808B2 (en) Metal can manufacturing method
US1171725A (en) Coated article.
JP3528240B2 (en) Laminated body and method for producing the same
JP2000263692A (en) Resin-coated metal plate for liquid container
JP3053916B2 (en) Method for producing film-laminated steel sheet for food cans
JPH0199955A (en) Inside painted can
TH2001004402A (en) Aqueous Coating Composition
JP4074496B2 (en) Resin-coated steel sheet and can body for drawn ironing can
TW202012175A (en) Resin-coated steel can and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170810

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190604

R150 Certificate of patent or registration of utility model

Ref document number: 6541121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250