WO2019198350A1 - Surgical endoscope - Google Patents

Surgical endoscope Download PDF

Info

Publication number
WO2019198350A1
WO2019198350A1 PCT/JP2019/006706 JP2019006706W WO2019198350A1 WO 2019198350 A1 WO2019198350 A1 WO 2019198350A1 JP 2019006706 W JP2019006706 W JP 2019006706W WO 2019198350 A1 WO2019198350 A1 WO 2019198350A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat glass
objective optical
maximum length
conditional expression
longitudinal direction
Prior art date
Application number
PCT/JP2019/006706
Other languages
French (fr)
Japanese (ja)
Inventor
さや歌 西村
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2019198350A1 publication Critical patent/WO2019198350A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/313Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes

Definitions

  • the present invention relates to a surgical endoscope.
  • a stereoscopic endoscope that observes a stereoscopic image of an object using two objective optical systems is used (see, for example, Patent Documents 1 and 2).
  • a front lens shared by the two objective optical systems is disposed on the distal end surface of the stereoscopic endoscopes of Patent Documents 1 and 2.
  • a stereoscopic endoscope for surgical laparoscopic surgery requires high image quality and a wide field of view.
  • the diameter of the frontmost lens on the most object side of the objective optical system is large.
  • the two objective optical systems are close to each other. Such a design that satisfies all of the high image quality, wide field of view and small diameter is difficult. That is, the frame that holds the two tip lenses may interfere with each other.
  • the viewing angle of the objective optical system is enlarged, the light rays incident on the two objective optical systems may overlap each other.
  • the frame of the tip lens is located at the portion where the light beams overlap, and the frame obstructs the field of view.
  • one objective lens is shared by two objective optical systems as described in Patent Documents 1 and 2. It is done.
  • endoscopes for surgical laparoscopic surgery need to be sterilized at high temperature and high pressure.
  • the tip lens is soldered to the frame.
  • the solder when the solder is cooled and hardened, the solder contracts, so that stress is generated in the tip lens. Therefore, the distal lens of the surgical endoscope is required to have high rigidity capable of withstanding stress.
  • the endoscopes of Patent Documents 1 and 2 are not for surgical use, and do not consider the rigidity of the tip lens necessary for solder joining.
  • the present invention has been made in view of the above-described circumstances, and in a stereoscopic surgical endoscope having two objective optical systems, it is possible to simultaneously achieve high image quality, a wide field of view, and a reduction in diameter.
  • a surgical endoscope that is durable and resistant to solder joints.
  • One aspect of the present invention is a long insertion portion that is inserted into the body, two objective optical systems that are disposed in the distal end portion of the insertion portion and have parallax with each other, and a distal end surface of the insertion portion.
  • a single flat glass covering the object side of the two objective optical systems, the object side surface and the image side surface of the flat glass are flat, and the flat glass has a Young's modulus of 335,000 MPa or more.
  • the outer surface of the flat glass is covered with a metal film, and is fixed to the distal end surface of the insertion portion with solder.
  • FIG. 3 is a longitudinal sectional view taken along line II in FIG. 2 and shows an internal structure of the insertion portion. It is a figure explaining the chamfering amount of the corner
  • the surgical endoscope 1 As shown in FIGS. 1 to 3, the surgical endoscope 1 according to the present embodiment is disposed inside a long insertion portion 2 to be inserted into the body and a distal end portion 2 a of the insertion portion 2.
  • Two objective optical systems 31, 32, a single flat glass 4 and two illumination lenses 5 arranged on the distal end surface 2 b of the insertion portion 2 are provided.
  • the surgical endoscope 1 is sterilized at high temperature and high pressure before being used for a surgical operation.
  • the flat glass 4 and the illumination lens 5 are fixed to the front end surface 2b by soldering.
  • the insertion portion 2 has a horizontal direction and a vertical direction.
  • the left-right direction and the up-down direction are orthogonal to the longitudinal axis of the insertion portion 2 and are orthogonal to each other.
  • the distal end portion 2a of the insertion portion 2 is a distal end hard portion.
  • the distal end hard portion 2a includes a cylindrical tube frame 6 and a disk-shaped tip frame 7 that closes the opening on the distal end side of the tube frame 6 and forms the distal end surface 2b.
  • the cylinder frame 6 and the front end frame 7 are formed of a hard metal material.
  • first opening 7 a in which the flat glass 4 is disposed and an opening (second opening) 7 b in which the illumination lens 5 is disposed are formed in the front end frame 7.
  • Each objective optical system 31, 32 is composed of a plurality of lenses as shown in FIG.
  • the two objective optical systems 31 and 32 have parallax in the left-right direction. That is, the two objective optical systems 31 and 32 are arranged in the left-right direction, and the optical axes A1 and A2 of the two objective optical systems 31 and 32 are arranged at intervals in the left-right direction.
  • the optical axes A1 and A2 are parallel to each other.
  • the image acquired by the image sensor 81 and the image acquired by the image sensor 82 are images in which an object is viewed from two viewpoints corresponding to a human left eye and right eye. A stereoscopic image of the object can be constructed from such a pair of images.
  • the flat glass 4 is made of sapphire glass having a Young's modulus of 335,000 MPa or more. As shown in FIGS. 2 and 3, the flat glass 4 includes an object side surface 4a and an image side surface 4b that face each other in the direction along the optical axes A1 and A2 and are orthogonal to the optical axes A1 and A2, and an object side surface 4a And an annular outer peripheral surface 4c connecting the image side surface 4b.
  • the object side surface 4a and the image side surface 4b are flat and parallel to each other.
  • the object side surface 4a and the image side surface 4b are oval having a longitudinal direction and a short direction perpendicular to each other.
  • the object side surface 4a and the image side surface 4b are two long sides that are linear and opposite each other in the short direction and two short sides that are arcuate and opposite each other in the longitudinal direction. It has the shape which consists of.
  • the longitudinal direction is parallel to the left-right direction of the insertion portion 2, and the short side direction is parallel to the vertical direction of the insertion portion 2.
  • the maximum length X in the longitudinal direction of the object side surface 4a and the image side surface 4b is larger than the maximum length Y in the short direction of the object side surface 4a and the image side surface 4b.
  • Such flat glass 4 is manufactured, for example, by so-called D-cut processing in which both sides of a circular flat plate are cut off.
  • the flat glass 4 covers the object side of the two objective optical systems 31 and 32. That is, the two long sides of the flat glass 4 are arranged outside the two objective optical systems 31 and 32 in the vertical direction, and the two short sides of the flat glass 4 are two objective optical systems 31 and 32 in the horizontal direction. 32 is arranged on the outer side.
  • the center of the flat glass 4 in the longitudinal direction coincides with the center between the optical axes A1 and A2 of the two objective optical systems 31 and 32.
  • the outer peripheral surface 4 c of the flat glass 4 is covered with a metal film in order to enable solder bonding between the flat glass 4 and the tip frame 7.
  • the outer peripheral surface 4 c of the flat glass 4 and the inner peripheral surface of the opening 7 a are fixed to each other by the solder S.
  • the flat glass 4 is disposed in the opening 7a, the solder S is poured between the inner peripheral surface of the opening 7a and the outer peripheral surface 4c of the flat glass 4, and the solder S is cooled. Harden. At this time, the solder S contracts during the cooling process, so that a compressive force is applied to the flat glass 4 and a stress is generated in the flat glass 4.
  • the illumination lens 5 emits illumination light from an illumination optical system (not shown) in the cylindrical frame 6 toward the object.
  • the illumination lens 5 is disposed on the upper side of the flat glass 4.
  • the outer peripheral surface of the illumination lens 5 is covered with a metal film in order to enable solder joining between the illumination lens 5 and the tip frame 7.
  • the outer peripheral surface of the illumination lens 5 and the inner peripheral surface of the opening 7b are fixed to each other by solder S.
  • the gap G between the opening 7a and the opening 7b is preferably 0.2 mm or more. Thereby, it is possible to prevent the solder in the opening 7a from flowing into the opening 7b or the solder in the opening 7b from flowing into the opening 7a during solder bonding.
  • the flat glass 4 has a shape that satisfies the following conditional expressions (1), (2), (3), and (4).
  • X is the maximum length (mm) of the flat glass 4 in the longitudinal direction.
  • Y is the maximum length (mm) of the flat glass 4 in the short direction.
  • EN is the length (mm) in the direction along the optical axes A1 and A2 from the object side surface 4a of the flat glass 4 to the entrance pupil position of the objective optical systems 31 and 32.
  • D is the distance (mm) between the optical axes A1 and A2 of the two objective optical systems 31 and 32.
  • is the half angle of view (deg) of each objective optical system 31, 32.
  • T is the thickness (mm) of the flat glass 4, that is, the distance between the object side surface 4a and the image side surface 4b.
  • Conditional expression (1) defines the positional relationship between the light rays that enter the objective optical systems 31 and 32 and that pass through the outermost side in the longitudinal direction of the flat glass 4 and both ends of the flat glass 4 in the longitudinal direction. ing.
  • both ends in the longitudinal direction of the flat glass 4 are arranged outside the light beam passing through the outermost side. Therefore, it is possible to prevent the occurrence of vignetting caused by the light traveling from the object toward the objective optical systems 31 and 32 being kicked at both ends in the longitudinal direction of the flat glass 4.
  • Conditional expression (2) and conditional expression (3) define the range of the ratio of the maximum length Y to the maximum length X.
  • conditional expression (2) the durability of the flat glass 4 against solder bonding can be improved.
  • Y / X is less than 0.3, the difference between the magnitude of the stress in the longitudinal direction and the magnitude of the stress in the lateral direction, and the difference between the amount of strain in the longitudinal direction and the magnitude of the strain in the lateral direction are It becomes large and the flat glass 4 is easily broken or distorted.
  • conditional expression (3) it is possible to secure a distance between the upper end of the flat glass 4 and the illumination lens 5 and to prevent occurrence of flare due to illumination light emitted from the illumination lens 5.
  • Y / X is larger than 0.5, the upper end of the flat glass 4 and the illumination lens 5 are close to each other, and flare caused by illumination light may occur.
  • Conditional expression (4) defines the range of the ratio of the thickness T to the maximum length X.
  • T / X satisfies the conditional expression (4), resistance of the flat glass 4 to stress can be improved.
  • T / X is larger than 0.069, the stress applied to the end of the flat glass 4 exceeds 580 MPa, and the flat glass 4 is easily broken.
  • T / X is less than 0.017, the flat glass 4 is too thin to be easily broken, and the flat glass 4 is difficult to handle.
  • the insertion portion 2 is inserted into the body, and the subject inside the body is illuminated with illumination light emitted from the illumination lens 5.
  • Each objective optical system 31 and 32 forms an image of a subject illuminated with illumination light
  • each of the image sensors 81 and 82 captures an image of the subject. Since the two objective optical systems 31 and 32 have a field of view in the left-right direction, the two images generated by the image sensors 81 and 82 are images in which the subject is viewed from two viewpoints whose positions are different from each other in the left-right direction. . The subject can be stereoscopically viewed using such two images.
  • the front end lenses 31a and 32a closest to the object side of the objective optical systems 31 and 32 are lenses having a large diameter and a wide angle. Preferably there is.
  • the two objective optical systems 31 and 32 be as close as possible to each other in the left-right direction.
  • the flat glass 4 is disposed on the distal end surface 2b of the insertion portion 2, and the object sides of the two objective optical systems 31 and 32 are covered by the single flat glass 4.
  • the front end frame 7 holding the flat glass 4 interferes between the objective optical systems 31 and 32 or the objective optical systems 31 and 32. It is possible to prevent the visual field from being obstructed. Accordingly, the two tip lenses 31a and 32a having a large diameter can be disposed close to each other, and high image quality, a wide field of view, and a reduction in diameter can be achieved at the same time.
  • the flat glass 4 is made of a highly rigid sapphire glass having a Young's modulus of 335,000 MPa or more. Therefore, the flat glass 4 can withstand the compressive force and stress accompanying the hardening of the solder S. That is, the flat glass 4 has durability against solder bonding. When the shape of the flat glass 4 satisfies the conditional expressions (2) and (4), the durability of the flat glass 4 against solder bonding can be further improved.
  • the outer peripheral surface 4c of the flat glass 4 is a polished surface. More preferably, the entire outer peripheral surface 4c is a polished surface.
  • the arithmetic average roughness Ra of the outer peripheral surface 4c preferably satisfies the following conditional expression (5).
  • the outer peripheral surface 4c is a rough surface, compressive forces in various directions are intensively applied to the convex portions of the outer peripheral surface 4c, and stress is concentrated on the convex portions.
  • the outer peripheral surface 4c is a smooth polished surface, the concentration of compressive force and stress can be eliminated and the durability of the flat glass 4 against solder bonding can be improved.
  • the arithmetic average roughness Ra satisfies the conditional expression (5), the durability of the flat glass 4 against solder bonding can be further improved.
  • the corner between the object side surface 4a and the outer peripheral surface 4c and the corner between the image side surface 4b and the outer peripheral surface 4c are chamfered at least in a part in the circumferential direction. More preferably, the corner is chamfered over the entire circumference.
  • the chamfered surface formed by chamfering is also preferably a polished surface.
  • the chamfering amount M preferably satisfies the following conditional expression (6). 0.0025 ⁇ M / T ⁇ 0.25 (6)
  • the chamfering amount M satisfies the conditional expression (6), chipping and cracking of the edge of the flat glass 4 can be prevented.
  • M / T 0.25 or more
  • the portion B in the figure is sharp, so that when the outer peripheral surface 4c is subjected to metal film processing or solder bonding processing, the flat glass 4 B portion is likely to be chipped.
  • M / T is 0.0025 or less
  • the portion C of the figure is sharp, and thus when the outer peripheral surface 4c is subjected to metal film treatment or solder bonding treatment, the flat glass 4 Chipping of the C portion is likely to occur.
  • the flat glass 4 is oval, but the shape of the flat glass 4 is not limited to this, and may be other shapes such as a rectangle, a polygon, or an ellipse. Also good.
  • the flat glass 4 was formed from the sapphire glass, the flat glass 4 may be formed from the other glass which has a Young's modulus of 335000 Mpa or more.
  • One aspect of the present invention is a long insertion portion that is inserted into the body, two objective optical systems that are disposed in the distal end portion of the insertion portion and have parallax with each other, and a distal end surface of the insertion portion.
  • a single flat glass covering the object side of the two objective optical systems, the object side surface and the image side surface of the flat glass are flat, and the flat glass has a Young's modulus of 335,000 MPa or more.
  • the outer surface of the flat glass is covered with a metal film, and is fixed to the distal end surface of the insertion portion with solder.
  • the two object images formed by the two objective optical systems are planar images obtained by viewing the object from two viewpoints having different positions. Therefore, a stereoscopic image of the object can be observed using the two object images.
  • the flat glass formed from the glass having a Young's modulus of 335,000 MPa or more has high rigidity and can withstand the compressive force and stress accompanying the hardening of the solder. That is, the flat glass has durability against solder bonding.
  • a single flat glass that covers the object side of the two objective optical systems is provided on the distal end surface of the insertion portion, and a frame that holds the flat glass interferes between the two objective optical systems or two objective optical systems. It is possible to prevent the visual field of the system from being obstructed. Thereby, high image quality, a wide field of view and a narrow diameter can be achieved at the same time. That is, two objective optical systems having a large lens diameter of the tip lens can be arranged close to each other.
  • the said flat glass has a longitudinal direction parallel to the sequence direction of two said objective optical systems, and a transversal direction orthogonal to this longitudinal direction,
  • the maximum length of the said longitudinal direction of the said flat glass Is preferably larger than the maximum length of the flat glass in the lateral direction.
  • the shape of the said flat glass satisfy
  • X is the maximum length (mm) in the longitudinal direction
  • EN is the length (mm) from the object side surface of the flat glass to the entrance pupil position of the objective optical system
  • D is the two An interval (mm) between the optical axes of the objective optical system and ⁇ is a half angle of view (deg) of each objective optical system.
  • Conditional expression (1) defines the positional relationship between the light rays that enter the objective optical system and that pass through the outermost side in the longitudinal direction of the flat glass, and both ends in the longitudinal direction of the flat glass.
  • the shape of the said flat glass satisfy
  • X is the maximum length (mm) in the longitudinal direction
  • Y is the maximum length (mm) in the lateral direction.
  • Conditional expression (2) defines the range of the ratio of the maximum length Y to the maximum length X.
  • conditional expression (3) defines the range of the ratio of the maximum length Y to the maximum length X.
  • An illumination lens is often arranged next to the short direction of the flat glass.
  • the shape of the said flat glass satisfy
  • T is the thickness (mm) of the flat glass
  • X is the maximum length (mm) in the longitudinal direction.
  • Conditional expression (4) defines the range of the ratio of the thickness T to the maximum length X. The greater the thickness T, the greater the compressive force applied to the flat glass and the stress generated in the flat glass. On the other hand, the smaller the thickness T is, the more fragile the flat glass is and the more difficult it is to handle the flat glass.
  • the said outer peripheral surface of the said flat glass is a grinding
  • Ra is the arithmetic average roughness ( ⁇ m) of the polished surface. Ra ⁇ 0.06 (5)
  • conditional expression (5) When the outer peripheral surface of the flat glass is rough, the flat glass is easily cracked due to the concentration of compressive force and stress on the convex portions. By satisfying conditional expression (5), the concentration of compressive force and stress can be eliminated, and the durability of the flat glass against solder bonding can be improved.
  • the corner portion between the object side surface and the outer peripheral surface of the flat glass and the corner portion between the image side surface and the outer peripheral surface are chamfered, and the chamfer amount of the corner portion is chamfered.
  • M is the chamfering amount (mm) of the corner
  • T is the thickness (mm) of the flat glass. 0.0025 ⁇ M / T ⁇ 0.25 (6)
  • emits illumination light is provided,

Abstract

This surgical endoscope is provided with an elongate insertion unit which is inserted into the body, two objective optical systems (31, 32) which are arranged in the tip of the insertion unit and which have parallax relative to each other, and a single flat glass plate (4) which is arranged on the tip surface (2b) of the insertion unit and which covers the object side of the two objective optical systems (31, 32). The object-side surface (4a) and the image-side surface (4b) of the flat glass plate (4) are both flat, the flat glass plate (4) is formed from glass having a Young's modulus of greater than or equal to 335,000 MPa, the outer peripheral surface (4c) of the flat glass plate (4) is covered by a metal film, and is fixed with solder (S) to the tip surface (2b).

Description

外科用内視鏡Surgical endoscope
 本発明は、外科用内視鏡に関するものである。 The present invention relates to a surgical endoscope.
 2つの対物光学系を使用して物体の立体画像を観察する立体視内視鏡が使用されている(例えば、特許文献1,2参照。)。特許文献1,2の立体視内視鏡の先端面には、2つの対物光学系によって共有される前置レンズが配置されている。 A stereoscopic endoscope that observes a stereoscopic image of an object using two objective optical systems is used (see, for example, Patent Documents 1 and 2). A front lens shared by the two objective optical systems is disposed on the distal end surface of the stereoscopic endoscopes of Patent Documents 1 and 2.
特許第3526531号公報Japanese Patent No. 3526531 特開2004-16410号公報JP 2004-16410 A
 外科腹腔鏡手術用の立体視内視鏡には、高い画質と広い視野が要求される。そのためには、対物光学系の最も物体側の先端レンズの径は大きいことが好ましい。一方、立体視内視鏡の細径化のためには、2つの対物光学系が相互に近接していることが好ましい。このような、高画質、広視野および細径の全てを同時に満たす設計は難しい。すなわち、2つの先端レンズを保持する枠が相互に干渉してしまうことがある。対物光学系の視野角を拡大すると、2つの対物光学系に入射する光線が互いに重なり合うことがある。この場合、光線が重なり合う部分に先端レンズの枠が位置し枠が視野を妨げてしまう。
 このような枠同士の干渉および枠による視野の妨げを解消する1つの手段として、特許文献1,2に記載されているように、1つの先端レンズを2つの対物光学系によって共有することが考えられる。
A stereoscopic endoscope for surgical laparoscopic surgery requires high image quality and a wide field of view. For this purpose, it is preferable that the diameter of the frontmost lens on the most object side of the objective optical system is large. On the other hand, in order to reduce the diameter of the stereoscopic endoscope, it is preferable that the two objective optical systems are close to each other. Such a design that satisfies all of the high image quality, wide field of view and small diameter is difficult. That is, the frame that holds the two tip lenses may interfere with each other. When the viewing angle of the objective optical system is enlarged, the light rays incident on the two objective optical systems may overlap each other. In this case, the frame of the tip lens is located at the portion where the light beams overlap, and the frame obstructs the field of view.
As one means for solving such interference between frames and obstruction of the visual field due to the frame, it is considered that one objective lens is shared by two objective optical systems as described in Patent Documents 1 and 2. It is done.
 一方、外科腹腔鏡手術用の内視鏡は、高温高圧滅菌する必要がある。高温高圧による先端レンズの脱落を防止するために、先端レンズは枠に半田接合される。ここで、半田を冷却して硬化させる際に半田が収縮することによって、先端レンズには応力が発生する。したがって、外科用内視鏡の先端レンズには、応力に耐えることができる高い剛性が要求される。特許文献1,2の内視鏡は外科用ではなく、半田接合に必要な先端レンズの剛性が考慮されていない。 On the other hand, endoscopes for surgical laparoscopic surgery need to be sterilized at high temperature and high pressure. In order to prevent the tip lens from falling off due to high temperature and pressure, the tip lens is soldered to the frame. Here, when the solder is cooled and hardened, the solder contracts, so that stress is generated in the tip lens. Therefore, the distal lens of the surgical endoscope is required to have high rigidity capable of withstanding stress. The endoscopes of Patent Documents 1 and 2 are not for surgical use, and do not consider the rigidity of the tip lens necessary for solder joining.
 本発明は、上述した事情に鑑みてなされたものであって、2つの対物光学系を有する立体視用の外科用内視鏡において、高画質、広視野および細径化を同時に達成することができ、かつ、半田接合に対する耐久性を有する外科用内視鏡を提供する。 The present invention has been made in view of the above-described circumstances, and in a stereoscopic surgical endoscope having two objective optical systems, it is possible to simultaneously achieve high image quality, a wide field of view, and a reduction in diameter. Provided is a surgical endoscope that is durable and resistant to solder joints.
 本発明の一態様は、体内に挿入される長尺の挿入部と、該挿入部の先端部内に配置され、相互に視差を有する2つの対物光学系と、前記挿入部の先端面に配置され、2つの前記対物光学系の物体側を覆う単一の平板ガラスとを備え、該平板ガラスの物体側面および像側面は、それぞれ平坦であり、前記平板ガラスが、335000MPa以上のヤング率を有するガラスから形成され、前記平板ガラスの外周面が、金属皮膜によって被覆され、前記挿入部の先端面に半田によって固定されている外科用内視鏡である。 One aspect of the present invention is a long insertion portion that is inserted into the body, two objective optical systems that are disposed in the distal end portion of the insertion portion and have parallax with each other, and a distal end surface of the insertion portion. A single flat glass covering the object side of the two objective optical systems, the object side surface and the image side surface of the flat glass are flat, and the flat glass has a Young's modulus of 335,000 MPa or more. The outer surface of the flat glass is covered with a metal film, and is fixed to the distal end surface of the insertion portion with solder.
本発明の一実施形態に係る外科用内視鏡の先端部の構成図である。It is a block diagram of the front-end | tip part of the surgical endoscope which concerns on one Embodiment of this invention. 図1の外科用内視鏡の挿入部の先端面の正面図である。It is a front view of the front end surface of the insertion part of the surgical endoscope of FIG. 図2のI-I線における縦断面図であり、挿入部の内部構造を示す図である。FIG. 3 is a longitudinal sectional view taken along line II in FIG. 2 and shows an internal structure of the insertion portion. 面取り量が0.25mmよりも大きい場合における平板ガラスの角部の面取り量を説明する図である。It is a figure explaining the chamfering amount of the corner | angular part of flat glass in case a chamfering amount is larger than 0.25 mm. 面取り量Mが0.0025mmよりも小さい場合における平板ガラスの角部の面取り量を説明する図である。It is a figure explaining the chamfering amount of the corner | angular part of flat glass in case the chamfering amount M is smaller than 0.0025 mm.
 以下に、本発明の一実施形態に係る外科用内視鏡1について図面を参照して説明する。
 本実施形態に係る外科用内視鏡1は、図1から図3に示されるように、体内に挿入される長尺の挿入部2と、挿入部2の先端部2aの内部に配置された2つの対物光学系31,32と、挿入部2の先端面2bに配置された単一の平板ガラス4および2つの照明レンズ5とを備えている。
 外科用内視鏡1は、外科手術に使用される前に高温高圧滅菌される。高温および高圧によって平板ガラス4および照明レンズ5が先端面2bから脱落することを防ぐために、平板ガラス4および照明レンズ5は先端面2bに半田接合によって固定されている。
Hereinafter, a surgical endoscope 1 according to an embodiment of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 to 3, the surgical endoscope 1 according to the present embodiment is disposed inside a long insertion portion 2 to be inserted into the body and a distal end portion 2 a of the insertion portion 2. Two objective optical systems 31, 32, a single flat glass 4 and two illumination lenses 5 arranged on the distal end surface 2 b of the insertion portion 2 are provided.
The surgical endoscope 1 is sterilized at high temperature and high pressure before being used for a surgical operation. In order to prevent the flat glass 4 and the illumination lens 5 from falling off the front end surface 2b due to high temperature and high pressure, the flat glass 4 and the illumination lens 5 are fixed to the front end surface 2b by soldering.
 図2に示されるように、挿入部2は、左右方向および上下方向を有している。左右方向および上下方向は、挿入部2の長手軸にそれぞれ直交し、かつ、相互に直交している。
 挿入部2の先端部2aは、先端硬質部である。先端硬質部2aは、円筒状の筒枠6と、筒枠6の先端側の開口を塞ぎ先端面2bを形成する円板状の先端枠7とを備えている。筒枠6および先端枠7は、硬質の金属材料から形成されている。
As shown in FIG. 2, the insertion portion 2 has a horizontal direction and a vertical direction. The left-right direction and the up-down direction are orthogonal to the longitudinal axis of the insertion portion 2 and are orthogonal to each other.
The distal end portion 2a of the insertion portion 2 is a distal end hard portion. The distal end hard portion 2a includes a cylindrical tube frame 6 and a disk-shaped tip frame 7 that closes the opening on the distal end side of the tube frame 6 and forms the distal end surface 2b. The cylinder frame 6 and the front end frame 7 are formed of a hard metal material.
 筒枠6の内部には、2つの対物光学系31,32と、対物光学系31,32によって形成された物体像をそれぞれ撮像する撮像素子81,82とが配置されている。筒枠6の内部には、物体の照明および撮像に必要な他の光学部品が配置されていてもよい。
 先端枠7には、平板ガラス4が配置される開口部(第1の開口部)7aと、照明レンズ5が配置される開口部(第2の開口部)7bとが形成されている。
Inside the cylindrical frame 6, two objective optical systems 31 and 32 and imaging elements 81 and 82 that respectively capture object images formed by the objective optical systems 31 and 32 are arranged. Other optical components necessary for illumination and imaging of the object may be disposed inside the cylindrical frame 6.
An opening (first opening) 7 a in which the flat glass 4 is disposed and an opening (second opening) 7 b in which the illumination lens 5 is disposed are formed in the front end frame 7.
 各対物光学系31,32は、図3に示されるように、複数のレンズから構成されている。2つの対物光学系31,32は、左右方向に視差を有している。すなわち、2つの対物光学系31,32は、左右方向に配列され、2つの対物光学系31,32の光軸A1,A2は左右方向に相互に間隔をあけて配置されている。光軸A1,A2は相互に平行である。
 撮像素子81によって取得された画像と撮像素子82によって取得された画像は、人の左眼および右眼に対応する2つの視点から物体を見た画像となる。このような一対の画像から、物体の立体画像を構築することができる。
Each objective optical system 31, 32 is composed of a plurality of lenses as shown in FIG. The two objective optical systems 31 and 32 have parallax in the left-right direction. That is, the two objective optical systems 31 and 32 are arranged in the left-right direction, and the optical axes A1 and A2 of the two objective optical systems 31 and 32 are arranged at intervals in the left-right direction. The optical axes A1 and A2 are parallel to each other.
The image acquired by the image sensor 81 and the image acquired by the image sensor 82 are images in which an object is viewed from two viewpoints corresponding to a human left eye and right eye. A stereoscopic image of the object can be constructed from such a pair of images.
 平板ガラス4は、335000MPa以上のヤング率を有するサファイアガラスから形成されている。平板ガラス4は、図2および図3に示されるように、光軸A1,A2に沿う方向に相互に対向し光軸A1,A2に直交する物体側面4aおよび像側面4bと、物体側面4aと像側面4bとを接続する環状の外周面4cとを有する。物体側面4aおよび像側面4bは、平坦であり、かつ、相互に平行である。 The flat glass 4 is made of sapphire glass having a Young's modulus of 335,000 MPa or more. As shown in FIGS. 2 and 3, the flat glass 4 includes an object side surface 4a and an image side surface 4b that face each other in the direction along the optical axes A1 and A2 and are orthogonal to the optical axes A1 and A2, and an object side surface 4a And an annular outer peripheral surface 4c connecting the image side surface 4b. The object side surface 4a and the image side surface 4b are flat and parallel to each other.
 物体側面4aおよび像側面4bは、相互に直交する長手方向および短手方向を有する長円形である。具体的には、物体側面4aおよび像側面4bは、短手方向に相互に対向し相互に平行である直線状の2つの長辺と、長手方向に相互に対向する円弧状の2つの短辺とからなる形状を有する。長手方向は、挿入部2の左右方向に平行であり、短手方向は、挿入部2の上下方向に平行である。物体側面4aおよび像側面4bの長手方向の最大長さXは、物体側面4aおよび像側面4bの短手方向の最大長さYよりも大きい。このような平板ガラス4は、例えば、円形の平板の両側部を切り落とす、いわゆるDカット加工によって製造される。 The object side surface 4a and the image side surface 4b are oval having a longitudinal direction and a short direction perpendicular to each other. Specifically, the object side surface 4a and the image side surface 4b are two long sides that are linear and opposite each other in the short direction and two short sides that are arcuate and opposite each other in the longitudinal direction. It has the shape which consists of. The longitudinal direction is parallel to the left-right direction of the insertion portion 2, and the short side direction is parallel to the vertical direction of the insertion portion 2. The maximum length X in the longitudinal direction of the object side surface 4a and the image side surface 4b is larger than the maximum length Y in the short direction of the object side surface 4a and the image side surface 4b. Such flat glass 4 is manufactured, for example, by so-called D-cut processing in which both sides of a circular flat plate are cut off.
 図2に示されるように、平板ガラス4は、2つの対物光学系31,32の物体側を覆っている。すなわち、平板ガラス4の2つの長辺は、上下方向において2つの対物光学系31,32よりも外側に配置され、平板ガラス4の2つの短辺は、左右方向において2つの対物光学系31,32よりも外側に配置されている。平板ガラス4の長手方向の中心は、2つの対物光学系31,32の光軸A1,A2間の中心に一致している。 As shown in FIG. 2, the flat glass 4 covers the object side of the two objective optical systems 31 and 32. That is, the two long sides of the flat glass 4 are arranged outside the two objective optical systems 31 and 32 in the vertical direction, and the two short sides of the flat glass 4 are two objective optical systems 31 and 32 in the horizontal direction. 32 is arranged on the outer side. The center of the flat glass 4 in the longitudinal direction coincides with the center between the optical axes A1 and A2 of the two objective optical systems 31 and 32.
 平板ガラス4の外周面4cは、平板ガラス4と先端枠7との半田接合を可能にするために、金属皮膜によって被覆されている。平板ガラス4の外周面4cと開口部7aの内周面とが、半田Sによって相互に固定されている。具体的には、開口部7a内に平板ガラス4が配置され、開口部7aの内周面と平板ガラス4の外周面4cとの間に半田Sが流し込まれ、半田Sが冷却されることによって硬化する。このときに、冷却の過程で半田Sが収縮することによって、平板ガラス4に圧縮力が加わり平板ガラス4内に応力が発生する。 The outer peripheral surface 4 c of the flat glass 4 is covered with a metal film in order to enable solder bonding between the flat glass 4 and the tip frame 7. The outer peripheral surface 4 c of the flat glass 4 and the inner peripheral surface of the opening 7 a are fixed to each other by the solder S. Specifically, the flat glass 4 is disposed in the opening 7a, the solder S is poured between the inner peripheral surface of the opening 7a and the outer peripheral surface 4c of the flat glass 4, and the solder S is cooled. Harden. At this time, the solder S contracts during the cooling process, so that a compressive force is applied to the flat glass 4 and a stress is generated in the flat glass 4.
 照明レンズ5は、筒枠6内の照明光学系(図示略)からの照明光を物体に向かって射出する。照明レンズ5は、平板ガラス4の上側に配置されている。照明レンズ5の外周面は、照明レンズ5と先端枠7との半田接合を可能にするために、金属皮膜によって被覆されている。照明レンズ5の外周面と開口部7bの内周面とが、半田Sによって相互に固定されている。
 開口部7aと開口部7bとの間の隙間Gは、0.2mm以上であることが好ましい。これにより、半田接合の際に、開口部7a内の半田が開口部7bへ、または開口部7b内の半田が開口部7aへ流れ込むことを防止することができる。
The illumination lens 5 emits illumination light from an illumination optical system (not shown) in the cylindrical frame 6 toward the object. The illumination lens 5 is disposed on the upper side of the flat glass 4. The outer peripheral surface of the illumination lens 5 is covered with a metal film in order to enable solder joining between the illumination lens 5 and the tip frame 7. The outer peripheral surface of the illumination lens 5 and the inner peripheral surface of the opening 7b are fixed to each other by solder S.
The gap G between the opening 7a and the opening 7b is preferably 0.2 mm or more. Thereby, it is possible to prevent the solder in the opening 7a from flowing into the opening 7b or the solder in the opening 7b from flowing into the opening 7a during solder bonding.
 平板ガラス4は、下記条件式(1),(2),(3),(4)を満たす形状を有する。
D+2×EN×tanθ<X≦D+2×EN×tanθ+0.4 …(1)
0.3≦Y/X …(2)
Y/X≦0.5 …(3)
0.017≦T/X≦0.069 …(4)
 Xは、平板ガラス4の長手方向の最大長さ(mm)である。Yは、平板ガラス4の短手方向の最大長さ(mm)である。ENは、平板ガラス4の物体側面4aから対物光学系31,32の入射瞳位置までの光軸A1,A2に沿う方向の長さ(mm)である。Dは、2つの対物光学系31,32の光軸A1,A2間の間隔(mm)である。θは、各対物光学系31,32の半画角(deg)である。Tは、平板ガラス4の厚み(mm)、すなわち、物体側面4aと像側面4bとの間の距離である。
The flat glass 4 has a shape that satisfies the following conditional expressions (1), (2), (3), and (4).
D + 2 × EN × tan θ <X ≦ D + 2 × EN × tan θ + 0.4 (1)
0.3 ≦ Y / X (2)
Y / X ≦ 0.5 (3)
0.017 ≦ T / X ≦ 0.069 (4)
X is the maximum length (mm) of the flat glass 4 in the longitudinal direction. Y is the maximum length (mm) of the flat glass 4 in the short direction. EN is the length (mm) in the direction along the optical axes A1 and A2 from the object side surface 4a of the flat glass 4 to the entrance pupil position of the objective optical systems 31 and 32. D is the distance (mm) between the optical axes A1 and A2 of the two objective optical systems 31 and 32. θ is the half angle of view (deg) of each objective optical system 31, 32. T is the thickness (mm) of the flat glass 4, that is, the distance between the object side surface 4a and the image side surface 4b.
 条件式(1)は、各対物光学系31,32に入射する光線の内、平板ガラス4の長手方向において最も外側を通る光線と、平板ガラス4の長手方向の両端との位置関係を規定している。条件式(1)を満たすことによって、平板ガラス4の長手方向の両端が、最も外側を通る光線よりも外側に配置される。したがって、物体から各対物光学系31,32に向かう光が平板ガラス4の長手方向の両端部において蹴られることによるケラレの発生を防止することができる。 Conditional expression (1) defines the positional relationship between the light rays that enter the objective optical systems 31 and 32 and that pass through the outermost side in the longitudinal direction of the flat glass 4 and both ends of the flat glass 4 in the longitudinal direction. ing. By satisfying the conditional expression (1), both ends in the longitudinal direction of the flat glass 4 are arranged outside the light beam passing through the outermost side. Therefore, it is possible to prevent the occurrence of vignetting caused by the light traveling from the object toward the objective optical systems 31 and 32 being kicked at both ends in the longitudinal direction of the flat glass 4.
 最大長さXが条件式(1)の下限値以下である場合、平板ガラス4の長手方向の両端部において蹴られた光が対物光学系31,32に入射し画像内にフレアが発生する可能性がある。最大長さXが条件式(1)の上限値よりも大きい場合、平板ガラス4の長手方向の両端が先端枠7の周縁に近付き過ぎてしまい、平板ガラス4の両端の外側に半田Sを流し込むための隙間を確保することが難しくなる。 When the maximum length X is less than or equal to the lower limit value of the conditional expression (1), light kicked at both ends in the longitudinal direction of the flat glass 4 is incident on the objective optical systems 31 and 32, and flare may occur in the image. There is sex. When the maximum length X is larger than the upper limit value of the conditional expression (1), both ends in the longitudinal direction of the flat glass 4 are too close to the peripheral edge of the tip frame 7 and the solder S is poured into the outside of both ends of the flat glass 4. For this reason, it becomes difficult to ensure a gap.
 条件式(2)および条件式(3)は、最大長さXに対する最大長さYの比の範囲を規定している。
 条件式(2)を満たすことによって、半田接合に対する平板ガラス4の耐久性を向上することができる。Y/Xが0.3未満である場合、長手方向の応力の大きさと短手方向の応力の大きさとの差、および、長手方向のひずみの量と短手方向のひずみの量との差が大きくなり、平板ガラス4が割れたり歪んだりし易くなる。
Conditional expression (2) and conditional expression (3) define the range of the ratio of the maximum length Y to the maximum length X.
By satisfying conditional expression (2), the durability of the flat glass 4 against solder bonding can be improved. When Y / X is less than 0.3, the difference between the magnitude of the stress in the longitudinal direction and the magnitude of the stress in the lateral direction, and the difference between the amount of strain in the longitudinal direction and the magnitude of the strain in the lateral direction are It becomes large and the flat glass 4 is easily broken or distorted.
 条件式(3)を満たすことによって、平板ガラス4の上端と照明レンズ5との間に距離を確保し、照明レンズ5から射出された照明光に起因するフレアの発生を防止することができる。Y/Xが0.5よりも大きい場合、平板ガラス4の上端と照明レンズ5とが相互に近接し、照明光に起因するフレアが生じ得る。 By satisfying conditional expression (3), it is possible to secure a distance between the upper end of the flat glass 4 and the illumination lens 5 and to prevent occurrence of flare due to illumination light emitted from the illumination lens 5. When Y / X is larger than 0.5, the upper end of the flat glass 4 and the illumination lens 5 are close to each other, and flare caused by illumination light may occur.
 条件式(4)は、最大長さXに対する厚みTの比の範囲を規定している。T/Xが条件式(4)を満たすことによって、応力に対する平板ガラス4の耐性を向上することができる。T/Xが0.069よりも大きい場合、平板ガラス4の端に加わる応力が580MPaを超え、平板ガラス4が割れ易くなる。T/Xが0.017未満である場合、平板ガラス4は薄過ぎることによって割れ易くなり、平板ガラス4の取り扱いが難しくなる。 Conditional expression (4) defines the range of the ratio of the thickness T to the maximum length X. When T / X satisfies the conditional expression (4), resistance of the flat glass 4 to stress can be improved. When T / X is larger than 0.069, the stress applied to the end of the flat glass 4 exceeds 580 MPa, and the flat glass 4 is easily broken. When T / X is less than 0.017, the flat glass 4 is too thin to be easily broken, and the flat glass 4 is difficult to handle.
 次に、このように構成された外科用内視鏡1の作用について説明する。
 本実施形態に係る外科用内視鏡1によって体内を観察するためには、挿入部2を体内に挿入し、照明レンズ5から射出される照明光によって体内の被写体を照明する。各対物光学系31,32は、照明光で照明された被写体の像を形成し、各撮像素子81,82は、被写体の像を撮像する。
 2つの対物光学系31,32は左右方向に視野を有するので、撮像素子81,82によって生成された2つの画像は、左右方向に相互に位置が異なる2つの視点から被写体を見た画像となる。このような2つの画像を使用して被写体を立体視することができる。
Next, the operation of the surgical endoscope 1 configured as described above will be described.
In order to observe the inside of the body with the surgical endoscope 1 according to this embodiment, the insertion portion 2 is inserted into the body, and the subject inside the body is illuminated with illumination light emitted from the illumination lens 5. Each objective optical system 31 and 32 forms an image of a subject illuminated with illumination light, and each of the image sensors 81 and 82 captures an image of the subject.
Since the two objective optical systems 31 and 32 have a field of view in the left-right direction, the two images generated by the image sensors 81 and 82 are images in which the subject is viewed from two viewpoints whose positions are different from each other in the left-right direction. . The subject can be stereoscopically viewed using such two images.
 この場合に、対物光学系31,32によって高画質かつ広視野の物体像を得るためには、対物光学系31,32の最も物体側の先端レンズ31a,32aは、径が大きく広角なレンズであることが好ましい。先端硬質部2aを細径化するためには、2つの対物光学系31,32は左右方向にできるだけ相互に近接していることが好ましい。 In this case, in order to obtain an object image having a high image quality and a wide field of view by the objective optical systems 31 and 32, the front end lenses 31a and 32a closest to the object side of the objective optical systems 31 and 32 are lenses having a large diameter and a wide angle. Preferably there is. In order to reduce the diameter of the distal end hard portion 2a, it is preferable that the two objective optical systems 31 and 32 be as close as possible to each other in the left-right direction.
 本実施形態によれば、挿入部2の先端面2bに平板ガラス4が配置され、2つの対物光学系31,32の物体側が1枚の平板ガラス4によって覆われている。1枚の平板ガラス4を2つの対物光学系31,32によって共有することで、平板ガラス4を保持する先端枠7が、対物光学系31,32の間で干渉したり対物光学系31,32の視野を妨げたりすることが防止される。これにより、径が大きい2つの先端レンズ31a,32aを相互に近接させて配置することができ、高画質、広視野および細径化を同時に達成することができる。 According to the present embodiment, the flat glass 4 is disposed on the distal end surface 2b of the insertion portion 2, and the object sides of the two objective optical systems 31 and 32 are covered by the single flat glass 4. By sharing one flat glass 4 by the two objective optical systems 31 and 32, the front end frame 7 holding the flat glass 4 interferes between the objective optical systems 31 and 32 or the objective optical systems 31 and 32. It is possible to prevent the visual field from being obstructed. Accordingly, the two tip lenses 31a and 32a having a large diameter can be disposed close to each other, and high image quality, a wide field of view, and a reduction in diameter can be achieved at the same time.
 平板ガラス4は、335000MPa以上のヤング率を有する高剛性のサファイアガラスから形成されている。したがって、平板ガラス4は、半田Sの硬化に伴う圧縮力および応力に耐えることができる。すなわち、平板ガラス4は、半田接合に対する耐久性を有する。平板ガラス4の形状が条件式(2),(4)を満たすことによって、半田接合に対する平板ガラス4の耐久性をさらに向上することができる。 The flat glass 4 is made of a highly rigid sapphire glass having a Young's modulus of 335,000 MPa or more. Therefore, the flat glass 4 can withstand the compressive force and stress accompanying the hardening of the solder S. That is, the flat glass 4 has durability against solder bonding. When the shape of the flat glass 4 satisfies the conditional expressions (2) and (4), the durability of the flat glass 4 against solder bonding can be further improved.
 本実施形態においては、平板ガラス4の外周面4cの少なくとも一部分が研磨面であることが好ましい。外周面4cの全部が研磨面であることがより好ましい。外周面4cの算術平均粗さRaは、下記条件式(5)を満たすことが好ましい。
Ra≦0.06 …(5)
 外周面4cが粗い面である場合、外周面4cの凸部に様々な方向の圧縮力が集中的に加わり、凸部に集中的に応力が生じる。外周面4cが滑らかな研磨面であることによって、圧縮力および応力の集中を解消し半田接合に対する平板ガラス4の耐久性を向上することができる。特に、算術平均粗さRaが条件式(5)を満たすことによって、半田接合に対する平板ガラス4の耐久性をさらに向上することができる。
In the present embodiment, it is preferable that at least a part of the outer peripheral surface 4c of the flat glass 4 is a polished surface. More preferably, the entire outer peripheral surface 4c is a polished surface. The arithmetic average roughness Ra of the outer peripheral surface 4c preferably satisfies the following conditional expression (5).
Ra ≦ 0.06 (5)
When the outer peripheral surface 4c is a rough surface, compressive forces in various directions are intensively applied to the convex portions of the outer peripheral surface 4c, and stress is concentrated on the convex portions. When the outer peripheral surface 4c is a smooth polished surface, the concentration of compressive force and stress can be eliminated and the durability of the flat glass 4 against solder bonding can be improved. In particular, when the arithmetic average roughness Ra satisfies the conditional expression (5), the durability of the flat glass 4 against solder bonding can be further improved.
 本実施形態においては、物体側面4aと外周面4cとの間の角部および像側面4bと外周面4cとの間の角部が、周方向の少なくとも一部分において面取りされていることが好ましい。角部は、全周にわたって面取りされていることがより好ましい。面取りによって形成された面取り面も、研磨面であることが好ましい。
 面取り量Mは、下記条件式(6)を満たすことが好ましい。
0.0025<M/T<0.25 …(6)
In the present embodiment, it is preferable that the corner between the object side surface 4a and the outer peripheral surface 4c and the corner between the image side surface 4b and the outer peripheral surface 4c are chamfered at least in a part in the circumferential direction. More preferably, the corner is chamfered over the entire circumference. The chamfered surface formed by chamfering is also preferably a polished surface.
The chamfering amount M preferably satisfies the following conditional expression (6).
0.0025 <M / T <0.25 (6)
 面取り量Mが条件式(6)を満たすことによって、平板ガラス4の縁部の欠けおよび割れを防ぐことができる。
 図4Aに示されるように、M/Tが0.25以上である場合、図中のB部分が尖ることによって、外周面4cに金属皮膜処理または半田接合処理を施す際に、平板ガラス4のB部分の欠けが生じやすくなる。
 図4Bに示されるように、M/Tが0.0025以下である場合、図中のC部分が尖ることによって、外周面4cに金属皮膜処理または半田接合処理を施す際に、平板ガラス4のC部分の欠けが生じやすくなる。
When the chamfering amount M satisfies the conditional expression (6), chipping and cracking of the edge of the flat glass 4 can be prevented.
As shown in FIG. 4A, when M / T is 0.25 or more, the portion B in the figure is sharp, so that when the outer peripheral surface 4c is subjected to metal film processing or solder bonding processing, the flat glass 4 B portion is likely to be chipped.
As shown in FIG. 4B, when M / T is 0.0025 or less, the portion C of the figure is sharp, and thus when the outer peripheral surface 4c is subjected to metal film treatment or solder bonding treatment, the flat glass 4 Chipping of the C portion is likely to occur.
 本実施形態においては、平板ガラス4が長円形であることとしたが、平板ガラス4の形状はこれに限定されるものではなく、長方形、多角形、または楕円形等の他の形状であってもよい。
 本実施形態においては、平板ガラス4がサファイアガラスから形成されていることとしたが、平板ガラス4は、335000MPa以上のヤング率を有する他のガラスから形成されていてもよい。
In the present embodiment, the flat glass 4 is oval, but the shape of the flat glass 4 is not limited to this, and may be other shapes such as a rectangle, a polygon, or an ellipse. Also good.
In this embodiment, although the flat glass 4 was formed from the sapphire glass, the flat glass 4 may be formed from the other glass which has a Young's modulus of 335000 Mpa or more.
 本発明の一態様は、体内に挿入される長尺の挿入部と、該挿入部の先端部内に配置され、相互に視差を有する2つの対物光学系と、前記挿入部の先端面に配置され、2つの前記対物光学系の物体側を覆う単一の平板ガラスとを備え、該平板ガラスの物体側面および像側面は、それぞれ平坦であり、前記平板ガラスが、335000MPa以上のヤング率を有するガラスから形成され、前記平板ガラスの外周面が、金属皮膜によって被覆され、前記挿入部の先端面に半田によって固定されている外科用内視鏡である。 One aspect of the present invention is a long insertion portion that is inserted into the body, two objective optical systems that are disposed in the distal end portion of the insertion portion and have parallax with each other, and a distal end surface of the insertion portion. A single flat glass covering the object side of the two objective optical systems, the object side surface and the image side surface of the flat glass are flat, and the flat glass has a Young's modulus of 335,000 MPa or more. The outer surface of the flat glass is covered with a metal film, and is fixed to the distal end surface of the insertion portion with solder.
 本態様によれば、2つの対物光学系によって形成された2つの物体像は、位置が相互に異なる2つの視点から物体を見た平面像となる。したがって、2つの物体像を用いて物体の立体像を観察することができる。
 この場合に、335000MPa以上のヤング率を有するガラスから形成された平板ガラスは、高い剛性を有し、半田の硬化に伴う圧縮力および応力に耐えることができる。すなわち、平板ガラスは、半田接合に対する耐久性を有する。
According to this aspect, the two object images formed by the two objective optical systems are planar images obtained by viewing the object from two viewpoints having different positions. Therefore, a stereoscopic image of the object can be observed using the two object images.
In this case, the flat glass formed from the glass having a Young's modulus of 335,000 MPa or more has high rigidity and can withstand the compressive force and stress accompanying the hardening of the solder. That is, the flat glass has durability against solder bonding.
 挿入部の先端面には2つの対物光学系の物体側を覆う単一の平板ガラスが設けられており、平板ガラスを保持する枠が2つの対物光学系の間で干渉したり2つの対物光学系の視野を妨げたりすることが防止される。これにより、高画質、広視野および細径化を同時に達成することができる。すなわち、先端レンズのレンズ径が大きい2つの対物光学系を相互に近接させて配置することができる。 A single flat glass that covers the object side of the two objective optical systems is provided on the distal end surface of the insertion portion, and a frame that holds the flat glass interferes between the two objective optical systems or two objective optical systems. It is possible to prevent the visual field of the system from being obstructed. Thereby, high image quality, a wide field of view and a narrow diameter can be achieved at the same time. That is, two objective optical systems having a large lens diameter of the tip lens can be arranged close to each other.
 上記態様においては、前記平板ガラスが、2つの前記対物光学系の配列方向に平行な長手方向と、該長手方向に直交する短手方向とを有し、前記平板ガラスの前記長手方向の最大長さが、前記平板ガラスの前記短手方向の最大長さよりも大きいことが好ましい。
 このように、2つの対物光学系の配列方向に直交する方向において平板ガラスの長さを小さくすることによって、平板ガラスの短手方向の両側に他の部材を配置するための領域を確保することができ。
In the said aspect, the said flat glass has a longitudinal direction parallel to the sequence direction of two said objective optical systems, and a transversal direction orthogonal to this longitudinal direction, The maximum length of the said longitudinal direction of the said flat glass Is preferably larger than the maximum length of the flat glass in the lateral direction.
As described above, by reducing the length of the flat glass in the direction perpendicular to the arrangement direction of the two objective optical systems, it is possible to secure a region for arranging other members on both sides in the short direction of the flat glass. I can.
 上記態様においては、前記平板ガラスの形状が、下記条件式(1)を満たすことが好ましい。
D+2×EN×tanθ<X≦D+2×EN×tanθ+0.4 …(1)
 ここで、Xは、前記長手方向の最大長さ(mm)、ENは、前記平板ガラスの前記物体側面から前記対物光学系の入射瞳位置までの長さ(mm)、Dは、2つの前記対物光学系の光軸間の間隔(mm)、θは、各前記対物光学系の半画角(deg)である。
 条件式(1)は、各対物光学系に入射する光線の内、平板ガラスの長手方向において最も外側を通る光線と、平板ガラスの長手方向の両端との位置関係を規定している。条件式(1)を満たすことによって、2つの対物光学系の視野内にケラレが発生することを防止することができる。
In the said aspect, it is preferable that the shape of the said flat glass satisfy | fills the following conditional expression (1).
D + 2 × EN × tan θ <X ≦ D + 2 × EN × tan θ + 0.4 (1)
Here, X is the maximum length (mm) in the longitudinal direction, EN is the length (mm) from the object side surface of the flat glass to the entrance pupil position of the objective optical system, and D is the two An interval (mm) between the optical axes of the objective optical system and θ is a half angle of view (deg) of each objective optical system.
Conditional expression (1) defines the positional relationship between the light rays that enter the objective optical system and that pass through the outermost side in the longitudinal direction of the flat glass, and both ends in the longitudinal direction of the flat glass. By satisfying conditional expression (1), it is possible to prevent vignetting in the field of view of the two objective optical systems.
 上記態様においては、前記平板ガラスの形状が、下記条件式(2)を満たすことが好ましい。Xは、前記長手方向の最大長さ(mm)、Yは、前記短手方向の最大長さ(mm)である。
0.3≦Y/X …(2)
 条件式(2)は、最大長さXに対する最大長さYの比の範囲を規定している。条件式(2)を満たすことによって、長手方向の応力の大きさと短手方向の応力の大きさとの差を抑制し、半田接合に対する平板ガラスの耐久性を向上することができる。
In the said aspect, it is preferable that the shape of the said flat glass satisfy | fills the following conditional expression (2). X is the maximum length (mm) in the longitudinal direction, and Y is the maximum length (mm) in the lateral direction.
0.3 ≦ Y / X (2)
Conditional expression (2) defines the range of the ratio of the maximum length Y to the maximum length X. By satisfying the conditional expression (2), the difference between the magnitude of the stress in the longitudinal direction and the magnitude of the stress in the short direction can be suppressed, and the durability of the flat glass against solder bonding can be improved.
 上記態様においては、前記平板ガラスの形状が、下記条件式(3)を満たすことが好ましい。Xは、前記長手方向の最大長さ(mm)、Yは、前記短手方向の最大長さ(mm)である。
Y/X≦0.5 …(3)
 条件式(3)は、最大長さXに対する最大長さYの比の範囲を規定している。平板ガラスの短手方向の隣には照明レンズが配置されることが多い。条件式(3)を満たすことによって、平板ガラスの短手方向の端と照明レンズとの間に距離を確保し、照明レンズから射出された照明光に起因するフレアの発生を防止することができる。
In the said aspect, it is preferable that the shape of the said flat glass satisfy | fills the following conditional expression (3). X is the maximum length (mm) in the longitudinal direction, and Y is the maximum length (mm) in the lateral direction.
Y / X ≦ 0.5 (3)
Conditional expression (3) defines the range of the ratio of the maximum length Y to the maximum length X. An illumination lens is often arranged next to the short direction of the flat glass. By satisfying conditional expression (3), it is possible to secure a distance between the short-side edge of the flat glass and the illumination lens, and to prevent occurrence of flare due to illumination light emitted from the illumination lens. .
 上記態様においては、前記平板ガラスの形状が、下記条件式(4)を満たすことが好ましい。Tは、前記平板ガラスの厚み(mm)、Xは、前記長手方向の最大長さ(mm)である。
0.017≦T/X≦0.069 …(4)
 条件式(4)は、最大長さXに対する厚みTの比の範囲を規定している。厚みTが大きい程、平板ガラスに加わる圧縮力および平板ガラスに生じる応力が大きくなる。一方、厚みTが小さい程、平板ガラスが脆くなり、平板ガラスの取り扱いが困難になる。条件式(4)を満たすことによって、半田接合に対する平板ガラスの耐久性および平板ガラスの取り扱い易さを両立することができる。
In the said aspect, it is preferable that the shape of the said flat glass satisfy | fills the following conditional expression (4). T is the thickness (mm) of the flat glass, and X is the maximum length (mm) in the longitudinal direction.
0.017 ≦ T / X ≦ 0.069 (4)
Conditional expression (4) defines the range of the ratio of the thickness T to the maximum length X. The greater the thickness T, the greater the compressive force applied to the flat glass and the stress generated in the flat glass. On the other hand, the smaller the thickness T is, the more fragile the flat glass is and the more difficult it is to handle the flat glass. By satisfying conditional expression (4), it is possible to achieve both the durability of the flat glass with respect to solder bonding and the ease of handling of the flat glass.
 上記態様においては、前記平板ガラスの前記外周面が、研磨面であり、該研磨面が下記条件式(5)を満たすことが好ましい。Raは、前記研磨面の算術平均粗さ(μm)である。
Ra≦0.06 …(5)
 平板ガラスの外周面が粗い場合、凸部に圧縮力および応力が集中することによって平板ガラスに割れが生じ易い。条件式(5)を満たすことによって、圧縮力および応力の集中を解消し、半田接合に対する平板ガラスの耐久性を向上することができる。
In the said aspect, it is preferable that the said outer peripheral surface of the said flat glass is a grinding | polishing surface, and this grinding | polishing surface satisfies the following conditional expression (5). Ra is the arithmetic average roughness (μm) of the polished surface.
Ra ≦ 0.06 (5)
When the outer peripheral surface of the flat glass is rough, the flat glass is easily cracked due to the concentration of compressive force and stress on the convex portions. By satisfying conditional expression (5), the concentration of compressive force and stress can be eliminated, and the durability of the flat glass against solder bonding can be improved.
 上記態様においては、前記平板ガラスの前記物体側面と前記外周面との間の角部および前記像側面と前記外周面との間の角部が、面取りされており、前記角部の面取り量が下記条件式(6)を満たすことが好ましい。Mは、前記角部の前記面取り量(mm)、Tは、前記平板ガラスの厚み(mm)である。
0.0025<M/T<0.25 …(6)
 条件式(6)を満たすことによって、平板ガラスの角部および外周面の欠けを防ぐことができる。
In the above aspect, the corner portion between the object side surface and the outer peripheral surface of the flat glass and the corner portion between the image side surface and the outer peripheral surface are chamfered, and the chamfer amount of the corner portion is chamfered. It is preferable that the following conditional expression (6) is satisfied. M is the chamfering amount (mm) of the corner, and T is the thickness (mm) of the flat glass.
0.0025 <M / T <0.25 (6)
By satisfying conditional expression (6), it is possible to prevent the corners and the outer peripheral surface of the flat glass from being chipped.
 上記態様においては、前記挿入部の先端面に配置され、照明光を射出する照明レンズを備え、前記挿入部の先端面は、前記平板ガラスが配置される第1の開口部および前記照明レンズが配置される第2の開口部を有し、前記第1の開口部と前記第2の開口部との間に0.2mm以上の隙間が設けられていてもよい。
 このように、第1の開口部と第2の開口部との間に十分な距離を確保することによって、平板ガラスの外周面と第1の開口部の内周面との間に流し込まれた半田が、第2の開口部に流れ込むことを防ぐことができる。同様に、照明レンズの外周面と第2の開口部の内周面との間に流し込まれた半田が、第1の開口部に流れ込むことを防ぐことができる。
In the said aspect, it is arrange | positioned at the front end surface of the said insertion part, The illumination lens which inject | emits illumination light is provided, The 1st opening part by which the said flat glass is arrange | positioned, and the said illumination lens are provided in the front end surface of the said insertion part. There may be provided a second opening, and a gap of 0.2 mm or more may be provided between the first opening and the second opening.
Thus, by securing a sufficient distance between the first opening and the second opening, the air was poured between the outer peripheral surface of the flat glass and the inner peripheral surface of the first opening. Solder can be prevented from flowing into the second opening. Similarly, the solder poured between the outer peripheral surface of the illumination lens and the inner peripheral surface of the second opening can be prevented from flowing into the first opening.
 1 外科用内視鏡
 2 挿入部
 2a 先端部、先端硬質部
 2b 先端面
 31,32 対物光学系
 4 平板ガラス
 4a 物体側面
 4b 像側面
 4c 外周面
 5 照明レンズ
 6 筒枠
 7 先端枠
 7a 第1の開口部
 7b 第2の開口部
 81,82 撮像素子
DESCRIPTION OF SYMBOLS 1 Surgical endoscope 2 Insertion part 2a Tip part, tip hard part 2b Tip surface 31, 32 Objective optical system 4 Flat glass 4a Object side surface 4b Image side surface 4c Outer peripheral surface 5 Illumination lens 6 Tube frame 7 Tip frame 7a 1st Opening 7b Second opening 81, 82 Image sensor

Claims (9)

  1.  体内に挿入される長尺の挿入部と、
     該挿入部の先端部内に配置され、相互に視差を有する2つの対物光学系と、
     前記挿入部の先端面に配置され、2つの前記対物光学系の物体側を覆う単一の平板ガラスとを備え、
     該平板ガラスの物体側面および像側面は、それぞれ平坦であり、
     前記平板ガラスが、335000MPa以上のヤング率を有するガラスから形成され、
     前記平板ガラスの外周面が、金属皮膜によって被覆され、前記挿入部の先端面に半田によって固定されている外科用内視鏡。
    A long insertion part to be inserted into the body,
    Two objective optical systems disposed within the distal end of the insertion portion and having parallax with each other;
    A single flat glass disposed on the distal end surface of the insertion portion and covering the object side of the two objective optical systems,
    The object side surface and the image side surface of the flat glass are each flat.
    The flat glass is formed from a glass having a Young's modulus of 335,000 MPa or more,
    A surgical endoscope in which an outer peripheral surface of the flat glass is covered with a metal film and is fixed to a distal end surface of the insertion portion with solder.
  2.  前記平板ガラスが、2つの前記対物光学系の配列方向に平行な長手方向と、該長手方向に直交する短手方向とを有し、
     前記平板ガラスの前記長手方向の最大長さが、前記平板ガラスの前記短手方向の最大長さよりも大きい請求項1に記載の外科用内視鏡。
    The flat glass has a longitudinal direction parallel to the arrangement direction of the two objective optical systems, and a short direction perpendicular to the longitudinal direction,
    The surgical endoscope according to claim 1, wherein a maximum length of the flat glass in the longitudinal direction is larger than a maximum length of the flat glass in the short direction.
  3.  前記平板ガラスの形状が、下記条件式(1)を満たす請求項2に記載の外科用内視鏡。
     D+2×EN×tanθ<X≦D+2×EN×tanθ+0.4  …(1)
     ここで、
     Xは、前記長手方向の最大長さ(mm)、
     ENは、前記平板ガラスの前記物体側面から前記対物光学系の入射瞳位置までの長さ(mm)、
     Dは、2つの前記対物光学系の光軸間の間隔(mm)、
     θは、各前記対物光学系の半画角(deg)、
    である。
    The surgical endoscope according to claim 2, wherein the shape of the flat glass satisfies the following conditional expression (1).
    D + 2 × EN × tan θ <X ≦ D + 2 × EN × tan θ + 0.4 (1)
    here,
    X is the maximum length (mm) in the longitudinal direction,
    EN is the length (mm) from the object side surface of the flat glass to the entrance pupil position of the objective optical system,
    D is the distance (mm) between the optical axes of the two objective optical systems,
    θ is the half angle of view (deg) of each objective optical system,
    It is.
  4.  前記平板ガラスの形状が、下記条件式(2)を満たす請求項2または請求項3に記載の外科用内視鏡。
     0.3≦Y/X  …(2)
     ここで、
     Xは、前記長手方向の最大長さ(mm)、
     Yは、前記短手方向の最大長さ(mm)
    である。
    The surgical endoscope according to claim 2 or 3, wherein a shape of the flat glass satisfies the following conditional expression (2).
    0.3 ≦ Y / X (2)
    here,
    X is the maximum length (mm) in the longitudinal direction,
    Y is the maximum length in the short direction (mm)
    It is.
  5.  前記平板ガラスの形状が、下記条件式(3)を満たす請求項2から請求項4のいずれかに記載の外科用内視鏡。
     Y/X≦0.5  …(3)
     Xは、前記長手方向の最大長さ(mm)、
     Yは、前記短手方向の最大長さ(mm)
    である。
    The surgical endoscope according to any one of claims 2 to 4, wherein the shape of the flat glass satisfies the following conditional expression (3).
    Y / X ≦ 0.5 (3)
    X is the maximum length (mm) in the longitudinal direction,
    Y is the maximum length in the short direction (mm)
    It is.
  6.  前記平板ガラスの形状が、下記条件式(4)を満たす請求項2から請求項5のいずれかに記載の外科用内視鏡。
     0.017≦T/X≦0.069   …(4)
     ここで、
     Tは、前記平板ガラスの厚み(mm)、
     Xは、前記長手方向の最大長さ(mm)
    である。
    The surgical endoscope according to any one of claims 2 to 5, wherein the shape of the flat glass satisfies the following conditional expression (4).
    0.017 ≦ T / X ≦ 0.069 (4)
    here,
    T is the thickness (mm) of the flat glass,
    X is the maximum length in the longitudinal direction (mm)
    It is.
  7.  前記平板ガラスの前記外周面が、研磨面であり、
     該研磨面が下記条件式(5)を満たす請求項1から請求項6のいずれかに記載の外科用内視鏡。
     Ra≦0.06  …(5)
     ここで、
     Raは、前記研磨面の算術平均粗さ(μm)
    である。
    The outer peripheral surface of the flat glass is a polished surface;
    The surgical endoscope according to any one of claims 1 to 6, wherein the polished surface satisfies the following conditional expression (5).
    Ra ≦ 0.06 (5)
    here,
    Ra is the arithmetic average roughness of the polished surface (μm)
    It is.
  8.  前記平板ガラスの前記物体側面と前記外周面との間の角部および前記像側面と前記外周面との間の角部が、面取りされており、前記角部の面取り量が下記条件式(6)を満たす請求項1から請求項7のいずれかに記載の外科用内視鏡。
     0.0025<M/T<0.25  …(6)
     ここで、
     Mは、前記角部の前記面取り量(mm)、
     Tは、前記平板ガラスの厚み(mm)
    である。
    The corner portion between the object side surface and the outer peripheral surface of the flat glass and the corner portion between the image side surface and the outer peripheral surface are chamfered, and the chamfering amount of the corner portion is expressed by the following conditional expression (6 The surgical endoscope according to any one of claims 1 to 7, wherein:
    0.0025 <M / T <0.25 (6)
    here,
    M is the chamfering amount (mm) of the corner,
    T is the thickness of the flat glass (mm)
    It is.
  9.  前記挿入部の先端面に配置され、照明光を射出する照明レンズを備え、
     前記挿入部の先端面は、前記平板ガラスが配置される第1の開口部および前記照明レンズが配置される第2の開口部を有し、
     前記第1の開口部と前記第2の開口部との間に0.2mm以上の隙間が設けられている請求項1から請求項8のいずれかに記載の外科用内視鏡。
    An illumination lens that is disposed on the distal end surface of the insertion portion and emits illumination light;
    The distal end surface of the insertion portion has a first opening in which the flat glass is disposed and a second opening in which the illumination lens is disposed,
    The surgical endoscope according to any one of claims 1 to 8, wherein a gap of 0.2 mm or more is provided between the first opening and the second opening.
PCT/JP2019/006706 2018-04-13 2019-02-22 Surgical endoscope WO2019198350A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-077281 2018-04-13
JP2018077281 2018-04-13

Publications (1)

Publication Number Publication Date
WO2019198350A1 true WO2019198350A1 (en) 2019-10-17

Family

ID=68164110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006706 WO2019198350A1 (en) 2018-04-13 2019-02-22 Surgical endoscope

Country Status (1)

Country Link
WO (1) WO2019198350A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265047A (en) * 1996-03-27 1997-10-07 Matsushita Electric Ind Co Ltd Electronic endoscope device
JP2000010022A (en) * 1998-06-19 2000-01-14 Fuji Photo Optical Co Ltd Top structure for stereoscopic endoscope
JP2004016410A (en) * 2002-06-14 2004-01-22 Fuji Photo Optical Co Ltd Three-dimensional electronic endoscope apparatus
JP2007143580A (en) * 2005-11-24 2007-06-14 Olympus Medical Systems Corp Endoscope apparatus
US20130102846A1 (en) * 2011-10-21 2013-04-25 Viking Systems, Inc. Steerable electronic stereoscopic endoscope
JP2016160162A (en) * 2015-03-04 2016-09-05 国立大学法人 東京大学 Glass material and manufacturing method therefor
US20170172394A1 (en) * 2006-12-21 2017-06-22 Intuitive Surgical Operations, Inc. Endoscope with Distal Hermetically Sealed Sensor
JP2017215586A (en) * 2016-06-01 2017-12-07 ゼネラル・エレクトリック・カンパニイ Stereo imaging system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265047A (en) * 1996-03-27 1997-10-07 Matsushita Electric Ind Co Ltd Electronic endoscope device
JP2000010022A (en) * 1998-06-19 2000-01-14 Fuji Photo Optical Co Ltd Top structure for stereoscopic endoscope
JP2004016410A (en) * 2002-06-14 2004-01-22 Fuji Photo Optical Co Ltd Three-dimensional electronic endoscope apparatus
JP2007143580A (en) * 2005-11-24 2007-06-14 Olympus Medical Systems Corp Endoscope apparatus
US20170172394A1 (en) * 2006-12-21 2017-06-22 Intuitive Surgical Operations, Inc. Endoscope with Distal Hermetically Sealed Sensor
US20130102846A1 (en) * 2011-10-21 2013-04-25 Viking Systems, Inc. Steerable electronic stereoscopic endoscope
JP2016160162A (en) * 2015-03-04 2016-09-05 国立大学法人 東京大学 Glass material and manufacturing method therefor
JP2017215586A (en) * 2016-06-01 2017-12-07 ゼネラル・エレクトリック・カンパニイ Stereo imaging system

Similar Documents

Publication Publication Date Title
US5971915A (en) Stereoscopic endoscope
JP2004016410A (en) Three-dimensional electronic endoscope apparatus
JP4248771B2 (en) Endoscope device
US5861987A (en) Stereoscopic-vision endoscope offering a large angle of introversion and a necessary and sufficient sense of three-dimensionality
KR20020035588A (en) Image pickup optical system for endoscope
JP6307666B2 (en) Imaging device
US20170329124A1 (en) Endoscope objective optical system
US11042021B2 (en) Image pickup apparatus and endoscope apparatus
CN108139568B (en) Objective optical system for endoscope
JP7210567B2 (en) Optical system of stereo video endoscope
WO2019198350A1 (en) Surgical endoscope
WO2013114725A1 (en) Optical system for stereo-endoscope
US20200348507A1 (en) Stereo imaging system
CN105167735B (en) A kind of method of ghost image in elimination endoscopic system
US10884223B2 (en) Objective optical system for endoscope
US10718935B2 (en) Endoscope and relay lens system for transmitting an image
WO2016088518A1 (en) Image pickup optical system for endoscope, image pickup unit, and endoscope
JP3257641B2 (en) Stereoscopic endoscope device
JP2001147382A (en) Objective optical system for endoscope
JP2008206819A (en) Endoscope adapter optical system and endoscope
US11766165B2 (en) Optical system and stereo-video endoscope
WO2021131921A1 (en) Rigid mirror device
JP3559341B2 (en) Stereoscopic endoscope
KR101404611B1 (en) endoscope optical system
JP6713386B2 (en) Objective optical system for stereoscopic endoscope, stereoscopic endoscope, and imaging device for stereoscopic endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19785383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19785383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP