JP6539068B2 - Glass material and method for manufacturing the same - Google Patents

Glass material and method for manufacturing the same Download PDF

Info

Publication number
JP6539068B2
JP6539068B2 JP2015042821A JP2015042821A JP6539068B2 JP 6539068 B2 JP6539068 B2 JP 6539068B2 JP 2015042821 A JP2015042821 A JP 2015042821A JP 2015042821 A JP2015042821 A JP 2015042821A JP 6539068 B2 JP6539068 B2 JP 6539068B2
Authority
JP
Japan
Prior art keywords
glass material
glass
cover member
present
gpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015042821A
Other languages
Japanese (ja)
Other versions
JP2016160162A (en
Inventor
敦信 増野
敦信 増野
ソーサ グスターボ アルベルト ロサレス
ソーサ グスターボ アルベルト ロサレス
井上 博之
博之 井上
朋子 山田
朋子 山田
佐藤 史雄
史雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
University of Tokyo NUC
Original Assignee
Nippon Electric Glass Co Ltd
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd, University of Tokyo NUC filed Critical Nippon Electric Glass Co Ltd
Priority to JP2015042821A priority Critical patent/JP6539068B2/en
Priority to PCT/JP2016/055404 priority patent/WO2016140123A1/en
Publication of JP2016160162A publication Critical patent/JP2016160162A/en
Application granted granted Critical
Publication of JP6539068B2 publication Critical patent/JP6539068B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Astronomy & Astrophysics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Description

本発明は、内視鏡等の医療用治療器具を保護するためのカバー部材等の材料として好適なガラス材、及びその製造方法に関する。   The present invention relates to a glass material suitable as a material such as a cover member for protecting a medical treatment instrument such as an endoscope, and a method of manufacturing the same.

医療用の内視鏡は、使用前及び/または使用後にオートクレーブを用いて高温高湿環境下で滅菌処理が行われる。内視鏡の先端部には、CCDカメラや照明等の装置が備えられているが、これらがオートクレーブ内で高温高湿環境下に直接曝されると、劣化や故障の原因となる。そのため、内視鏡の先端部には、各装置を保護するためのカバー部材が備え付けられている。   Medical endoscopes are sterilized in a high temperature and high humidity environment using an autoclave before and / or after use. Devices such as a CCD camera and lighting are provided at the tip of the endoscope, but when they are directly exposed to a high temperature and high humidity environment in an autoclave, they cause deterioration or failure. Therefore, the distal end portion of the endoscope is provided with a cover member for protecting each device.

上記カバー部材としては、滅菌処理時に高温高湿環境に耐え得るように高い化学的耐久性が求められる。また、内視鏡は体内に挿入される可動性チューブの先端に取り付けられる。その可動性が原因となって、使用時にカバー部材自体、あるいは内部機器に過剰な応力が負荷されるおそれがあることから、上記カバー部材には、高い剛性が求められる。従来、上記特性を満足するカバー部材の材料としてサファイアが用いられている(例えば特許文献1参照)。   The cover member is required to have high chemical durability so as to withstand a high temperature and high humidity environment at the time of sterilization treatment. In addition, the endoscope is attached to the tip of a movable tube to be inserted into the body. The cover member is required to have high rigidity because there is a possibility that excessive stress may be applied to the cover member itself or an internal device during use due to the mobility. Conventionally, sapphire is used as a material of a cover member which satisfies the above-mentioned characteristic (for example, refer to patent documents 1).

特開平10−108823号公報JP 10-108823 A

サファイアは高価な材料であるため、より安価な代替材料が求められている。例えば、化学強化ガラスは比較的安価でかつ高剛性な材料であるが、アルカリ成分を多く含有するため、化学的耐久性に劣るという問題がある。   Since sapphire is an expensive material, cheaper alternative materials are being sought. For example, although chemically strengthened glass is a relatively inexpensive and highly rigid material, it contains a large amount of an alkali component and thus has a problem of being inferior in chemical durability.

以上に鑑み、本発明は、高剛性であり、かつ化学的耐久性に優れるガラス材、及びその製造方法を提供することを目的とする。   In view of the above, it is an object of the present invention to provide a glass material having high rigidity and excellent chemical durability, and a method for producing the same.

本発明のガラス材は、モル%で、Al 40〜70%、及びTa 30〜60%を含有することを特徴とする。上記組成範囲を有するガラス材であれば、剛性に優れるため、例えば可動性の高い医療用治療器具のカバー部材等として使用した場合に、カバー部材自身、あるいは内部機器に過剰な応力が負荷されても破損しにくくなる。 The glass material of the present invention is characterized in that it contains 40 to 70% of Al 2 O 3 and 30 to 60% of Ta 2 O 5 in mole%. Since the glass material having the above composition range is excellent in rigidity, for example, when it is used as a cover member or the like of a highly mobile medical treatment instrument, excessive stress is loaded on the cover member itself or an internal device. It also becomes hard to break.

本発明のガラス材は、ヤング率が70GPa以上であることが好ましい。   The glass material of the present invention preferably has a Young's modulus of 70 GPa or more.

本発明のガラス材は、ビッカース硬度が5GPa以上であることが好ましい。本発明のガラス材を例えば医療用治療器具のカバー部材等として使用した場合、使用時に誤って打突による破損が発生するおそれがある。しかしながら、本発明のガラス材のビッカース硬度が上記範囲であれば、機械的強度に優れ、破損が発生しにくいため好ましい。   The glass material of the present invention preferably has a Vickers hardness of 5 GPa or more. When the glass material of the present invention is used, for example, as a cover member of a medical treatment instrument, there is a possibility that the damage due to the impact may occur erroneously at the time of use. However, if the Vickers hardness of the glass material of the present invention is in the above-mentioned range, it is preferable because the mechanical strength is excellent and breakage is unlikely to occur.

本発明のガラス材は、モル%で、RO(RはLi、Na及びKから選択される少なくとも1種)の含有量が10%以下であることが好ましい。 The glass material of the present invention preferably contains 10% or less of R 2 O (R is at least one selected from Li, Na and K) in mol%.

本発明のガラス材は、粒径が0.1mm以上であることが好ましい。   The glass material of the present invention preferably has a particle size of 0.1 mm or more.

本発明のガラス材は、医療用治療器具のカバー部材として使用することができる。   The glass material of the present invention can be used as a cover member of a medical treatment instrument.

本発明のガラス材は、光学レンズとして使用することができる。   The glass material of the present invention can be used as an optical lens.

本発明のガラス材の製造方法は、上記のガラス材を製造するための方法であって、ガラス原料を浮遊させて保持した状態で、ガラス原料を加熱融解させて溶融ガラスを得た後に、溶融ガラスを冷却する工程を備えることを特徴とする。   The method for producing a glass material according to the present invention is a method for producing the above-mentioned glass material, and in a state where the glass material is suspended and held, the glass material is heated and melted to obtain molten glass, and then melted. And cooling the glass.

本発明によれば、高強度かつ化学的耐久性に優れ、しかも比較的安価であるガラス材を提供することが可能となる。   According to the present invention, it is possible to provide a glass material which is high in strength, excellent in chemical durability, and relatively inexpensive.

本発明のガラス材を製造するための装置の一実施形態を示す模式的断面図である。It is a typical sectional view showing one embodiment of a device for manufacturing a glass material of the present invention. 本発明のガラス材を製造するための装置の別の実施形態を示す模式的断面図である。It is a typical sectional view showing another embodiment of a device for manufacturing a glass material of the present invention. 図2の製造装置における成形面の一部分を示す略図的平面図である。It is a schematic-drawing top view which shows a part of molding surface in the manufacturing apparatus of FIG. 本発明のガラス材からなる内視鏡用カバー部材の一実施形態を示す模式的斜視図である。It is a typical perspective view showing one embodiment of a cover member for endoscopes which consists of a glass material of the present invention. 本発明のガラス材からなる内視鏡用カバー部材を内視鏡の先端部に装着して使用する例を示す模式的断面図である。It is a typical sectional view showing the example which attaches and uses the cover member for endoscopes which consists of glass materials of the present invention at the tip part of an endoscope.

本発明のガラス材は、モル%で、Al 40〜70%、及びTa 30〜60%を含有することを特徴とする。以下に、各成分の含有量を上記の通り規定した理由を説明する。なお、以下の各成分の含有量に関する説明において、特に断りのない限り、「%」は「モル%」を意味する。 The glass material of the present invention is characterized in that it contains 40 to 70% of Al 2 O 3 and 30 to 60% of Ta 2 O 5 in mole%. Below, the reason which specified content of each component as mentioned above is demonstrated. In the following description regarding the content of each component, “%” means “mol%” unless otherwise noted.

Alは化学的耐久性を向上させる成分である。また、ビッカース硬度を向上させる効果もある。Alの含有量は40〜70%以上であり、45〜65%であることが好ましく、50〜60%であることがより好ましく、52〜58%であることがさらに好ましい。Alの含有量が少なすぎると、上記効果が得られにくくなる。一方、Alの含有量が多すぎると、失透しやすくガラス化が困難になる傾向がある。 Al 2 O 3 is a component that improves chemical durability. It also has the effect of improving the Vickers hardness. The content of Al 2 O 3 is 40 to 70% or more, preferably 45 to 65%, more preferably 50 to 60%, and still more preferably 52 to 58%. When the content of Al 2 O 3 is too small, the above-described effect is difficult to be obtained. On the other hand, when the content of Al 2 O 3 is too large, devitrification tends to occur and vitrification tends to be difficult.

Taはヤング率を向上させる成分である。また、ビッカース硬度や屈折率を高める効果もある。Taの含有量は30〜60%であり、35〜55%であることが好ましく、40〜50%であることがより好ましく、42〜48%であることがさらに好ましい。Taの含有量が少なすぎると、上記効果が得られにくくなる。一方、Taの含有量が多すぎると、ガラス化が困難になる傾向がある。 Ta 2 O 5 is a component that improves the Young's modulus. It also has the effect of increasing the Vickers hardness and the refractive index. The content of Ta 2 O 5 is 30 to 60%, preferably 35 to 55%, more preferably 40 to 50%, and still more preferably 42 to 48%. When the content of Ta 2 O 5 is too small, the above-mentioned effect is hardly obtained. On the other hand, when the content of Ta 2 O 5 is too large, vitrification tends to be difficult.

本発明のガラス材において、Al+Taの含有量は70%以上であり、80%以上であることがより好ましく、90%以上であることがさらに好ましく、95%以上であることが特に好ましい。Al+Taの含有量が少なすぎると、ヤング率やビッカース硬度、あるいは化学的耐久性が低下しやすくなる。 In the glass material of the present invention, the content of Al 2 O 3 + Ta 2 O 5 is 70% or more, more preferably 80% or more, still more preferably 90% or more, and 95% or more. Is particularly preferred. If the content of Al 2 O 3 + Ta 2 O 5 is too small, Young's modulus, Vickers hardness, or chemical durability tends to be reduced.

本発明のガラス材には、上記成分以外にも以下の成分を含有させることができる。   The following components can be contained in the glass material of this invention other than the said component.

屈折率を向上させるために、La、Gd、Nb、ZrO、TiO、WO等を合量で0〜40%、好ましくは0.1〜20%、より好ましくは1〜10%の範囲で含有させることができる。 In order to improve the refractive index, 0 to 40%, preferably 0.1 to 20% in total of La 2 O 3 , Gd 2 O 3 , Nb 2 O 5 , ZrO 2 , TiO 2 , WO 3 etc. More preferably, it can be contained in 1 to 10% of range.

ガラス化範囲を広げるためにSiOを含有させることができる。ただし、ヤング率の低下を抑制するため、30%以下、20%以下、特に10%以下が好ましい。 SiO 2 can be included to extend the vitrification range. However, in order to suppress a decrease in Young's modulus, 30% or less, 20% or less, and particularly 10% or less is preferable.

清澄剤としてSbを含有させることができる。ただし、着色を避けるため、あるいは環境面を考慮して、Sbの含有量は0.1%以下の範囲であることが好ましく、含有させないことがより好ましい。 Sb 2 O 3 can be included as a fining agent. However, in order to avoid coloring or in consideration of the environment, the content of Sb 2 O 3 is preferably in the range of 0.1% or less, and more preferably not contained.

なお、RO(RはLi、Na及びKから選択される少なくとも1種)は、溶融温度を低下させる効果があるが、化学的耐久性を低下させるため、その合量は10%以下であることが好ましく、5%以下であることがより好ましく、3%以下であることがさらに好ましく、含有しないことが特に好ましい。 Although R 2 O (R is at least one selected from Li, Na and K) has the effect of lowering the melting temperature, it reduces the chemical durability, so the total amount is 10% or less It is preferable that the content be 5% or less, more preferably 3% or less, and particularly preferably not to be contained.

PbO、CdO及びAsは環境面から含有させないことが好ましい。 It is preferable not to contain PbO, CdO and As 2 O 3 from the environmental point of view.

本発明のガラス材のヤング率は70GPa以上であることが好ましく、90GPa以上であることがより好ましく、110GPa以上であることがさらに好ましく、130GPa以上であることが特に好ましい。ヤング率が小さすぎると、例えば可動性の高い医療用治療器具のカバー部材等として使用した場合に、カバー部材自身、あるいは内部機器に過剰な応力が負荷されて破損の原因となる。   The Young's modulus of the glass material of the present invention is preferably 70 GPa or more, more preferably 90 GPa or more, still more preferably 110 GPa or more, and particularly preferably 130 GPa or more. If the Young's modulus is too small, for example, when it is used as a cover member or the like of a highly mobile medical treatment instrument, the cover member itself or an internal device is loaded with excessive stress to cause breakage.

なお、例えば医療用治療器具のカバー部材は、使用時に誤って打突による破損が発生するおそれがあることから、当該カバー部材に用いるガラス材の機械的強度も高いことが好ましい。それゆえ、本発明のガラス材のビッカース硬度は5GPa以上であることが好ましく、7.5GPa以上であることがより好ましい。   For example, since the cover member of the medical treatment instrument may be accidentally damaged during use, it is preferable that the mechanical strength of the glass material used for the cover member is also high. Therefore, the Vickers hardness of the glass material of the present invention is preferably 5 GPa or more, more preferably 7.5 GPa or more.

本発明のガラス材は化学的耐久性に優れる。具体的には、プレッシャークッカーテスト(133℃、100%Rh、250時間)によりガラス材表面に変質は認められないことが好ましい。   The glass material of the present invention is excellent in chemical durability. Specifically, it is preferable that no deterioration is observed on the surface of the glass material by the pressure cooker test (133 ° C., 100% Rh, 250 hours).

主成分としてAl及びTaを含有するガラス材は、一般に結晶化傾向が強く、ガラス化が困難である。つまり、この種のガラス材を作製する際、原料を坩堝等の溶融容器内で溶融し、冷却すると、溶融ガラスと溶融容器との接触界面を起点として結晶の析出が進行しやすくなる。 A glass material containing Al 2 O 3 and Ta 2 O 5 as main components generally has a strong tendency to crystallize and is difficult to vitrify. That is, when producing a glass material of this type, if the raw material is melted in a melting vessel such as a crucible and cooled, precipitation of crystals tends to proceed starting from the contact interface between the molten glass and the melting vessel.

本発明のガラス材は、上記のようなガラス化しにくい組成を含むが、このような場合であっても、溶融容器との界面での接触をなくすことによりガラス化が可能となる。このような方法として、原料を浮遊させた状態で溶融、冷却する無容器浮遊法が知られている。当該方法を用いると、溶融ガラスが溶融容器にほとんど接触することがないため、溶融容器との界面を起点とする結晶の析出を防止することができ、ガラス化が可能となる。これにより、粒径が大きいガラス材が容易に得られやすくなる。具体的には、粒径が0.1mm以上、好ましくは0.6mm以上、より好ましくは1mm以上、さらに好ましくは2mm以上のガラス材を作製することが可能となる。なお、ガラス材の粒径は、形状が球状以外の場合(楕球状等)は長径を指す。   The glass material of the present invention contains the composition that is difficult to vitrify as described above, but even in such a case, vitrification becomes possible by eliminating contact at the interface with the melting vessel. As such a method, a non-container floating method is known in which a raw material is melted and cooled in a floating state. When the method is used, since the molten glass hardly contacts the melting vessel, precipitation of crystals starting from the interface with the melting vessel can be prevented, and vitrification becomes possible. Thereby, a glass material having a large particle size can be easily obtained. Specifically, it becomes possible to produce a glass material having a particle diameter of 0.1 mm or more, preferably 0.6 mm or more, more preferably 1 mm or more, and further preferably 2 mm or more. The particle diameter of the glass material refers to the major axis when the shape is other than spherical (eg, spheroidal).

図1は、無容器浮遊法によりガラス材を作製するための製造装置の模式的断面図である。以下、図1に基づき、ガラス材の製造装置について説明する。   FIG. 1 is a schematic cross-sectional view of a production apparatus for producing a glass material by the non-container floating method. Hereinafter, the manufacturing apparatus of a glass material is demonstrated based on FIG.

ガラス材の製造装置1は、成形型10を有する。成形型10は溶融容器としての役割も果たす。成形型10は、成形面10aと、成形面10aに開口しているガス噴出孔10bとを有する。ガス噴出孔10bは、ガスボンベなどのガス供給機構11に接続されている。このガス供給機構11からガス噴出孔10bを経由して、成形面10aにガスが供給される。ガスの種類は特に限定されず、例えば、空気や酸素であってもよいし、窒素ガス、アルゴンガス、ヘリウムガス等の不活性ガスであってもよい。   The glass material manufacturing apparatus 1 has a mold 10. The mold 10 also serves as a melting container. The forming die 10 has a forming surface 10 a and a gas injection hole 10 b opened to the forming surface 10 a. The gas injection holes 10 b are connected to a gas supply mechanism 11 such as a gas cylinder. A gas is supplied from the gas supply mechanism 11 to the molding surface 10a via the gas injection holes 10b. The type of gas is not particularly limited, and may be, for example, air or oxygen, or an inert gas such as nitrogen gas, argon gas, or helium gas.

製造装置1を用いてガラス材を製造するに際しては、まず、ガラス原料塊12を成形面10a上に配置する。ガラス原料塊12としては、例えば、原料粉末をプレス成形等により一体化したものや、原料粉末をプレス成形等により一体化した後に焼結させた焼結体や、目標ガラス組成と同等の組成を有する結晶の集合体等が挙げられる。   When manufacturing a glass material using the manufacturing apparatus 1, first, the glass material block 12 is disposed on the molding surface 10a. As the glass raw material mass 12, for example, one obtained by integrating raw material powders by press molding or the like, a sintered body obtained by sintering the raw material powders after being integrated by press molding, etc., and a composition equivalent to the target glass composition The aggregation of the crystal which it has, etc. are mentioned.

原料粉末の焼結時に構成成分の反応物からなる結晶を析出させることが好ましい。このようにすることで、ガラス原料塊12の溶融工程において、構成成分の蒸発を抑制することが可能となる。なお、原料粉末を溶融容器内で一旦溶融後、冷却することにより、構成成分の反応物からなる結晶を析出させてもよい。   It is preferable to precipitate crystals composed of reactants of constituent components at the time of sintering of the raw material powder. By so doing, in the melting step of the glass material mass 12, it is possible to suppress the evaporation of the component. The raw material powder may be once melted in a melting vessel and then cooled to precipitate crystals composed of the reaction products of the constituent components.

次に、ガス噴出孔10bからガスを噴出させることにより、ガラス原料塊12を成形面10a上で浮遊させる。すなわち、ガラス原料塊12を、成形面10aに接触していない状態で保持する。その状態で、レーザー光照射装置13からレーザー光をガラス原料塊12に照射する。これによりガラス原料塊12を加熱溶融してガラス化させ、溶融ガラスを得る。その後、溶融ガラスを冷却することにより、ガラス材を得ることができる。ガラス原料塊12を加熱溶融する工程と、溶融ガラス、さらにはガラス材の温度が少なくとも軟化点以下、好ましくはガラス転移点以下となるまで冷却する工程とにおいては、少なくともガスの噴出を継続し、ガラス原料塊12、溶融ガラス、さらにはガラス材と成形面10aとの接触を抑制することが好ましい。なお、加熱溶融する方法としては、レーザー光を照射する方法以外にも、輻射加熱であってもよい。   Next, the glass material mass 12 is floated on the molding surface 10a by injecting gas from the gas injection holes 10b. That is, the glass raw material mass 12 is held in a state not in contact with the molding surface 10 a. In the state, the laser beam is irradiated to the glass material block 12 from the laser beam irradiation device 13. Thus, the glass material mass 12 is heated, melted and vitrified to obtain a molten glass. Thereafter, the molten glass is cooled to obtain a glass material. In the step of heating and melting the glass raw material mass 12 and the step of cooling the temperature of the molten glass and further the glass material to at least the softening point or less, preferably the glass transition point or less, at least the gas is continuously jetted. It is preferable to suppress the contact between the glass material mass 12, the molten glass, and further the glass material and the molding surface 10a. In addition, as a method of heat-melting, radiation heating may be used other than the method of irradiating a laser beam.

図2は、無容器浮遊法によりガラス材を作製するための製造装置の別の実施形態を示す模式的断面図である。図2に示すガラス材の製造装置1aでは、成形面10aに複数のガス噴出孔10bが開口している点で、図1に示すガラス材の製造装置1と異なっている。複数のガス噴出孔10bは、例えば図3に示すように成形面10aの中心から放射状に配列されている。本実施形態のように、成形面10aにおいて複数のガス噴出孔10bを設けることにより、ガラス原料塊12の浮遊状態がより一層安定し、溶融中に成形面10aに接触しにくくなる。よって、溶融中または成形中におけるガラス材の結晶化がさらに抑制され、より粒径の大きいガラス材を得ることが可能となる。   FIG. 2 is a schematic cross-sectional view showing another embodiment of a production apparatus for producing a glass material by the non-container floating method. The glass material manufacturing apparatus 1a shown in FIG. 2 is different from the glass material manufacturing apparatus 1 shown in FIG. 1 in that a plurality of gas injection holes 10b are opened in the molding surface 10a. For example, as shown in FIG. 3, the plurality of gas injection holes 10b are arranged radially from the center of the molding surface 10a. By providing the plurality of gas injection holes 10b in the forming surface 10a as in the present embodiment, the floating state of the glass material mass 12 is further stabilized, and it becomes difficult to contact the forming surface 10a during melting. Therefore, crystallization of the glass material during melting or molding is further suppressed, and it is possible to obtain a glass material having a larger particle diameter.

上記の方法により作製されたガラス材に対して、必要に応じて切削または研磨等を施すことにより、所望の形状(例えば、板状やレンズ状)に加工することが好ましい。   It is preferable to process the glass material produced by the above method into a desired shape (for example, a plate shape or a lens shape) by cutting or polishing as necessary.

本発明のガラス材は剛性に優れるため、例えば内視鏡等の医療用治療器具のカバー部材に好適である。図4は、本発明のガラス材からなる内視鏡用カバー部材の一実施形態を示す模式的斜視図である。カバー部材21は円盤状の板状体からなる。なお、カバー部材21の形状は特に限定されず、矩形状等の板状体であってもよい。あるいは、カバー部材21はレンズ状であってもよく、その場合は内視鏡の先端部を保護するカバー部材としての機能と、光学レンズとしての機能の両方を兼ね備える。   Since the glass material of the present invention is excellent in rigidity, it is suitable, for example, for a cover member of a medical treatment instrument such as an endoscope. FIG. 4 is a schematic perspective view showing an embodiment of an endoscope cover member made of the glass material of the present invention. The cover member 21 is formed of a disk-shaped plate-like body. The shape of the cover member 21 is not particularly limited, and may be a plate-like body such as a rectangular shape. Alternatively, the cover member 21 may be in the form of a lens, in which case it has both the function as a cover member for protecting the tip of the endoscope and the function as an optical lens.

図5は、カバー部材21を内視鏡22の先端部22aに装着した例を示す模式的断面図である。図5に示すように、カバー部材21は内視鏡22の先端部22aを保護するように装着されている。カバー部材21の装着方法は特に限定されず、例えばガラスフリットやはんだ等により内視鏡22の先端部22aに接着する方法が挙げられる。なお、内視鏡22の先端部22aには、処置具が挿入される開口部や、気体や液体を流すための開口部が形成されることがある。その場合、当該開口部の位置に対応するように、カバー部材21にも開口部(あるいは切り欠き部)が設けられる。   FIG. 5 is a schematic cross-sectional view showing an example in which the cover member 21 is attached to the distal end portion 22 a of the endoscope 22. As shown in FIG. 5, the cover member 21 is mounted so as to protect the distal end portion 22 a of the endoscope 22. The method of attaching the cover member 21 is not particularly limited. For example, a method of adhering to the tip 22a of the endoscope 22 by glass frit, solder or the like can be mentioned. In the distal end portion 22a of the endoscope 22, an opening into which a treatment tool is inserted, and an opening for flowing gas or liquid may be formed. In that case, an opening (or a notch) is provided in the cover member 21 so as to correspond to the position of the opening.

以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.

(実施例1)
モル%で、Al 54%、Ta 46%のガラス組成となるように原料粉末を秤量、混合して原料バッチを調製した。原料バッチを1050℃の温度で熱処理して焼結させることにより、ガラス原料塊を得た。
Example 1
The raw material powder was weighed and mixed so as to have a glass composition of 54% Al 2 O 3 and 46% Ta 2 O 5 in mole%, to prepare a raw material batch. The raw material batch was heat-treated and sintered at a temperature of 1050 ° C. to obtain a glass raw material mass.

次に、図1に準ずる製造装置を用い、ガラス原料塊を成形面の上方に浮上させた状態で、出力100Wの二酸化炭素レーザーを照射し、ガラス原料塊を1800〜2000℃まで加熱し溶解させた。その後、レーザー照射を停止し、溶融ガラスを冷却させた。その結果、粒径が2.0mmの略球状のガラス材が得られた。得られたガラス材のヤング率は158.3GPa、ビッカース硬度は9.3GPaであった。また589nmにおける屈折率は1.94であった。   Next, using a manufacturing apparatus according to FIG. 1, with a glass material lump being floated above the molding surface, a carbon dioxide laser with an output of 100 W is irradiated to heat and melt the glass material lump to 1800 to 2000 ° C. The Thereafter, the laser irradiation was stopped and the molten glass was allowed to cool. As a result, a substantially spherical glass material having a particle diameter of 2.0 mm was obtained. The Young's modulus of the obtained glass material was 158.3 GPa, and the Vickers hardness was 9.3 GPa. The refractive index at 589 nm was 1.94.

ヤング率は、平行平面となるように加工し、かつ光学研磨されたガラス材を用い、超音波パルス法により測定した。   The Young's modulus was measured by an ultrasonic pulse method using a glass material processed to be a parallel plane and optically polished.

ビッカース硬度は、温度25℃湿度60%の恒温恒湿槽内で、光学研磨されたガラス材表面に0.98Nの荷重でビッカース圧子を5秒間打ち込み、圧痕の面積から算出した。   The Vickers hardness was calculated from the area of indentations by driving a Vickers indenter for 5 seconds with a load of 0.98 N onto the surface of the optically polished glass material in a constant temperature and humidity chamber with a temperature of 25 ° C. and a humidity of 60%.

屈折率は、平行平面となるように加工し、かつ光学研磨されたガラス材を用い、エリプソメーターにより測定した。   The refractive index was measured by an ellipsometer using a glass material processed to be a parallel plane and optically polished.

また、得られたガラス材に対し、プレッシャークッカーテスト(133℃、100%Rh、250時間)を行った。試験後、ガラス材表面を観察したところ変質は認められなかった。   Further, a pressure cooker test (133 ° C., 100% Rh, 250 hours) was performed on the obtained glass material. When the surface of the glass material was observed after the test, no deterioration was observed.

(実施例2)
図2に準ずる製造装置(ガス噴出孔の直径0.3mm)を用いた以外は、実施例1と同様の方法にてガラス材を作製した。その結果、粒径が3.5mmの略球状のガラス材が得られた。特性については、実施例1で得られたガラス材と同等であった。
(Example 2)
A glass material was manufactured in the same manner as in Example 1 except that the manufacturing apparatus (diameter 0.3 mm of gas injection holes) according to FIG. 2 was used. As a result, a substantially spherical glass material having a particle size of 3.5 mm was obtained. The characteristics were equivalent to the glass material obtained in Example 1.

(実施例3)
モル%で、Al 52%、Ta 48%のガラス組成となるように原料バッチを調製した以外は、実施例1と同様の方法にてガラス材を作製した。その結果、粒径が1.9mmの略球状のガラス材が得られた。
(Example 3)
A glass material was produced in the same manner as in Example 1 except that the raw material batch was prepared so as to have a glass composition of 52% Al 2 O 3 and 48% Ta 2 O 5 in mol%. As a result, a substantially spherical glass material having a particle diameter of 1.9 mm was obtained.

実施例1と同様にしてガラス材の特性を測定したところ、ヤング率は159.9GPa、ビッカース硬度は9.3GPa、589nmにおける屈折率は1.93であった。また、得られたガラス材に対し、プレッシャークッカーテストを行ったところ、ガラス材表面に変質は認められなかった。   When the characteristics of the glass material were measured in the same manner as in Example 1, the Young's modulus was 159.9 GPa, the Vickers hardness was 9.3 GPa, and the refractive index at 589 nm was 1.93. In addition, when a pressure cooker test was performed on the obtained glass material, no deterioration was observed on the surface of the glass material.

(実施例4)
モル%で、Al 56%、Ta 44%のガラス組成となるように原料バッチを調製した以外は、実施例1と同様の方法にてガラス材を作製した。その結果、粒径が1.9mmの略球状のガラス材が得られた。
(Example 4)
A glass material was produced in the same manner as in Example 1 except that the raw material batch was prepared so as to have a glass composition of Al 2 O 3 56% and Ta 2 O 5 44% by mol%. As a result, a substantially spherical glass material having a particle diameter of 1.9 mm was obtained.

実施例1と同様にしてガラス材の特性を測定したところ、ヤング率は156.8GPa、ビッカース硬度は8.7GPa、589nmにおける屈折率は1.92であった。また、得られたガラス材に対し、プレッシャークッカーテストを行ったところ、ガラス材表面に変質は認められなかった。   When the characteristics of the glass material were measured in the same manner as in Example 1, the Young's modulus was 156.8 GPa, the Vickers hardness was 8.7 GPa, and the refractive index at 589 nm was 1.92. In addition, when a pressure cooker test was performed on the obtained glass material, no deterioration was observed on the surface of the glass material.

(実施例5)
モル%で、Al 58%、Ta 42%のガラス組成となるように原料バッチを調製した以外は、実施例1と同様の方法にてガラス材を作製した。その結果、粒径が1.9mmの略球状のガラス材が得られた。
(Example 5)
A glass material was produced in the same manner as in Example 1 except that the raw material batch was prepared so as to have a glass composition of 58% Al 2 O 3 and 42% Ta 2 O 5 in mol%. As a result, a substantially spherical glass material having a particle diameter of 1.9 mm was obtained.

実施例1と同様にしてガラス材の特性を測定したところ、ヤング率は155.2GPa、ビッカース硬度は8.8GPa、589nmにおける屈折率は1.89であった。また、得られたガラス材に対し、プレッシャークッカーテストを行ったところ、ガラス材表面に変質は認められなかった。   When the characteristics of the glass material were measured in the same manner as in Example 1, the Young's modulus was 155.2 GPa, the Vickers hardness was 8.8 GPa, and the refractive index at 589 nm was 1.89. In addition, when a pressure cooker test was performed on the obtained glass material, no deterioration was observed on the surface of the glass material.

(比較例)
モル%で、Al 75%、Ta 25%のガラス組成となるように原料バッチを調製した以外は、実施例1と同様の方法にてガラス材を作製した。その結果、失透し、ガラス材は得られなかった。
(Comparative example)
A glass material was produced in the same manner as in Example 1 except that the raw material batch was prepared so as to have a glass composition of Al 2 O 3 75% and Ta 2 O 5 25% in mol%. As a result, it devitrified and the glass material was not obtained.

本発明のガラス材は、内視鏡等の医療用治療器具、あるいは固体撮像素子等の半導体素子や光学機器のカバー部材に好適である。また、本発明のガラス材は、屈折率が高く、光学レンズ等の光学素子として使用することも可能である。   The glass material of the present invention is suitable for a medical treatment instrument such as an endoscope, or a semiconductor element such as a solid-state imaging device or a cover member of an optical device. In addition, the glass material of the present invention has a high refractive index, and can also be used as an optical element such as an optical lens.

1、1a:ガラス材の製造装置
10:成形型
10a:成形面
10b:ガス噴出孔
11:ガス供給機構
12:ガラス原料塊
13:レーザー光照射装置
21:カバー部材
22:内視鏡
22a:先端部
1, 1a: glass material manufacturing apparatus 10: molding die 10a: molding surface 10b: gas ejection holes 11: gas supply mechanism 12: glass material lump 13: laser beam irradiation device 21: cover member 22: endoscope 22a: tip Department

Claims (7)

モル%で、Al 40〜70%、及びTa 30〜60%を含有し、
ヤング率が70GPa以上であることを特徴とするガラス材。
It contains 40 to 70% of Al 2 O 3 and 30 to 60% of Ta 2 O 5 in mol% ,
A glass material characterized by having a Young's modulus of 70 GPa or more .
ビッカース硬度が5GPa以上であることを特徴とする請求項1に記載のガラス材。 The Vickers hardness is 5 GPa or more, The glass material of Claim 1 characterized by the above-mentioned. モル%で、RO(RはLi、Na及びKから選択される少なくとも1種)の含有量が10%以下であることを特徴とする請求項1または2に記載のガラス材。 3. The glass material according to claim 1, wherein the content of R 2 O (R is at least one selected from Li, Na and K) is 10% or less in mol%. 粒径が0.1mm以上であることを特徴とする請求項1〜のいずれか一項に記載のガラス材。 The glass material according to any one of claims 1 to 3 , which has a particle size of 0.1 mm or more. 医療用治療器具のカバー部材として使用されることを特徴とする請求項1〜のいずれか一項に記載のガラス材。 The glass material according to any one of claims 1 to 4 , which is used as a cover member of a medical treatment instrument. 光学レンズとして使用されることを特徴とする請求項1〜のいずれか一項に記載のガラス材。 The glass material according to any one of claims 1 to 4 , which is used as an optical lens. 請求項1〜のいずれか一項に記載のガラス材を製造するための方法であって、
ガラス原料を浮遊させて保持した状態で、前記ガラス原料を加熱融解させて溶融ガラスを得た後に、前記溶融ガラスを冷却する工程を備えることを特徴とする、ガラス材の製造方法。
A method for producing the glass material according to any one of claims 1 to 6 , wherein
A method for producing a glass material, comprising the step of cooling the molten glass after obtaining the molten glass by heating and melting the glass raw material in a state where the glass raw material is suspended and held.
JP2015042821A 2015-03-04 2015-03-04 Glass material and method for manufacturing the same Active JP6539068B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015042821A JP6539068B2 (en) 2015-03-04 2015-03-04 Glass material and method for manufacturing the same
PCT/JP2016/055404 WO2016140123A1 (en) 2015-03-04 2016-02-24 Glass material and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015042821A JP6539068B2 (en) 2015-03-04 2015-03-04 Glass material and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2016160162A JP2016160162A (en) 2016-09-05
JP6539068B2 true JP6539068B2 (en) 2019-07-03

Family

ID=56846186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015042821A Active JP6539068B2 (en) 2015-03-04 2015-03-04 Glass material and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP6539068B2 (en)
WO (1) WO2016140123A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6519947B2 (en) * 2015-06-02 2019-05-29 日本電気硝子株式会社 Method of manufacturing glass material and manufacturing apparatus of glass material
CN107082561B (en) * 2017-04-01 2019-11-26 武汉理工大学 A kind of calcium tantalum aluminate glass and its preparation method and application
WO2019198350A1 (en) * 2018-04-13 2019-10-17 オリンパス株式会社 Surgical endoscope
JP2021098616A (en) * 2019-12-20 2021-07-01 日本電気硝子株式会社 Production method of optical glass material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526735B2 (en) * 1973-08-31 1977-02-24
JPS50130811A (en) * 1974-04-05 1975-10-16
JPH06296058A (en) * 1993-04-08 1994-10-21 Nippon Telegr & Teleph Corp <Ntt> Laser beam or light amplifying glass composition
US7141523B2 (en) * 2003-09-18 2006-11-28 3M Innovative Properties Company Ceramics comprising Al2O3, REO, ZrO2 and/or HfO2, and Nb2O5 and/or Ta2O5 and methods of making the same
JP2011098869A (en) * 2009-11-07 2011-05-19 Ohara Inc Glass ceramic, method for manufacturing the same, photocatalytically functional compact and hydrophilic compact

Also Published As

Publication number Publication date
WO2016140123A1 (en) 2016-09-09
JP2016160162A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP6539068B2 (en) Glass material and method for manufacturing the same
KR102607728B1 (en) Crystallized glass and crystallized glass substrate
JP4810901B2 (en) Optical glass and optical element
TWI305768B (en) Optical glass
US20180244559A1 (en) Optical glass
WO2010071202A1 (en) Glass, and glass processing method
JP6869482B2 (en) Optical glass and its manufacturing method
JP2008201646A (en) Optical glass and optical element
JP2009096649A (en) Optical glass and optical element
US20180215652A1 (en) Ultraviolet light transmitting glass
JP6628021B2 (en) Optical glass and manufacturing method thereof
US20170119508A1 (en) Glass Ceramic Having A Quartz Solid Solution Phase
JP6471894B2 (en) Optical glass and manufacturing method thereof
JP2012017254A (en) Optical glass
JP6501054B2 (en) Optical glass
JP6469390B2 (en) Glass material and manufacturing method thereof
JP6869481B2 (en) Optical glass and its manufacturing method
JP6173224B2 (en) Optical glass
JP6451199B2 (en) Optical glass and manufacturing method thereof
JP6340623B2 (en) Optical glass
JP6681013B2 (en) Optical glass and manufacturing method thereof
JP7472562B2 (en) Optical Glass
JP6442952B2 (en) Optical glass and manufacturing method thereof
JP6701557B2 (en) Optical glass and manufacturing method thereof
JP2018150199A (en) Optical glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190607

R150 Certificate of patent or registration of utility model

Ref document number: 6539068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250