JP6538476B2 - Method for producing siloxane compound and gold catalyst used therefor - Google Patents

Method for producing siloxane compound and gold catalyst used therefor Download PDF

Info

Publication number
JP6538476B2
JP6538476B2 JP2015160533A JP2015160533A JP6538476B2 JP 6538476 B2 JP6538476 B2 JP 6538476B2 JP 2015160533 A JP2015160533 A JP 2015160533A JP 2015160533 A JP2015160533 A JP 2015160533A JP 6538476 B2 JP6538476 B2 JP 6538476B2
Authority
JP
Japan
Prior art keywords
gold
catalyst
siloxane compound
supported
carbon support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015160533A
Other languages
Japanese (ja)
Other versions
JP2017039648A (en
Inventor
善成 澤間
善成 澤間
泰也 門口
泰也 門口
弘尚 佐治木
弘尚 佐治木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Original Assignee
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp filed Critical NE Chemcat Corp
Priority to JP2015160533A priority Critical patent/JP6538476B2/en
Publication of JP2017039648A publication Critical patent/JP2017039648A/en
Application granted granted Critical
Publication of JP6538476B2 publication Critical patent/JP6538476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、触媒としてカ−ボン担体に担持した金の微粒子と溶媒と酸化剤としての水を使用し、不活性ガス雰囲気中、室温下でシラン化合物からシロキサン化合物を高効率で合成することができるもので、安全性が高く、環境負荷も少ない触媒反応技術に関するものである。   The present invention uses a fine particle of gold supported on a carbon carrier as a catalyst, a solvent, and water as an oxidizing agent to synthesize a siloxane compound from a silane compound at a high efficiency under an inert gas atmosphere at room temperature. It relates to catalytic reaction technology that can be done with high safety and low environmental impact.

かねてシラン化合物からシロキサン化合物を合成する触媒反応には様々な手法が検討されてきている。それらの触媒反応としては、均一系の触媒を使用する例や、不均一触媒を使用する例がある。均一触媒を使用した例としては反応溶媒として安全で安価な水を使用した非特許文献1のようなものが知られている。しかし、均一系の触媒を使用した場合には、触媒反応系からの触媒成分の分離が困難である。また、反応系から触媒を分離する際、触媒の構造が変わってしまうことがあり、触媒の再利用が難しく、特に均一系触媒として貴金属成分を含む触媒を使用した場合には、再利用が難しいことは製造コストの高騰を招くことになる。また目的とするシロキサン化合物の収率も低いものであった。   Various methods have been considered for the catalytic reaction for synthesizing a siloxane compound from a silane compound. Examples of such catalytic reactions include an example of using a homogeneous catalyst and an example of using a heterogeneous catalyst. As an example using a homogeneous catalyst, there is known one as described in Non-Patent Document 1 in which safe and inexpensive water is used as a reaction solvent. However, when a homogeneous catalyst is used, it is difficult to separate the catalyst component from the catalytic reaction system. In addition, when separating the catalyst from the reaction system, the structure of the catalyst may change, which makes it difficult to reuse the catalyst, particularly when using a catalyst containing a noble metal component as a homogeneous catalyst. Incurs soaring manufacturing costs. Moreover, the yield of the target siloxane compound was also low.

一方、不均一系触媒を使用してシラン化合物からシロキサン化合物を合成する例としては、触媒としての金属パラジウムを使用した反応が知られている(非特許文献2、非特許文献3)。非特許文献3では金属パラジウムと共に水も使用している。このように不均一系触媒を使用した場合の触媒は、濾過により反応系からの分離可能であり、再利用も容易である。しかし、従来の不均一系触媒を使用した反応例では、反応には毒性や引火が懸念される溶剤を使用する場合もあり、環境面、安全面で産業として利用するには問題があった。また、収率についても未だ満足の行く結果は得られていなかった。   On the other hand, as an example of synthesizing a siloxane compound from a silane compound using a heterogeneous catalyst, a reaction using metal palladium as a catalyst is known (Non-Patent Document 2, Non-Patent Document 3). In Non-Patent Document 3, water is also used together with metallic palladium. Thus, the catalyst in the case of using a heterogeneous catalyst is separable from the reaction system by filtration and is easy to reuse. However, in the reaction example using the conventional heterogeneous catalyst, there are also cases where solvents that may cause toxicity or ignition are used for the reaction, and there have been problems in industrial use from the environmental aspect and safety aspect. In addition, satisfactory results have not yet been obtained.

近年、触媒活性種として金が注目されている。かつて金は化学的に不活性であり、触媒としては不向きな金属であると言われていたが、直径が2〜5nmの非常に小さなナノ粒子になると、常温での有害物質の酸化分解、選択的な酸素酸化や水素化による化成品の合成など、化学プロセスにおいて触媒として利用可能であることが近年知られるようになってきている。(特許文献1)このような金触媒は、酸化触媒がその主な用途として実施されている。   In recent years, gold has attracted attention as a catalytically active species. Gold was once said to be chemically inert and unsuitable as a catalyst, but when it comes to very small nanoparticles with a diameter of 2 to 5 nm, oxidative decomposition of harmful substances at room temperature, In recent years, it has become known that the catalyst can be used as a catalyst in chemical processes, such as the synthesis of chemical products by selective oxygen oxidation and hydrogenation. (Patent Document 1) As such a gold catalyst, an oxidation catalyst is implemented as its main use.

特開平09−122478号公報Unexamined-Japanese-Patent No. 09-122478 gazette

Organic Letters, (2012), 14(10), 2642−2645.Organic Letters, (2012), 14 (10), 2642-2645. Journal of the American Chemical Society, (2013), 135(42), 15714−15717.Journal of the American Chemical Society, (2013), 135 (42), 15714-15717. ChemCatChem, (2012), 4(4), 521−524.ChemCatChem, (2012), 4 (4), 521-524.

本発明は、触媒反応を使用して、安全で環境負荷の少ない条件の元、シラン化合物からシロキサン化合物を高い効率で合成する技術を提供することを目的とする。   An object of the present invention is to provide a technology for synthesizing a siloxane compound from a silane compound with high efficiency under a safe and low environmental load condition using a catalytic reaction.

本発明者らは、上記課題を解決するために鋭意研究した結果、意外にもこれまで酸化触媒としての用途を主に検討されてきた金触媒が、水の存在下でシラン化合物からシロキサン化合物を高い効率で合成できることを見出し、本発明を完成させた。また、従来知られていたものよりも大きい結晶子サイズの金粒子を炭素担体に担持した金触媒でも上記合成反応がすすむことを見出し、本発明を完成させた。   As a result of intensive studies to solve the above-mentioned problems, the present inventors surprisingly found that the gold catalyst, which has been mainly examined so far for use as an oxidation catalyst, unexpectedly contains siloxane compounds from silane compounds in the presence of water. They found that they could be synthesized with high efficiency, and completed the present invention. The present invention has also been completed by finding that the above synthesis reaction proceeds even with a gold catalyst in which gold particles of crystallite size larger than those hitherto known are supported on a carbon carrier.

すなわち、本発明は、不活性ガス雰囲気中で、水を溶媒として、炭素担体にナノサイズの金粒子を担持した金触媒にシラン化合物を接触させることを特徴とするシロキサン化合物の製造方法である。   That is, the present invention is a method for producing a siloxane compound, characterized in that a silane compound is brought into contact with a gold catalyst having nano-sized gold particles supported on a carbon support using water as a solvent in an inert gas atmosphere.

また、本発明は、炭素担体にナノサイズの金粒子を担持した金触媒であって、結晶子サイズが10〜100nmの金粒子であることを特徴とする金触媒である。   The present invention is also a gold catalyst in which nanosized gold particles are supported on a carbon carrier, and is a gold particle characterized in that the crystallite size is 10 to 100 nm.

本発明によれば、炭素担体にナノサイズの金を担持した金触媒を使用することで、溶媒として安全かつ安価で、酸化剤としての機能も併せ持つ水を使用しても短時間で高収率にシラン化合物からシロキサン化合物を得ることができる。   According to the present invention, by using a gold catalyst in which nanosized gold is supported on a carbon support, it is safe and inexpensive as a solvent, and high yield can be obtained in a short time even using water having a function as an oxidizing agent. A siloxane compound can be obtained from a silane compound.

加えて、今まで触媒としての活性があると知られていなかった大きい金の結晶子サイズを有する金粒子を炭素担体に担持した金触媒を触媒に利用できる。   In addition, it is possible to use a gold catalyst supported on a carbon support with gold particles having a large gold crystallite size which has not been known to have activity as a catalyst until now.

本発明のシロキサン化合物の製造方法(以下、「本発明方法」という)に使用される触媒は、炭素(C)担体にナノサイズの金(Au)粒子を担持した金触媒(以下、「Au/C」ということもある)である。   The catalyst used in the method for producing a siloxane compound of the present invention (hereinafter referred to as "the present method") is a gold catalyst (hereinafter referred to as "Au /") in which nanosized gold (Au) particles are supported on a carbon (C) carrier. C)).

従来より、2〜5nmの非常に小さなナノサイズの金粒子を担持した触媒には酸化触媒としての活性があることが知られているが、このような触媒がフェニルシランからのカップリングでジシロキサンを合成することは知られていない。また、10nmを超えるようなサイズの金粒子を担持した触媒は、そもそも触媒としての活性がないと言われていたものである。   Conventionally, it is known that a catalyst supporting very small nano-sized gold particles of 2 to 5 nm has activity as an oxidation catalyst, but such catalyst is disiloxane by coupling from phenylsilane It is not known to synthesize. Further, a catalyst carrying gold particles of a size of more than 10 nm was originally said to have no activity as a catalyst.

本発明方法では、炭素担体にいかなるナノサイズの金粒子を担持したAu/Cであっても、特に制限なく使用することができるが、金粒子の結晶子サイズは、例えば、1〜100nm、好ましくは10〜100nmである。なお、結晶子サイズと粒子径の定義は技術分野毎に定義が異なる場合もあるようであるが、一般に触媒技術の分野では、結晶子サイズは粒子を構成する単結晶の大きさのことを言い、このような単結晶を最小単位として構成される粒子を粒子径という。換言すれば、Au/Cにおける金粒子は1以上の金結晶子の集合であり、金結晶子サイズの大きさは必ず金粒子径以下である。例えば、後述する実施例のように、金結晶子サイズが31.6nmということは、粒子径は必ずそれ以上の大きさであるといえる。なお、金結晶子サイズは、X線回折で測定される結果から、シェラーの式(Scherrer equation)で導かれる値のことをいう。   In the method of the present invention, Au / C having any nanosized gold particle supported on a carbon support can be used without particular limitation, but the crystallite size of the gold particle is, for example, 1 to 100 nm, preferably Is 10 to 100 nm. The definition of crystallite size and particle size may differ depending on the technical field, but in general, in the field of catalyst technology, the crystallite size refers to the size of the single crystal constituting the particle. A particle composed of such a single crystal as a minimum unit is called a particle diameter. In other words, the gold particles in Au / C are a set of one or more gold crystallites, and the size of the gold crystallite size is necessarily equal to or less than the gold particle size. For example, as in the example described later, when the gold crystallite size is 31.6 nm, it can be said that the particle diameter is necessarily larger than that. The gold crystallite size refers to the value derived from the Scherrer equation from the results measured by X-ray diffraction.

本発明方法で使用されるAu/Cに使用される炭素担体は、特に限定されるものではないが、大きな比表面積値(BET値)を有する炭素担体であることが好ましく、例えば、BET値が500〜2500m/gの炭素担体、好ましくは700〜1500m/gの炭素担体である。このBET値が小さ過ぎる炭素担体を使用した場合、比表面積値が小さすぎると金の分散性が低下してしまい反応性が低下してしまうことがあることや、後述する触媒の製造工程においては、ナノサイズの金粒子を得ることが難しくなることがある。また、理由は定かではないが、比表面積値が大きすぎても、本発明方法では反応性が低下することがある。なお、BET値は、窒素を固体表面に吸着させて、その吸着量から固体の比表面積を測定するものであり、比表面積測定装置やガス吸着装置を用いてで測定されるものである。 The carbon support used for Au / C used in the method of the present invention is not particularly limited, but is preferably a carbon support having a large specific surface area (BET), for example, a BET 500 to 2500 m 2 / g carbon support, preferably 700 to 1500 m 2 / g carbon support. When a carbon support having an excessively small BET value is used, if the specific surface area value is too small, the dispersibility of gold may be reduced and the reactivity may be reduced, or in the process for producing a catalyst described later. It may be difficult to obtain nano-sized gold particles. Although the reason is not clear, the reactivity may be lowered in the method of the present invention even if the specific surface area is too large. In addition, BET value makes nitrogen adsorb to a solid surface, measures the specific surface area of a solid from the amount of adsorption, and is measured using a specific surface area measuring device or a gas adsorption device.

また、上記炭素担体の粒子径は、特に限定されるものではないが、例えば、全炭素粒子の50%以上の粒子径の分布(50%粒度分布)が1〜500μmの範囲に含まれることが好ましく、5〜100μmの範囲に含まれることがより好ましい。50%粒度分布が小さすぎると反応後の触媒の分離が困難になり触媒の再利用が難しくなることがある。50%粒度分布の粒子径が大きすぎると、単位体積あたりのAu/Cの表面積が小さくなり、触媒の活性が低下することがある。なお、50%粒度分布はレーザー回折法により測定される。これは粒子に単色レーザーを照射すると、粒子の大きさに応じて回折光・散乱光が発生するので、それらの光の回折・散乱強度分布を解析して粒子径分布を求めるものであり、粒度分布測定装置を用いて測定される。   Further, the particle diameter of the carbon support is not particularly limited, but for example, the distribution (50% particle size distribution) of the particle diameter of 50% or more of all carbon particles is included in the range of 1 to 500 μm. Preferably, it is more preferably contained in the range of 5 to 100 μm. If the 50% particle size distribution is too small, separation of the catalyst after the reaction may be difficult and recycling of the catalyst may be difficult. If the particle size of the 50% particle size distribution is too large, the surface area of Au / C per unit volume may be small, and the activity of the catalyst may be reduced. The 50% particle size distribution is measured by a laser diffraction method. This is because when a particle is irradiated with a monochromatic laser, diffracted light and scattered light are generated according to the size of the particle, so the particle size distribution is determined by analyzing the diffraction and scattering intensity distribution of the light, particle size It measures using a distribution measuring device.

このような炭素担体としては、活性炭、カーボンナノチューブ、グラファイト、グラフェン等が挙げられるが、入手のし易さ、BET値、粒径の選択の幅の広さなど物性値の選択性の広さから活性炭を使用することが好ましい。また、活性炭の由来としては、特に限定されず、例えば、大鋸粉、椰子殻等の植物原料由来のものや、炭化水素等の石油原料由来のもの等が挙げられる。   Examples of such a carbon support include activated carbon, carbon nanotubes, graphite, graphene and the like, but from the wide range of physical property values such as availability, BET value, breadth of selection of particle size, etc. It is preferred to use activated carbon. Moreover, as origin of activated carbon, it does not specifically limit, For example, the thing derived from plant raw materials, such as large saw powder and coconut shell, The thing derived from petroleum raw materials, such as a hydrocarbon, etc. are mentioned.

なお、上記炭素担体は、炭素以外の成分を含んでいてもよいが、その成分や含有量は触媒の活性を阻害しないことが好ましい。このような成分としては、例えば、水素や酸素、またケイ素やアルミニウム等は触媒活性への影響は限定的であり、後述するアルカリ金属、アルカリ土類金属、また硫黄などは触媒活性を阻害することがあるため含まないか、その含有用を低減させることが望ましい。   In addition, although the said carbon support may contain components other than carbon, it is preferable that the component and content do not inhibit the activity of a catalyst. As such components, for example, hydrogen, oxygen, silicon, aluminum and the like have limited effect on the catalyst activity, and alkali metals, alkaline earth metals, and sulfur described later inhibit the catalyst activity. It is desirable not to include it or to reduce its content.

また、上記炭素担体には、触媒の活性を阻害する恐れがある成分、例えば、ナトリウム(Na)、硫黄(S)、マグネシウム(Mg)、カルシウム(Ca)等を含まないことが好ましい。特にナトリウム等のアルカリ成分は、例えば、炭素担体中に、元素換算で0.2wt%以下とすることが好ましく、0.1wt%以下とすることがより好ましい。炭素担体からアルカリ成分を減少させるには70〜80℃の純水で洗浄等の操作を、必要に応じて、1回〜複数回行えばよい。   In addition, it is preferable that the carbon support does not contain components that may inhibit the activity of the catalyst, such as sodium (Na), sulfur (S), magnesium (Mg), calcium (Ca) and the like. In particular, the alkali component such as sodium is, for example, preferably 0.2 wt% or less in terms of element in the carbon support, and more preferably 0.1 wt% or less. In order to reduce the alkali component from the carbon carrier, the operation such as washing with pure water at 70 to 80 ° C. may be performed once to a plurality of times as necessary.

本発明方法で使用されるAu/Cに担持される金の量は、特に限定されないが、例えば、炭素担体に対する金属換算で1〜20wt%、好ましくは2〜15wt%、より好ましくは5〜15wt%である。活性種としてある程度以上の量の金を含有することで収率の向上が期待でき、金の含有量がある程度以下とすることで金の分散性を高く維持し、Au/Cにおける活性の向上が期待できる。金は白金やパラジウムに比べて安定で所謂メタルの状態を保ち易い。このような金の含有量を制限することで、Au/Cのような触媒の製造過程や反応工程において金同士の凝集を抑制し、高い分散性を維持することが可能になる。   The amount of gold supported on Au / C used in the method of the present invention is not particularly limited, but is, for example, 1 to 20 wt%, preferably 2 to 15 wt%, more preferably 5 to 15 wt% in terms of metal relative to the carbon support. %. The yield can be expected to be improved by containing a certain amount or more of gold as the active species, and by keeping the gold content to a certain extent or less, the dispersibility of gold is maintained high and the activity in Au / C is improved. I can expect it. Gold is more stable than platinum and palladium, and can easily maintain a so-called metal state. By limiting the content of such gold, it is possible to suppress aggregation of the gold in the production process or reaction process of the catalyst such as Au / C, and to maintain high dispersibility.

本発明方法に使用するAu/C触媒のうち、例えば、結晶子サイズが1〜10nm未満のものは、例えば、エヌ・イ− ケムキャット社からはK−Typeとして、ハルタゴ−ルド社からはRRとして市販されているものや、例えば、特開2009−240951号公報の実施例8等に記載の方法で調製したものでもよい。   Among the Au / C catalysts used in the method of the present invention, those having a crystallite size of, for example, 1 to 10 nm or less are, for example, K-Type from N. Chemcat, and RR from Haltagord. What is marketed, for example, may be prepared by the method described in Example 8 of JP-A-2009-240951.

一方、本発明方法に使用するAu/C触媒のうち、例えば、結晶子サイズが10〜100nmのものは、以下のようにして調製することができる。   On the other hand, among the Au / C catalysts used in the method of the present invention, for example, those having a crystallite size of 10 to 100 nm can be prepared as follows.

まず、金塩が可溶な溶媒にあらかじめ炭素担体を懸濁させた懸濁液を用意する。この懸濁液とは別に、金塩が溶解した金塩溶液を用意する。この懸濁液と金塩溶液を混合し、炭素担体に金を固定化する。このように炭素担体に担持した金を適当な溶媒で洗浄することで、結晶子サイズが10〜100nmのAu/Cを得ることができる。   First, a suspension in which a carbon carrier is suspended in a solvent in which a gold salt is soluble is prepared. Separately from this suspension, a gold salt solution in which a gold salt is dissolved is prepared. The suspension and gold salt solution are mixed, and gold is immobilized on a carbon carrier. Thus, Au / C having a crystallite size of 10 to 100 nm can be obtained by washing the gold supported on the carbon support with a suitable solvent.

上記で使用される金塩としては、塩化金酸、テトラブロモ金(III)酸、テトラブロモ金(III)酸ナトリウム、テトラブロモ金(III)酸カリウム、ジシアノ金(I)酸カリウム、 ジシアノ金(I)酸アンモニウム、ジシアノ金(I)酸ナトリウム、テトラシアノ金(III)酸カリウム、 テトラシアノ金(III)酸ナトリウム、テトラシアノ金(III)酸アンモニウム、酢酸金(III)、硝酸金(III)、ビス(エチレンジアミン)金(III)酸塩化物等が挙げられ、実施においてもこのような選択肢の中から、担体や還元条件等との相性で適宜選択すればよいが、塩化金酸であれば入手も比較的容易である。   As a gold salt used above, chloroauric acid, tetrabromoaurate (III) acid, sodium tetrabromoaurate (III), potassium tetrabromoaurate (III), potassium dicyanoaurate (I), dicyanoaurate (I) Ammonium phosphate, sodium dicyanogold (I), potassium tetracyanogold (III), sodium tetracyanogold (III), ammonium tetracyanogold (III), gold (III) acetate, gold (III) nitrate, bis (ethylenediamine) ) Gold (III) acid chloride etc. may be mentioned, and it may be appropriately selected from the above options in view of compatibility with the carrier, reducing conditions etc. It is easy.

上記で使用される金塩が可溶な溶媒としては、水、メタノ−ル、エタノ−ル、酢酸、ジメチルホルムアミド、ジメチルアセトアミド、エチレングリコール、グリセリン等が使用可能であるが、取扱いの容易さから水を使用する事が好ましく、使用する金塩も水に可溶なものを使用することが好ましい。   As the solvent in which the gold salt used is soluble, water, methanol, ethanol, acetic acid, dimethylformamide, dimethylacetamide, ethylene glycol, glycerin and the like can be used, but it is easy to handle. It is preferable to use water, and it is preferable to use a gold salt that is soluble in water.

上記溶媒に、炭素担体を懸濁させる方法は、溶媒と炭素担体を混合攪拌して懸濁させればよいが、必要に応じて、ステアリン酸ナトリウム、オレイン酸ナトリウム、セチルトリメチルアンモニウム臭化物等の界面活性剤や、炭酸水素ナトリウム、炭酸ナトリウム、メタホウ酸ナトリウム、四ホウ酸ナトリウム、クエン酸一ナトリウム、クエン酸二ナトリウム等のpH調整剤を用いてもよい。   The carbon carrier may be suspended in the above solvent by mixing and stirring the solvent and the carbon carrier, but if necessary, the interface of sodium stearate, sodium oleate, cetyltrimethyl ammonium bromide, etc. Activators and pH adjusters such as sodium hydrogencarbonate, sodium carbonate, sodium metaborate, sodium tetraborate, monosodium citrate and disodium citrate may be used.

金塩が溶解した溶液は、前記溶媒の中から溶解可能な溶媒を適宜選択して金塩を溶解すればよい。   The solution in which the gold salt is dissolved may be selected appropriately from among the above solvents to dissolve the gold salt.

上記懸濁液と金塩溶液を混合して炭素担体に金を固定化する方法は、特に限定されないが、例えば、この混合溶液に後述する還元剤を加えて固定化すればよい。   Although the method of mixing the said suspension and a gold salt solution and immobilizing gold on a carbon support is not particularly limited, for example, a reducing agent described later may be added to this mixed solution to immobilize.

固定化に用いられる還元剤としては、水素化ホウ素ナトリウム、ギ酸ナトリウム、ギ酸、ホルムアルデヒド、シュウ酸、シュウ酸ナトリウム、ヒドラジン水和物、ヒドラジン塩酸塩、ヒドロキシルアミン、過酸化水素、アスコルビン酸、アスコルビン酸ナトリウム、クエン酸、リンゴ酸、酒石酸などが挙げられる。なお、この還元の際には、必要により混合溶液のpHを、従来公知のpH調整剤を用いて調整してもよい。例えば、還元剤として水素化ホウ素ナトリウムを使用する際は、水素化ホウ素ナトリウムの水溶液中での分解を防ぐためにpH調整剤である苛性ソーダを用いてpHを高くしておくことが好ましい。   As a reducing agent used for immobilization, sodium borohydride, sodium formate, formic acid, formaldehyde, oxalic acid, sodium oxalate, hydrazine hydrate, hydrazine hydrochloride, hydroxylamine, hydrogen peroxide, hydrogen peroxide, ascorbic acid, ascorbic acid Sodium, citric acid, malic acid, tartaric acid and the like can be mentioned. In the reduction, if necessary, the pH of the mixed solution may be adjusted using a conventionally known pH adjuster. For example, when using sodium borohydride as a reducing agent, in order to prevent the decomposition | disassembly in the aqueous solution of sodium borohydride, it is preferable to make pH high using the sodium hydroxide which is a pH adjuster.

炭素担体に担持した金を洗浄するのに用いられる溶媒は70〜80℃の温純水を使用することが望ましい。洗浄方法は特に限定されるものでは無く、温純水との混合、攪拌、濾過を繰り返してもよいし、濾過装置中で通水洗浄してもよい。   As a solvent used to wash gold supported on a carbon carrier, it is desirable to use hot pure water of 70 to 80 ° C. The washing method is not particularly limited, and mixing with warm pure water, stirring, filtration may be repeated, or washing with water may be performed in a filtration device.

洗浄後には、適宜、乾燥等を行ってもよい。乾燥する場合の条件は特に限定されず、溶媒として水を用いた場合であれば、例えば、大気中90〜110℃で、所定の水分量になるまで乾燥させればよい。   After washing, drying etc. may be performed as appropriate. The conditions in the case of drying are not particularly limited, and in the case of using water as a solvent, for example, drying may be performed at 90 to 110 ° C. in the atmosphere until the predetermined water content is achieved.

本発明のAu/Cは、耐久性が高く、複数回再利用することができる。   The Au / C of the present invention is highly durable and can be reused multiple times.

なお、結晶子サイズが10〜100nmのAu/CはX線回折等の測定により、生成されたことを確認することができる。   In addition, it can be confirmed that the Au / C having a crystallite size of 10 to 100 nm is generated by measurement of X-ray diffraction or the like.

本発明方法において基質となるシラン化合物は、特に限定されず、例えば、アリールシラン、アルキルシラン等のシラン化合物を挙げることができる。これらのシラン化合物の中でもアリールシランが好ましく、特に下記式(1)によって表されるフェニルシランが好ましい。

Figure 0006538476
The silane compound to be a substrate in the method of the present invention is not particularly limited, and examples thereof include silane compounds such as arylsilanes and alkylsilanes. Among these silane compounds, arylsilanes are preferred, and phenylsilane represented by the following formula (1) is particularly preferred.
Figure 0006538476

ここでRは置換基を有していてもよいフェニル基を表し、RおよびRはそれぞれ独立して水素、炭素数1〜3のアルキル基、または置換基を有していてもよいフェニル基を表す。なお、RおよびRの置換基は嵩の低いものが望ましく、炭素数5以下のものが好ましく、炭素数2以下のものがより好ましい。また、このような置換基は直鎖であることが好ましい。 Here, R 1 represents a phenyl group which may have a substituent, and R 2 and R 3 may each independently have hydrogen, an alkyl group having 1 to 3 carbon atoms, or a substituent. Represents a phenyl group. Incidentally, the substituents R 2 and R 3 are as desirably low bulk, preferably those having 5 or less carbon atoms, more preferably of 2 or less carbon atoms. In addition, such a substituent is preferably linear.

このようなフェニルシランとしては、具体的に、ジメチルフェニルシラン、ジメチル(4−メトキシフェニル)シラン、ジメチル(4−メチルフェニル)シラン、ジメチル(4−フルオロフェニル)シラン、ジメチル(4−ブロモフェニル)シラン、ジメチル(4−クロロフェニル)シラン、ジメチル(4−トリフルオロメチルフェニル)シラン、ジメチル(4−tertブチルジメチルシロキシメチルフェニル)シラン、ジエチルフェニルシラン、ジ−n−ブチルフェニルシラン、ジメチル−(2−メトキシフェニル)シラン、ジメチル−(2−フルオロフェニル)シラン、ジメチル−(2−ブロモフェニル)シラン、ジメチル−(2−クロロフェニル)シラン、ジメチル−(3−メトキシフェニル)シラン、ジメチル−(2−フロロフェニル)シラン、ジメチル−(3−ブロモフェニル)シラン、ジメチル−(2−クロロフェニル)シラン、等が挙げられる。   Specific examples of such phenylsilanes include dimethylphenylsilane, dimethyl (4-methoxyphenyl) silane, dimethyl (4-methylphenyl) silane, dimethyl (4-fluorophenyl) silane and dimethyl (4-bromophenyl). Silane, dimethyl (4-chlorophenyl) silane, dimethyl (4-trifluoromethylphenyl) silane, dimethyl (4-tertbutyldimethylsiloxymethylphenyl) silane, diethylphenylsilane, di-n-butylphenylsilane, dimethyl- (2 -Methoxyphenyl) silane, dimethyl- (2-fluorophenyl) silane, dimethyl- (2-bromophenyl) silane, dimethyl- (2-chlorophenyl) silane, dimethyl- (3-methoxyphenyl) silane, dimethyl- (2-) Florofe Le) silane, dimethyl - (3-bromophenyl) silane, dimethyl - (2-chlorophenyl) silane, and the like.

本発明方法は、不活性ガス雰囲気中で、水を溶媒として、Au/Cに、上記したシラン化合物を接触させることにより、シラン化合物がカップリングしてシロキサン結合を有するシロキサン化合物が得られる。   In the method of the present invention, by bringing the above-described silane compound into contact with Au / C using water as a solvent in an inert gas atmosphere, the silane compound is coupled to obtain a siloxane compound having a siloxane bond.

具体的に、シラン化合物が、上記式(1)で表されるフェニルシランであれば、シロキサン化合物として下記式(2)によって表されるジシロキサンが得られる。   Specifically, when the silane compound is a phenylsilane represented by the above formula (1), a disiloxane represented by the following formula (2) can be obtained as a siloxane compound.

Figure 0006538476
Figure 0006538476

式中、R、R、Rは式(1)と同じ基を表す。 In formula, R < 1 >, R < 2 >, R < 3 > represents the same group as Formula (1).

なお、シラン化合物が嵩の低い置換基を有するアルキルシラン、例えば、トリエチルシラン等であれば、シロキサン化合物として、ジシロキサンだけでなく、トリシロキサンも得られる。   When the silane compound is an alkylsilane having a low bulky substituent, such as triethylsilane, not only disiloxane but also trisiloxane can be obtained as a siloxane compound.

本発明方法において使用される不活性ガスとしてはアルゴンガスが挙げられるが、窒素ガスもしくはアルゴンガスと窒素ガスとの混合ガスを使用してもよい。   The inert gas used in the method of the present invention includes argon gas, but nitrogen gas or a mixed gas of argon gas and nitrogen gas may be used.

そして、本発明方法はこのような不活性ガス雰囲気中、シラン化合物をAu/Cに接触させることにより、優れた選択率でシロキサン化合物を得ることができ、条件によっては90%以上の選択率でシロキサン化合物を得ることができる。なお、シラン化合物をAu/Cに接触させる方法は特に限定されず、例えば、大気圧の下、20℃程度の室温という極めて穏やかな条件下で攪拌すればよい。なお、これらの条件は、反応時間の短縮や、反応が進み難い基質を使用する場合には、昇温昇圧等、反応条件については適宜変更すべき場合があることは言うまでもない。   Then, the method of the present invention can obtain a siloxane compound with excellent selectivity by contacting the silane compound with Au / C in such an inert gas atmosphere, and depending on the conditions, the selectivity is 90% or more. Siloxane compounds can be obtained. The method of bringing the silane compound into contact with Au / C is not particularly limited, and for example, stirring may be performed under extremely mild conditions such as room temperature of about 20 ° C. under atmospheric pressure. It is needless to say that the reaction conditions, such as temperature increase and pressure increase, may have to be suitably changed in the case where the reaction time is shortened, or when a substrate in which the reaction is difficult to proceed is used.

本発明方法において使用される触媒の量は、基質となるシラン化合物の種類や他の反応条件により適宜設定されるものであるが、例えば、基質の物質量に対して金の量が0.5〜50mol%であることが好ましく、2〜10mol%であることがより好ましい。基質に対する金の量が0.3mol%以上であれば反応は良好に促進し、50mol%以下であれば触媒量の増量に伴う反応時間の短縮などが期待できる。また、炭素担体における金の量としては、1〜20wt%、好ましくは2〜15wt%、より望ましくは5〜15wt% である金の量が1wt%以上であれば反応は良好に促進し、20wt%以下であれば、担体における金の分散性も良好に保たれシンタリングの影響も少なく、活性種の増量に伴う反応時間の短縮なども期待できる。   The amount of catalyst used in the method of the present invention is appropriately set according to the type of silane compound as the substrate and other reaction conditions, and for example, the amount of gold is 0.5 with respect to the amount of substance of the substrate. It is preferable that it is -50 mol%, and it is more preferable that it is 2-10 mol%. If the amount of gold relative to the substrate is 0.3 mol% or more, the reaction is favorably promoted, and if it is 50 mol% or less, shortening of the reaction time accompanying increase in the amount of catalyst can be expected. In addition, the amount of gold in the carbon support is 1 to 20 wt%, preferably 2 to 15 wt%, and more preferably 5 to 15 wt%. If the amount is less than 10%, the dispersibility of gold in the carrier can be well maintained, the influence of sintering is small, and shortening of the reaction time accompanying the increase of active species can be expected.

本発明方法において使用される溶媒は、水であるが、必要に応じて適宜有機溶媒を混合してもよい。このような有機溶媒は特に限定されるものではなく、例えば、メタノ−ル、エタノ−ル等のアルコール系、酢酸、テトラヒドロフラン等が挙げられるが、副生物の生成を抑制するためにはアルコール系以外の溶媒を使用することが好ましい。なお、特にこのような混合溶媒を使用する必要がない場合には、反応に使用される溶媒は水のみであることがコスト面、安全面の点から好ましいことは言うまでもない。なお、本発明方法においては、水は酸化剤としても作用する。   The solvent used in the method of the present invention is water, but if necessary, an organic solvent may be mixed as appropriate. Such an organic solvent is not particularly limited, and examples thereof include alcohols such as methanol and ethanol, acetic acid, tetrahydrofuran and the like, but in order to suppress the formation of by-products, other than alcohols It is preferred to use a solvent of It is needless to say that it is preferable from the viewpoints of cost and safety that the solvent used for the reaction is only water unless it is necessary to use such a mixed solvent. In the method of the present invention, water also acts as an oxidant.

なお、本発明方法でシロキサン化合物を得た後は、適宜、分離、精製、乾燥等を行ってもよい。   After the siloxane compound is obtained by the method of the present invention, separation, purification, drying and the like may be appropriately performed.

以上説明した、本発明方法は、安全性、経済性共に優れ、条件によっては90%を超える高収率でシラン化合物からシロキサン化合物を製造することができる。   The method of the present invention as described above is excellent in both safety and economy, and depending on the conditions, it is possible to produce a siloxane compound from a silane compound with a high yield of over 90%.

以下本発明の実施例について記すが、本発明は以下の実施例に限定されるものではなく、本発明の趣旨の範囲で広く実施可能であることは言うまでもない。   Examples of the present invention will be described below, but it is needless to say that the present invention is not limited to the following examples, and can be widely practiced within the scope of the present invention.

製 造 例 1
触媒の調製:
純水2,000mlと平均粒子径20〜30μm、比表面積値1,000〜1,200m/gの活性炭担体180gを10Lのビーカーで攪拌した。なお、ここで使用した活性炭担体は担体1gあたり134mlの純水による通水洗浄を行い、担体中の含有Na量は、Na元素換算で0.06wt%に低減させた。この炭素担体−水からなるスラリーに、金換算で20gの塩化金酸(HAuCl)を含む塩化金酸水溶液1,800mlを加え更に攪拌した。この金成分を含む炭素担体−水からなるスラリーに、水素化ホウ素ナトリウム(NaBH)と水酸化ナトリウムを含む水溶液を加えて攪拌することで塩化金酸を還元し、静置、濾過、繰り返し純水洗浄を行い、含有するナトリウムを除去することで本発明の実施例に使用する金担持量10wt%のAu/C触媒を得た。
Production example 1
Catalyst Preparation:
In a 10 L beaker, the pure water 2,000 ml and an activated carbon carrier 180 g having an average particle diameter of 20 to 30 μm and a specific surface area of 1,000 to 1,200 m 2 / g were stirred. The activated carbon carrier used here was washed by passing through water with 134 ml of pure water per 1 g of the carrier, and the amount of Na contained in the carrier was reduced to 0.06 wt% in terms of Na element. To the slurry of the carbon carrier-water, 1,800 ml of an aqueous solution of chloroauric acid containing 20 g of chloroauric acid (HAuCl 4 ) in terms of gold was added and further stirred. An aqueous solution containing sodium borohydride (NaBH 4 ) and sodium hydroxide is added to a slurry consisting of a carbon support-water containing this gold component and stirred to reduce chloroauric acid by stirring, standing, filtration, repeated pure water Water washing was carried out to remove sodium contained to obtain an Au / C catalyst with a 10 wt% gold loading amount used in the example of the present invention.

このようにして得られた10wt%Au/Cについて、XRD(X線回折:X−ray diffraction)により結晶サイズを測定したところ、結晶サイズは31.6nmであった。他のデータと共に以下に物性を記す。
・金担持量:10wt%
・金結晶子サイズ:31.6nm
・担体比表面積値:1,000〜1,200m/g
・元素換算のナトリウム含有量:0.06wt%
When crystal size was measured by XRD (X-ray diffraction: X-ray diffraction) about 10 wt% Au / C obtained in this way, crystal size was 31.6 nm. Physical properties are described below along with other data.
・ Gold loading: 10 wt%
・ Gold crystallite size: 31.6 nm
Carrier specific surface area: 1,000 to 1,200 m 2 / g
-Elemental equivalent sodium content: 0.06 wt%

製 造 例 2
触媒の調製:
椰子殻炭担体について実施例用触媒1のような通水洗浄を行わず、他は実施例触媒1と同様の方法ではAu/C触媒を得た。担体中のナトリウム含量は、ナトリウム元素換算で0.32wt%であった。その他の物性は、製造例1で調製したものとほぼ同様であった。
Production example 2
Catalyst Preparation:
In the same manner as in Example catalyst 1 except that washing with water as in Example catalyst 1 was not performed on the coconut shell charcoal carrier, an Au / C catalyst was obtained. The sodium content in the carrier was 0.32 wt% in terms of sodium element. Other physical properties were almost the same as those prepared in Production Example 1.

実 施 例 1
ジシロキサン合成:
(1)使用触媒
<触媒1>
製造例1で調製したAu/C触媒
<触媒2>
製造例2で調製したAu/C触媒
<触媒3>
ハルタゴ−ルド社から購入した金ナノ粒子触媒(商品名:RR2C)
・金担持量:0.89wt%
・金結晶子サイズ:8.0nm
・担体の比表面積値:731m/g
・ナトリウム含有量:検出限界以下
<比較触媒1>
[10wt%Pt/C:NEケムキャット社製「10%Pt/C K−Type」]
・白金担持量:10wt%
・担体比表面積値:1,000〜1,200m/g
・元素換算のナトリウム含有量:0.32wt%
<比較触媒2>
[5wt%Pt/C:NEケムキャット社製「5%Pt/C K−Type」]
・白金担持量:5wt%
・担体比表面積値:1,000〜1,200m/g
・元素換算のナトリウム含有量:0.32wt%
<比較触媒3>
[10wt%Pd/C:NEケムキャット社製「10%Pt/C K−Type」]
・パラジウム担持量:10wt%
・担体比表面積値:1,000〜1,200m/g
・元素換算のナトリウム含有量:0.32wt%
<比較触媒4>
[10wt%Rh/C:NEケムキャット社製「10%Pt/C K−Type」]
・ロジウム担持量:10wt%
・担体比表面積値:1,000〜1,200m/g
・元素換算のナトリウム含有量:0.32wt%
<比較触媒5>
[10wt%Ru/C:NEケムキャット社製「10%Pt/C K−Type」]
・ルテニウム担持量:10wt%
・担体比表面積値:1,000〜1,200m/g
・元素換算のナトリウム含有量:0.32wt%
<比較触媒6>
[活性炭担体]
・担体比表面積値:1,000〜1,200m/g
・元素換算のNa含有量:0.32wt%
Example 1
Disiloxane synthesis:
(1) Catalyst used <Catalyst 1>
Au / C catalyst prepared in Production Example 1 <Catalyst 2>
Au / C catalyst prepared in Production Example 2 <Catalyst 3>
Gold nanoparticle catalyst purchased from Haltagold (trade name: RR2C)
-Gold loading: 0.89 wt%
・ Gold crystallite size: 8.0 nm
· Specific surface area of support: 731 m 2 / g
-Sodium content: less than detection limit <comparative catalyst 1>
[10 wt% Pt / C: NE Chemcat "10% Pt / C K-Type"]
・ Supported amount of platinum: 10 wt%
Carrier specific surface area: 1,000 to 1,200 m 2 / g
-Elemental equivalent sodium content: 0.32 wt%
<Comparison catalyst 2>
[5 wt% Pt / C: NE Chemcat "5% Pt / C K-Type"]
-Platinum loading: 5 wt%
Carrier specific surface area: 1,000 to 1,200 m 2 / g
-Elemental equivalent sodium content: 0.32 wt%
<Comparison catalyst 3>
[10 wt% Pd / C: NE Chemcat "10% Pt / C K-Type"]
・ Palladium loading amount: 10 wt%
Carrier specific surface area: 1,000 to 1,200 m 2 / g
-Elemental equivalent sodium content: 0.32 wt%
<Comparison catalyst 4>
[10 wt% Rh / C: NE Chemcat "10% Pt / C K-Type"]
・ Rhodium load: 10 wt%
Carrier specific surface area: 1,000 to 1,200 m 2 / g
-Elemental equivalent sodium content: 0.32 wt%
<Comparison catalyst 5>
[10 wt% Ru / C: NE Chemcat "10% Pt / C K-Type"]
-Ruthenium loading: 10 wt%
Carrier specific surface area: 1,000 to 1,200 m 2 / g
-Elemental equivalent sodium content: 0.32 wt%
<Comparison catalyst 6>
[Activated carbon carrier]
Carrier specific surface area: 1,000 to 1,200 m 2 / g
-Elemental equivalent Na content: 0.32 wt%

(2)合成反応
上記の触媒について、以下の条件の下、ジシロキサン合成の反応を行った。下記反応式中の基質、温度、反応時間、ジシロキサンの収率を表1に記す。
・基質:0.25mmol
・触媒:10wt%Au/C(基質に対して5mol%使用)
・溶媒:水(3ml)
・温度:表1中に記載
・反応時間:表1中に記載
・反応雰囲気:アルゴンガス雰囲気
・収率の測定:単離後、1H NMRにより算出
・ジシロキサン化合物の収率:表1中の基質に対するジシロキサンの割合
(2) Synthesis reaction The reaction of disiloxane synthesis was performed on the above catalyst under the following conditions. The substrate, temperature, reaction time, and disiloxane yield in the following reaction formula are described in Table 1.
Substrate: 0.25 mmol
・ Catalyst: 10 wt% Au / C (use 5 mol% to substrate)
Solvent: water (3 ml)
Temperature: described in Table 1 Reaction time: described in Table 1 Reaction atmosphere: Argon gas atmosphere Measurement of yield: Calculated by 1 H NMR after isolation Yield of disiloxane compound: Table 1 Ratio of disiloxane to substrate

Figure 0006538476
Figure 0006538476

Figure 0006538476
Figure 0006538476

触媒1〜3は、同量の白金触媒と同程度かそれ以上の高収率でジシロキサンを製造できることが分かった。また、特に触媒に含まれるナトリウム含量が低く、金結晶子サイズが大きいほど収率が高くなることも分かった。   It was found that catalysts 1 to 3 were able to produce disiloxanes with high yields comparable to or better than the same amount of platinum catalyst. In addition, it was also found that the yield is higher as the sodium content in the catalyst is particularly low and the gold crystallite size is larger.

実 施 例 2
触媒の再利用:
実施例1の合成反応終了後、触媒1を回収し、それを再び同様の合成反応に使用してその耐久性について評価を行った。評価条件は実施例1と同様である。結果を表2に記す。
Example 2
Catalyst reuse:
After the completion of the synthesis reaction of Example 1, Catalyst 1 was recovered and used again for the same synthesis reaction to evaluate its durability. Evaluation conditions are the same as in Example 1. The results are shown in Table 2.

Figure 0006538476
Figure 0006538476

表2の結果から、触媒1は度重なる再使用においても優れた性能を発揮していることが分かった。この結果から、触媒1は耐久性においても優れた性能を有することが分かり、産業上の利用価値が高いものであると言える。   From the results in Table 2, it was found that Catalyst 1 exhibited excellent performance even in repeated reuse. From this result, it can be seen that the catalyst 1 has excellent performance also in durability, and it can be said that the value of industrial use is high.

実 施 例 3
基質の多様性:
基質等を以下の表3に記載のものに代える以外は、実施例1と同様に触媒1を用いて合成反応を行った。その結果も表3に記す。
Example 3
Substrate diversity:
A synthesis reaction was carried out using Catalyst 1 in the same manner as in Example 1 except that the substrate and the like were replaced with those described in Table 3 below. The results are also shown in Table 3.

Figure 0006538476
Figure 0006538476

表3の結果から、触媒1は多様な基質に対しても優れた性能を発揮することが分かった。   From the results in Table 3, it was found that Catalyst 1 exhibited excellent performance even on various substrates.

実 施 例 4
基質の多様性:
基質と反応時間を以下のものに代える以外は、実施例1と同様に触媒1を用いて合成反応を行った。
Example 4
Substrate diversity:
The synthesis reaction was carried out using catalyst 1 in the same manner as in Example 1 except that the substrate and reaction time were changed to the following.

Figure 0006538476
Figure 0006538476

トリエチルシランのような嵩の低い置換基を有するシラン化合物が基質の場合、触媒1はジシロキサンだけでなく、トリシロキサンも製造できることが分かった。   It has been found that when a silane compound having a low bulk substituent such as triethylsilane is a substrate, catalyst 1 can produce not only disiloxane but also trisiloxane.

本発明方法は安全で環境負荷の少ない条件の下で、シラン化合物からシロキサン化合物を高収率で製造するのに利用することができる。

以 上

The method of the present invention can be used to produce siloxane compounds in high yield from silane compounds under safe and low environmental load conditions.

that's all

Claims (7)

不活性ガス雰囲気中で、水を溶媒として、炭素担体にナノサイズの金粒子を担持した金触媒にシラン化合物を接触させることを特徴とするシロキサン化合物の製造方法。   A method for producing a siloxane compound, which comprises bringing a silane compound into contact with a gold catalyst having nano-sized gold particles supported on a carbon support using water as a solvent in an inert gas atmosphere. シラン化合物が、下記式(1)
Figure 0006538476
(式(1)中、Rは置換基を有していてもよいフェニル基を表し、RおよびRはそれぞれ独立して水素、炭素数1〜3のアルキル基、または置換基を有していてもよいフェニル基を示す)
で表されるフェニルシランであり、シロキサン化合物が下記式(2)
Figure 0006538476
(式(2)中、R〜Rは式(1)と同じ基を示す)
で表されるジシロキサンである請求項1記載のシロキサン化合物の製造方法。
The silane compound is represented by the following formula (1)
Figure 0006538476
(In formula (1), R 1 represents a phenyl group which may have a substituent, and R 2 and R 3 each independently have hydrogen, an alkyl group having 1 to 3 carbon atoms, or a substituent Represents an optionally substituted phenyl group)
And the siloxane compound is represented by the following formula (2)
Figure 0006538476
(In Formula (2), R 1 to R 3 represent the same group as Formula (1))
The method for producing a siloxane compound according to claim 1, which is a disiloxane represented by
炭素担体にナノサイズの金粒子を担持した金触媒が、元素換算のナトリウムが0.2wt%以下の炭素担体に、結晶子サイズが10〜100nmの金粒子を担持した金触媒である請求項1または2記載のシロキサン化合物の製造方法。   The gold catalyst in which nano-sized gold particles are supported on a carbon support is a gold catalyst in which gold particles having a crystallite size of 10 to 100 nm are supported on a carbon support having an element-equivalent sodium of 0.2 wt% or less. Or the manufacturing method of the siloxane compound of 2. 炭素担体が比表面積値500〜2500m/g、担持されている金の量が1〜20wt%である請求項1〜3の何れかに記載のシロキサン化合物の製造方法。 The method for producing a siloxane compound according to any one of claims 1 to 3, wherein the carbon support has a specific surface area of 500 to 2,500 m 2 / g and the amount of gold supported is 1 to 20 wt%. 炭素担体にナノサイズの金粒子を担持した金触媒であって、結晶子サイズが10〜100nmの金粒子であることを特徴とするシロキサン化合物製造用金触媒。 A gold catalyst supported gold nano-sized particles to the carbon carrier, a siloxane compound for producing gold catalysts, wherein the crystallite size is 10~100nm gold particles. 元素換算のナトリウムが0.2wt%以下の炭素担体である請求項5記載のシロキサン化合物製造用金触媒。 The gold catalyst for producing a siloxane compound according to claim 5, which is a carbon support having an element conversion sodium of 0.2 wt% or less. 炭素担体が比表面積値500〜2500m/g、担持されている金の量が1〜20wt%である請求項5または6記載のシロキサン化合物製造用金触媒。 Carbon support a specific surface area value 500~2500m 2 / g, the supported amount of gold being is 1 to 20 wt% at which claim 5 or 6, wherein the siloxane compound for producing gold catalyst.
JP2015160533A 2015-08-17 2015-08-17 Method for producing siloxane compound and gold catalyst used therefor Active JP6538476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015160533A JP6538476B2 (en) 2015-08-17 2015-08-17 Method for producing siloxane compound and gold catalyst used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015160533A JP6538476B2 (en) 2015-08-17 2015-08-17 Method for producing siloxane compound and gold catalyst used therefor

Publications (2)

Publication Number Publication Date
JP2017039648A JP2017039648A (en) 2017-02-23
JP6538476B2 true JP6538476B2 (en) 2019-07-03

Family

ID=58203018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015160533A Active JP6538476B2 (en) 2015-08-17 2015-08-17 Method for producing siloxane compound and gold catalyst used therefor

Country Status (1)

Country Link
JP (1) JP6538476B2 (en)

Also Published As

Publication number Publication date
JP2017039648A (en) 2017-02-23

Similar Documents

Publication Publication Date Title
Burton et al. Facile, surfactant-free synthesis of Pd nanoparticles for heterogeneous catalysts
Park et al. A highly active and stable palladium catalyst on a gC 3 N 4 support for direct formic acid synthesis under neutral conditions
EP1826180A1 (en) A composite material composed of nanoparticles of transition metal and magnetic ferric oxide, a methode of preparing the same, and uses of the same
JP5791901B2 (en) Method for producing aqueous colloidal precious metal suspension
Liu et al. Synthesis of Au–Ag alloy nanoparticles supported on silica gel via galvanic replacement reaction
KR101578071B1 (en) Preparation method of high dispered novel metal catalyst
Yadav et al. Highly catalytically active palladium nanoparticles incorporated inside metal-organic framework pores by double solvents method
JP5398082B2 (en) Method for preparing ruthenium catalyst for cycloolefin production, method for producing cycloolefin, and production apparatus
JP2022161913A (en) Catalyst for hydrogenation reaction used in hydrogenation of amide compound, and manufacturing method of amine compound using the same
CN101735005A (en) Improvement of catalytic method
US8962512B1 (en) Synthesis of PD particles by alcohols-assisted photoreduction for use in supported catalysts
JP5071928B2 (en) Complex of cerium-containing mesoporous silica and noble metal ultrafine particles, method of producing the complex, oxidative removal of trace amounts of carbon monoxide using the complex as a catalyst, and oxidative dehydrogenation of alcohols Methods for synthesizing ketones
Donphai et al. Catalytic performance of copper and ruthenium loaded on N-doped modified PBZ-derived carbons for CO2 hydrogenation
Tang et al. Synthesis of Cu-Pd nanoplates and their catalytic performance for H2O2 generation reaction
CN111545239B (en) Solid catalyst for glycerol oxidation and preparation method thereof
Amirsardari et al. Controlled attachment of ultrafine iridium nanoparticles on mesoporous aluminosilicate granules with carbon nanotubes and acetyl acetone
KR101404597B1 (en) Nitrate reduction by maghemite supported Cu-Pd bimetallic catalyst
JP6538476B2 (en) Method for producing siloxane compound and gold catalyst used therefor
TW201534394A (en) Catalytic reaction
JPS6193833A (en) Production of double colloid catalyst composition
JP2014088380A (en) Method for producing oxamide compound
Ignatovich et al. Catalytic activity of nickel nanoparticles in the reaction of reduction of nitroarenes
CA3149579A1 (en) Materials comprising carbon-embedded nickel nanoparticles, processes for their manufacture, and use as heterogeneous catalysts
EP3181543B1 (en) Process of preparing 4-methyl-3-decen-5-one
RU2603777C1 (en) Palladium catalyst, preparation method thereof and method for producing succinic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190606

R150 Certificate of patent or registration of utility model

Ref document number: 6538476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250