JP6538580B2 - Hydrogen oxidation catalyst - Google Patents

Hydrogen oxidation catalyst Download PDF

Info

Publication number
JP6538580B2
JP6538580B2 JP2016019805A JP2016019805A JP6538580B2 JP 6538580 B2 JP6538580 B2 JP 6538580B2 JP 2016019805 A JP2016019805 A JP 2016019805A JP 2016019805 A JP2016019805 A JP 2016019805A JP 6538580 B2 JP6538580 B2 JP 6538580B2
Authority
JP
Japan
Prior art keywords
hydrogen oxidation
oxidation catalyst
ether
sulfur
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016019805A
Other languages
Japanese (ja)
Other versions
JP2017136562A (en
Inventor
平尾 佳史
佳史 平尾
仁昭 西林
仁昭 西林
雅弘 結城
雅弘 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Toyota Motor Corp
Original Assignee
University of Tokyo NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Toyota Motor Corp filed Critical University of Tokyo NUC
Priority to JP2016019805A priority Critical patent/JP6538580B2/en
Publication of JP2017136562A publication Critical patent/JP2017136562A/en
Application granted granted Critical
Publication of JP6538580B2 publication Critical patent/JP6538580B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、水素酸化触媒に関する。   The present invention relates to a hydrogen oxidation catalyst.

燃料電池の分野において、従来から、アノード触媒に着目し、燃料電池の性能の向上を図る試みがある。燃料電池のアノード触媒として広く利用されている白金触媒は、優れた水素酸化能を有するものの、その原料たる白金が高価かつ希少である。そのため、燃料電池用アノード触媒として、より安価な水素酸化触媒が求められている。
例えば、特許文献1には、硫黄及びリンを含有する二核遷移金属錯体(遷移金属はFe又はRu)の水素酸化触媒が開示されている。
In the field of fuel cells, there have been attempts to improve the performance of fuel cells, focusing on the anode catalyst. Although platinum catalysts widely used as anode catalysts for fuel cells have excellent hydrogen oxidizing ability, platinum as a raw material is expensive and scarce. Therefore, a less expensive hydrogen oxidation catalyst is required as an anode catalyst for fuel cells.
For example, Patent Document 1 discloses a hydrogen oxidation catalyst of a binuclear transition metal complex (transition metal is Fe or Ru) containing sulfur and phosphorus.

特開2015−098005号公報JP, 2015-098005, A

J.AM.CHEM.SOC,VOL.124,NO.51,2002,15172−15173J. AM. CHEM. SOC, VOL. 124, NO. 51, 2002, 15172-15173 Chemistry Letters, 1998, 1003−1004Chemistry Letters, 1998, 1003-1004 Organometallics, 2005, 24, 5799−5801Organometallics, 2005, 24, 5799-5801

しかし、特許文献1に開示されているような水素酸化触媒は合成が困難という問題がある。
本発明は上記実情を鑑みて成し遂げられたものであり、本発明の目的は、比較的合成しやすく、且つ、水素酸化活性の高い水素酸化触媒を提供することである。
However, the hydrogen oxidation catalyst as disclosed in Patent Document 1 has a problem that synthesis is difficult.
The present invention has been accomplished in view of the above-mentioned circumstances, and an object of the present invention is to provide a hydrogen oxidation catalyst which is relatively easy to synthesize and has a high hydrogen oxidation activity.

本発明の水素酸化触媒は、エーテル側鎖を架橋硫黄上に有する硫黄架橋二核ルテニウム錯体を有し、
前記エーテル側鎖が、直鎖状もしくは分岐鎖状の飽和炭化水素鎖中のいずれかの炭素−炭素結合間にエーテル結合を1以上挿入しているものである、ことを特徴とする。
Hydrogen oxidation catalyst of the present invention, have a sulfur bridged dinuclear ruthenium complex having the ether side chains on the bridging sulfur,
The ether side chain is characterized in that one or more ether bonds are inserted between any carbon-carbon bond in a linear or branched saturated hydrocarbon chain .

本発明によれば、比較的合成しやすく、且つ、水素酸化活性の高い水素酸化触媒を提供することができる。   According to the present invention, it is possible to provide a hydrogen oxidation catalyst which is relatively easy to synthesize and has a high hydrogen oxidation activity.

本発明の水素酸化触媒は、エーテル側鎖を架橋硫黄上に有する硫黄架橋二核ルテニウム錯体を有することを特徴とする。   The hydrogen oxidation catalyst of the present invention is characterized by having a sulfur-bridged dinuclear ruthenium complex having an ether side chain on bridged sulfur.

本発明者らは、エーテル側鎖を架橋硫黄上に有する硫黄架橋二核ルテニウム錯体は、水素酸化反応速度が速いことを見出した。架橋硫黄上にエーテル側鎖を設けることで分子内にプロトン受容部位ができ、水素酸化活性が向上すると考えられる。   The present inventors have found that a sulfur-bridged dinuclear ruthenium complex having an ether side chain on bridged sulfur has a high rate of hydrogen oxidation reaction. By providing an ether side chain on the crosslinked sulfur, it is considered that a proton accepting site is formed in the molecule, and the hydrogen oxidation activity is improved.

本発明の水素酸化触媒は、エーテル側鎖を架橋硫黄上に有する硫黄架橋二核ルテニウム錯体を有するものであれば、特に限定されない。
本発明においてエーテル側鎖とは、直鎖状もしくは分岐鎖状の飽和炭化水素鎖中のいずれかの炭素−炭素結合間にエーテル結合を1以上挿入されているものをいう。また、エーテル側鎖に含まれるエーテル結合の数は1つであることが好ましい。例えば、直鎖状のエーテル側鎖は、(−R−O−R)で表すことができる。ここで、Rは、炭素数2〜4の二価の脂肪族炭化水素基であることが好ましく、具体的には、エチレン基、トリメチレン基、及びテトラメチレン基等が挙げられる。また、Rは、メチル基であることが好ましい。
また、本発明の水素酸化触媒の合成方法の具体例は、後述する実施例1〜3において詳述する。
The hydrogen oxidation catalyst of the present invention is not particularly limited as long as it has a sulfur-bridged dinuclear ruthenium complex having an ether side chain on bridged sulfur.
In the present invention, the ether side chain means one having one or more ether bonds inserted between any carbon-carbon bond in a linear or branched saturated hydrocarbon chain. Further, it is preferable that the number of ether bonds contained in the ether side chain is one. For example, a linear ether side chain can be represented by (-R 1 -O-R 2 ). Here, R 1 is preferably a divalent aliphatic hydrocarbon group having 2 to 4 carbon atoms, and specific examples thereof include an ethylene group, a trimethylene group, and a tetramethylene group. Further, R 2 is preferably a methyl group.
Moreover, the specific example of the synthesis | combining method of the hydrogen oxidation catalyst of this invention is explained in full detail in Examples 1-3 mentioned later.

本発明の水素酸化触媒は、水素酸化を必要とする全ての技術分野に広く応用可能である。
本発明の水素酸化触媒の用途の例としては、水素を燃料とする燃料電池のアノード触媒や、レドックスフロー電池のアノード触媒等が挙げられる。特に、大型化が進むレドックスフロー電池においては、本発明のように触媒効率が高く、かつ従来の白金触媒と比較して安価な水素酸化触媒は、コストを可能な限り低く抑える技術として有用である。
The hydrogen oxidation catalyst of the present invention is widely applicable to all technical fields requiring hydrogen oxidation.
Examples of uses of the hydrogen oxidation catalyst of the present invention include an anode catalyst of a fuel cell using hydrogen as a fuel, an anode catalyst of a redox flow cell, and the like. In particular, in a redox flow battery which is increasing in size, a hydrogen oxidation catalyst having high catalytic efficiency as in the present invention and being inexpensive as compared with a conventional platinum catalyst is useful as a technology for keeping the cost as low as possible. .

(実施例1)
[CpRuCl](Cp=η−CMe)(163mg)、及び、(MeOCHCHS)(54mg)をテトラヒドロフラン(10mL)中で20時間攪拌した。
反応液を乾固し、残渣をジクロロメタン(10mL)で抽出した。
抽出液にAgOTf(Tf=SOCF)(77mg)を加え、室温で12時間攪拌した。
反応液を乾固したのち、残渣をエタノール−エーテルにより結晶化させることで、[CpRuCl(μ−S−CHCHOMe)RuCp(OH)]OTf(下記式(1)で示す水素酸化触媒1)を暗褐色結晶として得た(173mg、収率68%)。
H NMR (CDCl) δ3.88(t,J=6Hz,4H),3.46(s,6H),3.20(t,J=6Hz,4H),1.68(s,30H).Anal.Calcd for C2746ClFRu:C,37.82;H,5.41%.Found:C,37.95;H,5.13%.
Example 1
[Cp * RuCl] 4 (Cp * = η 5 -C 5 Me 5) (163mg), and was stirred for 20 hours in (MeOCH 2 CH 2 S) 2 a (54 mg) in tetrahydrofuran (10 mL).
The reaction was evaporated to dryness and the residue was extracted with dichloromethane (10 mL).
AgOTf (Tf = SO 2 CF 3 ) (77 mg) was added to the extract and stirred at room temperature for 12 hours.
After the reaction solution is brought to dryness, the residue is crystallized with ethanol-ether to obtain [Cp * RuCl (μ 2 -S-CH 2 CH 2 OMe) 2 RuCp * (OH 2 )] OTf (the following formula (1 Hydrogen oxidation catalyst 1) shown in 2.) was obtained as dark brown crystals (173 mg, yield 68%).
1 H NMR (CDCl 3 ) δ 3.88 (t, J = 6 Hz, 4 H), 3.46 (s, 6 H), 3. 20 (t, J = 6 Hz, 4 H), 1.68 (s, 30 H) . Anal. Calcd for C 27 H 46 ClF 3 O 6 Ru 2 S 3: C, 37.82; H, 5.41%. Found: C, 37.95; H, 5.13%.

式(1) Formula (1)

(実施例2)
[CpRuCl](163mg)、及び、(MeOCHCHCHS)(64mg)をテトラヒドロフラン(10mL)中で20時間攪拌した。
反応液を乾固し、残渣をジクロロメタン(10mL)で抽出した。
抽出液にAgOTf(80mg)を加え室温で12時間攪拌した。
反応液を乾固したのち、残渣をエタノール−エーテルにより結晶化させることで、[CpRuCl(μ−S−CHCHCHOMe)RuCp(OH)]OTf(下記式(2)で示す、水素酸化触媒2)の暗褐色結晶を得た(187mg、収率70%)。
H NMR (CDCl)δ3.58(t,J=6Hz,4H),3.38(s,6H),3.02−2.96(m,4H),2.23−2.13(m,4H),1.67(s,30H).Anal.Calcd for C2950ClFRu:C,39.34;H,5.69%.Found:C,39.36;H,5.48%.
(Example 2)
[Cp * RuCl] 4 (163mg ), and was stirred for 20 hours in (MeOCH 2 CH 2 CH 2 S ) 2 a (64 mg) in tetrahydrofuran (10 mL).
The reaction was evaporated to dryness and the residue was extracted with dichloromethane (10 mL).
AgOTf (80 mg) was added to the extract and stirred at room temperature for 12 hours.
The reaction solution is brought to dryness, and the residue is crystallized with ethanol-ether to obtain [Cp * RuCl (μ 2 -S-CH 2 CH 2 CH 2 OMe) 2 RuCp * (OH 2 )] OTf (the following formula Dark brown crystals of the hydrogen oxidation catalyst 2) shown in (2) were obtained (187 mg, 70% yield).
1 H NMR (CDCl 3 ) δ 3.58 (t, J = 6 Hz, 4 H), 3.38 (s, 6 H), 3.02-2.96 (m, 4 H), 2.23-2.13 ( m, 4H), 1.67 (s, 30H). Anal. Calcd for C 29 H 50 ClF 3 O 6 Ru 2 S 3: C, 39.34; H, 5.69%. Found: C, 39.36; H, 5.48%.

式(2) Formula (2)

(実施例3)
[CpRuCl](56mg)、及び、(MeOCHCHCHCHS)(24mg)をテトラヒドロフラン(5mL)中で20時間攪拌した。
反応液を乾固し、残渣をジクロロメタン(5mL)で抽出した。
抽出液にAgOTf(24mg)を加え室温で12時間攪拌した。
反応液を乾固したのち、残渣をエタノールに溶解した。
溶液にエーテルを加えると暗褐色油状物が沈殿した。
沈殿を真空乾燥することで、[CpRuCl(μ−S−CHCHCHCHOMe)RuCp(OH)]OTf(下記式(3)で示す水素酸化触媒3)の褐色油状物を得た(54mg、収率59%)。
H NMR (CDCl) δ3.46(t,J=6Hz,4H),3.36(s,6H),2.96(t,J=8H,4H),2.08−1.96(m,4H),1.90−1.79(m,4H),1.67(s,30H).
(Example 3)
[Cp * RuCl] 4 (56mg ), and was stirred for 20 hours in (MeOCH 2 CH 2 CH 2 CH 2 S) 2 a (24 mg) in tetrahydrofuran (5 mL).
The reaction was evaporated to dryness and the residue was extracted with dichloromethane (5 mL).
AgOTf (24 mg) was added to the extract and stirred at room temperature for 12 hours.
After drying the reaction solution, the residue was dissolved in ethanol.
A dark brown oil precipitated upon addition of ether to the solution.
By vacuum drying the precipitate, [Cp * RuCl (μ 2 -S-CH 2 CH 2 CH 2 CH 2 OMe) 2 RuCp * (OH 2 )] OTf (hydrogen oxidation catalyst 3 represented by the following formula (3)) A brown oil was obtained (54 mg, 59% yield).
1 H NMR (CDCl 3 ) δ 3.46 (t, J = 6 Hz, 4 H), 3.36 (s, 6 H), 2.96 (t, J = 8 H, 4 H), 2.08-1.96 ( m, 4H), 1.90-1.79 (m, 4H), 1.67 (s, 30H).

式(3) Formula (3)

(比較例1)
[CpRuCl](54mg)、及び、(MeCHCHCHS)(18mg)をテトラヒドロフラン(5mL)中で20時間攪拌した。
反応液を乾固し、残渣をジクロロメタン(5mL)で抽出した。
抽出液にAgOTf(26mg)を加え室温で12時間攪拌した。
反応液を乾固したのち、残渣をジクロロメタン−ヘキサンにより結晶化させることで、[CpRuCl(μ−S−CHCHCHMe)RuCp(OH)]OTf(下記式(4)で示す水素酸化触媒4)の暗褐色結晶を得た(43mg、収率51%)。
H NMR (CDCl)δ2.94(t,J=8Hz,4H),1.93−1.85(m,4H),1.67(s,30H),1.63−1.56(m,4H),1.00(t,J=7Hz,6H).Anal.Calcd for C2950ClFRu:C,40.81;H,5.90%.Found:C,40.70;H,5.63%.
(Comparative example 1)
[Cp * RuCl] 4 (54mg ), and was stirred for 20 hours in (MeCH 2 CH 2 CH 2 S ) 2 a (18 mg) in tetrahydrofuran (5 mL).
The reaction was evaporated to dryness and the residue was extracted with dichloromethane (5 mL).
AgOTf (26 mg) was added to the extract and stirred at room temperature for 12 hours.
The reaction solution is brought to dryness, and the residue is crystallized from dichloromethane-hexane to give [Cp * RuCl (μ 2 -S-CH 2 CH 2 CH 2 Me) 2 RuCp * (OH 2 )] OTf (the following formula Dark brown crystals of the hydrogen oxidation catalyst 4 shown in (4) were obtained (43 mg, 51% yield).
1 H NMR (CDCl 3 ) δ 2.94 (t, J = 8 Hz, 4 H), 1.93-1.85 (m, 4 H), 1.67 (s, 30 H), 1.63-1.56 ( m, 4 H), 1.00 (t, J = 7 Hz, 6 H). Anal. Calcd for C 29 H 50 ClF 3 O 4 Ru 2 S 3: C, 40.81; H, 5.90%. Found: C, 40.70; H, 5.63%.

式(4) Formula (4)

(比較例2)
非特許文献1に記載の方法に従い、[CpRuCl(μ−SMe)RuCp(OH)]OTf(下記水素酸化触媒5)を合成した。
(Comparative example 2)
According to the method described in Non-patent Document 1, [Cp * RuCl (μ 2 -SMe) 2 RuCp * (OH 2 )] OTf (the following hydrogen oxidation catalyst 5) was synthesized.

水素酸化触媒5 Hydrogen oxidation catalyst 5

(比較例3)
非特許文献2に記載の方法に従い、[CpRuCl(μ−SMe)RuCpCl](下記水素酸化触媒6)を合成した。
(Comparative example 3)
According to the method described in Non-Patent Document 2, [Cp * RuCl (μ 2 -SMe) 2 RuCp * Cl] (the following hydrogen oxidation catalyst 6) was synthesized.

水素酸化触媒6 Hydrogen oxidation catalyst 6

(比較例4)
非特許文献3に記載の方法に従い、[CpRu(μ−SMe)RuCp(OH)](OTf)(下記水素酸化触媒7)を合成した。
(Comparative example 4)
According to the method described in Non-Patent Document 3, [Cp * Ru (μ 2 -SMe) 2 RuCp * (OH 2 )] (OTf) 2 (the following hydrogen oxidation catalyst 7) was synthesized.

水素酸化触媒7 Hydrogen oxidation catalyst 7

[水素酸化活性の測定]
下記式(5)に示す反応を行った。具体的な手順は下記の通りである。
実施例1〜3、及び、比較例1〜4で得られた水素酸化触媒1〜7(下記式(5)中catで表記)を2μmol用意した。
そして、酸化剤[CpFe]OTf (Cp=η−C)(0.40mmol)を入れたフラスコを7つ用意し、各フラスコに上記水素酸化触媒を1種類ずつ入れ、当該フラスコ内を1気圧の水素ガスで置換した。
その後、水(5mL)を加え室温で攪拌した。
酸化剤に由来する溶液の青色が消えたところで反応を終了した。反応時間t(h)の結果を表1に示す。
反応混合物にヘキサンを加え抽出を行った。
有機層を乾固した後、内部標準としてCMe(16mg)を加えH NMRによりCpFe(フェロセン)の収量を求めた。結果を表1に示す。
また、水層はジクロロメタンで洗浄した後に、フェノールフタレインを指示薬とする中和滴定を行い、HOTf収量を求めた。
反応時間t、及び、CpFe収量から、TOF(ターンオーバー頻度)(1/h)を算出した。結果を表1に示す。なお、TOFの算出式は以下の通りである。
TOF=CpFe収量/(反応時間×触媒量×2)
[Measurement of hydrogen oxidation activity]
The reaction shown in the following formula (5) was performed. The specific procedure is as follows.
2 μmol of the hydrogen oxidation catalysts 1 to 7 (represented by cat in the following formula (5)) obtained in Examples 1 to 3 and Comparative Examples 1 to 4 were prepared.
Then, seven flasks containing an oxidant [Cp 2 Fe] OTf (Cp = 5 5- C 5 H 5 ) (0.40 mmol) are prepared, and one kind of the above hydrogen oxidation catalyst is put in each flask, The inside of the flask was replaced with 1 atm of hydrogen gas.
After that, water (5 mL) was added and stirred at room temperature.
The reaction was terminated when the blue color of the solution derived from the oxidizing agent disappeared. The results of the reaction time t (h) are shown in Table 1.
The reaction mixture was extracted with hexane.
After drying the organic layer, C 6 Me 6 (16 mg) was added as an internal standard, and the yield of Cp 2 Fe (ferrocene) was determined by 1 H NMR. The results are shown in Table 1.
In addition, after washing the aqueous layer with dichloromethane, neutralization titration using phenolphthalein as an indicator was performed to determine the HOTf yield.
TOF (turnover frequency) (1 / h) was calculated from the reaction time t and the Cp 2 Fe yield. The results are shown in Table 1. The calculation formula of TOF is as follows.
TOF = Cp 2 Fe yield / (reaction time × catalyst amount × 2)

式(5) Formula (5)

[水素酸化活性の評価結果]
表1に示すように、実施例1〜3と比較例1〜4では、実施例1〜3の方が、比較例1〜4よりも短い時間でHOTf収量、CpFe収量が増加するため、TOFが10〜27倍大きいことがわかる。
以上の結果より、実施例1〜3のような架橋硫黄上にエーテル側鎖を有する硫黄架橋ルテニウム錯体は、水素酸化活性が高いことがわかる。水素酸化活性向上の理由は、エーテル部位がプロトン受容部位として働いているか、又は、チオラート配位子の立体構造が反応性に影響を与えているためと推察される。
[Evaluation result of hydrogen oxidation activity]
As shown in Table 1, in Examples 1 to 3 and Comparative Examples 1 to 4, Examples 1 to 3 increase HOTf yield and Cp 2 Fe yield in a shorter time than Comparative Examples 1 to 4. , TOF is 10 to 27 times larger.
From the above results, it is understood that the sulfur-bridged ruthenium complex having an ether side chain on bridged sulfur as in Examples 1 to 3 has high hydrogen oxidation activity. The reason for the improvement of the hydrogen oxidation activity is presumed to be that the ether site acts as a proton accepting site or the steric structure of the thiolate ligand affects the reactivity.

Claims (1)

エーテル側鎖を架橋硫黄上に有する硫黄架橋二核ルテニウム錯体を有し、
前記エーテル側鎖が、直鎖状もしくは分岐鎖状の飽和炭化水素鎖中のいずれかの炭素−炭素結合間にエーテル結合を1以上挿入しているものである、ことを特徴とする水素酸化触媒。
Have a sulfur bridged dinuclear ruthenium complex having the ether side chains on the bridging sulfur,
A hydrogen oxidation catalyst characterized in that the ether side chain has one or more ether bonds inserted between any carbon-carbon bonds in a linear or branched saturated hydrocarbon chain .
JP2016019805A 2016-02-04 2016-02-04 Hydrogen oxidation catalyst Expired - Fee Related JP6538580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016019805A JP6538580B2 (en) 2016-02-04 2016-02-04 Hydrogen oxidation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016019805A JP6538580B2 (en) 2016-02-04 2016-02-04 Hydrogen oxidation catalyst

Publications (2)

Publication Number Publication Date
JP2017136562A JP2017136562A (en) 2017-08-10
JP6538580B2 true JP6538580B2 (en) 2019-07-03

Family

ID=59564895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016019805A Expired - Fee Related JP6538580B2 (en) 2016-02-04 2016-02-04 Hydrogen oxidation catalyst

Country Status (1)

Country Link
JP (1) JP6538580B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11658309B2 (en) 2019-03-14 2023-05-23 The University Of Tokyo Ammonia fuel cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789855A (en) * 1993-09-24 1995-04-04 Toagosei Co Ltd Antitumor agent
JP4918736B2 (en) * 2001-03-13 2012-04-18 東ソー株式会社 Novel optically active ruthenium complex, process for producing the same, and process for producing optically active compounds using the same
JP4853757B2 (en) * 2005-03-08 2012-01-11 国立大学法人京都大学 Optically active sulfur-bridged dinuclear ruthenium complex, method for producing the same, method for producing optically active compound using such a catalyst, and novel optically active compound
CN102460795B (en) * 2009-06-10 2014-10-22 独立行政法人科学技术振兴机构 Electrode catalyst for fuel cell and use thereof
JP5876457B2 (en) * 2013-11-20 2016-03-02 国立大学法人 東京大学 Hydrogen oxidation catalyst

Also Published As

Publication number Publication date
JP2017136562A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
Ma et al. Synthesis and characterization of copper (II) 4′-phenyl-terpyridine compounds and catalytic application for aerobic oxidation of benzylic alcohols
Galan et al. Electrocatalytic oxidation of formate by [Ni (PR2NR′ 2) 2 (CH3CN)] 2+ complexes
Ferrer et al. Ru (II) complexes containing dmso and pyrazolyl ligands as catalysts for nitrile hydration in environmentally friendly media
Zhang et al. Electron-rich, bulky PNN-type ruthenium complexes: synthesis, characterization and catalysis of alcohol dehydrogenation
Aydemir et al. Rhodium-catalyzed transfer hydrogenation with functionalized bis (phosphino) amine ligands
JP2008255106A (en) Metal complex
ES2739081T3 (en) Direct hydrogenation of carbon dioxide in formic acid in acidic media
KR101352015B1 (en) Organometal/polymer composite and preparing method of the same, and catalyst for reducing carbon dioxide including the same
JP6538580B2 (en) Hydrogen oxidation catalyst
JPWO2012070620A1 (en) Metal complex compound, hydrogen production catalyst and hydrogenation reaction catalyst containing the metal complex compound, and hydrogen production method and hydrogenation method using the catalyst
US11034712B2 (en) Method for producing transition metal-isocyanide complex
Song et al. Hydrophilic quaternary ammonium-group-containing [FeFe] H 2 ase models prepared by quaternization of the pyridyl N atoms in pyridylazadiphosphine-and pyridylmethylazadiphosphine-bridged diiron complexes with various electrophiles
Hao et al. Ruthenium carbonyl complexes with pyridine-alkoxide ligands: synthesis, characterization and catalytic application in dehydrogenative oxidation of alcohols
Gao et al. Synthesis, characterization and computational study of heterobimetallic CoFe complexes for mimicking hydrogenase
JP2010063986A (en) Oxygen generation catalyst
Ledger et al. [Ru (NHC)(xantphos)(CO) H 2] complexes: intramolecular C–H activation and applications in C–C bond formation
Yao et al. Ketonization of methylene of bis (benzimidazol-2-yl) methane by molecular oxygen under the catalysis of cobalt (II) ion
JP2016034904A (en) Mixed valence binuclear copper complex and production method for converting methane into methanol with the same
Tyagi et al. μ-Oxo-bridged iron (iii) complexes for the selective reduction of aromatic ketones catalyzed through base promoted in situ nanoparticle formation
Zhang et al. Sulfur-centered reactivity of oxidized iron-thiolate complex toward unsaturated hydrocarbon addition
CN107497494B (en) Catalyst composition for synthesizing methyl propionate from ethylene and synthesis method thereof
Sato et al. Synthesis and reactivities of the indenyl-ruthenium cluster [(η5-C9H7) Ru (μ-SEt)] 3: indenyl effect in the trinuclear ruthenium cluster
Sharma et al. On the key role of water in the allylic activation catalysed by Pd (II) bis phosphinite complexes
Tejel et al. Rhodium Mediated CH Bond Functionalisation Leading to Carboxylate Derivatives
Xu et al. Preparation, characterization, and catalytic properties of (triphenylphosphine) ruthenium complexes bearing N, O, N′-tridentate ligands

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190606

R151 Written notification of patent or utility model registration

Ref document number: 6538580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees