JP2016034904A - Mixed valence binuclear copper complex and production method for converting methane into methanol with the same - Google Patents

Mixed valence binuclear copper complex and production method for converting methane into methanol with the same Download PDF

Info

Publication number
JP2016034904A
JP2016034904A JP2014157249A JP2014157249A JP2016034904A JP 2016034904 A JP2016034904 A JP 2016034904A JP 2014157249 A JP2014157249 A JP 2014157249A JP 2014157249 A JP2014157249 A JP 2014157249A JP 2016034904 A JP2016034904 A JP 2016034904A
Authority
JP
Japan
Prior art keywords
group
copper
complex
methanol
copper complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014157249A
Other languages
Japanese (ja)
Inventor
増田 秀樹
Hideki Masuda
秀樹 増田
智宏 小澤
Tomohiro Ozawa
智宏 小澤
智彦 猪股
Tomohiko Inomata
智彦 猪股
達矢 落合
Tatsuya Ochiai
達矢 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2014157249A priority Critical patent/JP2016034904A/en
Publication of JP2016034904A publication Critical patent/JP2016034904A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Pyridine Compounds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mixed valence binuclear copper complex having a structure similar to an active center of methane hydroxylase, which can be expected as a catalyst in methanol production.SOLUTION: A mixed valence binuclear copper complex has a structure represented by formula (1) in one molecule. [R-Rindependently represent H, a C1-10 straight and/or branched alkyl group, a C1-10 alkoxyalkyl group, an amino group, a nitro group, a cyano group, a pivalamide group or a halogen (F, Cl, Br, I)].SELECTED DRAWING: None

Description

本発明は、メタン水酸化酵素がメタンをメタノールへ変換する酵素の酸化活性種である2核銅(II、III)種を再現した、2核銅(II)銅(III)錯体に関するものである。 The present invention relates to a binuclear copper (II) copper (III) complex that reproduces a binuclear copper (II, III) species that is an oxidatively active species of an enzyme in which methane hydroxylase converts methane to methanol. .

メタンは天然ガスの主成分として地球上に豊富に存在する資源であり、日本近海でもメタンハイドレートの形で、その存在が確認された。しかし、メタン自体は気体であるために輸送が困難であり、さらには温室効果ガスとしての側面もある。一方でメタンを原料に合成されるメタノールは常温で安定な液体であり、様々な化成品原料として用いられる。また、燃焼時に排出される大気汚染物質が極めて少ないことから、石油に代わるクリーンな液体燃料としての利用が大いに期待できる。   Methane is an abundant resource on earth as the main component of natural gas, and its presence was confirmed in the form of methane hydrate in the seas near Japan. However, since methane itself is a gas, it is difficult to transport, and there is also an aspect as a greenhouse gas. On the other hand, methanol synthesized from methane as a raw material is a stable liquid at room temperature and is used as a raw material for various chemical products. In addition, since very little air pollutants are emitted during combustion, it can be expected to be used as a clean liquid fuel instead of petroleum.

メタンからメタノールへの変換反応はエネルギー的に極めて不利な反応である。それ故にメタノールの工業的製法では高温高圧条件が必須であり、環境負荷の大きさが問題視されている。そこでメタンを常温常圧でメタノールへと直接変換できる触媒の開発が求められている。   The conversion reaction from methane to methanol is extremely energetically disadvantageous. Therefore, high-temperature and high-pressure conditions are essential in the industrial production process of methanol, and the magnitude of environmental load is regarded as a problem. Therefore, development of a catalyst capable of directly converting methane to methanol at room temperature and normal pressure is required.

一方で自然界では、メタン水酸化酵素が、温和な条件下でメタンをメタノールへ変換している。メタン水酸化酵素は、異なる配位環境下に存在する2つの銅イオンを用いてメタノール合成を行っている。この反応過程において、2つの銅イオンがそれぞれ2価と3価という異なる原子価数を持つことが理論計算により推定されている(非特許文献1、2参照)。特許文献1ではメタン水酸化酵素自身を用いてメタンからメタノールを製造する方法が報告されており、温和な条件下で効率良くメタノールを製造することが可能である(特許文献1)。しかし酵素自身を用いる場合には、その培養が必須であること、酵素自身が不安定であること、などの理由から大規模なスケールでの製造は困難である。   On the other hand, in nature, methane hydroxylase converts methane to methanol under mild conditions. Methane hydroxylase performs methanol synthesis using two copper ions present in different coordination environments. In this reaction process, it is estimated by theoretical calculation that two copper ions have different valence numbers of divalent and trivalent, respectively (see Non-Patent Documents 1 and 2). Patent Document 1 reports a method for producing methanol from methane using methane hydroxylase itself, and it is possible to efficiently produce methanol under mild conditions (Patent Document 1). However, when the enzyme itself is used, production on a large scale is difficult because the culture is essential and the enzyme itself is unstable.

そこで、酵素と同様の機能を持つ金属錯体触媒の開発が注目を集めている。メタン水酸化酵素の構造を一部抽出・模倣して、同様の機能を持つよう設計・合成された人工分子を用いることで、酵素を用いる際の問題点が解決され、優れたメタノール製造方法の確立が期待できる。       Therefore, development of metal complex catalysts having the same functions as enzymes has attracted attention. By extracting and imitating a part of the structure of methane hydroxylase and using artificial molecules designed and synthesized to have the same function, problems in using the enzyme are solved, and an excellent methanol production method Establishment can be expected.

ごく最近、銅2価と銅3価が1分子内に存在する金属錯体が報告されている。左右対称な2核銅(II、II)錯体に対し、アセチルフェロセニウムを酸化剤として反応させることで2核銅(II、III)錯体を合成し、電子吸収スペクトル、電子スピン共鳴スペクトルを用いて、その生成を確認したものである(非特許文献3参照)。それは、メタン水酸化酵素の酸化活性種と類似の酸化状態を再現しており、メタンの水酸化が可能な人工分子構築の可能性を示したものである。 Very recently, metal complexes in which divalent copper and trivalent copper are present in one molecule have been reported. A binuclear copper (II, III) complex is synthesized by reacting a symmetric dinuclear copper (II, II) complex with acetylferrocenium as an oxidizing agent, and using an electron absorption spectrum and an electron spin resonance spectrum. The generation was confirmed (see Non-Patent Document 3). It reproduces the oxidation state similar to the oxidation active species of methane hydroxylase, and shows the possibility of constructing an artificial molecule capable of hydroxylating methane.

特開2009‐82107号公報JP 2009-82107 A

R. L. Lieberman, A. C. Rosenzweig, Nature誌, 2005年, 434巻, 177貢.R. L. Lieberman, A.M. C. Rosenzweig, Nature, 2005, 434, 177 Mitsugu. Y. Shiota, G. Juhasz, K. Yoshizawa. Inorganic Chemistry誌, 2013年, 52巻, 7907貢.Y. Shiota, G.A. Juhasz, K .; Yoshizawa. Inorganic Chemistry, 2013, 52, 7907. M. R. Halvagar, P. V. Solntsev. H. Lim, B. Hedman,K. O. Hodgson, E. I. Solomon, C. J. Cramer, W. B. Tolman, Journal of the American Chemical Society誌, 2014年, 136巻, 7269貢.M.M. R. Halvagar, P.A. V. Solntsev. H. Lim, B.B. Hedman, K .; O. Hodgson, E .; I. Solomon, C.I. J. et al. Cramer, W.H. B. Tolman, Journal of the American Chemical Society, 2014, 136, 7269 Mitsugu.

1つの分子内で2つの銅イオンに異なる原子価数をとらせるには、それぞれの銅イオンが異なる環境下に存在することが望ましい。本研究で参考にしたメタン水酸化酵素も2核銅中心は左右非対称な環境になっており、それが優れた酵素反応を示すカギを握っていると推測されている(非特許文献1、2)。その点で、非特許文献3において合成された人工分子は左右対称な構造であるため、2つの銅イオンの酸化電位が非常に近い値となり、2核銅(II)(III)種が安定に存在できないという問題があった。   In order for two copper ions to have different valence numbers in one molecule, it is desirable that the copper ions exist in different environments. The methane hydroxylase referred to in this study also has a binuclear copper center in an asymmetric environment, which is presumed to hold the key to an excellent enzyme reaction (Non-Patent Documents 1 and 2). ). In that respect, since the artificial molecule synthesized in Non-Patent Document 3 has a symmetrical structure, the oxidation potentials of the two copper ions are very close to each other, and the binuclear copper (II) (III) species is stable. There was a problem that it could not exist.

本発明の課題は、酵素の活性中心に近い構造を持った混合原子価2核銅錯体を提供することである。 An object of the present invention is to provide a mixed valence dinuclear copper complex having a structure close to the active center of an enzyme.

本発明者らは上記した課題について鋭意検討した結果、それぞれの銅イオンの酸化状態をコントロールして、銅2価と銅3価をつくり分けることで、生体系に極めて近い状態の金属錯体触媒を創案するに至った。   As a result of intensive studies on the above-mentioned problems, the inventors of the present invention controlled the oxidation state of each copper ion to produce copper divalent and copper trivalent, thereby producing a metal complex catalyst in a state extremely close to a biological system. I came up with a new idea.

すなわち、本発明は、以下の人工分子である。
[1] 1分子内に、一般式(1)で表される構造を有する混合原子価2核銅錯体。


一般式(1)中、R〜Rは、それぞれ独立に、H、炭素数1〜10の直鎖及び/又は分枝アルキル基、炭素数1〜10のアルコキシアルキル基、アミノ基、ニトロ基、シアノ基、ピバルアミド基またはハロゲニル基(F、Cl、Br、I)を表す。
That is, the present invention is the following artificial molecules.
[1] A mixed-valence dinuclear copper complex having a structure represented by the general formula (1) in one molecule.


In general formula (1), R 1 to R 4 are each independently H, a linear and / or branched alkyl group having 1 to 10 carbon atoms, an alkoxyalkyl group having 1 to 10 carbon atoms, an amino group, or nitro. Represents a group, a cyano group, a pivalamide group or a halogenyl group (F , Cl , Br , I ).

[2]前記[1]に記載の混合原子価2核銅錯体を用いた、メタンをメタノールに変換する製造方法。 [2] A production method for converting methane to methanol using the mixed-valence dinuclear copper complex according to [1].

本発明の第1実施形態により得られた銅(II)錯体([CuL(m-PhCOO)]・CHCN)の結晶構造を示す図である。Is a diagram showing the crystal structure of the copper (II) complex obtained by the first embodiment of the present invention ([Cu 2 L (m- PhCOO)] · CH 3 CN). 本発明の第1実施形態により得られた銅(II)錯体([CuL(m-PhCOO)]・CHCN)の電気化学的酸化還元特性を示す図である。Is a diagram showing an electrochemical oxidation-reduction characteristics of the copper (II) complex obtained by the first embodiment of the present invention ([Cu 2 L (m- PhCOO)] · CH 3 CN). 本発明の第2実施形態により得られた混合原子価2核銅(II)(III)錯体の生成を示唆する電子吸収スペクトル測定の結果を示す図である。It is a figure which shows the result of the electronic absorption spectrum measurement which suggests the production | generation of the mixed valence dinuclear copper (II) (III) complex obtained by 2nd Embodiment of this invention. 本発明の第2実施形態により得られた混合原子価2核銅(II)(III)錯体の生成を示唆する質量分析測定の結果を示す図である。It is a figure which shows the result of the mass spectrometry which suggests the production | generation of the mixed valence dinuclear copper (II) (III) complex obtained by 2nd Embodiment of this invention. 本発明の第2実施形態により得られた混合原子価2核銅(II)(III)錯体の生成を示唆する電子スピン共鳴スペクトルの結果を示す図である。It is a figure which shows the result of the electron spin resonance spectrum which suggests the production | generation of the mixed valence dinuclear copper (II) (III) complex obtained by 2nd Embodiment of this invention.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

(第1実施形態:前躯体とその合成方法)
まず、本発明の錯体の前駆体である2核銅(II)錯体について説明する。本実施形態は1分子内に、一般式(1)で表される構造を有する化合物である。


一般式(1)中、R〜Rは、それぞれ独立に、H、炭素数1〜10の直鎖及び/又は分枝アルキル基、炭素数1〜10のアルコキシアルキル基、アミノ基、ニトロ基、シアノ基、ピバルアミド基またはハロゲニル基(F、Cl、Br、I)を表す。上記の条件を満足する一般式(1)で表される化合物として異なる配位環境下に存在する2つの銅(II)を有するものが好ましい。なお、一般式(1)で表される化合物は、それらに限定されるものではなく、一般式(2)〜(12)を含む。


























(First embodiment: precursor and its synthesis method)
First, the dinuclear copper (II) complex that is a precursor of the complex of the present invention will be described. This embodiment is a compound having a structure represented by the general formula (1) in one molecule.


In general formula (1), R 1 to R 4 each independently represent H, a linear and / or branched alkyl group having 1 to 10 carbon atoms, an alkoxyalkyl group having 1 to 10 carbon atoms, an amino group, or nitro. Represents a group, a cyano group, a pivalamide group or a halogenyl group (F , Cl , Br , I ). What has two copper (II) which exists in a different coordination environment as a compound represented by General formula (1) which satisfies said conditions is preferable. In addition, the compound represented by General formula (1) is not limited to them, and includes General formula (2)-(12).


























本実施形態の化合物、すなわち前駆体としての2核銅(II)錯体の合成方法について説明する。本実施形態の化合物は以下に記載の非対称型配位子Lを用いて表すと、[CuL(m-PhCOO)]と表されるものである。まず、塩基を用いて脱プロトン化した非対称型配位子Lに安息香酸銅(II)誘導体を反応させる方法が好ましく用いられる。非対称型配位子Lとしては、下記に示すように、中心金属(例えば銅)に対して5配位および4配位を強制できるものが好適に用いられる。



反応溶媒としては一般的な有機溶媒を用いることができ、好ましくはアセトニトリル、DMF、アセトン、THF等の非プロトン性溶媒が用いられる。反応温度は特に限定されないが、反応を進行させるには加温が好ましく、30〜60℃の範囲で行うことが特に好ましい。加温についてはオイルバス、ウォーターバス、ホットプレート等を使用することができる。反応時間は特に限定されないが、通常30分〜1日、好ましくは3時間〜8時間であり、反応温度によって時間を変更することが望ましい。
A method for synthesizing the compound of the present embodiment, that is, a dinuclear copper (II) complex as a precursor will be described. The compound of this embodiment is represented by [Cu 2 L (m-PhCOO)] when represented using the asymmetric ligand L described below. First, a method of reacting an asymmetric ligand L deprotonated with a base with a copper (II) benzoate derivative is preferably used. As the asymmetric ligand L, those capable of forcing a 5-coordinate and a 4-coordinate with respect to a central metal (for example, copper) are preferably used as shown below.



As the reaction solvent, a general organic solvent can be used, and preferably an aprotic solvent such as acetonitrile, DMF, acetone, THF or the like is used. Although the reaction temperature is not particularly limited, warming is preferable for the reaction to proceed, and it is particularly preferable to perform the reaction in the range of 30 to 60 ° C. For heating, an oil bath, a water bath, a hot plate, or the like can be used. Although reaction time is not specifically limited, Usually, it is 30 minutes-1 day, Preferably it is 3 hours-8 hours, It is desirable to change time with reaction temperature.

(第2実施形態:混合原子価2核銅(II)(III)錯体の合成方法)
次に本実施形態の混合原子価2核銅(II)(III)錯体の合成方法について説明する。第1実施形態の2核銅(II)錯体について電気化学的酸化還元特性を調べ、適当な酸化剤を選択し、化学的に1電子酸化することで混合原子価錯体を合成する方法が好適に用いられる(一般式14参照)。酸化剤としては酸素分子、AgBF、[AcFc](BF)、NOPF等が好ましい。反応溶媒としては一般的な有機溶媒を用いることができ、好ましくはジクロロメタン、アセトニトリル、DMF、アセトン、THF等の非プロトン性溶媒が用いられる。反応温度は特に限定されないが、混合原子価錯体が比較的不安定であるため低温が好ましく、−100〜0℃の範囲で行うことが特に好ましい。反応時間は特に限定されないが、通常1分〜1時間、好ましくは1分〜10分であり、反応温度によって時間を変更することが好ましい。


混合原子価錯体の生成の確認は電子吸収スペクトル、質量分析、電子スピン共鳴スペクトルが好ましく用いられる。測定溶媒としては一般的な有機溶媒を用いることができ、好ましくはジクロロメタン、アセトニトリル、DMF、アセトン、THF等の非プロトン性溶媒が用いられる。測定温度は特に限定されないが、混合原子価錯体が比較的不安定であるため低温が好ましく、−100〜0℃の範囲で行うことが特に好ましい。
(Second Embodiment: Method for Synthesizing Mixed-valence Dinuclear Copper (II) (III) Complex)
Next, a method for synthesizing the mixed-valence dinuclear copper (II) (III) complex of this embodiment will be described. A method of synthesizing a mixed valence complex by examining electrochemical redox characteristics of the binuclear copper (II) complex of the first embodiment, selecting an appropriate oxidant, and chemically carrying out one-electron oxidation is suitable. Used (see general formula 14). As the oxidizing agent, oxygen molecules, AgBF 4 , [AcFc] (BF 4 ), NOPF 6 and the like are preferable. As the reaction solvent, a general organic solvent can be used, and preferably an aprotic solvent such as dichloromethane, acetonitrile, DMF, acetone, THF or the like is used. Although the reaction temperature is not particularly limited, a low temperature is preferable because the mixed valence complex is relatively unstable, and the reaction is particularly preferably performed in the range of −100 to 0 ° C. Although reaction time is not specifically limited, Usually, 1 minute-1 hour, Preferably it is 1 minute-10 minutes, It is preferable to change time according to reaction temperature.


For confirmation of the generation of the mixed valence complex, an electron absorption spectrum, mass spectrometry, and electron spin resonance spectrum are preferably used. A general organic solvent can be used as the measurement solvent, and preferably an aprotic solvent such as dichloromethane, acetonitrile, DMF, acetone, THF, or the like is used. The measurement temperature is not particularly limited, but a low temperature is preferable because the mixed valence complex is relatively unstable, and it is particularly preferable to carry out in the range of −100 to 0 ° C.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はそれら実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

(実施例1:非対称型配位子Lの合成)
実施例1は、第1実施形態に対応する実施例である。次の示すような方法で非対称型配位子Lを合成した。
N-3,5-di-tert-butylsalicyloyloxysuccinimide (2.01g、5.6mmol)、および1-amino-3-(bis(pyridin-2-ylmethyl)amino)propan-2-ol(1.53g、5.60mmol)のDMF溶液30mLに, EtN 5mL、および触媒量のDMAPを加えた。室温で12時間反応させた後、反応溶液にクロロホルム 200mLを加えて蒸留水150mL(50×3mL)を用いて洗浄した。その後、HCl水溶液を用いて反応生成物を水相へ抽出し、飽和NaHCO水溶液で中和したところ茶色油状物が遊離した。クロロホルム150mL(50×3mL)を用いて水相から茶色油状物を抽出し、エバポレーターで溶媒を除去した。得られた茶色油状物を再結晶することで目的物の白色粉末の非対称型配位子L(一般式15)を得た。
収率68%, Elemental anal. Calcd for C3040:C,71.4,H,7.99,N,11.1.Found:C,71.16,H,8.20,N,10.99.H-NMR(d/ppm vs TMS in CDCl,300MHz):1.25,1.42(s,s,18H,CCH),2.72,2.91(m,m,2H,NCHCH(OH)CH),3.35,3.66(m,m,2H,NCHCH(OH)CH),4.00(q,4H,NCHPy),4.03(m,1H,NCHCH(OH)CH),7.13(t,2H,Py(5)), 7.21,7.43(s,s,1H,1H,Ph(3,5)),7.24(d,2H,Py(6)),7.56(t,2H,Py(4))8.52(d,2H,Py(3)).

(Example 1: Synthesis of asymmetric ligand L)
Example 1 is an example corresponding to the first embodiment. An asymmetric ligand L was synthesized by the following method.
N-3,5-di-tert-butylsalicyclicoxysuccinimide (2.01 g, 5.6 mmol), and 1-amino-3- (bis (pyridin-2-ylmethyl) amino) propan-2-ol (1.53 g, 5 .60 mmol) in 30 mL of DMF was added 5 mL of Et 3 N and a catalytic amount of DMAP. After reacting for 12 hours at room temperature, chloroform was added to the reaction solution. 200 mL was added and washed with distilled water 150 mL (50 × 3 mL). Thereafter, the reaction product was extracted into an aqueous phase using an aqueous HCl solution and neutralized with a saturated aqueous NaHCO 3 solution to release a brown oil. A brown oily substance was extracted from the aqueous phase using 150 mL of chloroform (50 × 3 mL), and the solvent was removed with an evaporator. The obtained brown oil was recrystallized to obtain the target white powder asymmetric ligand L (general formula 15).
Yield 68%, Elemental anal. Calcd for C 30 H 40 N 4 O 3: C, 71.4, H, 7.99, N, 11.1. Found: C, 71.16, H, 8.20, N, 10.99. 1 H-NMR (d / ppm vs TMS in CDCl 3 , 300 MHz): 1.25, 1.42 (s, s, 18H, CCH 3 ), 2.72, 2.91 (m, m, 2H, NCH 2 CH (OH) CH 2 ), 3.35, 3.66 (m, m, 2H, NCH 2 CH (OH) CH 2 ), 4.00 (q, 4H, NCH 2 Py), 4.03 ( m, 1H, NCH 2 CH ( OH) CH 2), 7.13 (t, 2H, Py (5)), 7.21,7.43 (s, s, 1H, 1H, Ph (3,5) ), 7.24 (d, 2H, Py (6) ), 7.56 (t, 2H, Py (4) ) 8.52 (d, 2H, Py (3) ).

(実施例2:2核銅(II)錯体の合成)
実施例2は、第1実施形態に対応する実施例であり、次の示すような方法で2核銅(II)錯体を合成した。
非対称型配位子L (200mg,0.40mmol)のDMF溶液20mLにNaH(28.3 mg,1.20mmol)を加えて30分撹拌した。ここへCu(PhCOO)(245mg,0.8mmol)を懸濁させたDMF溶液10mLを一気に加えた。4時間撹拌した後、不溶物を濾去し、純水150mLを加えたところ白緑色の沈殿物が析出した。ジクロロメタン150mL(50×3mL)を用いて沈殿物を抽出し、エバポレーターで溶媒を除去した。得られた濃緑色の粉末を少量のアセトニトリルに溶かし1晩静置させたところ、緑色の板状結晶を得た。
収率42%. Elemental anal.Calcd for C3945Cu ([CuL(m-PhCOO)]・CHCN): C,59.23,H,5.73,N,8.85.Found:C,59.09,H,5.79,N,8.78.Cyclic voltammetry: E1/2 II,III/II,II=0.071Vvs.Fc/Fc,ΔE=70.4mV.

合成した2核銅(II、II)錯体([CuL(m-PhCOO)]・CHCN)のX線構造解析により得られた結晶構造を以下に示す。




合成した2核銅(II,II)錯体([CuL(m-PhCOO)]・CHCN)の電気化学的酸化還元特性を調べた。溶媒にはジクロロメタンを用いた。結果を図2に示す。銅(II)(II)から銅(II)(III)への可逆な酸化還元波が、0.071Vvs.Fc/Fcに観測された。このことから最も好ましい酸化剤として[AcFc](BF)を選択した。
(Example 2: Synthesis of binuclear copper (II) complex)
Example 2 is an example corresponding to the first embodiment, and a binuclear copper (II) complex was synthesized by the following method.
Asymmetric ligand L NaH (28.3 mg, 1.20 mmol) was added to 20 mL of a DMF solution (200 mg, 0.40 mmol) and stirred for 30 minutes. To this, 10 mL of DMF solution in which Cu (PhCOO) 2 (245 mg, 0.8 mmol) was suspended was added all at once. After stirring for 4 hours, insoluble matter was removed by filtration, and when 150 mL of pure water was added, a white green precipitate was deposited. The precipitate was extracted with 150 mL (50 × 3 mL) of dichloromethane, and the solvent was removed with an evaporator. When the obtained dark green powder was dissolved in a small amount of acetonitrile and allowed to stand overnight, green plate crystals were obtained.
Yield 42%. Elemental anal. Calcd for C 39 H 45 Cu 2 N 5 O 5 ([Cu 2 L (m-PhCOO)] · CH 3 CN): C, 59.23, H, 5.73, N, 8.85. Found: C, 59.09, H, 5.79, N, 8.78. Cyclic voltammetry: E 1/2 II, III / II, II = 0.071 Vvs. Fc / Fc + , ΔE = 70.4 mV.

The crystal structure obtained by the X-ray structure analysis of the synthesized dinuclear copper (II, II) complex ([Cu 2 L (m-PhCOO)] · CH 3 CN) is shown below.




The electrochemical redox characteristics of the synthesized dinuclear copper (II, II) complex ([Cu 2 L (m-PhCOO)]. CH 3 CN) were examined. Dichloromethane was used as the solvent. The results are shown in FIG. A reversible redox wave from copper (II) (II) to copper (II) (III) results in 0.071 Vvs. Observed in Fc / Fc + . Therefore, [AcFc] (BF 4 ) was selected as the most preferable oxidizing agent.

(実施例3:混合原子価2核銅(II)(III)錯体の合成)
実施例3は、第2実施形態に対応する実施例であり、次の示すような方法で混合原子価2核銅(II)(III)錯体を合成した。
Ar雰囲気下、−80℃で[CuL(m-PhCOO)]・CHCNのジクロロメタン溶液(0.20mM、3mL)に対し、[AcFc](BF)のジクロロメタン溶液(5.08mM)を20mLずつ加え、電子吸収スペクトルで反応を観察した。[AcFc](BF)を加えると1100nm付近の吸収が増大し、120mL加えたところで吸収の増大が飽和に達した。それは、2核銅(II)(III)錯体に特徴的な吸収であることから、その生
成を確認した。この電子吸収スペクトルの結果を図3に示す。
(Example 3: Synthesis of mixed-valence dinuclear copper (II) (III) complex)
Example 3 is an example corresponding to the second embodiment, and a mixed-valence dinuclear copper (II) (III) complex was synthesized by the following method.
[AcFc] (BF 4 ) in dichloromethane (5.08 mM) against [Cu 2 L (m-PhCOO)]. CH 3 CN in dichloromethane (0.20 mM, 3 mL) at −80 ° C. under Ar atmosphere Was added in 20 mL portions, and the reaction was observed by electron absorption spectrum. When [AcFc] (BF 4 ) was added, the absorption near 1100 nm increased, and when 120 mL was added, the increase in absorption reached saturation. Since it is characteristic absorption in the binuclear copper (II) (III) complex, its formation was confirmed. The result of this electron absorption spectrum is shown in FIG.

混合原子価2核銅(II)(III)錯体の質量分析を行った。その結果を図4に示す。m/z:750.34に目的物の組成と一致するフラグメントピークを観測し、シミュレーションとも良い一致を示した。このことから混合原子価2核銅(II)(III)錯体の生成が示唆された。 Mass spectrometry of the mixed valence dinuclear copper (II) (III) complex was performed. The result is shown in FIG. A fragment peak that coincided with the composition of the target product was observed at m / z: 750.34, showing good agreement with the simulation. This suggested the formation of a mixed-valence dinuclear copper (II) (III) complex.

混合原子価2核銅(II)(III)錯体の電子スピン共鳴スペクトル測定を行った。測定溶媒にはジクロロメタンを用いて77Kにおいて測定した。前駆体である2核銅(II)錯体は2つの銅イオン間に働く反強磁性相互作用により電子スピン共鳴スペクトル測定には不活性であるのに対し、混合原子価2核銅(II)(III)錯体は2つの銅イオン間に働く反強磁性相互作用が解け、電子共鳴スペクトル測定に活性となっている。このことから、片側の銅イオンに不対電子が局在化した混合原子価状態が実現されていることが示唆された。この結果を図5に示す。 The electron spin resonance spectrum of the mixed valence dinuclear copper (II) (III) complex was measured. Measurement was performed at 77K using dichloromethane as a measurement solvent. The precursor dinuclear copper (II) complex is inactive for electron spin resonance spectrum measurement due to antiferromagnetic interaction between two copper ions, whereas mixed valence dinuclear copper (II) ( III) The complex dissolves the antiferromagnetic interaction between the two copper ions and is active for measuring the electron resonance spectrum. This suggests that a mixed valence state in which unpaired electrons are localized on one copper ion is realized. The result is shown in FIG.

本発明はメタンをメタノールに変換する製造に利用できる。
The present invention can be used in the production of converting methane to methanol.

Claims (2)

1分子中に、一般式(1)で表される構造を有する混合原子価2核銅錯体。


一般式(I)中、R〜Rは、それぞれ独立に、H、炭素数1〜10の直鎖及び/又は分枝アルキル基、炭素数1〜10のアルコキシアルキル基、アミノ基、ニトロ基、シアノ基、ピバルアミド基またはハロゲニル基(F、Cl、Br、I)を表す。
A mixed-valence dinuclear copper complex having a structure represented by the general formula (1) in one molecule.


In the general formula (I), R 1 to R 4 each independently represent H, a linear and / or branched alkyl group having 1 to 10 carbon atoms, an alkoxyalkyl group having 1 to 10 carbon atoms, an amino group, or nitro. Represents a group, a cyano group, a pivalamide group or a halogenyl group (F , Cl , Br , I ).
請求項1に記載の混合原子価2核銅錯体を用いた、メタンをメタノールに変換する製造方法。
The manufacturing method which converts methane into methanol using the mixed valence dinuclear copper complex according to claim 1.
JP2014157249A 2014-08-01 2014-08-01 Mixed valence binuclear copper complex and production method for converting methane into methanol with the same Pending JP2016034904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014157249A JP2016034904A (en) 2014-08-01 2014-08-01 Mixed valence binuclear copper complex and production method for converting methane into methanol with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014157249A JP2016034904A (en) 2014-08-01 2014-08-01 Mixed valence binuclear copper complex and production method for converting methane into methanol with the same

Publications (1)

Publication Number Publication Date
JP2016034904A true JP2016034904A (en) 2016-03-17

Family

ID=55523046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014157249A Pending JP2016034904A (en) 2014-08-01 2014-08-01 Mixed valence binuclear copper complex and production method for converting methane into methanol with the same

Country Status (1)

Country Link
JP (1) JP2016034904A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020138929A (en) * 2019-02-28 2020-09-03 学校法人同志社 Method of producing alcohol and aldehyde derivatives from gaseous alkane such as methane, ethane and propane
CN112028909A (en) * 2020-09-17 2020-12-04 梧州学院 Cyano-bridged mixed-valence copper (I, II) complex and in-situ synthesis method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020138929A (en) * 2019-02-28 2020-09-03 学校法人同志社 Method of producing alcohol and aldehyde derivatives from gaseous alkane such as methane, ethane and propane
JP7255850B2 (en) 2019-02-28 2023-04-11 学校法人同志社 Method for producing alcohol and aldehyde derivatives from gaseous alkanes such as methane, ethane and propane
CN112028909A (en) * 2020-09-17 2020-12-04 梧州学院 Cyano-bridged mixed-valence copper (I, II) complex and in-situ synthesis method thereof

Similar Documents

Publication Publication Date Title
Derrick et al. Metal–ligand cooperativity via exchange coupling promotes iron-catalyzed electrochemical CO2 reduction at low overpotentials
Wang et al. Electrocatalytic hydrogen evolution with gallium hydride and ligand-centered reduction
Spencer et al. Copper chemistry of β-diketiminate ligands: monomer/dimer equilibria and a new class of bis (μ-oxo) dicopper compounds
Zarkadoulas et al. Experimental and theoretical insight into electrocatalytic hydrogen evolution with nickel bis (aryldithiolene) complexes as catalysts
Galan et al. Electrocatalytic oxidation of formate by [Ni (PR2NR′ 2) 2 (CH3CN)] 2+ complexes
Chai et al. An unexpected Schiff base-type Ni (II) complex: Synthesis, crystal structures, fluorescence, electrochemical property and SOD-like activities
Chabolla et al. Combined steric and electronic effects of positional substitution on dimethyl-bipyridine rhenium (I) tricarbonyl electrocatalysts for the reduction of CO2
Chongdar et al. A Ni-MOF as fluorescent/electrochemical dual probe for ultrasensitive detection of picric acid from aqueous media
Zheng et al. Intramolecular iron-mediated C–H bond heterolysis with an assist of pendant base in a [FeFe]-hydrogenase model
Weiss et al. Synthesis and reactivity of molybdenum and tungsten bis (dinitrogen) complexes supported by diphosphine chelates containing pendant amines
Paria et al. A functional model of extradiol-cleaving catechol dioxygenases: mimicking the 2-his-1-carboxylate facial triad
Song et al. Novel ruthenium phthalocyanine-containing model complex for the active site of [FeFe]-hydrogenases: synthesis, structural characterization, and catalytic H2 evolution
Chu et al. Synthesis and electro-catalytic properties of a dinuclear palladium (I) 1, 3-bis [(2-chloro) benzene] triazenide complex
Tong et al. Structural characterization and proton reduction electrocatalysis of thiolate-bridged bimetallic (CoCo and CoFe) complexes
Sun et al. A bioinspired thiolate-bridged dinickel complex with a pendant amine: synthesis, structure and electrocatalytic properties
Fang et al. Morphology control of supramolecular assembly for superior CO2 photoreduction
JP2016034904A (en) Mixed valence binuclear copper complex and production method for converting methane into methanol with the same
KR101352015B1 (en) Organometal/polymer composite and preparing method of the same, and catalyst for reducing carbon dioxide including the same
JP2013159568A (en) Dinuclear molybdenum complex, method of synthesizing the same, and ammonia synthesis method
Tang et al. Effect of ligand modification on hydrogen production catalyzed by iron (III) complexes supported by amine-bis (phenolate) ligands
Guo et al. A2B corrole with a meso-[PtII (bipy) Cl2]-substituent: Synthesis, electronic structure and highly efficient electrocatalyzed hydrogen evolutions
Xia et al. Dithia [3.3] paracyclophane-bridged bimetallic ruthenium acetylide complexes: synthesis, structures and influence of transannular π–π interactions on their electronic properties
Machan et al. Plasticity of the nickel (II) coordination environment in complexes with hemilabile phosphino thioether ligands
Jevtovic et al. Hydrogen Evolution Reaction Performance of Co (II) and Co (III) Complexes Based on pyridoxal (thio) semicarbazones.
CN114478648A (en) Pyridine-like pyrrole ruthenium complex, preparation method thereof and application of complex as electrocatalytic ammonia oxidation catalyst