JP6539168B2 - Machine support structure - Google Patents
Machine support structure Download PDFInfo
- Publication number
- JP6539168B2 JP6539168B2 JP2015181127A JP2015181127A JP6539168B2 JP 6539168 B2 JP6539168 B2 JP 6539168B2 JP 2015181127 A JP2015181127 A JP 2015181127A JP 2015181127 A JP2015181127 A JP 2015181127A JP 6539168 B2 JP6539168 B2 JP 6539168B2
- Authority
- JP
- Japan
- Prior art keywords
- mechanical device
- vertical direction
- leg
- mass
- vertical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Vibration Prevention Devices (AREA)
- Vibration Dampers (AREA)
- Presses And Accessory Devices Thereof (AREA)
Description
本発明は、機械装置を支持する機械装置支持構造に係る。特に、周期的な加振力を発生する機械装置を支持する構造に特徴のある機械装置支持構造に関する。 The present invention relates to a mechanical device support structure for supporting a mechanical device. In particular, the present invention relates to a mechanical device support structure characterized by a structure for supporting a mechanical device that generates a periodic excitation force.
産業において機械装置が用いられる。
例えば、加工対象物を加工するのに高速プレス装置が用いられる。
高速プレス装置は、基礎に据え付けられ、高速プレス機と支持機構とで構成される。
高速プレス機は、高速プレス本体と脚部とで構成される。
高速プレス本体は、駆動部と加工部とを有する。
駆動部は、油圧駆動または電気駆動により加工部を駆動する。
加工部は、加工対象物を加工する部分である。
脚部は、高速プレス本体を据え付けるための据付面を持つ部分である。
In the industry, mechanical devices are used.
For example, a high-speed press is used to process an object to be processed.
The high speed press apparatus is installed on a foundation, and comprises a high speed press machine and a support mechanism.
The high speed press is comprised of a high speed press body and legs.
The high-speed press body has a drive unit and a processing unit.
The drive unit drives the processing unit by hydraulic drive or electric drive.
The processing unit is a portion for processing the object to be processed.
The legs are parts with a mounting surface for mounting the high-speed press body.
機械装置支持構造は、機械装置を支持する構造である。
例えば、機械装置支持構造は、高速プレス機を支持する機構である。
一般に、機械装置支持構造は、架台60と支持ばねと減衰要素とで構成される。
図13、図14は、従来構造の機械装置支持構造を示す。
例えば、架台60は、高速プレス機を乗せる台構造であり、振動を抑制できるに必要な質量をもつ。
例えば、高速プレス機の脚部が架台60の上面に据え付けられる。
支持ばねと減衰要素とが、架台60と基礎50との間に設けられる。
例えば、支持ばねと減衰要素とは鉛直に重ねられたさらバネで実現される。
The mechanical device support structure is a structure that supports the mechanical device.
For example, the machine support structure is a mechanism that supports a high speed press.
In general, the machine support structure comprises a
Figures 13 and 14 show a machine support structure of conventional construction.
For example, the
For example, the legs of a high speed press are mounted on the top of the
A support spring and a damping element are provided between the
For example, the support spring and the damping element are realized by vertically stacked free springs.
機械装置支持構造で支持される高速プレス装置の固有振動数は、高速プレス機の質量と架台の質量との合計質量と支持ばねのばね定数とで決まる。
駆動部が加工部を駆動すると、駆動部の加振振動数と加振力とで高速プレス装置が加振される。
架台と支持ばねと減衰要素とを適正に選択することにより、高速プレス装置の鉛直方向の鉛直応答変位を小さくすることができる。
一般的に、架台の質量が大きくなると、高速プレス装置の鉛直方向の鉛直応答変位を小さくできる。
The natural frequency of the high-speed press supported by the machine support structure is determined by the total mass of the mass of the high-speed press and the mass of the frame and the spring constant of the support spring.
When the drive unit drives the processing unit, the high-speed press device is vibrated by the vibration frequency and the vibration force of the drive unit.
By properly selecting the mount, the support spring and the damping element, the vertical response displacement of the high-speed press in the vertical direction can be reduced.
Generally, when the mass of the mount increases, the vertical response displacement of the high-speed press in the vertical direction can be reduced.
しかし、架台の質量が大きくなると、機械装置支持構造の設計が難しくなる傾向がある。
特に、架台の質量が大きくなると、支持ばねの静たわみが大きくなり、支持ばねの選択が難しくなる。
However, as the mass of the cradle increases, the design of the mechanical device support structure tends to be difficult.
In particular, when the mass of the mount increases, the static deflection of the support spring increases, making it difficult to select the support spring.
本発明は以上に述べた問題点に鑑み案出されたもので、簡易な構造により機械装置を支持し所望の防振性能を発揮できる機械装置支持構造を提供しようとする。 The present invention has been made in view of the problems described above, and an object thereof is to provide a mechanical device support structure capable of supporting a mechanical device with a simple structure and exhibiting desired vibration proofing performance.
上記目的を達成するため、本発明を、基礎に設けられ周期的な加振力を発生する駆動部を持つ機械装置本体と機械装置本体を据え付けるための据付面を持つ脚部とを有する機械装置を支持する機械装置支持構造を、脚部と基礎の間に設けられ、基礎と脚部との間の鉛直方向の相対変位を回転体の回転量に変換する慣性マスと、基礎と脚部との間の鉛直方向の相対変位に対応して鉛直方向にそって作用する弾性反力を発生する支持ばねと、を備えるものとした。 In order to achieve the above object, according to the present invention, there is provided a mechanical device body having a drive provided on a foundation and generating a periodic excitation force and a leg having a mounting surface for mounting the mechanical device. A mechanical device supporting structure for supporting the frame, between the leg and the base, and converting the relative displacement in the vertical direction between the base and the leg into the amount of rotation of the rotating body, the base and the leg And a support spring for generating an elastic reaction force acting along the vertical direction corresponding to the relative displacement in the vertical direction between them.
上記本発明の構成により、機械装置は、周期的な加振力を発生する駆動部と加工部とを持つ機械装置本体と機械装置本体を据え付けるための据付面を持つ脚部とを有する。脚部と基礎の間に設けられる、慣性マスが、基礎と脚部との間の鉛直方向の相対変位を回転体の回転量に変換する。支持ばねが、基礎と脚部との間の鉛直方向の相対変位に対応して鉛直方向にそって作用する弾性反力を発生する。
その結果、回転体と支持ばねの物理諸元を適切に選択することで、機械装置と慣性マスと支持ばねとでできる振動系の振動を抑制できる。
According to the configuration of the present invention, the mechanical device has a mechanical device main body having a drive portion generating cyclical excitation force, a processing portion, and a leg portion having a mounting surface for mounting the mechanical device main body. An inertial mass, which is provided between the leg and the base, converts the relative vertical displacement between the base and the leg into the amount of rotation of the rotating body. A support spring generates an elastic reaction force acting along the vertical direction in response to the vertical relative displacement between the base and the leg.
As a result, by appropriately selecting the physical specifications of the rotating body and the support spring, it is possible to suppress the vibration of the vibration system formed by the mechanical device, the inertia mass and the support spring.
以下に、本発明の実施形態に係る機械装置支持構造を説明する。本発明は、以下に記載した実施形態のいずれか、またはそれらの中の二つ以上が組み合わされた態様を含む。 Hereinafter, a mechanical device support structure according to an embodiment of the present invention will be described. The present invention includes any of the embodiments described below, or a combination of two or more of them.
また、本発明の実施形態に係る機械装置支持構造は、前記慣性マスの上部が脚部に直接に連結される、
上記本発明に係る実施形態の構成により、前記慣性マスの上部が脚部に直接に連結される。
その結果、前記慣性マスが鉛直方向の相対変位を回転体の回転量に変換することにより回転体の回転慣性力に起因して発生する鉛直方向の反力が機械装置に直接に伝わる。
In the mechanical device support structure according to an embodiment of the present invention, the upper portion of the inertia mass is directly connected to the leg portion.
According to the configuration of the embodiment of the present invention, the upper portion of the inertial mass is directly connected to the leg.
As a result, when the inertial mass converts the relative displacement in the vertical direction into the amount of rotation of the rotating body, the vertical reaction force generated due to the rotational inertia force of the rotating body is directly transmitted to the mechanical device.
また、本発明の実施形態に係る機械装置支持構造は、質点系で表したときに機械装置の質量と前記慣性マスにより前記回転体の回転慣性力に起因して生ずる鉛直方向の反力に対応する鉛直方向の見かけの質量とが直接に直列接続される。
上記本発明に係る実施形態の構成により、質点系で表したときに機械装置の質量と前記慣性マスにより前記回転体の回転慣性力に起因して生ずる鉛直方向の反力に対応する鉛直方向の見かけの質量とが直接に直列接続される。
その結果、機械装置の質量と前記慣性マスにより前記回転体の回転慣性力に起因して生ずる鉛直方向の反力に対応する鉛直方向の見かけの質量とが一体として鉛直方向に相対移動する。
In addition, the mechanical device support structure according to the embodiment of the present invention corresponds to the reaction force in the vertical direction generated due to the rotational inertia force of the rotating body by the mass of the mechanical device and the inertial mass when represented by a mass point system. The apparent mass in the vertical direction is directly connected in series.
According to the configuration of the embodiment of the present invention, when represented by a mass point system, the vertical direction corresponding to the reaction force in the vertical direction generated due to the rotational inertia force of the rotating body by the mass of the mechanical device and the inertial mass The apparent mass is directly connected in series.
As a result, the mass of the mechanical device and the apparent mass in the vertical direction corresponding to the reaction force in the vertical direction generated due to the rotational inertia force of the rotating body by the inertial mass integrally move relatively in the vertical direction.
また、本発明の実施形態に係る機械装置支持構造は、質点系で表されたときに前記慣性マスにより前記回転体の回転慣性力に起因して生ずる鉛直方向の反力に対応する鉛直方向の見かけの質量と前記支持ばねのばね定数とが、前記質点系の固有振動数が前記駆動部の加振振動数より十分に小さく、かつ機械装置本体の鉛直方向の鉛直応答変位が所定の鉛直変位値より小さくなる様に選択されたものである。
上記実施形態の構成により、質点系で表されたときに前記慣性マスにより前記回転体の回転慣性力に起因して生ずる鉛直方向の反力に対応する鉛直方向の見かけの質量と前記支持ばねのばね定数とが、前記質点系の固有振動数が前記駆動部の加振振動数より十分に小さく、かつ機械装置本体の鉛直方向の鉛直応答変位が所定の鉛直変位値より小さくなる様に、選択されたものである。
その結果、無理なく機械装置本体の鉛直方向の振動を抑制できる。
Further, in the mechanical device support structure according to the embodiment of the present invention, when represented by a mass point system, a vertical direction corresponding to a reaction force in the vertical direction caused by the inertial force of the rotating body by the inertial mass The apparent mass and the spring constant of the support spring indicate that the natural frequency of the mass point system is sufficiently smaller than the vibration frequency of the drive unit, and the vertical response displacement of the machine body in the vertical direction is a predetermined vertical displacement. It is selected to be smaller than the value.
According to the configuration of the above embodiment, the apparent mass in the vertical direction and the support spring corresponding to the reaction force in the vertical direction generated due to the rotational inertia force of the rotating body by the inertia mass when represented by a mass point system The spring constant is selected so that the natural frequency of the mass system is sufficiently smaller than the vibration frequency of the drive unit, and the vertical response displacement in the vertical direction of the mechanical device body is smaller than a predetermined vertical displacement value. It is done.
As a result, vibration in the vertical direction of the mechanical device body can be suppressed without unreasonableness.
また、本発明の実施形態に係る機械装置支持構造は、前記支持ばねが前記慣性マスにガイドされて基礎と脚部との間の鉛直方向の相対変位に対応して鉛直方向にそって伸縮する。
上記実施形態の構成により、前記支持ばねが前記慣性マスにガイドされて基礎と脚部との間の鉛直方向の相対変位に対応して鉛直方向にそって伸縮する。
その結果、前記慣性マスの発生する鉛直方向の反力と前記支持ばねの発生する弾性反力とが同軸上に作用し、機械装置に無用な偶力が発生しにくい。
In the mechanical device support structure according to the embodiment of the present invention, the support spring is guided by the inertia mass and extends and contracts along the vertical direction in response to the relative displacement between the base and the leg in the vertical direction. .
According to the configuration of the above-described embodiment, the support spring is guided by the inertia mass and extends and contracts in the vertical direction in response to the relative displacement between the base and the leg in the vertical direction.
As a result, the reaction force in the vertical direction generated by the inertial mass and the elastic reaction force generated by the support spring act coaxially, and an unnecessary couple of forces hardly occurs in the mechanical device.
また、本発明の実施形態に係る機械装置支持構造は、脚部と前記慣性マスとを連結する脚部側連結部材と、前記慣性マスと基礎とを連結する基礎側連結部材と、を備え、前記慣性マスが外周面に長手方向に沿って所定のリードを持つ螺旋状の溝である螺旋溝を設けられる長尺部材と前記長軸部材の回転に対応して回転する回転部材と前記螺旋溝に倣って案内されるナット部材とを有し、脚部側連結部材が脚部と前記ナット部材及び前記長尺部材の一方との鉛直方向の相対変位と鉛直軸の回りの相対回転を拘束する様に脚部と前記ナット部材及び前記長尺部材の一方とを連結し、基礎側連結部材が前記ナット部材及び前記長尺部材の他方と基礎との鉛直方向の相対変位を拘束し鉛直軸の回りの回転を自在にする様に前記ナット部材及び前記長尺部材の他方と基礎とを連結する。
上記実施形態の構成により、前記慣性マスが外周面に長手方向に沿って所定のリードを持つ螺旋状の溝である螺旋溝を設けられる長尺部材と前記長軸部材の回転に対応して回転する回転部材と前記螺旋溝に倣って案内されるナット部材とを有する。脚部側連結部材が脚部と前記ナット部材及び前記長尺部材の一方との鉛直方向の相対変位と鉛直軸の回りの相対回転を拘束する様に脚部と前記ナット部材及び前記長尺部材の一方とを連結する。基礎側連結部材が前記ナット部材及び前記長尺部材の他方と基礎との鉛直方向の相対変位を拘束し鉛直軸の回りの回転を自在にする様に前記ナット部材及び前記長尺部材の他方と基礎とを連結する。
その結果、脚部と基礎との鉛直方向の相対変位が生ずると、前記ナット部材及び前記長尺部材の他方が回転する。
A mechanical device support structure according to an embodiment of the present invention includes a leg portion side connecting member that connects a leg portion and the inertial mass, and a base side connecting member that connects the inertial mass and a base, An elongated member provided with a spiral groove, which is a spiral groove having a predetermined lead along the longitudinal direction on the outer peripheral surface, a rotating member that rotates according to rotation of the long axis member, and the spiral groove And the leg portion side connecting member restrains the relative displacement between the leg portion and one of the nut member and the elongated member in the vertical direction and the relative rotation around the vertical axis. The leg portion and one of the nut member and the long member are connected, and the base side connection member restricts the relative displacement between the other of the nut member and the long member and the base in the vertical direction, The nut member and the elongated member to freely rotate around Connecting the other and Foundation wood.
According to the configuration of the above embodiment, the inertial mass is provided with a helical groove which is a helical groove having a predetermined lead along the longitudinal direction in the outer peripheral surface, and the rotational member corresponding to the rotation of the long shaft member And a nut member guided along the spiral groove. The leg portion, the nut member, and the elongated member so that the leg portion side connecting member restrains the relative displacement between the leg portion and one of the nut member and the elongated member in the vertical direction and the relative rotation around the vertical axis. Connect with one of the The other of the nut member and the elongated member is arranged so that the base side connecting member restrains the relative displacement between the other of the nut member and the other of the elongated member and the base in the vertical direction and allows rotation around the vertical axis. Connect with the foundation.
As a result, when relative displacement between the leg and the base in the vertical direction occurs, the other of the nut member and the elongated member is rotated.
また、本発明の実施形態に係る機械装置支持構造は、前記脚部側連結部材が脚部と前記ナット部材及び前記長尺部材の一方との水平方向の相対移動を所定のストロークの範囲内で自在にする様に脚部と前記ナット部材及び前記長尺部材の一方とを連結する。
上記実施形態の構成により、
前記脚部側連結部材が脚部と前記ナット部材及び前記長尺部材の一方との水平方向の相対移動を所定のストロークの範囲内で自在にする様に脚部と前記ナット部材及び前記長尺部材の一方とを連結する。
その結果、機械装置に水平方向の相対変位が生じても所定のストロークの範囲内で前記ナット部材及び前記長尺部材の一方に水平力が生じない。
In the mechanical device support structure according to the embodiment of the present invention, the leg-side connecting member moves the relative movement in the horizontal direction between the leg and one of the nut member and the elongated member within a predetermined stroke range. The leg portion is connected to one of the nut member and the elongated member so as to be freely movable.
By the configuration of the above embodiment,
The leg portion, the nut member, and the long member so that the leg portion side connecting member can freely move the relative movement in the horizontal direction between the leg portion and one of the nut member and the long member within a predetermined stroke range. Connect with one of the members.
As a result, even if relative displacement in the horizontal direction occurs in the mechanical device, horizontal force does not occur in one of the nut member and the long member within the range of a predetermined stroke.
また、本発明の実施形態に係る機械装置支持構造は、脚部と前記慣性マスとを連結する脚部側連結部材と、前記慣性マスと基礎とを連結する基礎側連結部材と、を備え、前記慣性マスが外周面に長手方向に沿って所定のリードを持つ螺旋状の溝である螺旋溝を設けられる長尺部材と前記螺旋溝に倣って案内されるナット部材と前記ナット部材の回転に対応して回転する回転部材とを有し、脚部側連結部材が脚部と前記長尺部材及び前記ナット部材の一方との鉛直方向の相対変位を拘束し鉛直軸の回りの相対回転を自由にする様に脚部と前記長尺部材及び前記ナット部材の一方とを連結し、基礎側連結部材が前記長尺部材及び前記ナット部材の他方と基礎との鉛直方向の相対変位を拘束し鉛直軸の回りの回転を拘束する様に前記長尺部材及び前記ナット部材の他方と基礎と連結する。
上記実施形態の構成により、前記慣性マスが外周面に長手方向に沿って所定のリードを持つ螺旋状の溝である螺旋溝を設けられる長尺部材と前記螺旋溝に倣って案内されるナット部材と前記ナット部材の回転に対応して回転する回転部材とを有する。脚部側連結部材が脚部と前記長尺部材及び前記ナット部材の一方との鉛直方向の相対変位を拘束し鉛直軸の回りの相対回転を自由にする様に脚部と前記長尺部材及び前記ナット部材の一方とを連結する。基礎側連結部材が前記長尺部材及び前記ナット部材の他方と基礎との鉛直方向の相対変位を拘束し鉛直軸の回りの回転を拘束する様に前記長尺部材及び前記ナット部材の他方と基礎と連結する。
その結果、脚部と基礎との鉛直方向の相対変位が生ずると、前記長尺部材及び前記ナット部材の一方が回転する。
A mechanical device support structure according to an embodiment of the present invention includes a leg portion side connecting member that connects a leg portion and the inertial mass, and a base side connecting member that connects the inertial mass and a base, An elongated member provided with a spiral groove, which is a spiral groove having a predetermined lead along the longitudinal direction on the outer peripheral surface, a nut member guided along the spiral groove, and a rotation of the nut member The leg-side connecting member restrains the relative displacement between the leg and one of the elongated member and the nut member in the vertical direction, and the relative rotation around the vertical axis is free. To connect the leg with one of the elongated member and the nut member, and the base side connection member restricts the relative displacement between the other of the elongated member and the nut member and the base in the vertical direction The elongated member and the front to restrain rotation about an axis Connecting the other and the base of the nut member.
According to the configuration of the above embodiment, an elongated member provided with a spiral groove which is a spiral groove having a predetermined lead along the longitudinal direction on the outer peripheral surface and a nut member guided along the spiral groove And a rotating member that rotates in response to the rotation of the nut member. The leg portion and the elongated member are configured such that the leg portion side connecting member restrains the relative displacement between the leg portion and one of the elongated member and the nut member in the vertical direction and allows relative rotation about the vertical axis. The one end of the nut member is connected. The base side connecting member restrains the relative displacement between the other of the long member and the other of the nut member and the base in the vertical direction, and restricts the rotation around the vertical axis with the other of the long member and the nut member and the base Concatenate with
As a result, when relative displacement between the leg and the base in the vertical direction occurs, one of the elongated member and the nut member is rotated.
また、本発明の実施形態に係る機械装置支持構造は、基礎側連結部材が前記長尺部材及び前記ナット部材の他方と基礎との水平方向の相対変位を所定のストロークの範囲内で自在にする様に前記長尺部材及び前記ナット部材の他方と基礎と連結する。
上記実施形態の構成により、基礎側連結部材が前記長尺部材及び前記ナット部材の他方と基礎との水平方向の相対変位を所定のストロークの範囲内で自在にする様に前記長尺部材及び前記ナット部材の他方と基礎と連結する。
その結果、機械装置に水平方向の相対変位が生じても所定のストロークの範囲内で前記ナット部材及び前記長尺部材の一方に水平力が生じない。
In the mechanical device support structure according to the embodiment of the present invention, the base-side connection member allows relative horizontal displacement between the other of the long member and the nut member and the base within a predetermined stroke range. In the same manner, the other one of the long member and the nut member is connected to the base.
According to the configuration of the above embodiment, the elongated member and the elongated member and the elongated member and the elongated member can be configured such that the horizontal relative displacement between the other of the elongated member and the other of the nut member and the foundation can be made within the predetermined stroke range. Connect with the other side of the nut member and the base.
As a result, even if relative displacement in the horizontal direction occurs in the mechanical device, horizontal force does not occur in one of the nut member and the long member within the range of a predetermined stroke.
また、本発明の実施形態に係る機械装置支持構造は、前記慣性マスが前記長尺部材と前記ナット部材と前記ナット部材を囲い内部に潤滑油を溜める潤滑油用カバーとを有する。
上記実施形態の構成により、前記慣性マスが前記長尺部材と前記ナット部材と前記ナット部材を囲い内部に潤滑油を溜める潤滑油用カバーとを有する。
その結果、ナット部材が長尺部材の螺旋溝に倣って安定して案内される。
In the mechanical device support structure according to the embodiment of the present invention, the inertia mass includes the elongated member, the nut member, and the nut member, and has a lubricating oil cover for storing lubricating oil inside.
According to the configuration of the above embodiment, the inertia mass includes the elongated member, the nut member, and the nut member, and has a lubricating oil cover for storing the lubricating oil inside.
As a result, the nut member is stably guided following the spiral groove of the long member.
また、本発明の実施形態に係る機械装置支持構造は、前記慣性マスが前記長尺部材と円筒状の外側面をもつ前記ナット部材とを有し、前記支持ばねが前記ナット部材の前記外側面により鉛直方向に伸縮自在に案内される。
上記実施形態の構成により、前記慣性マスが前記長尺部材と円筒状の外側面をもつ前記ナット部材とを有する。前記支持ばねが前記ナット部材の前記外側面により鉛直方向に伸縮自在に案内される。
その結果、前記慣性マスの発生する鉛直方向の反力と前記支持ばねの発生する弾性反力とが同軸上に作用し、機械装置に無用な偶力が発生しにくい。
In the mechanical device support structure according to the embodiment of the present invention, the inertia mass includes the elongated member and the nut member having a cylindrical outer surface, and the support spring is the outer surface of the nut member. It is guided in an expandable manner in the vertical direction.
According to the configuration of the above embodiment, the inertial mass includes the elongated member and the nut member having a cylindrical outer surface. The support spring is vertically and telescopically guided by the outer side surface of the nut member.
As a result, the reaction force in the vertical direction generated by the inertial mass and the elastic reaction force generated by the support spring act coaxially, and an unnecessary couple of forces hardly occurs in the mechanical device.
以上説明したように、本発明に係る機械装置支持構造は、その構成により、以下の効果を有する。
周期的な加振力を発生する駆動部と加工部とをもつ機械装置本体を据え付けるための据付面を持つ脚部と基礎との間に慣性マスと支持ばねとを設け、前記慣性マスが鉛直方向の相対変位を回転体の回転量に変換し、前記支持ばねが鉛直方向の相対変位に対応して鉛直方向に採用する弾性反力を発生する様にしたので、回転体と支持ばねの物理諸元を適切に選択することで、機械装置と慣性マスと支持ばねとでできる振動系の振動を抑制できる。
また、前記慣性マスの上部が脚部に直接に連結される様にしたので、前記慣性マスが鉛直方向の相対変位を回転体の回転量に変換することにより回転体の回転慣性力に起因して発生する鉛直方向の反力が機械装置に直接に伝わる。
また、質点系で表したときに機械装置の質量と前記慣性マスにより前記回転体の回転慣性力に起因して生ずる鉛直方向の反力に対応する鉛直方向の見かけの質量とが直接に直列接続される様にしたので、機械装置の質量と前記慣性マスによち前記回転体の回転慣性力に起因して生ずる鉛直方向の反力に対応する鉛直方向の見かけの質量とが一体として鉛直方向に相対移動する。
また、質点系で表されたときに前記慣性マスにより前記回転体の回転慣性力に起因して生ずる鉛直方向の反力に対応する鉛直方向の見かけの質量と前記支持ばねのばね定数とが選択され、前記質点系の固有振動数が前記駆動部の加振振動数より十分に小さく、かつ機械装置本体の鉛直方向の鉛直応答変位が所定の鉛直変位値より小さくなる様にしたので、無理なく機械装置本体の鉛直方向の振動を抑制できる。
また、前記支持ばねが前記慣性マスにガイドされて基礎と脚部との間の鉛直方向の相対変位に対応して鉛直方向にそって伸縮する様にしたので、前記慣性マスの発生する鉛直方向の反力と前記支持ばねの発生する弾性反力とが同軸上に作用し、機械装置に無用な偶力が発生しにくい。
また、前記螺旋溝を設けられる長尺部材と前記長尺部材に対応して回転する回転部材と前記螺旋溝に倣って案内されるナット部材とで構成される前記慣性マスを用い、脚部側連結部材が脚部と前記ナット部材及び前記長尺部材の一方との鉛直方向の相対変位と鉛直軸の回りの相対回転とを拘束する様にし、基礎側連結部材が前記ナット部材及び前記長尺部材の他方と基礎との鉛直方向の相対変位を拘束し鉛直軸の回りの回転を自在にする様にしたので、脚部と基礎との鉛直方向の相対変位が生ずると、前記ナット部材及び前記長尺部材の他方が回転する。
また、前記脚部側連結部材が脚部と前記ナット部材及び前記長尺部材の一方との水平方向の相対移動を所定のストロークの範囲内で自在にする様にしたので、機械装置に水平方向の相対変位が生じても所定のストロークの範囲内で前記ナット部材及び前記長尺部材の一方に水平力が生じない。
また、前記螺旋溝を設けられる長尺部材と前記長尺部材に対応して回転する回転部材と前記螺旋溝に倣って案内されるナット部材とで構成される前記慣性マスを用い、脚部側連結部材が脚部と前記長尺部材及び前記ナット部材の一方との鉛直方向の相対変位を拘束し鉛直軸の回りの相対回転を自由にする様にし、基礎側連結部材が前記長尺部材及び前記ナット部材の他方と基礎との鉛直方向の相対変位を拘束し鉛直軸の回りに回転を拘束する様にしたので、脚部と基礎との鉛直方向の相対変位が生ずると、前記長尺部材及び前記ナット部材の一方が回転する。
また、前記基礎側連結部材が、前記長尺部材及び前記ナット部材の他方と基礎との水平方向の相対変位を所定のストロークの範囲内で自在にする様にしたので、機械装置に水平方向の相対変位が生じても所定のストロークの範囲内で前記ナット部材及び前記長尺部材の一方に水平力が生じない。
また、潤滑油用カバーが前記ナット部材を囲い内部に潤滑油を溜める様にしたので、ナット部材が長尺部材の螺旋溝に倣って安定して案内される。
また、前記支持ばねが前記慣性マスの前記長尺部材に案内される前記ナット部材の前記外側面により鉛直方向に伸縮自在に案内される様にしたので、前記慣性マスの発生する鉛直方向の反力と前記支持ばねの発生する弾性反力とが同軸上に作用し、機械装置に無用な偶力が発生しにくい。
As described above, the mechanical device support structure according to the present invention has the following effects due to its configuration.
An inertial mass and a support spring are provided between a foot and a base having a mounting surface for mounting a mechanical device main body having a drive portion generating a periodic excitation force and a processing portion, and the inertial mass is vertical Since the relative displacement in the direction is converted to the amount of rotation of the rotating body, and the support spring generates an elastic reaction force adopted in the vertical direction corresponding to the relative displacement in the vertical direction, the physics of the rotating body and the support spring By appropriately selecting the specifications, it is possible to suppress the vibration of the vibration system made up of the mechanical device, the inertia mass and the support spring.
Further, since the upper portion of the inertial mass is directly connected to the leg portion, the inertial mass converts the relative displacement in the vertical direction into the amount of rotation of the rotating body, resulting in the rotational inertia force of the rotating body. The vertical reaction force generated is directly transmitted to the machine.
Also, when represented by a mass point system, the mass of the machine and the apparent mass in the vertical direction corresponding to the reaction force in the vertical direction caused by the rotational inertia force of the rotating body by the inertia mass are directly connected in series. Therefore, the mass of the mechanical device and the apparent mass in the vertical direction corresponding to the reaction force in the vertical direction caused by the rotational inertia force of the rotating body by the inertia mass are integrated as a vertical direction. Move relative to
In addition, the apparent mass in the vertical direction corresponding to the reaction force in the vertical direction caused by the inertia force of rotation of the rotating body by the inertia mass when expressed by a mass point system and the spring constant of the support spring are selected. The natural frequency of the mass system is sufficiently smaller than the vibration frequency of the drive unit, and the vertical response displacement in the vertical direction of the mechanical device body is smaller than a predetermined vertical displacement value. Vibration in the vertical direction of the mechanical device body can be suppressed.
In addition, since the support spring is guided by the inertia mass so as to expand and contract along the vertical direction corresponding to the relative displacement between the foundation and the leg in the vertical direction, the vertical direction generated by the inertia mass And the elastic reaction force generated by the support spring act on the same axis, which makes it difficult to generate unnecessary couples in the mechanical device.
Also, using the above-mentioned inertia mass constituted by an elongated member provided with the spiral groove, a rotating member that rotates corresponding to the elongated member, and a nut member guided along the spiral groove, the leg side The connection member restricts relative displacement between the leg portion and one of the nut member and the elongated member in the vertical direction and relative rotation around the vertical axis, and the base side connection member includes the nut member and the elongated member. Since the relative displacement between the other of the member and the base in the vertical direction is restricted to allow rotation around the vertical axis, when the relative movement between the leg and the base in the vertical direction occurs, the nut member and the base are separated. The other of the long members rotates.
Further, since the leg-side connecting member allows relative movement in the horizontal direction between the leg and one of the nut member and the long member within a predetermined stroke range, the horizontal direction of the mechanical device can be obtained. Even if relative displacement occurs, horizontal force does not occur in one of the nut member and the elongated member within a predetermined stroke range.
Also, using the above-mentioned inertia mass constituted by an elongated member provided with the spiral groove, a rotating member that rotates corresponding to the elongated member, and a nut member guided along the spiral groove, the leg side The connection member restricts relative displacement between the leg portion and one of the elongated member and the nut member in the vertical direction to allow relative rotation about the vertical axis, and the base side connection member includes the elongated member and the elongated member Since the relative displacement between the other of the nut member and the base in the vertical direction is restrained to restrict rotation around the vertical axis, when the relative displacement between the leg and the base in the vertical direction occurs, the long member And one of the nut members is rotated.
Further, since the base side connecting member allows relative relative displacement between the other of the long member and the other of the nut member and the base in the horizontal direction within a predetermined stroke range, it is possible Even if relative displacement occurs, horizontal force does not occur in one of the nut member and the elongated member within a predetermined stroke range.
In addition, since the lubricating oil cover is configured to store the lubricating oil in the interior of the nut member, the nut member is stably guided following the spiral groove of the long member.
Further, since the support spring is guided in a vertically expandable manner by the outer side surface of the nut member guided to the elongated member of the inertia mass, the vertical direction in which the inertia mass is generated is reversed. The force and the elastic reaction force generated by the support spring act on the same axis, and it is difficult to generate an unnecessary couple in the mechanical device.
以下、本発明を実施するための最良の形態を、図面を参照して説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
最初に、本発明の実施形態に係る機械装置支持構造を、図を基に、説明する
本発明の実施形態に係る機械装置の概念図である。本発明の実施形態に係る機械装置支持構造の正面図である。本発明の実施形態に係る機械装置支持構造の平面図である。本発明の実施形態に係る慣性マスの各種タイプの概念図である。
First, a mechanical device support structure according to an embodiment of the present invention will be described based on the drawings. FIG. 1 is a conceptual view of a mechanical device according to an embodiment of the present invention. It is a front view of the machinery support structure concerning the embodiment of the present invention. It is a top view of the machinery support structure concerning the embodiment of the present invention. It is a conceptual diagram of various types of inertial mass concerning an embodiment of the present invention.
機械装置支持構造は、基礎50に設けられ、機械装置を支持する構造である。
機械装置は、機械装置本体110と脚部120とで構成する。
機械装置本体110は、駆動部111で構成される。
機械装置本体110は、駆動部111と加工部112とで構成されてもよい。
機械装置本体110は、駆動部111と加工部112と材料投入口113と制御盤114とで構成されてもよい。
駆動部111は、周期的な加振力を発生する部分である。
例えば、駆動部111は、周期的な鉛直方向の加速度成分が卓越する加振力を発生する。
加工部112は、材料を加工する部分である。
材料投入口113は,加工される材料を投入する部分である。
制御盤114は、機械装置本体110を制御する盤である。
脚部120は、機械装置本体を据え付けるための据付面Sを持つ部分である。
脚部120は、機械装置本体110の下部に固定される。
例えば、一対の脚部120が、機械装置本体110の下部に固定される。
The machine support structure is provided on the
The mechanical device comprises the
The mechanical device
The
The mechanical device
The
For example, the
The
The
The
The
The
For example, the pair of
以下に、本発明の実施形態にかかる機械装置支持構造を、説明する。
機械装置支持構造は、基礎50に設けられる。
機械装置支持構造は、脚部120と基礎50との間に設けられる。
機械装置支持構造は、慣性マス200と支持ばね300とで構成される。
機械装置支持構造は、慣性マス200と支持ばね300と脚部側連結部材410と基礎側連結部材420とで構成される。
機械装置支持構造は、慣性マス200と支持ばね300と脚部側連結部材410と基礎側連結部材420と脚部側バネ連結部材510と基礎側バネ連結部材520とで構成されてもよい。
脚部側連結部材410が脚部側バネ連結部材510を兼ねても良い。
基礎側連結部材420が基礎側バネ連結部材520を兼ねても良い。
慣性マス200と支持ばね300とは、別個に並んで設置されてもよい。
慣性マス200と支持ばね300とは、一体になっていてもよい。
Hereinafter, a mechanical device support structure according to an embodiment of the present invention will be described.
The machine support structure is provided on the
A mechanical device support structure is provided between the
The mechanical device support structure is composed of an
The mechanical device support structure includes the
The mechanical device support structure may be configured by the
The leg portion
The base
The
The
慣性マス200は、基礎50と脚部120との間の鉛直方向の相対変位を回転体の回転量に変換する機械要素である。
支持ばね300は、基礎と脚部との間の鉛直方向の相対変位に対応して鉛直方向にそって作用する弾性反力を発生する機械要素である。
The
The
慣性マス200は、脚部120に直接に連結されてもよい。
慣性マス200の上部が、脚部120に直接に連結されてもよい。
例えば、慣性マス200の上部が、脚部側連結部材410により脚部120に直接に連結される。
慣性マス200の下部が、基礎50に直接に連結されてもよい。
例えば、慣性マス200の下部が、基礎側連結部材420により基礎50に直接に接続される。
The top of the
For example, the upper portion of the
The lower portion of the
For example, the lower portion of the
支持ばね300は、脚部120に直接に連結されてもよい。
支持ばね300の上部が、脚部120に直接に連結されてもよい。
例えば、支持ばね300の上部が、脚部側バネ連結部材510により脚部120に直接に連結される。
支持ばね300の下部が、基礎50に直接に連結されてもよい。
例えば、支持ばね300の下部が、基礎側バネ連結部材520により基礎40に直接に連結される。
The
The top of the
For example, the upper portion of the
The lower portion of the
For example, the lower portion of the
慣性マス200は、鉛直方向の相対変位を回転体の回転量に変換する要素である。
鉛直方向の相対変位が慣性マスに発生すると、慣性マスが慣性力を発生する。 鉛直方向の慣性力は鉛直方向の相対変位の加速度に比例する。その結果、慣性マス200は見かけの質量mdをもつ。
The
When relative displacement in the vertical direction occurs in the inertial mass, the inertial mass generates an inertial force. The inertial force in the vertical direction is proportional to the acceleration of the relative displacement in the vertical direction. As a result, the
支持ばね300は、水平方向の相対変位に対応して鉛直方向にそって作用する弾性反力を発生する要素である。その結果、支持ばねは、ばね定数kをもつ。
弾性反力は、鉛直方向の相対変位に比例する。
The
The elastic reaction force is proportional to the relative displacement in the vertical direction.
支持ばね300が、慣性マス200にガイドされて基礎50と脚部120との間の鉛直方向の相対変位に対応して鉛直方向にそって伸縮してもよい。
The
減衰要素は、水平方向の相対速度に対応して水平方向にそって作用する減衰力を発生する要素である。減衰要素は、粘性係数Cをもつ。
減衰力は、鉛直方向の相対変位の速度に比例する。
The damping element is an element that generates a damping force acting along the horizontal direction corresponding to the relative velocity in the horizontal direction. The damping element has a viscosity coefficient C.
The damping force is proportional to the speed of relative displacement in the vertical direction.
機械装置100と機械装置支持構造とで構成されるシステムを質点モデルとして表したときに、慣性マス200と支持ばね300と減衰要素Cとが質量mを持つ機械装置と基礎50との間に設けられる。
機械装置100と機械装置支持構造とで構成されるシステムを質点モデルとして表したときに、慣性マス200と支持ばね300と減衰要素Cとが質量mを持つ機械装置と基礎50との間に設けられて、機械装置と基礎50とに連結される。
When a system composed of the
When a system composed of the
質点系で表したときに機械装置の質量mと慣性マス200により回転体の回転慣性力に起因して生ずる鉛直方向の反力に対応する鉛直方向の見かけの質量mdとが直列接続される。
質点系で表したときに機械装置の質量mと慣性マス200により回転体の回転慣性力に起因して生ずる鉛直方向の反力に対応する鉛直方向の見かけの質量mdとが直接に直列接続される。
質点系で表したときに機械装置の質量mと慣性マス200により回転体の回転慣性力に起因して鉛直方向の相対加速度に対応する様に生ずる鉛直方向の反力に対応する鉛直方向の見かけの質量mdとが直接に直列接続される。
When expressed in a mass point system, the mass m of the mechanical device and the apparent mass md in the vertical direction corresponding to the reaction force in the vertical direction generated due to the rotational inertia force of the rotating body by the
When expressed in a mass point system, the mass m of the machine and the apparent mass md in the vertical direction corresponding to the reaction force in the vertical direction generated by the rotational inertia force of the rotating body by the
Appearance of the vertical direction corresponding to the reaction force in the vertical direction generated to correspond to the relative acceleration in the vertical direction due to the rotational inertia force of the rotating body by the mass m of the mechanical device and the
質点系で表されたときに、慣性マス200により回転体の回転慣性力に起因して鉛直方向の相対加速度に比例する様に生ずる鉛直方向の反力に対応する鉛直方向の見かけの質量と支持ばね300のばね定数kとが、質点系の固有振動数が駆動部111の加振振動数より十分に小さく、かつ機械装置本体110の鉛直方向の鉛直応答変位が所定の鉛直変位値より小さくなる様に、選択されたものである。
Apparent mass and support in the vertical direction corresponding to the reaction force in the vertical direction generated by the
慣性マス200は、長尺部材210と回転部材220とナット部材230とで構成されてもよい。
長尺部材210は、外周面に長手方向に沿って所定のリードを持つ螺旋状の溝である螺旋溝を設けられる部材である。
ナット部材230は、螺旋溝に倣って案内される部材である。
ナット部材230は、螺旋溝に沿って転動する複数のボール球を保持してもよい。
長尺部材210とナット部材230とが鉛直方向に相対変位すると、複数のボール球がナット部材230の内部で循環する。
回転部材220は、長尺部材210の回転に対応して回転する部材であってもよい。
回転部材220は、ナット部材230の回転に対応して回転する部材であってもよい。
The
The
The
The
When the
The rotating
The rotating
慣性マス200が、長尺部材210とナット部材230と潤滑油カバー240とで構成されてもよい。
潤滑油カバー240は、ナット部材230を囲い内部に潤滑油を溜める部材である。
The
The lubricating
支持ばね300がナット部材230の外側面により鉛直方向に伸縮自在に案内されてもよい。
支持ばね300が潤滑油カバー240の外側面により鉛直方向に伸縮自在に案内されてもよい。
The
The
以下に、上記の慣性マスの構成を、図を基に、説明する。
図4は、本発明の実施形態に係る機械装置支持構造に用いられる慣性マスの各種のタイプを説明する。
図中、シンボル「○−○」で表されるものは自在機構である。シンボル「○| |○」で表されるのは回転軸受である。
Hereinafter, the configuration of the above-described inertial mass will be described based on the drawings.
FIG. 4 illustrates various types of inertial mass used in a mechanical device support structure according to an embodiment of the present invention.
In the figure, what is represented by the symbol "○-○" is a free mechanism. It is a rotary bearing that is represented by the symbol "O | | O".
タイプA
回転部材220は、長尺部材210の回転に対応して回転する部材である。
例えば、回転部材220は、長尺部材210に固定され、一体に回転する
脚部側連結部材410が、脚部120とナット部材230との鉛直方向および水平方向の相対変位と鉛直軸周りの相対回転を拘束する様に様に脚部120とナット部材230とを連結する。
基礎側連結部材420が、長尺部材210と基礎50との鉛直方向および水平方向の相対変位を拘束し鉛直軸の回りの回転を自在にする様に、長尺部材210と基礎50とを連結する。
機械装置が上下振動すると、脚部120と基礎との鉛直方向の相対変位に対応して長尺部材210と回転部材220とが回転して、回転慣性力に起因して脚部側連結部材410に鉛直方向の反力が生ずる。
Type A
The rotating
For example, the
The base-
When the mechanical device vibrates up and down, the
タイプB
回転部材220は、長尺部材210の回転に対応して回転する部材である。
例えば、回転部材220は、長尺部材210に固定され、一体に回転する。
脚部側連結部材410は、脚部120と長尺部材210との鉛直方向および水平方向の相対変位を拘束し鉛直軸周りの回転を自在にする様に、脚部120と長尺部材210とを連結する。
基礎側連結部材420は、ナット部材230と基礎50との鉛直方向および水平方向の相対移動と鉛直軸周りの回転を拘束する様に、ナット部材230と基礎50とを連結する。
機械装置が上下振動すると、脚部120と基礎との鉛直方向の相対変位に対応して長尺部材210と回転部材220とが回転して、回転慣性力に起因して脚部側連結部材410に鉛直方向の反力が生ずる。
Type B
The rotating
For example, the
The leg portion
The base-
When the mechanical device vibrates up and down, the
タイプC
回転部材220は、ナット部材230の回転に対応して回転する。
例えば、回転部材220は、ナット部材230に固定され、一体に回転する。
脚部側連結部材410は、脚部120と長尺部材210との鉛直方向および水平方向の相対変位と鉛直軸の回りの回転を拘束する様に、脚部120と長尺部材210とを連結する。
基礎側連結部材420は、ナット部材230と基礎50との鉛直方向および水平方向の相対移動を拘束し鉛直軸の回りの回転を自在にする様に、ナット部材230と基礎50とおを連結する。
機械装置が上下振動すると、脚部120と基礎との鉛直方向の相対変位に対応してナット部材230と回転部材220とが回転して、回転慣性力に起因して脚部側連結部材410に鉛直方向の反力が生ずる。
Type C
The rotating
For example, the
The leg portion
The base-
When the mechanical device vibrates up and down, the
タイプD
回転部材220は、ナット部材230の回転に対応して回転する。
例えば、回転部材220は、ナット部材230に固定され、一体に回転する。
脚部側連結部材410は、脚部120とナット部材230との鉛直方向および水平方向の相対移動を拘束し鉛直軸周りの回転を自在にする様に、脚部120とナット部材230とを連結する。
基礎側連結部材420は、長尺部材210と基礎50との鉛直方向および水平方向の相対移動と鉛直軸の周りの回転を拘束する様に、長尺部材210と基礎50とを連結する。
機械装置が上下振動すると、脚部120と基礎との鉛直方向の相対変位に対応してナット部材230と回転部材220とが回転して、回転慣性力に起因して脚部側連結部材410に鉛直方向の反力が生ずる。
Type D
The rotating
For example, the
The leg portion
The base-
When the mechanical device vibrates up and down, the
タイプE
タイプEの構造は、脚部側連結部材410の構造を除き、タイプAの構造と同じである。
脚部側連結部材410は、脚部120とナット部材230との鉛直方向の相対変位を拘束し水平方向の相対移動を所定のストロークの範囲内で自在にし、鉛直軸周りの回転を拘束にする様に、脚部120とナット部材230とを連結する。
Type E
The structure of type E is the same as that of type A except for the structure of the leg
The leg-
タイプF
タイプFの構造は、基礎側連結部材420の構造を除き、タイプBの構造と同じである。
基礎側連結部材420は、ナット部材230と基礎50との鉛直方向の相対移動を拘束し水平方向の相対移動を所定のストロークの範囲内で自在にし鉛直軸の周りの回転を拘束する様に、ナット部材230と基礎50とを連結する。
Type F
The structure of type F is the same as that of type B except for the structure of the base
The base-
タイプG
タイプGの構造は、脚部側連結部材410の構造を除き、タイプCの構造と同じである。
脚部側連結部材410は、脚部120と長尺部材210との鉛直方向の相対移動を拘束し水平方向の相対移動を所定のストロークの範囲内で自由にし鉛直軸の周りの回転を拘束する様に、脚部120と長尺部材210とを連結する。
Type G
The structure of type G is the same as that of type C except for the structure of the leg
The leg-
タイプH
タイプHの構造は、基礎側連結部材420の構造を除き、タイプDの構造と同じである。
基礎側連結部材410は、長尺部材210と基礎50の鉛直方向の相対移動を拘束し水平方向の相対移動を所定のストロークの範囲内で自由にし鉛直軸の周りの回転を拘束する様に、長尺部材210と基礎50とを連結する。
Type H
The structure of type H is the same as that of type D except for the structure of the base-
The base-
タイプI
タイプIの構造は、基礎側連結部材420の構造を除き、タイプAの構造と同じである。
基礎側連結部材420は、長尺部材210と基礎50との鉛直方向の相対移動を拘束し水平方向の相対移動を所定のストロークの範囲内で自由にし鉛直軸の周りの回転を自由にする様に、長尺部材210と基礎50とを連結する。
Type I
The structure of type I is the same as the structure of type A except for the structure of the base
The base-
タイプJ
タイプJの構造は、脚部側連結部材410の構造を除き、タイプBの構造と同じである。
脚部側連結部材410は、脚部120と長尺部材210との鉛直方向の相対移動を拘束し水平方向の相対移動を所定のストロークの範囲内で自由にし鉛直軸の周りの回転を自由にする様に、脚部120と長尺部材210とを連結する。
Type J
The structure of type J is the same as that of type B except for the structure of the leg-
The leg
タイプK
タイプKの構造は、基礎側連結部材420の構造を除き、タイプCの構造と同じである。
基礎側連結部材420は、ナット部材230と基礎50との鉛直方向の相対移動を拘束し水平方向の相対移動を所定のストロークの範囲内で自由にし鉛直軸の回りの回転を自由にする様に、ナット部材230と基礎50とを連結する。
Type K
The structure of type K is the same as that of type C except for the structure of the base-
The base
タイプL
タイプLの構造は、脚部側連結部材410の構造を除き、タイプDの構造と同じである。
脚部側連結部材410は、脚部120とナット部材230との鉛直方向の相対移動を拘束し水平方向の相対移動を所定のストロークの範囲内で自由にし鉛直軸の回りに回転を自由にする様に、脚部120とナット部材230とを連結する。
Type L
The structure of the type L is the same as the structure of the type D except for the structure of the leg
The leg-
次に、本発明の第一実施形態に係る機械装置支持構造の一例を、図を基に、詳述する。
図5は、本発明の第一の実施形態に係る慣性マスの正面図である。
図6は、本発明の第一の実施形態に係る支持ばねの正面図である。
第一の実施形態にかかる機械装置支持構造に用いられる慣性マスは、タイプAに相当する。
機械装置支持構造は、慣性マス200と支持ばね300と脚部側連結部材410と基礎側連結部材420と脚部側バネ連結部材510と基礎側バネ連結部材520とで構成される。
図3は、4つの慣性マス200と4つの支持ばね300とが、上からみて脚部120の隅に各々に配される様子を示す。
Next, an example of the mechanical device support structure according to the first embodiment of the present invention will be described in detail based on the drawings.
FIG. 5 is a front view of the inertial mass according to the first embodiment of the present invention.
FIG. 6 is a front view of a support spring according to the first embodiment of the present invention.
The inertial mass used in the mechanical device support structure according to the first embodiment corresponds to type A.
The mechanical device support structure includes the
FIG. 3 illustrates how four
慣性マス200は、長尺部材210と回転部材220とナット部材230とで構成される。
長尺部材210は、外周面に長手方向に沿って所定のリードを持つ螺旋状の溝である螺旋溝を設けられる部材である。
長尺部材210は、長手方向を鉛直軸に沿わす。
回転部材220は、長尺部材210の回転に対応して回転する部材である。
回転部材220は、長尺部材210の下部に固定され、一体となっている。
ナット部材230は、螺旋溝に倣って案内される部材である。
ナット部材230は、螺旋溝に沿って転動する複数のボール球をもつ。
ナット部材230と長尺部材210とが鉛直方向に相対移動すると複数のボール球がナット部材230の中を循環する。
The
The
The
The rotating
The
The
The
When the
脚部側連結部材410は、脚部120に固定され、ナット部材230を鉛直方向および水平方向に相対移動を拘束し鉛直軸の回りの回転を拘束する様にナット部材230を固定する。
The leg portion
基礎側連結部材420は、基礎50に固定され、長尺部材210を鉛直方向および水平方向の相対移動を拘束し鉛直軸の回りに回転を自由にする様に長尺部材210を固定する。
The base
支持ばね300は、複数のさらバネ310とガイド棒320とで構成される。
重なる複数のさらバネ310が、鉛直方向に伸縮することにより、鉛直方向に弾性反力を発生する。
重なる複数のさらバネ310が、鉛直方向に伸縮することにより、複数のさらバネの摩擦に起因して鉛直方向に減衰力が発生する。
ガイド棒が複数のさらバネを鉛直方向に伸縮自在にガイドする。
脚部側バネ連結部材510は、脚部120に固定され、ガイド棒を鉛直方向及び水平方向に相対移動を拘束し、鉛直軸の回りの回転を拘束する。
基礎側バネ連結部材520は、基礎50に固定され、ガイド棒を鉛直方向の相対移動を自在にし水平方向の相対移動を拘束する。
The
The plurality of overlapping
The plurality of overlapping
A guide rod guides a plurality of flat springs in an expandable manner in the vertical direction.
The leg-side
The base-side
以下に、第一の実施形態にかかる機械装置支持構造の作用を説明する。
加振力が機械装置に発生すると、機械装置が振動し、脚部120と基礎50との間に相対変位が生ずる。
脚部120と基礎50と間の鉛直方向の相対変位により、慣性マス200は、長尺部材210と回転部材220の鉛直軸の回りの回転により回転慣性能率に起因する鉛直方向の反力を発生する。発生する鉛直方向の反力は、鉛直方向の相対変位の加速度に比例する。
ここで、反力は、加速度の向きの反対方向に作用する力である。
脚部120と基礎50と間の鉛直方向の相対変位により、支持ばね300は、重なった複数のさらバネの伸縮により、弾性力と減衰力とを発生する。弾性力は、鉛直方向の相対変位に比例する。減衰力は、鉛直方向の速度に比例する。
ガイド棒320が基礎側バネ連結部材520に設けられた穴に案内されるので、脚部120と基礎50と間の水平方向の相対変位が抑制される。
The operation of the mechanical device support structure according to the first embodiment will be described below.
When an exciting force is generated in the mechanical device, the mechanical device vibrates and a relative displacement occurs between the
The relative displacement in the vertical direction between the
Here, the reaction force is a force acting in the direction opposite to the direction of the acceleration.
Due to the relative vertical displacement between the
Since the
次に、本発明の第二の実施形態にかかる機械装置支持構造を、図を基に、説明する。
図7は、本発明の第二の実施形態に係る機械装置支持構造に用いる慣性マスの正面図である。
第二の実施形態のかかる機械装置支持構造に用いる慣性マスは、タイプEに相当する。
機械装置支持構造は、慣性マス200と支持ばね300と脚部側連結部材410と基礎側連結部材420と脚部側バネ連結部材510と基礎側バネ連結部材520で構成される。
図3は、4つの慣性マス200と4つの支持ばね300とが、上からみて脚部120の隅に各々に配される様子を示す。
Next, a mechanical device support structure according to a second embodiment of the present invention will be described based on the drawings.
FIG. 7 is a front view of an inertial mass used in a mechanical device support structure according to a second embodiment of the present invention.
The inertial mass used in such a mechanical device support structure of the second embodiment corresponds to type E.
The mechanical device support structure includes the
FIG. 3 illustrates how four
慣性マス200と支持ばね300と基礎側連結部材420と脚部側バネ連結部材510と基礎側バネ連結部材520の構造は、第一の実施形態にかかる機械装置支持構造に用いるものと同じなので、説明を省略する。
The structures of the
脚部側連結部材410は、脚部120に固定され、ナット部材230を鉛直方向の相対移動を拘束し水平方向の相対移動を所定のストロークの範囲内で自由にし鉛直軸の回りの回転を拘束する様に、ナット部材230を固定する。
例えば、脚部側連結部材410は、脚部側連結部材本体411と自在機構412とで構成される。
例えば、自在機構412は、一端を脚部120に球面ブッシュで揺動自在に固定され、他端を脚部側連結部材本体411に球面ブッシュで揺動自在に固定されるリンクである。
The leg portion
For example, the leg-
For example, the
第二の実施形態にかかる機械装置支持構造の作用は、第一の実施形態にかかるものと実質的に同じなので、説明を省略する。 The operation of the mechanical device support structure according to the second embodiment is substantially the same as that according to the first embodiment, so the description will be omitted.
次に、本発明の第三の実施形態に係る機械装置支持機構を、図を基に、説明する。
図8は、本発明の第三の実施形態に係る慣性マスの正面図である。
第三の実施形態に係る機械装置支持機構に用いる慣性マスは、タイプAに相当するものと支持ばねを一体にしたものである。
機械装置支持構造は、慣性マス200と支持ばね300と脚部側連結部材410と基礎側連結部材420とで構成される。
脚部側連結部材410は、脚部側バネ連結部材510を兼ねる
基礎側連結部材420は、基礎側バネ連結部材520を兼ねる。
Next, a mechanical device support mechanism according to a third embodiment of the present invention will be described based on the drawings.
FIG. 8 is a front view of an inertial mass according to a third embodiment of the present invention.
The inertia mass used in the machine support mechanism according to the third embodiment is one in which the equivalent to type A and the support spring are integrated.
The mechanical device support structure includes the
The leg
慣性マス200と脚部側連結部材410と基礎側連結部材420の構造は、第一の実施形態にかかるものと同じなので、説明を省略する。
The structures of the
支持ばね300は、複数のさらバネで構成される。
重なった複数のさらばね310が、ナット部材230の円筒状の外側面により鉛直方向に伸縮自在に案内される。
The
A plurality of overlapped
第二の実施形態にかかる機械装置支持構造の作用は、第一の実施形態にかかるものと実質的に同じなので、説明を省略する。 The operation of the mechanical device support structure according to the second embodiment is substantially the same as that according to the first embodiment, so the description will be omitted.
次に、本発明の第四の実施形態にかかる機械装置支持構造を、図を基に、説明する。
図9は、本発明の第四の実施形態に係る慣性マスの正面図である。
第四の実施形態にかかる機械装置支持構造に用いる慣性マスは、タイプBに相当する。
機械装置支持構造は、慣性マス200と支持ばね300と脚部側連結部材410と基礎側連結部材420と脚部側バネ連結部材510と基礎側バネ連結部材520で構成される。
図3は、4つの慣性マス200と4つの支持ばね300とが、上からみて脚部120の隅に各々に配される様子を示す。
Next, a mechanical device support structure according to a fourth embodiment of the present invention will be described based on the drawings.
FIG. 9 is a front view of an inertial mass according to a fourth embodiment of the present invention.
The inertial mass used in the mechanical device support structure according to the fourth embodiment corresponds to type B.
The mechanical device support structure includes the
FIG. 3 illustrates how four
支持ばね300と脚部側バネ連結部材510と基礎側バネ連結部材520の構成は、第一の実施形態にかかるものと同じなので、説明を省略する。
The configurations of the
慣性マス200は、長尺部材210と回転部材220とナット部材230と潤滑油カバー240とで構成される。
長尺部材210は、外周面に長手方向に沿って所定のリードを持つ螺旋状の溝である螺旋溝を設けられる部材である。
長尺部材210は、長手方向を鉛直軸に沿わす。
回転部材220は、長尺部材210の回転に対応して回転する部材である。
回転部材220は、長尺部材210の下部に固定され、一体となっている。
ナット部材230は、螺旋溝に倣って案内される部材である。
ナット部材230は、螺旋溝に沿って転動するボールをもつ。
ナット部材230と長尺部材210とが鉛直方向に相対移動すると複数のボール球がナット部材230の中を循環する。
潤滑油カバー240は、ナット部材230を囲い内部に潤滑油を溜める部材である。
The
The
The
The rotating
The
The
The
When the
The lubricating
脚部側連結部材410は、脚部120に固定され、長尺部材210を鉛直方向および水平方向に相対移動を拘束し鉛直軸の回りの回転を自由にする様に長尺部材210を固定する。
The leg portion
基礎側連結部材420は、基礎50に固定され、ナット部材230を鉛直方向および水平方向の相対移動を拘束し鉛直軸の回りに回転を拘束にする様に長尺部材210を固定する。
The base-
以下に、第四の実施形態にかかる機械装置支持構造の作用を説明する。
加振力が機械装置に発生すると、機械装置が振動し、脚部120と基礎50との間に相対変位が生ずる。
脚部120と基礎50と間の鉛直方向の相対変位により、慣性マス200は、長尺部材210と回転部材220の鉛直軸の回りの回転により回転慣性能率に起因する鉛直方向の反力を発生する。発生した鉛直方向の反力は、鉛直方向の相対変位の加速度に比例する。
ここで、反力は加速度の向きの反対方向に作用する力である。
潤滑油が潤滑油カバーの内部で循環し、長尺部材210とナット部材230との相対摩擦を軽減する。
脚部120と基礎50と間の鉛直方向の相対変位により、支持ばね300は、重なった複数のさらバネの伸縮により、弾性力と減衰力とを発生する。弾性力は、鉛直方向の相対変位に比例する。減衰力は、鉛直方向の速度に比例する。
ガイド棒320が基礎側連結部材420に設けられた穴に案内されるので、脚部120と基礎50と間の水平方向の相対変位が抑制される。
The operation of the mechanical device support structure according to the fourth embodiment will be described below.
When an exciting force is generated in the mechanical device, the mechanical device vibrates and a relative displacement occurs between the
The relative displacement in the vertical direction between the
Here, the reaction force is a force acting in the direction opposite to the direction of the acceleration.
The lubricating oil circulates inside the lubricating oil cover to reduce the relative friction between the
Due to the relative vertical displacement between the
Since the
次に、本発明の第五の実施形態にかかる機械装置支持構造を、図を基に、説明する。
図10は、本発明の第五の実施形態に係る慣性マスの正面図である。
第五の実施形態にかかる機械装置支持構造に用いる慣性マスは、タイプDに相当する。
機械装置支持構造は、慣性マス200と支持ばね300と脚部側連結部材410と基礎側連結部材420とで構成される。
脚部側連結部材410が、脚部側バネ連結部材510を兼ねる。
基礎側連結部材420が、基礎側バネ連結部材420を兼ねる。
図3は、4つの慣性マス200と4つの支持ばね300とが、上からみて脚部120の隅に配される様子を示す。
Next, a mechanical device support structure according to a fifth embodiment of the present invention will be described based on the drawings.
FIG. 10 is a front view of an inertial mass according to a fifth embodiment of the present invention.
The inertial mass used for the mechanical device support structure according to the fifth embodiment corresponds to type D.
The mechanical device support structure includes the
The leg
The base
FIG. 3 shows that four
慣性マス200と支持ばね300と脚部側連結部材410と基礎側連結部材420の構成は、第四の実施形態にかかるものと同じなので、説明を省略する。
The configurations of the
支持ばね300が、ナット部材230を囲う潤滑油カバー240の外側面により鉛直方向に伸縮自在に案内される。
The
以下に、第四の実施形態にかかる機械装置支持構造の作用は、第四の実施形態にかかるものと実質的に同じなので、説明を省略する。 In the following, since the operation of the mechanical device support structure according to the fourth embodiment is substantially the same as that according to the fourth embodiment, the description will be omitted.
以下に、本発明の実施形態にかかる機械装置支持構造の諸元とその振動抑制の関係を式と図をもちいて、説明する。
説明の便宜上、機械装置は高速プレス機であるとして、以下説明する。
In the following, the relationship between the specifications of the mechanical device support structure according to the embodiment of the present invention and the vibration suppression thereof will be described using formulas and drawings.
For convenience of explanation, the machine will be described below as a high-speed press.
1、はじめに
慣性マスによる高速プレス機の鉛直変位抑制効果の検討を行った。慣性マスの設定にあたっては、次の2つの条件を満たすものとする。(1)慣性マス設置後の振動系の固有振動数と減衰係数が等しくなるようにすること、(2)与えられた加振条件に対して、鉛直応答変位は1mm以下になるようにすること。
1.Introduction We examined the effect of inertial mass on vertical displacement control of high-speed press. In setting the inertial mass, the following two conditions should be satisfied. (1) Make the natural frequency and damping coefficient of the vibration system after installation of the inertial mass equal, (2) Make the
2、機械装置本体と機械装置支持構造の諸元
機械装置本体と機械装置支持構造の諸元は表1に、質点系で表したときの検討モデルを図11に示す。検討モデルは、機械装置本体の下に減衰要素をもつ支持ばねと並列に慣性ますを設置したものとした。加振条件は、振動数10Hz、6tonfの加振力を機械装置本体の質点に与えるものとした。
3、慣性マス設置後の機械装置支持構造のバネ剛性kと減衰係数c’を設定する方法を以下に示す。慣性マスmd設置後の固有周期、固有振動数および減衰係数は式(1)・(1)’、式(2)・(2)’、式(3)・(3)’で表される。
ここで、慣性マス設置後の固有振動数と減衰係数が等しいという条件(f−f’、h=h’)より、慣性マス設置後の機械装置支持構造のバネ剛性kと減衰係数c’は式(4
、式(5)で表される。
一方、図11において、慣性マス設置後の振動方程式は式(6)で表される。ここで、ωは加振固有円振動数、F0は加振力を表す。
ここで、定常応答解をx=Aeiωtとおくと、
よって、応答変位と機械装置支持構造の反力Fdは、それぞれ式(7)、式(8)で表される。
表1に示す加振条件において、応答変位が、
以下いう条件を満たす慣性マスmdを式(4)、式(5)に代入すると、慣性マス設置後の機械装置支持構造のバネ剛性K’と減衰係数c’が求まる。
3. A method of setting the spring stiffness k and the damping coefficient c 'of the machine support structure after installation of the inertial mass will be shown below. The natural period, natural frequency and damping coefficient after installation of the inertial mass md are expressed by the equations (1) and (1) ′, the equations (2) and (2) ′ and the equations (3) and (3) ′.
Here, under the condition that the natural frequency after installation of the inertia mass and damping coefficient are equal (f−f ′, h = h ′), the spring stiffness k and the damping coefficient c ′ of the machine support structure after installation of the inertia mass are Formula (4
And is expressed by equation (5).
On the other hand, in FIG. 11, the vibration equation after installation of the inertial mass is expressed by equation (6). Here, ω represents an excitation natural circular frequency, and F 0 represents an excitation force.
Here, assuming that the stationary response solution is x = Ae iωt ,
Therefore, the response displacement and the reaction force Fd of the mechanical device support structure are expressed by the equations (7) and (8), respectively.
Under the excitation conditions shown in Table 1, the response displacement is
Substituting the inertial mass md satisfying the following conditions into the equations (4) and (5), the spring stiffness K ′ and the damping coefficient c ′ of the mechanical device support structure after installation of the inertial mass can be obtained.
4、検討結果
機械の鉛直応答変位xを1mm以下に抑制するための慣性マス、機械装置支持構造のバネ剛性および減衰係数を3で算出した式により求める。検討結果を表2に示す。鉛直応答変位xを1mm以下に抑制するための慣性マスは13ton(4隅に設置する場合、1基当たり3.25ton)、慣性マス設置後の機械装置支持構造のバネ剛性は4195kN/m(4隅に設置する場合、1基当たり1049kN/m)、減衰係数は80.1Ns/m(一基当たり20.0Ns/m)であった。また、加振振動数を10Hzとして、加振力を40kN、60kN、100kNと変化させたときの慣性マスと鉛直応答変位との関係を表3に示す。
4. Examination results Inertia mass to suppress the vertical response displacement x of the machine to 1 mm or less, and the spring stiffness and damping coefficient of the machine support structure are calculated by the formula calculated by 3. The examination results are shown in Table 2. 13tons (3.25tons per unit when installed at four corners) for suppressing the vertical response displacement x to 1 mm or less, and the spring stiffness of the machine support structure after installation of the inertia masses is 4195kN / m (4 When installed at a corner, the damping coefficient was 100.1 Ns / m (20.0 Ns / m per unit) at 1049 kN / m per unit. Further, Table 3 shows the relationship between the inertial mass and the vertical response displacement when the excitation frequency is changed to 40 kN, 60 kN, and 100 kN, where the excitation frequency is 10 Hz.
5、慣性マスの概略検討
4の検討で得られた等価質量3.25tonの慣性マスの概略寸法を検討する。ここで、慣性マスは仮にボールねじ式とし、等価質量は式(9)で求めた。
検討結果を表4に示す。ボールねじのリードを16mm、付加錘の外径を180mm、内径を150mm、長さを50mmとすると、等価質量3ton程度のダンパーとなる。
5. Outline examination of inertia mass We will examine the outline dimensions of the inertia mass of 3.25 tons equivalent mass obtained in the examination of 4. Here, the inertial mass was temporarily made into a ball screw type, and the equivalent mass was obtained by equation (9).
The examination results are shown in Table 4. When the lead of the ball screw is 16 mm, the outer diameter of the additional weight is 180 mm, the inner diameter is 150 mm, and the length is 50 mm, a damper having an equivalent mass of about 3 tons is obtained.
以上説明したように、本発明に係る機械装置支持構造は、その構成により、以下の効果を有する。
周期的な加振力を発生する駆動部111と加工部112とをもつ機械装置本体110を据え付けるための据付面Sを持つ脚部120と基礎50との間に慣性マス200と支持ばね300とを設け、慣性マス200が鉛直方向の相対変位を回転体の回転量に変換し、支持ばね300が鉛直方向の相対変位に対応して鉛直方向に採用する弾性反力を発生する様にしたので、回転体と支持ばねの物理諸元を適切に選択することで、機械装置100と慣性マス200と支持ばね300とでできる振動系の振動を抑制できる。
また、慣性マス200の上部が脚部120に直接に連結される様にしたので、慣性マス200が鉛直方向の相対変位を回転体の回転量に変換することにより回転体の回転慣性力に起因して発生する鉛直方向の反力が機械装置に直接に伝わる。
また、質点系で表したときに機械装置の質量と慣性マスにより回転体の回転慣性力に起因して鉛直方向の相対加速度に比例する様に生ずる鉛直方向の反力に対応する鉛直方向の見かけの質量とが直接に直列接続される様にしたので、機械装置100の質量と慣性マス200による回転体の回転慣性力に起因して生ずる鉛直方向の反力に対応する鉛直方向の見かけの質量とが一体として鉛直方向に相対移動する。
また、質点系で表されたときに慣性マス200により回転体の回転慣性力に起因して鉛直方向の相対加速度に比例する様に生ずる鉛直方向の反力に対応する鉛直方向の見かけの質量mdと支持ばね300のばね定数kとが選択され、質点系の固有振動数が駆動部111の加振振動数より十分に小さく、かつ機械装置本体110の鉛直方向の鉛直応答変位が所定の鉛直変位値より小さくなる様にしたので、無理なく機械装置本体110の鉛直方向の振動を抑制できる。
また、支持ばね300が慣性マス200にガイドされて基礎50と脚部120との間の鉛直方向の相対変位に対応して鉛直方向にそって伸縮する様にしたので、慣性マス200の発生する鉛直方向の反力と支持ばね300の発生する弾性反力とが同軸上に作用し、機械装置に無用な偶力が発生しにくい。
また、螺旋溝を設けられる長尺部材210と長尺部材210に対応して回転する回転部材220と螺旋溝に倣って案内されるナット部材230とで構成される慣性マス200を用い、脚部側連結部材410が脚部120とナット部材230との鉛直方向の相対変位と鉛直軸の回りの相対回転とを拘束する様にし、基礎側連結部材420が長尺部材210と基礎50との鉛直方向の相対変位を拘束し鉛直軸の回りの回転を自在にする様にしたので、脚部120と基礎50との鉛直方向の相対変位が生ずると、長尺部材210が回転する。
また、脚部側連結部材410が脚部120とナット部材230との水平方向の相対移動を所定のストロークの範囲内で自在にする様にしたので、機械装置100に水平方向の相対変位が生じても所定のストロークの範囲内でナット部材に水平力が生じない。
また、螺旋溝を設けられる長尺部材210と長尺部材210に対応して回転する回転部材220と螺旋溝に倣って案内されるナット部材230とで構成される慣性マス200を用い、脚部側連結部材410が脚部120と長尺部材210との鉛直方向の相対変位と鉛直軸の回りの相対回転とを拘束する様にし、基礎側連結部材420がナット部材230と基礎50との鉛直方向の相対変位を拘束し鉛直軸の回りの回転を自在にする様にしたので、脚部120と基礎50との鉛直方向の相対変位が生ずると、ナット部材230が回転する。
また、脚部側連結部材410が脚部120と長尺部材210の水平方向の相対移動を所定のストロークの範囲内で自在にする様にしたので、機械装置100に水平方向の相対変位が生じても所定のストロークの範囲内で長尺部材210に水平力が生じない。
また、螺旋溝を設けられる長尺部材210と長尺部材210に対応して回転する回転部材220と螺旋溝に倣って案内されるナット部材230とで構成される慣性マス200を用い、脚部側連結部材410が脚部120と長尺部材210との鉛直方向の相対変位を拘束し鉛直軸の回りの相対回転を自由にする様にし、基礎側連結部材420がナット部材230と基礎50との鉛直方向の相対変位を拘束し鉛直軸の回りに回転を拘束する様にしたので、脚部120と基礎50との鉛直方向の相対変位が生ずると、長尺部材210が回転する。
また、基礎側連結部材410が、ナット部材230と基礎50との水平方向の相対変位を所定のストロークの範囲内で自在にする様にしたので、機械装置100に水平方向の相対変位が生じても所定のストロークの範囲内でナット部材230に水平力が生じない。
また、螺旋溝を設けられる長尺部材210と長尺部材210に対応して回転する回転部材220と螺旋溝に倣って案内されるナット部材230とで構成される慣性マス200を用い、脚部側連結部材410が脚部120とナット部材230との鉛直方向の相対変位を拘束し鉛直軸の回りの相対回転を自由にする様にし、基礎側連結部材420が長尺部材210と基礎50との鉛直方向の相対変位を拘束し鉛直軸の回りに回転を拘束する様にしたので、脚部120と基礎50との鉛直方向の相対変位が生ずると、ナット部材230が回転する。
また、基礎側連結部材420が、ナット部材230と基礎50との水平方向の相対変位を所定のストロークの範囲内で自在にする様にしたので、機械装置100に水平方向の相対変位が生じても所定のストロークの範囲内で長尺部材210に水平力が生じない。
また、潤滑油用カバー240がナット部材230を囲い内部に潤滑油を溜める様にしたので、ナット部材230が長尺部材210の螺旋溝に倣って安定して案内される。
また、支持ばね300が慣性マス200の長尺部材210に案内されるナット部材230の外側面により鉛直方向に伸縮自在に案内される様にしたので、慣性マス200の発生する鉛直方向の反力と支持ばねの発生する弾性反力とが同軸上に作用し、機械装置100に無用な偶力が発生しにくい。
その結果、従来構造と比較して架台を必要としない機械装置支持構造を提供できる。
As described above, the mechanical device support structure according to the present invention has the following effects due to its configuration.
An
Further, since the upper portion of the
Also, when it is expressed as a mass point system, the appearance in the vertical direction corresponding to the reaction force in the vertical direction generated by the mass of the machine and the inertia mass and proportional to the relative acceleration in the vertical direction due to the rotational inertia force of the rotating body And the mass of the
In addition, apparent mass md in the vertical direction corresponding to the reaction force in the vertical direction generated by the
In addition, since the
Also, using the
Further, since the leg-
Also, using the
Further, since the leg-
Also, using the
Further, since the base
Also, using the
Further, since the base
Further, since the lubricating
Further, since the
As a result, it is possible to provide a mechanical device support structure that does not require a gantry compared to the conventional structure.
本発明は以上に述べた実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で各種の変更が可能である。
さらバネにより減衰力を発生させる例で説明したが、これに限定されない。例えば、粘性体を利用して減衰力を発生させてもよい。
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the scope of the invention.
Although the example which generates a damping force with a further spring was demonstrated, it is not limited to this. For example, a viscous body may be used to generate a damping force.
S 据付面
50 基礎
60 架台
100 機械装置
110 機械装置本体
111 駆動部
112 加工部
113 材料投入口
114 制御盤
120 脚部
200 慣性マス
210 長尺部材
220 回転部材
230 ナット部材
240 潤滑油カバー
300 支持ばね
310 さらバネ
320 ガイド棒
410 脚部側連結部材
411 脚部側連結部材本体
412 自在機構
420 基礎側連結部材
510 脚部側バネ連結部材
520 基礎側バネ連結部材
Claims (18)
脚部と基礎の間に設けられ、
基礎と脚部との間の鉛直方向の相対変位を回転体の回転量に変換する慣性マスと、
基礎と脚部との間の鉛直方向の相対変位に対応して鉛直方向にそって作用する弾性反力を発生する支持ばねと、
を備え、
前記慣性マスの上部が脚部に直接に連結され、
質点系で表したときに機械装置の質量と前記慣性マスにより前記回転体の回転慣性力に起因して生ずる鉛直方向の反力に対応する鉛直方向の見かけの質量とが直接に直列接続され、
質点系で表されたときに前記慣性マスにより前記回転体の回転慣性力に起因して生ずる鉛直方向の反力に対応する鉛直方向の見かけの質量と前記支持ばねのばね定数とが、前記質点系の固有振動数が前記駆動部の加振振動数より小さく、かつ機械装置本体の鉛直方向の鉛直応答変位が所定の鉛直変位値より小さくなる様に、選択されたものである、
ことを特徴とする機械装置支持構造。 A mechanical device supporting structure for supporting a mechanical device having a mechanical device body provided with a driving portion provided on a foundation and generating a periodic excitation force and a leg portion having a mounting surface for mounting the mechanical device body,
Located between the legs and the foundation,
An inertial mass that converts the relative vertical displacement between the foundation and the leg into the amount of rotation of the rotating body;
A support spring generating an elastic reaction force acting along the vertical direction in response to the vertical relative displacement between the foundation and the leg;
Equipped with
The top of the inertial mass is directly connected to the legs,
When expressed in a mass point system, the mass of the machine and the apparent mass in the vertical direction corresponding to the reaction force in the vertical direction generated due to the rotational inertia force of the rotating body by the inertia mass are directly connected in series;
The apparent mass in the vertical direction corresponding to the reaction force in the vertical direction caused by the inertia force of the rotating body by the inertia mass when expressed by the mass point system, and the spring constant of the support spring are the mass point It is selected such that the natural frequency of the system is smaller than the excitation frequency of the drive unit, and the vertical response displacement in the vertical direction of the mechanical device main body is smaller than a predetermined vertical displacement value.
A mechanical device support structure characterized by
ことを特徴とする請求項1に記載の機械装置支持構造。 The apparent mass in the vertical direction corresponding to the reaction force in the vertical direction caused by the inertia force of the rotating body by the inertia mass when expressed by the mass point system, and the spring constant of the support spring are the mass point It is selected so that the natural frequency of the system is less than 1⁄4 of the vibration frequency of the drive unit, and the vertical response displacement of the machine body in the vertical direction is smaller than a predetermined vertical displacement value. is there,
Machine support structure according to claim 1, characterized in that.
ことを特徴とする請求項2に記載の機械装置支持構造。 The support spring is guided by the inertia mass and extends and contracts in the vertical direction in response to the vertical relative displacement between the base and the leg.
The mechanical device support structure according to claim 2 , characterized in that:
前記慣性マスと基礎とを連結する基礎側連結部材と、
を備え、
前記慣性マスが外周面に長手方向に沿って所定のリードを持つ螺旋状の溝である螺旋溝を設けられる長尺部材と前記長尺部材の回転に対応して回転する回転部材と前記螺旋溝に倣って案内されるナット部材とを有し、
脚部側連結部材が脚部と前記ナット部材及び前記長尺部材の一方との鉛直方向の相対変位と鉛直軸の回りの相対回転を拘束する様に脚部と前記ナット部材及び前記長尺部材の一方とを連結し、
基礎側連結部材が前記ナット部材及び前記長尺部材の他方と基礎との鉛直方向の相対変位を拘束し鉛直軸の回りの回転を自在にする様に前記ナット部材及び前記長尺部材の他方と基礎とを連結する、
ことを特徴とする請求項3に記載の機械装置支持構造。 A leg side connecting member that connects the leg and the inertial mass;
A base-side connecting member that connects the inertia mass and the base;
Equipped with
An elongated member provided with a helical groove, which is a helical groove having a predetermined lead along the longitudinal direction on an outer peripheral surface of the inertial mass, a rotating member that rotates in response to rotation of the elongated member, and the helical groove And a nut member guided in accordance with
The leg portion, the nut member, and the elongated member so that the leg portion side connecting member restrains the relative displacement between the leg portion and one of the nut member and the elongated member in the vertical direction and the relative rotation around the vertical axis. Connect with one of the
The other of the nut member and the elongated member is arranged so that the base side connecting member restrains the relative displacement between the other of the nut member and the other of the elongated member and the base in the vertical direction and allows rotation around the vertical axis. Connect the foundation,
The machine apparatus support structure according to claim 3 , characterized in that:
ことを特徴とする請求項4に記載の機械装置支持構造。 The leg portion, the nut member, and the long member so that the leg portion side connecting member can freely move the relative movement in the horizontal direction between the leg portion and one of the nut member and the long member within a predetermined stroke range. Connect with one of the members,
The machine apparatus support structure according to claim 4 ,
前記慣性マスと基礎とを連結する基礎側連結部材と、を備え、
前記慣性マスが外周面に長手方向に沿って所定のリードを持つ螺旋状の溝である螺旋溝を設けられる長尺部材と前記螺旋溝に倣って案内されるナット部材と前記ナット部材の回転に対応して回転する回転部材とを有し、
脚部側連結部材が脚部と前記長尺部材及び前記ナット部材の一方との鉛直方向の相対変位を拘束し鉛直軸の回りの相対回転を自由にする様に脚部と前記長尺部材及び前記ナット部材の一方とを連結し、
基礎側連結部材が前記長尺部材及び前記ナット部材の他方と基礎との鉛直方向の相対変位を拘束し鉛直軸の回りの回転を拘束する様に前記長尺部材及び前記ナット部材の他方と基礎と連結する、
ことを特徴とする請求項3に記載の機械装置支持構造。 A leg side connecting member that connects the leg and the inertial mass;
And a base-side connecting member connecting the inertia mass and the base,
An elongated member provided with a spiral groove, which is a spiral groove having a predetermined lead along the longitudinal direction on the outer peripheral surface, a nut member guided along the spiral groove, and a rotation of the nut member And a corresponding rotating member,
The leg portion and the elongated member are configured such that the leg portion side connecting member restrains the relative displacement between the leg portion and one of the elongated member and the nut member in the vertical direction and allows relative rotation about the vertical axis. Connect one of the nut members,
The base side connecting member restrains the relative displacement between the other of the long member and the other of the nut member and the base in the vertical direction, and restricts the rotation around the vertical axis with the other of the long member and the nut member and the base To connect with
The machine apparatus support structure according to claim 3 , characterized in that:
ことを特徴とする請求項6に記載の機械装置支持構造。 The other of the elongated member and the nut member and the foundation so that the foundation side connecting member allows relative horizontal displacement between the other of the elongated member and the other of the nut member and the foundation within a predetermined stroke range. Link,
7. The machine support structure according to claim 6 , wherein
ことを特徴とする請求項4または請求項6のうちの一つの請求項に記載の機械装置支持構造。 The inertial mass includes the elongated member, the nut member, and a lubricating oil cover for enclosing the lubricating oil inside the nut member;
A machine support structure according to any one of claims 4 or 6 , characterized in that:
前記支持ばねが前記ナット部材の前記外側面により鉛直方向に伸縮自在に案内される、
ことを特徴とする請求項4または請求項6のうちの一つの請求項に記載の機械装置支持構造。 The inertial mass comprises the elongated member and the nut member having a cylindrical outer surface;
The support spring is vertically and telescopically guided by the outer surface of the nut member.
A machine support structure according to any one of claims 4 or 6 , characterized in that:
脚部と基礎の間に設けられ、
基礎と脚部との間の鉛直方向の相対変位を回転体の回転量に変換する慣性マスと、
基礎と脚部との間の鉛直方向の相対変位に対応して鉛直方向にそって作用する弾性反力を発生する支持ばねと、
を備え、
質点系で表されたときに前記慣性マスにより前記回転体の回転慣性力に起因して生ずる鉛直方向の反力に対応する鉛直方向の見かけの質量と前記支持ばねのばね定数とが前記質点系の固有振動数が前記駆動部の加振振動数より小さく、かつ機械装置本体の鉛直方向の鉛直応答変位が所定の鉛直変位値より小さくなる様に選択されたものである、
ことを特徴とする機械装置支持構造。 A mechanical device supporting structure for supporting a mechanical device having a mechanical device body provided with a driving portion provided on a foundation and generating a periodic excitation force and a leg portion having a mounting surface for mounting the mechanical device body,
Located between the legs and the foundation,
An inertial mass that converts the relative vertical displacement between the foundation and the leg into the amount of rotation of the rotating body;
A support spring generating an elastic reaction force acting along the vertical direction in response to the vertical relative displacement between the foundation and the leg;
Equipped with
The apparent mass in the vertical direction corresponding to the reaction force in the vertical direction caused by the inertia force of the rotating body by the inertia mass when expressed by the mass point system, and the spring constant of the support spring are the mass point system Is selected such that the natural frequency of the motor is smaller than the vibration frequency of the drive unit, and the vertical response displacement in the vertical direction of the mechanical device body is smaller than a predetermined vertical displacement value.
A mechanical device support structure characterized by
ことを特徴とする請求項10に記載の機械装置支持構造。 The apparent mass in the vertical direction corresponding to the reaction force in the vertical direction caused by the inertia force of the rotating body by the inertia mass when expressed by the mass point system, and the spring constant of the support spring are the mass point It is selected so that the natural frequency of the system is less than 1⁄4 of the vibration frequency of the drive unit, and the vertical response displacement of the machine body in the vertical direction is smaller than a predetermined vertical displacement value. is there,
The machine support structure according to claim 10 , characterized in that:
脚部と基礎の間に設けられ、
基礎と脚部との間の鉛直方向の相対変位を回転体の回転量に変換する慣性マスと、
基礎と脚部との間の鉛直方向の相対変位に対応して鉛直方向にそって作用する弾性反力を発生する支持ばねと、
を備え、
前記支持ばねが前記慣性マスにガイドされて基礎と脚部との間の鉛直方向の相対変位に対応して鉛直方向にそって伸縮する、
ことを特徴とする機械装置支持構造。 A mechanical device supporting structure for supporting a mechanical device having a mechanical device body provided with a driving portion provided on a foundation and generating a periodic excitation force and a leg portion having a mounting surface for mounting the mechanical device body,
Located between the legs and the foundation,
An inertial mass that converts the relative vertical displacement between the foundation and the leg into the amount of rotation of the rotating body;
A support spring generating an elastic reaction force acting along the vertical direction in response to the vertical relative displacement between the foundation and the leg;
Equipped with
The support spring is guided by the inertia mass and extends and contracts in the vertical direction in response to the vertical relative displacement between the base and the leg.
A mechanical device support structure characterized by
脚部と基礎の間に設けられ、
基礎と脚部との間の鉛直方向の相対変位を回転体の回転量に変換する慣性マスと、
基礎と脚部との間の鉛直方向の相対変位に対応して鉛直方向にそって作用する弾性反力を発生する支持ばねと、
脚部と前記慣性マスとを連結する脚部側連結部材と、
前記慣性マスと基礎とを連結する基礎側連結部材と、
を備え、
前記慣性マスが外周面に長手方向に沿って所定のリードを持つ螺旋状の溝である螺旋溝を設けられる長尺部材と前記長尺部材の回転に対応して回転する回転部材と前記螺旋溝に倣って案内されるナット部材とを持ち、
脚部側連結部材が脚部と前記ナット部材及び前記長尺部材の一方との鉛直方向の相対変位と鉛直軸の回りの相対回転を拘束する様に脚部と前記ナット部材及び前記長尺部材の一方とを連結し、
基礎側連結部材が前記ナット部材及び前記長尺部材の他方と基礎との鉛直方向の相対変位を拘束し鉛直軸の回りの回転を自在にする様に前記ナット部材及び前記長尺部材の他方と基礎とを連結する、
ことを特徴とする機械装置支持構造。 A mechanical device supporting structure for supporting a mechanical device having a mechanical device body provided with a driving portion provided on a foundation and generating a periodic excitation force and a leg portion having a mounting surface for mounting the mechanical device body,
Located between the legs and the foundation,
An inertial mass that converts the relative vertical displacement between the foundation and the leg into the amount of rotation of the rotating body;
A support spring generating an elastic reaction force acting along the vertical direction in response to the vertical relative displacement between the foundation and the leg;
A leg side connecting member that connects the leg and the inertial mass;
A base-side connecting member that connects the inertia mass and the base;
Equipped with
An elongated member provided with a helical groove, which is a helical groove having a predetermined lead along the longitudinal direction on an outer peripheral surface of the inertial mass, a rotating member that rotates in response to rotation of the elongated member, and the helical groove Holding a nut member guided according to
The leg portion, the nut member, and the elongated member so that the leg portion side connecting member restrains the relative displacement between the leg portion and one of the nut member and the elongated member in the vertical direction and the relative rotation around the vertical axis. Connect with one of the
The other of the nut member and the elongated member is arranged so that the base side connecting member restrains the relative displacement between the other of the nut member and the other of the elongated member and the base in the vertical direction and allows rotation around the vertical axis. Connect the foundation,
A mechanical device support structure characterized by
ことを特徴とする請求項13に記載の機械装置支持構造。 The leg portion, the nut member, and the elongated member allow the leg portion side connecting member to freely move the relative movement in the horizontal direction between the leg portion and one of the nut member and the elongated member within a predetermined stroke range. Connect with one of the
The machine support structure according to claim 13 , characterized in that:
脚部と基礎の間に設けられ、
基礎と脚部との間の鉛直方向の相対変位を回転体の回転量に変換する慣性マスと、
基礎と脚部との間の鉛直方向の相対変位に対応して鉛直方向にそって作用する弾性反力を発生する支持ばねと、
脚部と前記慣性マスとを連結する脚部側連結部材と、
前記慣性マスと基礎とを連結する基礎側連結部材と、
を備え、
前記慣性マスが外周面に長手方向に沿って所定のリードを持つ螺旋状の溝である螺旋溝を設けられる長尺部材と前記螺旋溝に倣って案内されるナット部材と前記ナット部材の回転に対応して回転する回転部材とを有し
脚部側連結部材が脚部と前記長尺部材及び前記ナット部材の一方との鉛直方向の相対変位を拘束し鉛直軸の回りの相対回転を自由にする様に脚部と前記長尺部材及び前記ナット部材の一方とを連結し、
基礎側連結部材が前記長尺部材及び前記ナット部材の他方と基礎との鉛直方向の相対変位を拘束し鉛直軸の回りに回転を拘束する様に前記長尺部材及び前記ナット部材の他方と基礎と連結する、
ことを特徴とする機械装置支持構造。 A mechanical device supporting structure for supporting a mechanical device having a mechanical device body provided with a driving portion provided on a foundation and generating a periodic excitation force and a leg portion having a mounting surface for mounting the mechanical device body,
Located between the legs and the foundation,
An inertial mass that converts the relative vertical displacement between the foundation and the leg into the amount of rotation of the rotating body;
A support spring generating an elastic reaction force acting along the vertical direction in response to the vertical relative displacement between the foundation and the leg;
A leg side connecting member that connects the leg and the inertial mass;
A base-side connecting member that connects the inertia mass and the base;
Equipped with
An elongated member provided with a spiral groove, which is a spiral groove having a predetermined lead along the longitudinal direction on the outer peripheral surface, a nut member guided along the spiral groove, and a rotation of the nut member The leg portion side connecting member restricts the relative displacement between the leg portion and one of the elongated member and the nut member in the vertical direction and has free rotation relative to the vertical axis. Connecting the leg to one of the elongated member and the nut member,
The base side connecting member restrains relative displacement between the other of the long member and the other of the nut member and the base in the vertical direction and restricts rotation around the vertical axis, and the other of the long member and the nut member and the base To connect with
A mechanical device support structure characterized by
ことを特徴とする請求項15に記載の機械装置支持構造。 The other of the elongated member and the nut member and the foundation so that the foundation side connecting member allows relative horizontal displacement between the other of the elongated member and the other of the nut member and the foundation within a predetermined stroke range. Link,
The machine support structure according to claim 15 , characterized in that:
ことを特徴とする請求項13または請求項15のうちの一つの請求項に記載の機械装置支持構造。 The inertial mass includes the elongated member, the nut member, and a lubricating oil cover for enclosing the lubricating oil inside the nut member;
A mechanical device support structure according to any one of claims 13 or 15 , characterized in that.
前記支持ばねが前記ナット部材の前記外側面により鉛直方向に伸縮自在に案内される、
ことを特徴とする請求項13または請求項15のうちの一つの請求項に記載の機械装置支持構造。 The inertial mass comprises the elongated member and the nut member having a cylindrical outer surface;
The support spring is vertically and telescopically guided by the outer surface of the nut member.
A mechanical device support structure according to any one of claims 13 or 15 , characterized in that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015181127A JP6539168B2 (en) | 2015-09-14 | 2015-09-14 | Machine support structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015181127A JP6539168B2 (en) | 2015-09-14 | 2015-09-14 | Machine support structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017057881A JP2017057881A (en) | 2017-03-23 |
JP6539168B2 true JP6539168B2 (en) | 2019-07-03 |
Family
ID=58389505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015181127A Active JP6539168B2 (en) | 2015-09-14 | 2015-09-14 | Machine support structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6539168B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6984981B2 (en) * | 2018-06-29 | 2021-12-22 | 株式会社免制震ディバイス | Vibration suppression device |
EP3848613A1 (en) * | 2020-01-10 | 2021-07-14 | Siemens Aktiengesellschaft | Electrical machine flexibly attached to a frame structure |
DE102023100634B4 (en) | 2023-01-12 | 2024-10-02 | Johannes Hülshorst | pressing or punching device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000199541A (en) * | 1999-01-05 | 2000-07-18 | Nippon Steel Corp | Vibration suspension device |
JP4347273B2 (en) * | 2005-07-25 | 2009-10-21 | 三菱重工業株式会社 | Isolation device, isolation base and isolation cart equipped with the isolation device |
JP4593552B2 (en) * | 2006-12-04 | 2010-12-08 | 三菱重工鉄構エンジニアリング株式会社 | Vertical seismic isolation device |
-
2015
- 2015-09-14 JP JP2015181127A patent/JP6539168B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017057881A (en) | 2017-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6539168B2 (en) | Machine support structure | |
RU2018133292A (en) | VIBRATION DAMPING DEVICE AND METHOD OF DAMPING FOR AIRCRAFT SCREW ALLOWING SUSPENSION | |
JP2017075644A (en) | Rotary inertia mass damper | |
RU2557865C1 (en) | Shock-absorber with quasi-zero stiffness | |
JP5831869B2 (en) | Vibration reduction device for reciprocating machine and reciprocating machine | |
JP5601825B2 (en) | Damper and seismic isolation mechanism | |
CN117889184A (en) | Multistage vibration isolation device | |
JP6490201B2 (en) | Lifting system, method for electrical inspection, vibration attenuator and mechanical assembly | |
US20190003099A1 (en) | Washing machine | |
JP6984981B2 (en) | Vibration suppression device | |
JP5787933B2 (en) | Tower structure | |
JP6811138B2 (en) | Vibration control device and vibration control system | |
JP6067459B2 (en) | Rotary damping device | |
CN205075375U (en) | Complete electric servo numerical control capstan head punch press main transfer machinery | |
JP6289929B2 (en) | Structure damping device and specification setting method thereof | |
CN114146902A (en) | Vibration sieve vibration reduction resonance eccentric block and vibration motor | |
JP7309288B2 (en) | Vibration control damper test equipment | |
JP7175774B2 (en) | Inertial mass elements, inertial mass viscous dampers and damping devices | |
JP2005180492A (en) | Design method, design support system, design support program and design method of damping system | |
RU2657629C1 (en) | Shock absorber with quasizero hardness | |
JP6538325B2 (en) | Vibration suppressor for structure | |
KR20200048165A (en) | Multi degree of freedom motion system | |
JP7169224B2 (en) | damper device | |
EP3553344A1 (en) | Driving machine module | |
CN104999686A (en) | Main transmission mechanism of all-electric servo numerical control turret punch press |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180530 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190326 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190417 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190607 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6539168 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |