JP6539422B1 - Method of manufacturing power transmission shaft - Google Patents

Method of manufacturing power transmission shaft Download PDF

Info

Publication number
JP6539422B1
JP6539422B1 JP2019033814A JP2019033814A JP6539422B1 JP 6539422 B1 JP6539422 B1 JP 6539422B1 JP 2019033814 A JP2019033814 A JP 2019033814A JP 2019033814 A JP2019033814 A JP 2019033814A JP 6539422 B1 JP6539422 B1 JP 6539422B1
Authority
JP
Japan
Prior art keywords
power transmission
transmission shaft
manufacturing
closed
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2019033814A
Other languages
Japanese (ja)
Other versions
JP2020139530A (en
Inventor
森 健一
健一 森
貴博 中山
貴博 中山
一希 大田
一希 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Original Assignee
Showa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Corp filed Critical Showa Corp
Priority to JP2019033814A priority Critical patent/JP6539422B1/en
Priority to PCT/JP2019/010053 priority patent/WO2020174698A1/en
Application granted granted Critical
Publication of JP6539422B1 publication Critical patent/JP6539422B1/en
Publication of JP2020139530A publication Critical patent/JP2020139530A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/22Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or type of main drive shafting, e.g. cardan shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B4/00Shrinkage connections, e.g. assembled with the parts at different temperature; Force fits; Non-releasable friction-grip fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B7/00Connections of rods or tubes, e.g. of non-circular section, mutually, including resilient connections
    • F16B7/20Connections of rods or tubes, e.g. of non-circular section, mutually, including resilient connections using bayonet connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/064Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end non-disconnectable
    • F16D1/068Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end non-disconnectable involving gluing, welding or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/064Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end non-disconnectable
    • F16D1/072Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end non-disconnectable involving plastic deformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected

Abstract

【課題】管体と連結部材とを簡単な構造で接続でき、製造コストの低減を図れる動力伝達軸の製造方法を提供する。【解決手段】少なくとも一端が閉塞された閉塞部8を有する繊維強化プラスチック製の管体2と、管体2の端部に接続するスタブシャフト4と、を備える動力伝達軸の製造方法であって、管体2を準備する準備工程と、準備工程の後に、閉塞部8にスタブシャフト4を押し込む押込工程と、押込工程の後に、閉塞部8を硬化させる硬化工程と、を備える。管体2とスタブシャフト4との接続部は多角形状に形成されている。【選択図】図3The present invention provides a method of manufacturing a power transmission shaft which can connect a pipe body and a connecting member with a simple structure and can reduce the manufacturing cost. A method of manufacturing a power transmission shaft includes a fiber reinforced plastic tube body 2 having a closed portion 8 closed at least one end, and a stub shaft 4 connected to the end portion of the tube body 2 And a step of preparing the tubular body 2, a step of pressing the stub shaft 4 into the closed portion 8 after the step of preparing, and a step of curing the closed portion 8 after the step of pressing. The connection between the tube 2 and the stub shaft 4 is formed in a polygonal shape. [Selected figure] Figure 3

Description

本発明は、動力伝達軸の製造方法に関する。   The present invention relates to a method of manufacturing a power transmission shaft.

自動車のプロペラシャフト(動力伝達軸)は、車両の前後方向に延びて、原動機で発生し変速装置で減速された動力を終減速装置に伝達する。プロペラシャフトの従来例として、繊維強化プラスチック製の管体と、管体の端部に接続する連結部材と、を備えたものが挙げられる(例えば、特許文献1)。特許文献1には、管体の端部の開口部に、連結部材をセレーション係合を伴って圧入して接続する技術が記載されている。   The propeller shaft (power transmission shaft) of the automobile extends in the front-rear direction of the vehicle to transmit the power generated by the prime mover and decelerated by the transmission to the final reduction gear. As a conventional example of a propeller shaft, what was provided with a tube made of fiber reinforced plastic and a connecting member connected to the end of the tube can be mentioned (for example, Patent Document 1). Patent Document 1 describes a technique of press-fitting and connecting a connecting member with serration engagement to an opening at an end of a tubular body.

特開平7−205340号公報JP-A-7-205340

しかしながら、特許文献1の接続構造によれば、圧入状態の保持のためおよび車両の前方衝突の際のスライド荷重の制御のために、セレーションの加工精度を上げる必要があり、動力伝達軸の製造コストが高くなる。また、管体には、圧入状態を保持するために、連結部材との接続範囲にフープ巻き層を追加形成する必要があり、この点からも動力伝達軸の製造コストが高くなる。さらに、セレーションから水や塵埃等が管体の内部に浸入するおそれもある。   However, according to the connection structure of Patent Document 1, it is necessary to increase the processing accuracy of the serration for holding the press-fit state and for controlling the slide load at the time of a frontal collision of the vehicle. Becomes higher. Moreover, in order to hold the press-fit state, it is necessary to additionally form a hoop wound layer in the connection range with the connection member, and this also increases the manufacturing cost of the power transmission shaft. Furthermore, there is also a possibility that water, dust and the like may intrude into the inside of the pipe body from the serration.

本発明は、以上のような問題を解決するために行われたものであり、その目的は、管体と連結部材とを簡単な構造で接続でき、製造コストの低減を図れる動力伝達軸の製造方法を提供することにある。   The present invention has been made to solve the above problems, and an object thereof is to manufacture a power transmission shaft capable of connecting a tubular body and a connection member with a simple structure and reducing manufacturing costs. To provide a way.

前記課題を解決するため、本発明は、少なくとも一端が閉塞された閉塞部を有する繊維強化プラスチック製の管体と、前記管体の端部に接続する連結部材と、を備える動力伝達軸の製造方法であって、前記管体を準備する準備工程と、前記準備工程の後に、前記閉塞部に前記連結部材を押し込む押込工程と、前記押込工程の後に、前記閉塞部を硬化させる硬化工程と、を備えることを特徴とする。   In order to solve the above-mentioned subject, the present invention manufactures a power transmission shaft provided with a tube made of fiber reinforced plastic having a closed portion at least one end of which is closed, and a connecting member connected to the end of the tube. A method of preparing the tubular body, a pressing step of pushing the connecting member into the closing portion after the setting step, and a curing step of curing the closing portion after the pressing step; And the like.

本発明によれば、セレーション加工が不要となり、管体の変形および硬化を利用して管体と連結部材とを簡単に接続できるので、製造コストの低減を図れる。接着剤も不要となり、作業工程が簡略化される。管体は、閉塞部により端部が塞がれているので、管体の内部への水や塵埃等の浸入のおそれもない。   According to the present invention, serration processing is not necessary, and since the pipe body and the connecting member can be easily connected using deformation and hardening of the pipe body, manufacturing cost can be reduced. The adhesive is also unnecessary, and the working process is simplified. Since the end of the tubular body is blocked by the blocking portion, there is no risk of water, dust, etc. entering the interior of the tubular body.

第一実施形態の動力伝達軸の側面図である。It is a side view of a power transmission shaft of a first embodiment. 第一実施形態の製造方法における準備工程の説明図である。It is explanatory drawing of the preparatory process in the manufacturing method of 1st embodiment. 第一実施形態の製造方法における押込工程の説明図である。It is explanatory drawing of the pressing process in the manufacturing method of 1st embodiment. 第一実施形態の製造方法における硬化工程の説明図である。It is explanatory drawing of the hardening process in the manufacturing method of 1st embodiment. 動力伝達軸の製造方法のフローチャートである。It is a flowchart of the manufacturing method of a power transmission shaft. 第二実施形態の製造方法における準備工程の説明図である。It is explanatory drawing of the preparatory process in the manufacturing method of 2nd embodiment. 第二実施形態の製造方法における押込工程の説明図である。It is explanatory drawing of the pressing process in the manufacturing method of 2nd embodiment. 第二実施形態の製造方法における硬化工程の説明図である。It is explanatory drawing of the hardening process in the manufacturing method of 2nd embodiment. 第三実施形態の動力伝達軸の側面図である。It is a side view of a power transmission shaft of a third embodiment. 第四実施形態の動力伝達軸の側面図である。It is a side view of a power transmission shaft of a fourth embodiment.

各実施形態について図面を参照しながら説明する。各実施形態では、本発明の動力伝達軸を、FF(Front−engine Front−drive)ベースの四輪駆動車に搭載されるプロペラシャフトに適用した例を挙げる。また、各実施形態で共通する技術的要素には、共通の符号を付し、重複説明は省略する。   Each embodiment will be described with reference to the drawings. In each embodiment, an example in which the power transmission shaft of the present invention is applied to a propeller shaft mounted on a four-wheel drive vehicle based on a front-engine front-drive (FF) will be described. In addition, the technical elements common to the embodiments are denoted by the same reference numerals, and the redundant description will be omitted.

図1に示すように、動力伝達軸1は、軸線O1を中心軸とする管体2と、管体2の第一接続部120の内側に接続する連結部材としてのスタブヨーク3と、管体2の第二接続部130の内側に接続する連結部材としてのスタブシャフト4とを備えている。管体2は、炭素繊維強化プラスチック(CFRP)で形成されている。本発明において繊維強化プラスチックに使用される強化繊維は、炭素繊維に限られず、ガラス繊維やアラミド繊維であってもよい。   As shown in FIG. 1, the power transmission shaft 1 has a tube 2 whose central axis is the axis O1, a stub yoke 3 as a connecting member connected to the inside of the first connection portion 120 of the tube 2, and the tube 2 And a stub shaft 4 as a connection member connected to the inside of the second connection portion 130 of the second embodiment. The tubular body 2 is formed of carbon fiber reinforced plastic (CFRP). Reinforcing fibers used for the fiber reinforced plastic in the present invention are not limited to carbon fibers, and may be glass fibers or aramid fibers.

管体2は、本体部110と、本体部110の前側に配置された第一接続部120と、本体部110の後側に配置された第二接続部130と、本体部110と第二接続部130との間に位置する傾斜部140と、を備えている。   The tube 2 includes a main body portion 110, a first connection portion 120 disposed on the front side of the main body portion 110, a second connection portion 130 disposed on the rear side of the main body portion 110, and a second connection with the main body portion 110. And an inclined portion 140 positioned between the portion 130 and the portion 130.

本体部110の外径は、中央部113から両端部(前端部(他端部)111及び後端部(一端部)112)に向かうに連れて縮径しており、中央部113の外径は両端部(前端部(他端部)111及び後端部(一端部)112)の外径よりも大きい。つまり、軸線O1に沿って本体部110を切った場合には、本体部110の外周面の断面形状は、緩やかな曲線を描き、外側に向けて突出する円弧状となっている。よって、本体部110の外形は、中央部113が径方向外側に膨らんだ樽形状(バレル形状)となっている。また、本体部110の板厚は、両端部(前端部(他端部)111及び後端部(一端部)112)から中央部113に向うにしたがい薄くなっており、中央部113の板厚は、両端部(前端部(他端部)111及び後端部(一端部)112)の板厚よりも薄く形成されている。   The outer diameter of the main body portion 110 is reduced from the central portion 113 toward both end portions (the front end portion (other end portion) 111 and the rear end portion (one end portion) 112). Is larger than the outer diameters of the both ends (the front end (the other end) 111 and the rear end (the one end) 112). That is, when the main body portion 110 is cut along the axis O1, the cross-sectional shape of the outer peripheral surface of the main body portion 110 is a circular curve which draws a gentle curve and protrudes outward. Accordingly, the outer shape of the main body portion 110 is in the shape of a barrel (barrel) in which the central portion 113 bulges radially outward. Further, the plate thickness of the main body portion 110 becomes thinner from the both end portions (the front end portion (other end portion) 111 and the rear end portion (one end portion) 112) toward the central portion 113. Is formed thinner than the plate thickness of the both ends (the front end (the other end) 111 and the rear end (the one end) 112).

第一接続部120の内周面は、スタブヨーク3の多角形状の接続部5に倣った多角形状を呈している。第二接続部130の内周面も、スタブシャフト4の多角形状の接続部6に倣った多角形状を呈している。   The inner peripheral surface of the first connection portion 120 has a polygonal shape that follows the polygonal connection portion 5 of the stub yoke 3. The inner circumferential surface of the second connection portion 130 also has a polygonal shape that follows the polygonal connection portion 6 of the stub shaft 4.

傾斜部140の外径は、本体部110側から第二接続部130側に向かうにしたがい次第に縮径し、円錐台形状となっている。傾斜部140の板厚は、第二接続部130側(後側)の端部から本体部110側(前側)の端部に向かうに連れて漸次薄くなっている。このため、傾斜部140のうち前端部の板厚が最も薄く、脆弱部を構成している。以上から、動力伝達軸1に車両が前方から衝突されて衝突荷重が入力すると、軸線O1に対して傾斜する傾斜部140にせん断力が作用する。そして、傾斜部140に作用するせん断力が所定値を超えると、傾斜部140の前端部(脆弱部)が破損する。このため、車両衝突時、車体の前部に搭載されたエンジンや変速機は速やかに後退し、衝突エネルギーは車体の前部により吸収される。   The outer diameter of the inclined portion 140 gradually decreases as it goes from the main body portion 110 side to the second connection portion 130 side, and has a truncated cone shape. The plate thickness of the inclined portion 140 gradually decreases from the end on the second connection portion 130 side (rear side) toward the end on the main body portion 110 side (front side). For this reason, the plate thickness of the front end portion of the inclined portion 140 is the thinnest, and constitutes the fragile portion. From the above, when the vehicle collides with the power transmission shaft 1 from the front and the collision load is input, a shearing force acts on the inclined portion 140 inclined with respect to the axis O1. Then, when the shear force acting on the inclined portion 140 exceeds a predetermined value, the front end portion (fragile portion) of the inclined portion 140 is broken. Therefore, in the event of a vehicle collision, the engine and transmission mounted on the front of the vehicle body quickly retract, and the collision energy is absorbed by the front of the vehicle body.

スタブヨーク3は、カルダンジョイントを構成する金属製の部材である。スタブヨーク3の接続部5は、後端側が開口した筒形状を呈している。接続部5の外周面は、軸線O1方向視で多角形状を呈している。   The stub yoke 3 is a metal member that constitutes a cardan joint. The connection portion 5 of the stub yoke 3 has a tubular shape with an open rear end. The outer peripheral surface of the connection portion 5 has a polygonal shape in the direction of the axis O1.

スタブシャフト4は、等速ジョイントを構成する金属製の部材である。スタブシャフト4は、等速ジョイントの動力伝達部材に一体に回転するように連結する連結部7と、連結部7の前端に形成され、後記するように閉塞部8に押し込まれることで管体2の第二接続部130の内側に接続する接続部6と、を備えている。接続部6の外周面は、軸線O1方向視で多角形状を呈している。   The stub shaft 4 is a metal member that constitutes a constant velocity joint. The stub shaft 4 is formed at the front end of the connecting portion 7 to be integrally rotated with the power transmission member of the constant velocity joint and at the front end of the connecting portion 7 and pushed into the closing portion 8 as described later. And a connection portion 6 connected to the inside of the second connection portion 130. The outer peripheral surface of the connection portion 6 has a polygonal shape in the direction of the axis O1.

以下、本発明に係る製造方法を、管体2とスタブシャフト4との接続構造に適用した場合について説明する。
[第一実施形態]
第一実施形態は、管体2が熱硬化性樹脂を含む場合の製造方法に関する。第一実施形態の製造方法は、図5のフローチャートに示すように、端部に閉塞部8が形成された管体2を準備する準備工程(ステップS1)と、軟化状態の閉塞部8にスタブシャフト4を押し込む押込工程(ステップS2)と、閉塞部8を硬化させる硬化工程(ステップS3)と、を備えている。
Hereinafter, the case where the manufacturing method concerning the present invention is applied to the connection structure of tube 2 and stub shaft 4 is explained.
First Embodiment
The first embodiment relates to a manufacturing method in the case where the tubular body 2 contains a thermosetting resin. In the manufacturing method of the first embodiment, as shown in the flowchart of FIG. 5, a preparation step (step S1) of preparing the pipe body 2 having the closing part 8 formed at the end, stubs in the closing part 8 in a softened state. The pressing step (step S2) for pressing the shaft 4 and the curing step (step S3) for curing the closed portion 8 are provided.

(準備工程)
図2に示すように、管体2の第二接続部130の後端部は、開口することなく、管体2の内部を閉塞するように、後方に対向した閉塞部8が周面部から一体に形成されている。閉塞部8は平面状でもよいし曲面状でもよい。準備工程では、少なくともこの閉塞部8が熱硬化前の軟化状態として、管体2を準備する。
(Preparation process)
As shown in FIG. 2, the rear end portion of the second connection portion 130 of the tube 2 does not open, and the closed portion 8 facing rearward is integrated from the circumferential surface portion so as to close the inside of the tube 2. Is formed. The closed portion 8 may be flat or curved. In the preparation step, the tube 2 is prepared with at least the closed portion 8 in a softened state before heat curing.

(押込工程)
準備工程の後、図3に示すように、押込工程では、スタブシャフト4の接続部6を軟化状態の閉塞部8に軸線O1に沿って前方に押し込む。これにより、閉塞部8が塑性変形し、閉塞部8には、接続部6の外形に倣った凹部9が形成される。凹部9は、その底部が接続部6の前端面に密着するとともに、その内周部が接続部6の多角形状部に密着した多角形状を呈する。なお、閉塞部8の変形に伴って第二接続部130の周面部が変形しないように、押込工程においては、第二接続部130の外周に環状の押え治具10をあてがってもよい。
(Indentation process)
After the preparation step, as shown in FIG. 3, in the pressing step, the connection portion 6 of the stub shaft 4 is pushed forward along the axis O1 into the softened closing portion 8. Thereby, the closed portion 8 is plastically deformed, and the recessed portion 9 conforming to the outer shape of the connection portion 6 is formed in the closed portion 8. The concave portion 9 has a polygonal shape in which the bottom portion is in close contact with the front end surface of the connection portion 6 and the inner peripheral portion is in close contact with the polygonal portion of the connection portion 6. In the pressing step, the annular pressing jig 10 may be placed on the outer periphery of the second connection portion 130 so that the circumferential surface portion of the second connection portion 130 is not deformed with the deformation of the closing portion 8.

(硬化工程)
押込工程の後、図4に示すように、硬化工程では閉塞部8を図示しない加熱手段により熱硬化させる。閉塞部8が硬化することにより、凹部9が接続部6の表面に強固に密着し、管体2とスタブシャフト4とが接続される。加熱手段としては、管2およびスタブシャフト4を加熱炉に設置するようにしてもよいし、前記押え治具10に加熱装置を内蔵させ、この加熱装置で閉塞部8を加熱するようにしてもよい。
(Curing process)
After the pressing step, as shown in FIG. 4, in the curing step, the blocking portion 8 is thermally cured by a heating unit (not shown). As the closed portion 8 hardens, the concave portion 9 firmly adheres to the surface of the connection portion 6, and the tube body 2 and the stub shaft 4 are connected. As the heating means, the pipe 2 and the stub shaft 4 may be installed in the heating furnace, or the holding jig 10 may be made to incorporate a heating device, and the closed portion 8 may be heated by this heating device. Good.

以上のように、繊維強化プラスチック製の管体2と、管体2の端部に接続する連結部材(スタブシャフト4)と、を備える動力伝達軸1に関して、前記した準備工程と押込工程と硬化工程とを備える製造方法とすれば、精度の高いセレーション加工が不要となり、管体2の変形および硬化を利用して管体2と連結部材とを簡単に接続でき、製造コストの低減を図れる。接着剤も不要となり、作業工程が簡略化される。管体2は、閉塞部8により端部が塞がれているので、管体2の内部への水や塵埃等の浸入のおそれもない。   As described above, with respect to the power transmission shaft 1 including the fiber reinforced plastic tube 2 and the connection member (stub shaft 4) connected to the end of the tube 2, the preparation process, the pressing process, and the curing described above With the manufacturing method including the steps, highly accurate serration processing is not required, and the pipe 2 and the connecting member can be easily connected using deformation and hardening of the pipe 2, and the manufacturing cost can be reduced. The adhesive is also unnecessary, and the working process is simplified. Since the end of the tubular body 2 is closed by the blocking portion 8, there is no risk of water, dust, etc. entering the interior of the tubular body 2.

また、管体2と連結部材(スタブシャフト4)との接続部として多角形状に形成したことにより、管体2とスタブシャフト4との間での回転の動力伝達性能が向上する。   Moreover, the power transmission performance of the rotation between the pipe body 2 and the stub shaft 4 is improved by forming it in a polygonal shape as a connection portion between the pipe body 2 and the connection member (stub shaft 4).

さらに、本実施形態では、管体2が、中央部113から両端部(前端部(他端部)111、後端部(一端部)112)に向かうに連れて外径が縮径する本体部110を備える。これによれば、曲げ応力が集中し易い管体2の本体部110に樽形状部が形成され、所定の曲げ強度を有することとなる。一方で、曲げ応力が集中し難い本体部110の両端部(前端部(他端部)111及び後端部(一端部)112)は、外径が小径に形成されることで軽量化されている。本体部110の中央部113においても、板厚が薄くなっていることで軽量化されている。よって、動力伝達軸1は、中央部113の所定の曲げ剛性を確保しつつ軽量化がなされ、危険回転数が上昇する。   Furthermore, in the present embodiment, a main body portion in which the outer diameter is reduced from the central portion 113 toward the both end portions (the front end portion (other end portion) 111 and the rear end portion (one end portion) 112) from the central portion 113 And 110. According to this, a barrel shape part is formed in the main-body part 110 of the pipe body 2 to which a bending stress tends to concentrate, and it will have predetermined bending strength. On the other hand, both ends (the front end (the other end) 111 and the rear end (the one end) 112) of the main body 110 where bending stress is hard to be concentrated are reduced in weight by forming the outer diameter small. There is. Also in the central portion 113 of the main body portion 110, the weight is reduced because the plate thickness is reduced. Therefore, the power transmission shaft 1 is reduced in weight while securing a predetermined bending rigidity of the central portion 113, and the dangerous rotation number is increased.

[第二実施形態]
第二実施形態は、管体2が熱可塑性樹脂を含む場合の製造方法に関する。第二実施形態の製造方法も、端部に閉塞部8が形成された管体2を準備する準備工程と、軟化状態の閉塞部8にスタブシャフト4を押し込む押込工程と、閉塞部8を硬化させる硬化工程と、を備えている。
Second Embodiment
The second embodiment relates to a manufacturing method in the case where the tubular body 2 contains a thermoplastic resin. Also in the manufacturing method of the second embodiment, a preparation step of preparing the tube 2 having the closed portion 8 formed at the end, a pressing step of pushing the stub shaft 4 into the softened closed portion 8, and hardening of the closed portion 8 And curing step.

(準備工程)
図6に示すように、管体2の第二接続部130の後端部は、開口することなく、管体2の内部を閉塞するように、後方に対向した閉塞部8が周面部から一体に形成されている。第二実施形態の準備工程では、閉塞部8を加熱して軟化させる加熱工程を備える。加熱手段としては、例えば第二接続部130の外周にあてがう環状の加熱装置11とする。
(Preparation process)
As shown in FIG. 6, the rear end portion of the second connection portion 130 of the tube 2 does not open, and the closed portion 8 facing rearward is integrated from the circumferential surface so as to close the inside of the tube 2. Is formed. The preparation step of the second embodiment includes a heating step of heating and softening the closed portion 8. As a heating means, for example, an annular heating device 11 applied to the outer periphery of the second connection portion 130 is used.

(押込工程)
準備工程の後、図7に示すように、押込工程では、スタブシャフト4の接続部6を軟化状態の閉塞部8に軸線O1に沿って前方に押し込む。これにより、閉塞部8が塑性変形し、閉塞部8には、接続部6の外形に倣った凹部9が形成される。凹部9は、その底部が接続部6の前端面に密着するとともに、その内周部が接続部6の多角形状部に密着した多角形状を呈する。
(Indentation process)
After the preparation step, as shown in FIG. 7, in the pressing step, the connection portion 6 of the stub shaft 4 is pushed forward along the axis O1 into the softened closing portion 8. Thereby, the closed portion 8 is plastically deformed, and the recessed portion 9 conforming to the outer shape of the connection portion 6 is formed in the closed portion 8. The concave portion 9 has a polygonal shape in which the bottom portion is in close contact with the front end surface of the connection portion 6 and the inner peripheral portion is in close contact with the polygonal portion of the connection portion 6.

(硬化工程)
押込工程の後、図8に示すように、硬化工程では閉塞部8を自然冷却等により冷却硬化させる。閉塞部8が硬化することにより、凹部9が接続部6の表面に強固に密着し、管体2とスタブシャフト4とが接続される。
(Curing process)
After the pressing step, as shown in FIG. 8, in the curing step, the closed portion 8 is cooled and cured by natural cooling or the like. As the closed portion 8 hardens, the concave portion 9 firmly adheres to the surface of the connection portion 6, and the tube body 2 and the stub shaft 4 are connected.

第二実施形態の製造方法によっても、複雑なセレーション加工が不要となり、管体2の変形および硬化を利用して管体2と連結部材とを簡単に接続できる。接着剤も不要となり、作業工程が簡略化される。管体2は、閉塞部8により端部が塞がれているので、管体2の内部への水や塵埃等の浸入が無い。   Also according to the manufacturing method of the second embodiment, complicated serration processing is not necessary, and the pipe 2 and the connection member can be easily connected by utilizing the deformation and hardening of the pipe 2. The adhesive is also unnecessary, and the working process is simplified. Since the end of the tube 2 is closed by the blocking portion 8, there is no infiltration of water, dust and the like into the inside of the tube 2.

[第三実施形態]
第三実施形態の動力伝達軸の製造方法も、第一実施形態と同様に、端部に閉塞部8が形成された管体2を準備する準備工程と、軟化状態の閉塞部8にスタブシャフト4を押し込む押込工程と、閉塞部8を硬化させる硬化工程と、を備えている。図9に示すように、第三実施形態の動力伝達軸101は、管体2が、一端部(後端部112)から他端部(前端部111)まで外径が均一に形成された本体部110を備えている。
Third Embodiment
Also in the method of manufacturing the power transmission shaft according to the third embodiment, as in the first embodiment, a preparation step of preparing the pipe body 2 having the closing portion 8 formed at the end, a stub shaft in the closing portion 8 in a softened state The pressing step of pressing 4 and the curing step of curing the blocking portion 8 are provided. As shown in FIG. 9, in the power transmission shaft 101 of the third embodiment, a main body in which the tubular body 2 has a uniform outer diameter from one end (rear end 112) to the other end (front end 111) A unit 110 is provided.

管体2の本体部110の外径を均一にすることにより、管体2の形状を簡素化でき、成型コストの低減を図れる。   By making the outer diameter of the main body portion 110 of the tube 2 uniform, the shape of the tube 2 can be simplified, and the molding cost can be reduced.

[第四実施形態]
第四実施形態の動力伝達軸の製造方法も、第一実施形態と同様に、端部に閉塞部8が形成された管体2を準備する準備工程と、軟化状態の閉塞部8にスタブシャフト4を押し込む押込工程と、閉塞部8を硬化させる硬化工程と、を備えている。図10に示すように、第四実施形態の動力伝達軸201は、管体2が、中央部113から前端部(他端部)111まで外径が均一に形成され、中央部113から後端部(一端部)112に向かうに連れて外径が縮径し、外周面が軸線O1方向に曲線状に形成された本体部110を備えている。
Fourth Embodiment
Also in the method of manufacturing the power transmission shaft according to the fourth embodiment, as in the first embodiment, a preparatory step of preparing the pipe body 2 having the closed portion 8 formed at the end, a stub shaft in the softened closed portion 8 The pressing step of pressing 4 and the curing step of curing the blocking portion 8 are provided. As shown in FIG. 10, in the power transmission shaft 201 of the fourth embodiment, the tubular body 2 has a uniform outer diameter from the central portion 113 to the front end (the other end) 111, and the rear end from the central portion 113 The outer diameter is reduced toward the portion (one end portion) 112, and the outer peripheral surface is provided with a main portion 110 formed in a curved shape in the direction of the axis O1.

このような本体部110を備えることにより、管体2の形状の簡素化と強度の向上との両立を図れる。   By providing such a main body portion 110, it is possible to achieve both the simplification of the shape of the tube 2 and the improvement of the strength.

以上、好適な実施形態を説明した。各実施形態では、管体2とスタブシャフト4との接続に本発明の製造方法を適用したが、本発明は、管体2とスタブヨーク3との接続においても適用可能である。   The preferred embodiments have been described above. In each embodiment, the manufacturing method of the present invention is applied to the connection between the tube 2 and the stub shaft 4, but the present invention is also applicable to the connection between the tube 2 and the stub yoke 3.

1,101,201 動力伝達軸
2 管体
3 スタブヨーク(連結部材)
4 スタブシャフト(連結部材)
8 閉塞部
9 凹部
1,101,201 power transmission shaft 2 tube 3 stub yoke (connection member)
4 Stub shaft (connection member)
8 closed part 9 recessed part

Claims (6)

少なくとも一端が閉塞された閉塞部を有する繊維強化プラスチック製の管体と、前記管体の端部に接続する連結部材と、を備える動力伝達軸の製造方法であって、
前記管体を準備する準備工程と、
前記準備工程の後に、前記閉塞部に前記連結部材を押し込む押込工程と、
前記押込工程の後に、前記閉塞部を硬化させる硬化工程と、
を備えることを特徴とする動力伝達軸の製造方法。
A method of manufacturing a power transmission shaft, comprising: a fiber reinforced plastic pipe body having a closed portion closed at least one end; and a connecting member connected to an end of the pipe body,
Preparing the tube;
After the preparing step, a pushing step of pushing the connecting member into the closing portion;
A curing step of curing the closed portion after the pressing step;
A method of manufacturing a power transmission shaft, comprising:
前記管体は熱可塑性樹脂を含み、
前記準備工程において、前記閉塞部を加熱する加熱工程を備えることを特徴とする請求項1に記載の動力伝達軸の製造方法。
The tube comprises a thermoplastic resin,
The method for manufacturing a power transmission shaft according to claim 1, further comprising a heating step of heating the closed portion in the preparation step.
前記管体と前記連結部材との接続部は多角形状に形成されていることを特徴とする請求項1または請求項2に記載の動力伝達軸の製造方法。   The method for manufacturing a power transmission shaft according to claim 1 or 2, wherein a connection portion between the pipe body and the connection member is formed in a polygonal shape. 前記管体は、中央部から両端部に向かうに連れて外径が縮径し、外周面が前記両端部の一端部から他端部にかけて軸線方向に円弧状に形成された本体部を備えることを特徴とする請求項1から請求項3のいずれか一項に記載の動力伝達軸の製造方法。   The tubular body has a main body portion whose outer diameter is reduced from the central portion toward both end portions, and whose outer peripheral surface is formed in an arc shape in the axial direction from one end portion to the other end portion of the both end portions. The manufacturing method of the power transmission shaft as described in any one of the Claims 1-3 characterized by these. 前記管体は、一端部から他端部まで外径が均一に形成された本体部を備えることを特徴とする請求項1から請求項3のいずれか一項に記載の動力伝達軸の製造方法。   The method for manufacturing a power transmission shaft according to any one of claims 1 to 3, wherein the pipe body includes a main body portion having an outer diameter formed uniformly from one end to the other end. . 前記管体は、中央部から他端部まで外径が均一に形成され、前記中央部から一端部に向かうに連れて外径が縮径し、外周面が軸線方向に曲線状に形成された本体部を備えることを特徴とする請求項1から請求項3のいずれか一項に記載の動力伝達軸の製造方法。   The outer diameter of the tubular body is uniformly formed from the central portion to the other end, the outer diameter is reduced from the central portion toward the one end portion, and the outer peripheral surface is formed in a curved shape in the axial direction The method for manufacturing a power transmission shaft according to any one of claims 1 to 3, comprising a main body.
JP2019033814A 2019-02-27 2019-02-27 Method of manufacturing power transmission shaft Expired - Fee Related JP6539422B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019033814A JP6539422B1 (en) 2019-02-27 2019-02-27 Method of manufacturing power transmission shaft
PCT/JP2019/010053 WO2020174698A1 (en) 2019-02-27 2019-03-12 Method for manufacturing power transmission shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019033814A JP6539422B1 (en) 2019-02-27 2019-02-27 Method of manufacturing power transmission shaft

Publications (2)

Publication Number Publication Date
JP6539422B1 true JP6539422B1 (en) 2019-07-03
JP2020139530A JP2020139530A (en) 2020-09-03

Family

ID=67144724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019033814A Expired - Fee Related JP6539422B1 (en) 2019-02-27 2019-02-27 Method of manufacturing power transmission shaft

Country Status (2)

Country Link
JP (1) JP6539422B1 (en)
WO (1) WO2020174698A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210151355A (en) * 2020-06-05 2021-12-14 김병국 coupling using carbon fiber and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2576645B1 (en) * 1985-01-28 1988-03-25 Aerospatiale METHOD FOR SOLIDARIZING AN ELEMENT AT THE END OF A TUBE OF COMPOSITE MATERIAL AND DEVICE THUS OBTAINED
JPH03254926A (en) * 1990-01-31 1991-11-13 Sumitomo Chem Co Ltd Driving force transmission shaft made of fiber-reinforced resin
JPH09229048A (en) * 1996-02-27 1997-09-02 Suzuki Motor Corp Power transmitting shaft
JP5279130B2 (en) * 2009-04-02 2013-09-04 アイシン軽金属株式会社 Integrally molded propeller shaft
BR112015010304A8 (en) * 2012-11-08 2019-10-01 Dana Automotive Systems Group hydroformed drive shaft tube
JP2018159404A (en) * 2017-03-22 2018-10-11 Ntn株式会社 Hollow power transmission shaft, external joint member for constant velocity universal joint and drive shaft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210151355A (en) * 2020-06-05 2021-12-14 김병국 coupling using carbon fiber and manufacturing method thereof
KR102417644B1 (en) * 2020-06-05 2022-07-05 김병국 coupling using carbon fiber and manufacturing method thereof

Also Published As

Publication number Publication date
WO2020174698A1 (en) 2020-09-03
JP2020139530A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
US7442127B2 (en) Propeller shaft and rotational power transmission mechanism equipped with this
US20130252749A1 (en) Propshafts and propshaft assemblies and methods for fabricating propshafts
JP6539422B1 (en) Method of manufacturing power transmission shaft
US11940007B2 (en) Tubular body used for power transmission shaft and power transmission shaft
JP6600434B1 (en) Tube used for power transmission shaft and power transmission shaft
JP2007271079A (en) Torque transmission shaft
JP6581737B1 (en) Tube for power transmission shaft and power transmission shaft
US20030157988A1 (en) Fiber reinforced plastic propeller shaft
JP2011017413A (en) Shaft for power transmission shaft
JP4193317B2 (en) Resin pulley
JP7324589B2 (en) Pipe body and power transmission shaft used for power transmission shaft
EP3647619B1 (en) Drive shaft assembled from plural parts of composite material with bellow couplings
JP7264665B2 (en) power transmission shaft
US10941815B2 (en) Connection device for a drive train
KR101999277B1 (en) Cfrp propeller shafts for vehicle
JP2020138338A (en) Mandrel
WO2020174699A1 (en) Motive power transmission shaft and production method for motive power transmission shaft
JPH0791433A (en) Propeller shaft and its manufacture
WO2020174700A1 (en) Power transmission shaft and method for manufacturing power transmission shaft
JP2020138587A (en) Power transmission shaft
JP2020138584A (en) Power transmission shaft and method of attaching balance piece to the same
JP2020138364A (en) Method for manufacturing pipe body used in power transmission shaft
EP3770449A1 (en) Power transmission shaft
JP2003184854A (en) Propeller shaft and method of manufacturing the same and shaft made of frp
WO2020174695A1 (en) Power transmission shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190312

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190312

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190607

R150 Certificate of patent or registration of utility model

Ref document number: 6539422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees