JP6536301B2 - Coated negative electrode active material - Google Patents

Coated negative electrode active material Download PDF

Info

Publication number
JP6536301B2
JP6536301B2 JP2015176081A JP2015176081A JP6536301B2 JP 6536301 B2 JP6536301 B2 JP 6536301B2 JP 2015176081 A JP2015176081 A JP 2015176081A JP 2015176081 A JP2015176081 A JP 2015176081A JP 6536301 B2 JP6536301 B2 JP 6536301B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
negative electrode
coated
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015176081A
Other languages
Japanese (ja)
Other versions
JP2017054614A (en
Inventor
伸彬 高橋
伸彬 高橋
洋平 進藤
洋平 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015176081A priority Critical patent/JP6536301B2/en
Publication of JP2017054614A publication Critical patent/JP2017054614A/en
Application granted granted Critical
Publication of JP6536301B2 publication Critical patent/JP6536301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、発熱を抑制しつつ、抵抗を低減した被覆負極活物質に関する。   The present invention relates to a coated negative electrode active material whose resistance is reduced while suppressing heat generation.

近年におけるパソコン、ビデオカメラおよび携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の電池の開発が進められている。現在、種々の電池の中でも、エネルギー密度が高いという観点から、リチウム電池が注目を浴びている。   With the rapid spread of information related devices such as personal computers, video cameras and mobile phones and communication devices in recent years, development of batteries used as the power source is regarded as important. Also, in the automobile industry and the like, development of high-power and high-capacity batteries for electric vehicles or hybrid vehicles is in progress. Among various batteries, lithium batteries are currently attracting attention from the viewpoint of high energy density.

現在市販されているリチウム電池は、可燃性の有機溶媒を含む電解液が使用されているため、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造が必要となる。これに対し、電解液を固体電解質層に変えて、電池を全固体化したリチウム電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。   Since lithium batteries currently on the market use an electrolytic solution containing a flammable organic solvent, a structure for attachment of a safety device for preventing temperature rise at the time of short circuit and short circuit prevention is required. On the other hand, a lithium battery in which the battery is totally solidified by changing the electrolytic solution to a solid electrolyte layer does not use a flammable organic solvent in the battery, so the safety device can be simplified, and the manufacturing cost and productivity It is considered to be excellent.

一方、活物質の表面を酸化物で被覆する技術が知られている。例えば、特許文献1には、粒状の負極活物質の一部を、絶縁性とリチウムイオン伝導性とを有する被膜で被覆した蓄電装置用負極が開示されている。さらに、負極活物質として黒鉛を用いることが記載され、被膜として、ニオブ、チタン、バナジウム、タンタル、タングステン、ジルコニウム、モリブデン、ハフニウム、クロム、アルミニウム若しくはシリコンのいずれか一の酸化膜、又はこれら元素のいずれか一とリチウムとを含む酸化膜を用いることが記載されている。また、被膜の製造方法として、ゾルゲル法が記載されている。この技術は、負極における電解液等の電気化学的な分解を抑制することを目的としている。   On the other hand, techniques for coating the surface of an active material with an oxide are known. For example, Patent Document 1 discloses a negative electrode for a power storage device in which a part of a particulate negative electrode active material is covered with a film having an insulating property and lithium ion conductivity. Furthermore, the use of graphite as a negative electrode active material is described, and as a film, an oxide film of any one of niobium, titanium, vanadium, tantalum, tungsten, zirconium, molybdenum, hafnium, chromium, aluminum or silicon, or It is described that an oxide film containing any one and lithium is used. Moreover, the sol-gel method is described as a manufacturing method of a film. This technique is aimed at suppressing the electrochemical decomposition of the electrolyte and the like in the negative electrode.

特許文献2には、リチウム遷移金属複合酸化物粒子表面に原子層堆積法によって被膜を形成する非水系二次電池用正極活物質の製造方法であって、前駆体又は共反応体の少なくとも一方の量を少なくすることを特徴とする製造方法が開示されている。この技術は、リチウム遷移金属複合酸化物粒子の表面を均一に薄く被覆でき、且つ充放電特性が落ちないような被膜を形成することを目的としている。   Patent Document 2 discloses a method of producing a positive electrode active material for a non-aqueous secondary battery in which a film is formed on the surface of a lithium transition metal complex oxide particle by an atomic layer deposition method, and at least one of a precursor and a coreactant A method of manufacture characterized in reducing the amount is disclosed. This technique is intended to form a film which can uniformly and thinly coat the surface of lithium transition metal complex oxide particles and which does not lose charge and discharge characteristics.

特許文献3には、電解質溶液を含むリチウムイオン電池において、アノードの表面上に配置されたパッシベーションプロテクタを含み、パッシベーションプロテクタが薄膜堆積層であり、パッシベーションプロテクタの厚さが1nm〜1μmであるリチウムイオン電池が開示されている。さらに、パッシベーションプロテクタとして酸化アルミニウム(Al)等を用いることが記載され、パッシベーションプロテクタの製造方法として、原子層堆積法が記載されている。この技術は、高温で動作し得るリチウムイオン電池を提供することを目的としている。 Patent Document 3 discloses a lithium ion battery including an electrolyte solution, including a passivation protector disposed on the surface of the anode, wherein the passivation protector is a thin film deposition layer, and the thickness of the passivation protector is 1 nm to 1 μm. A battery is disclosed. Furthermore, the use of aluminum oxide (Al 2 O 3 ) or the like as a passivation protector is described, and an atomic layer deposition method is described as a method of manufacturing the passivation protector. This technology aims to provide a lithium ion battery that can operate at high temperatures.

特許文献4には、SOをベースとする電解質と、特定の正極活物質とを有する再充電可能リチウムバッテリセルが開示されている。さらに、活物質を表面被覆する方法として、原子層堆積法が記載され、表面被覆がAl等を含むことが記載され、負極活物質の一例としてカーボンが記載されている。この技術は、電力密度の向上等を図ることを目的としている。 Patent Document 4 discloses a rechargeable lithium battery cell having an SO 2 -based electrolyte and a specific positive electrode active material. Furthermore, as a method of surface-coating an active material, atomic layer deposition is described, the surface-coating includes Al 2 O 3 and the like, and carbon is described as an example of a negative electrode active material. This technique is intended to improve power density and the like.

特許文献5には、炭素材料およびリチウムチタン酸化物(LTO)を含んでなり、炭素材料の平均粒子径に対するLTOの平均粒子径が特定の範囲内にあり、LTOが炭素材料の表面上に分布したアノード材料が開示されている。この技術は、低い内部抵抗、高い導電性および優れた出力特性を得ることを目的としている。   Patent Document 5 comprises a carbon material and lithium titanium oxide (LTO), the average particle size of LTO to the average particle size of the carbon material is within a specific range, and the LTO is distributed on the surface of the carbon material Anode materials are disclosed. This technique is aimed at obtaining low internal resistance, high conductivity and excellent output characteristics.

特開2013−232403号公報JP, 2013-232403, A 特開2014−170656号公報JP, 2014-170656, A 特開2014−143375号公報JP, 2014-143375, A 特開2013−519968号公報JP, 2013-519968, A 特開2010−531041号公報JP, 2010-531041, A

例えば特許文献1は、主に電解液を用いた電池に関する技術である。電解液を用いた電池では、例えば、初回の充電時に電解液の分解が生じ、負極活物質表面に被膜(SEI膜)が生じる。SEI膜は、通常、絶縁性を有するため、その後の充放電における電解液の分解を抑制することができる。   For example, patent document 1 is a technique regarding the battery which mainly used the electrolyte solution. In a battery using an electrolytic solution, for example, decomposition of the electrolytic solution occurs at the time of first charge, and a film (SEI film) is formed on the surface of the negative electrode active material. Since the SEI film usually has an insulating property, it is possible to suppress the decomposition of the electrolyte in subsequent charge and discharge.

一方、全固体リチウム電池に用いられる固体電解質材料は、通常、電解液よりも分解反応が生じにくい。そのため、負極活物質表面にSEI膜が十分に生じていないと推測される。その結果、例えば何らかの理由により電池温度が上昇した場合に、負極活物質および固体電解質材料の反応が起き、発熱が生じる場合がある。   On the other hand, the solid electrolyte material used for the all solid lithium battery generally has less decomposition reaction than the electrolytic solution. Therefore, it is estimated that the SEI film is not sufficiently formed on the surface of the negative electrode active material. As a result, when, for example, the battery temperature rises for some reason, a reaction between the negative electrode active material and the solid electrolyte material may occur to generate heat.

また、特許文献1では、ゾルゲル法により、黒鉛の表面に被膜を形成している。しかしながら、従来のゾルゲル法では被膜の厚さを制御することが難しく、被膜を構成する酸化物の粒径も相対的に大きい。その結果、負極活物質および固体電解質材料の反応による発熱は抑制できるものの、抵抗が増大する。   Further, in Patent Document 1, a film is formed on the surface of graphite by a sol-gel method. However, in the conventional sol-gel method, it is difficult to control the thickness of the film, and the particle size of the oxide constituting the film is also relatively large. As a result, although the heat generation due to the reaction between the negative electrode active material and the solid electrolyte material can be suppressed, the resistance is increased.

本発明は、上記実情に鑑みてなされたものであり、発熱を抑制しつつ、抵抗を低減した被覆負極活物質を提供することを主目的とする。   This invention is made in view of the said situation, and makes it a main purpose to provide the covering negative electrode active material which reduced resistance, suppressing heat_generation | fever.

上記課題を解決するために、本発明においては、全固体リチウム電池に用いられる被覆負極活物質であって、黒鉛構造を有する負極活物質と、上記負極活物質の表面において上記黒鉛構造の構造欠陥部を被覆する被覆部とを有し、上記被覆部がアルミニウム酸化物から構成され、上記被覆部が粒子状であり、上記被覆部の平均粒径が2nm以下であることを特徴とする被覆負極活物質を提供する。   In order to solve the above problems, in the present invention, a coated negative electrode active material used for an all solid lithium battery, which is a negative electrode active material having a graphite structure, and structural defects of the above graphite structure on the surface of the negative electrode active material A coated portion for coating the coated portion, wherein the coated portion is made of aluminum oxide, the coated portion is in the form of particles, and the average particle diameter of the coated portion is 2 nm or less. Provide an active material.

本発明によれば、構造欠陥部を被覆する被覆部が粒子状のアルミニウム酸化物であり、さらに、被覆部の平均粒径が小さいことから、発熱を抑制しつつ、抵抗を低減した被覆負極活物質とすることができる。   According to the present invention, the covering portion for covering the structural defect portion is a particulate aluminum oxide, and further, since the average particle diameter of the covering portion is small, the covering negative electrode active with reduced resistance while suppressing heat generation. It can be a substance.

本発明の被覆負極活物質は、発熱を抑制しつつ、抵抗を低減できるという効果を奏する。   The coated negative electrode active material of the present invention has an effect that resistance can be reduced while suppressing heat generation.

本発明の被覆負極活物質の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the coated negative electrode active material of this invention. 本発明の被覆負極活物質を説明する概略断面図である。It is a schematic sectional drawing explaining the coated negative electrode active material of this invention. 実施例1および比較例1で得られたサンプルのSEM画像である。It is a SEM image of the sample obtained by Example 1 and Comparative Example 1. 実施例1および比較例1〜4で得られたサンプルに対する、発熱量および反応抵抗の結果である。It is a result of calorific value and reaction resistance with respect to the samples obtained in Example 1 and Comparative Examples 1 to 4. 原子層堆積法(ALD法)における選択性を説明する原子間力顕微鏡(AFM)画像である。It is an atomic force microscope (AFM) image which demonstrates the selectivity in atomic layer deposition (ALD method).

以下、本発明の被覆負極活物質について、詳細に説明する。図1は、本発明の被覆負極活物質の一例を示す概略断面図である。図1における被覆負極活物質10は、黒鉛構造を有する負極活物質1と、負極活物質1の表面において黒鉛構造の構造欠陥部を被覆する被覆部2とを有する。本発明においては、被覆部2がアルミニウム酸化物から構成され、被覆部2が粒子状であり、被覆部2の平均粒径が特定の値以下であることを大きな特徴とする。   Hereinafter, the coated negative electrode active material of the present invention will be described in detail. FIG. 1 is a schematic cross-sectional view showing an example of the coated negative electrode active material of the present invention. The coated negative electrode active material 10 in FIG. 1 has a negative electrode active material 1 having a graphite structure, and a covering portion 2 for covering a structural defect portion of the graphite structure on the surface of the negative electrode active material 1. In the present invention, the coating portion 2 is made of aluminum oxide, the coating portion 2 is in the form of particles, and the average particle diameter of the coating portion 2 is not more than a specific value.

本発明によれば、構造欠陥部を被覆する被覆部が粒子状のアルミニウム酸化物であり、さらに、被覆部の平均粒径が小さいことから、発熱を抑制しつつ、抵抗を低減した被覆負極活物質とすることができる。ここで、「黒鉛構造」とは、炭素の六角網面が積層された層状構造をいう。炭素の4個の価電子のうち、3個がSP混成軌道を形成して六角網面を形成し、残り1個(π電子)が、積層方向においてファンデルワールス結合を形成している。また、「構造欠陥部」とは、黒鉛構造における六角網端をいい、具体的には、エッジ部および点欠陥部等が挙げられる。構造欠陥部は、リチウムのインターカレーションおよびデインターカレーションが生じる場であり、同時に固体電解質材料との反応起点でもある。 According to the present invention, the covering portion for covering the structural defect portion is a particulate aluminum oxide, and further, since the average particle diameter of the covering portion is small, the covering negative electrode active with reduced resistance while suppressing heat generation. It can be a substance. Here, the "graphite structure" refers to a layered structure in which a hexagonal mesh plane of carbon is stacked. Of the four carbon valence electrons, three form an SP 2 hybrid orbital to form a hexagonal network plane, and the remaining one (π electron) forms van der Waals bonds in the stacking direction. Moreover, "a structural defect part" means the hexagonal mesh end in a graphite structure, and, specifically, an edge part, a point defect part, etc. are mentioned. The structural defect part is a place where lithium intercalation and deintercalation occur, and at the same time is also a reaction starting point with the solid electrolyte material.

本発明においては、構造欠陥部を、微小なアルミニウム酸化物の粒子で被覆することで、発熱を抑制しつつ、抵抗の低減を図ることができる。従来のゾルゲル法では、被覆部の厚さを制御することが難しいため、例えば図2(a)に示すように、構造欠陥部(エッジ部)3を被覆する被覆部2を構成するアルミニウム酸化物の粒径が相対的に大きくなる。その結果、負極活物質1および固体電解質材料(図示せず)の反応による発熱は抑制できるものの、抵抗が増大する。   In the present invention, by covering the structural defect portion with minute aluminum oxide particles, resistance can be reduced while suppressing heat generation. In the conventional sol-gel method, since it is difficult to control the thickness of the covering portion, for example, as shown in FIG. 2A, the aluminum oxide constituting the covering portion 2 covering the structural defect portion (edge portion) 3 The particle size of is relatively large. As a result, although the heat generation due to the reaction of the negative electrode active material 1 and the solid electrolyte material (not shown) can be suppressed, the resistance is increased.

これに対して、本発明においては、図2(b)に示すように、構造欠陥部(エッジ部)3に微小な被覆部2(アルミニウム酸化物の粒子)を設ける。その結果、負極活物質1および固体電解質材料(図示せず)の反応による発熱を抑制しつつ、抵抗の低減を図ることができる。上述したように、全固体リチウム電池に用いられる固体電解質材料は、通常、電解液よりも分解反応が生じにくい。そのため、負極活物質表面にSEI膜が十分に生じていないと推測される。その結果、例えば何らかの理由により電池温度が上昇した場合に、負極活物質および固体電解質材料の反応が起き、発熱が生じる場合がある。これに対して、本発明においては、負極活物質および固体電解質材料の反応起点に、予め被覆部(絶縁部)を僅かに設けることで、発熱を抑制しつつ、抵抗の低減を図ることができる。   On the other hand, in the present invention, as shown in FIG. 2 (b), a minute covering portion 2 (particles of aluminum oxide) is provided on the structural defect portion (edge portion) 3. As a result, the resistance can be reduced while suppressing heat generation due to the reaction of the negative electrode active material 1 and the solid electrolyte material (not shown). As described above, the solid electrolyte material used for the all solid lithium battery generally has less decomposition reaction than the electrolytic solution. Therefore, it is estimated that the SEI film is not sufficiently formed on the surface of the negative electrode active material. As a result, when, for example, the battery temperature rises for some reason, a reaction between the negative electrode active material and the solid electrolyte material may occur to generate heat. On the other hand, in the present invention, the resistance can be reduced while suppressing heat generation by providing the covering portion (insulating portion) slightly in advance as the reaction starting point of the negative electrode active material and the solid electrolyte material. .

特に、本発明においては、例えば原子層堆積法(ALD法)を用いることで、構造欠陥部を選択的に被覆する被覆部を有する被覆負極活物質を得ることができる。「選択的に被覆する」とは、負極活物質の表面において、被覆部が被覆する全ての面積(S)に対する、被覆部が被覆する構造欠陥部の面積(S)の割合(S/S)が、90%以上であるこという。S/Sは、95%以上であることが好ましく、99%以上であることがより好ましい。ALD法によって選択的に被覆部を形成できる理由は、構造欠陥部の反応性(構造欠陥部に存在する官能基の反応性)が高く、プリカーサと選択的に反応するためであると推測される。なお、従来のゾルゲル法では、原理上、選択的に被覆部を形成することは困難である。
以下、本発明の被覆負極活物質について、構成ごとに説明する。
In particular, in the present invention, by using, for example, atomic layer deposition (ALD), it is possible to obtain a coated negative electrode active material having a coating portion that selectively covers structural defects. “Selectably coat” means the ratio (S A ) of the area (S A ) of the structural defect part covered by the cover to the whole area (S B ) covered by the cover on the surface of the negative electrode active material It is said that / S B ) is 90% or more. S A / S B is preferably 95% or more, more preferably 99% or more. The reason why the coating can be selectively formed by the ALD method is presumed to be due to the high reactivity of the structural defect (the reactivity of the functional group present in the structural defect) and the selective reaction with the precursor. . In the conventional sol-gel method, in principle, it is difficult to selectively form the covering portion.
Hereinafter, the coated negative electrode active material of the present invention will be described for each constitution.

1.負極活物質
本発明における負極活物質は、通常、黒鉛構造を有する炭素材料である。この炭素材料は、黒鉛構造を少なくとも有していれば良い。負極活物質としては、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)等を挙げることができる。また、負極活物質は、表面に非晶質炭素層を有する活物質であっても良い。また、負極活物質のBET比表面積は、例えば2m/g〜8m/gの範囲内であることが好ましい。BET比表面積が大きすぎると、充放電時に、分解反応等の副反応が活発になる可能性がある。負極活物質のD/G比は、例えば、0.1〜1.2の範囲内である。
1. Negative Electrode Active Material The negative electrode active material in the present invention is usually a carbon material having a graphite structure. The carbon material may have at least a graphite structure. Examples of the negative electrode active material include graphite (graphite) such as natural graphite and artificial graphite, non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon) and the like. In addition, the negative electrode active material may be an active material having an amorphous carbon layer on the surface. Further, BET specific surface area of the negative electrode active material is preferably within a range of, for example, 2m 2 / g~8m 2 / g. When the BET specific surface area is too large, side reactions such as decomposition reaction may be activated during charge and discharge. The D / G ratio of the negative electrode active material is, for example, in the range of 0.1 to 1.2.

負極活物質の形状としては、例えば、粒子状を挙げることができる。粒子状としては、例えば、球状、繊維状を挙げることができる。負極活物質の平均粒径(D50)は、特に限定されるものではないが、例えば、0.1μm〜50μmの範囲内であり、1μm〜20μmの範囲内であることが好ましい。負極活物質の平均粒径(D50)は、例えば、レーザー回折散乱法による粒度分布測定の結果から求めることができる。 As a shape of a negative electrode active material, particle shape can be mentioned, for example. As particulate form, spherical form and fibrous form can be mentioned, for example. The average particle size (D 50 ) of the negative electrode active material is not particularly limited, but is, for example, in the range of 0.1 μm to 50 μm, and preferably in the range of 1 μm to 20 μm. The average particle size (D 50 ) of the negative electrode active material can be determined, for example, from the result of particle size distribution measurement by a laser diffraction scattering method.

2.被覆部
本発明における被覆部は、負極活物質の表面において黒鉛構造の構造欠陥部を少なくともを被覆する部位である。特に、本発明においては、被覆部が、構造欠陥部を選択的に被覆することが好ましい。また、被覆部は、アルミニウム酸化物から構成される。被覆部に含まれるアルミニウム酸化物の割合は、例えば、50mol%以上であり、70mol%以上であることが好ましく、90mol%以上であることがより好ましい。なお、アルミニウム酸化物の組成は、Al元素およびO元素を含有する組成であれば特に限定されないが、通常は、Alで表される。
2. Covering Part The covering part in the present invention is a part which covers at least a structural defect part of the graphite structure on the surface of the negative electrode active material. In particular, in the present invention, the covering portion preferably selectively covers the structural defect portion. Moreover, a coating | coated part is comprised from aluminum oxide. The ratio of the aluminum oxide contained in the coated portion is, for example, 50 mol% or more, preferably 70 mol% or more, and more preferably 90 mol% or more. The composition of the aluminum oxide is not particularly limited as long as it is a composition containing an Al element and an O element, but is usually represented by Al 2 O 3 .

また、本発明における被覆部は、通常、粒子状である。粒子状としては、例えば、球状を挙げることができる。また、被覆部の平均粒径は、通常、2nm以下であり、1.8nm以下であっても良い。一方、被覆部の平均粒径は、例えば、0.1nm以上であり、0.5nm以上であっても良い。被覆部の平均粒径は、例えば、走査型電子顕微鏡による観察で求めることができる。サンプル数(N)は、より多いことが好ましく、10以上であることが好ましく、100以上であることがより好ましい。   Moreover, the covering part in the present invention is usually particulate. As particulate form, spherical shape can be mentioned, for example. The average particle diameter of the coated portion is usually 2 nm or less, and may be 1.8 nm or less. On the other hand, the average particle diameter of the covering portion is, for example, 0.1 nm or more, and may be 0.5 nm or more. The average particle size of the coated portion can be determined, for example, by observation with a scanning electron microscope. The number of samples (N) is preferably larger, preferably 10 or more, and more preferably 100 or more.

3.被覆負極活物質
本発明の被覆負極活物質は、上述した負極活物質および被覆部を有する。被覆負極活物質の平均粒径は、特に限定されるものではないが、被覆部の平均粒径は非常に小さいため、上述した負極活物質の平均粒径に近似できる。そのため、被覆負極活物質の平均粒径は、上述した負極活物質の平均粒径と同様の範囲であることが好ましい。
3. Coated Negative Electrode Active Material The coated negative electrode active material of the present invention has the above-described negative electrode active material and a coated portion. The average particle diameter of the coated negative electrode active material is not particularly limited, but since the average particle diameter of the coated portion is very small, it can be approximated to the above-described average particle diameter of the negative electrode active material. Therefore, the average particle diameter of the coated negative electrode active material is preferably in the same range as the above-described average particle diameter of the negative electrode active material.

本発明の被覆負極活物質の製造方法は、特に限定されるものではないが、例えば原子層堆積法(ALD法)を挙げることができる。原子層堆積法は、例えば、有機金属系プリカーサと、非金属系プリカーサとを交互に用いることで、目的とする化合物を一分子ずつ堆積させる方法である。また、原子層堆積法を用いることで、構造欠陥部を選択的に被覆する被覆部を形成することができる。本発明においては、全固体リチウム電池に用いられる被覆負極活物質の製造方法であって、原子層堆積法により、黒鉛構造を有する負極活物質の表面に、上記黒鉛構造の構造欠陥部を選択的に被覆する被覆部を形成する被覆部形成工程を有し、上記被覆部が粒子状のアルミニウム酸化物であり、上記被覆部の平均粒径が2nm以下であることを特徴とする被覆負極活物質の製造方法を提供することもできる。   Although the manufacturing method of the coated negative electrode active material of this invention is not specifically limited, For example, an atomic layer deposition method (ALD method) can be mentioned. The atomic layer deposition method is, for example, a method of depositing a target compound one molecule at a time by alternately using an organometallic precursor and a nonmetallic precursor. In addition, by using atomic layer deposition, it is possible to form a covering that selectively covers structural defects. In the present invention, a method for producing a coated negative electrode active material used for an all solid lithium battery, which selectively forms the structural defect of the graphite structure on the surface of the negative electrode active material having a graphite structure by atomic layer deposition. A coated portion forming step of forming a coated portion, wherein the coated portion is a particulate aluminum oxide, and the coated particle has an average particle diameter of 2 nm or less. It is also possible to provide a manufacturing method of

ALD法においては、通常、Alを含有するプリカーサ、および、Oを含有するプリカーサを用いる。Alを含有するプリカーサとしては、例えば、トリメチルアルミニウム等を挙げることができる。Oを含有するプリカーサとしては、例えば、水(水蒸気)を挙げることができる。   In the ALD method, a precursor containing Al and a precursor containing O are generally used. Examples of the precursor containing Al include trimethylaluminum and the like. As the precursor containing O, for example, water (water vapor) can be mentioned.

各プリカーサの使用量は、アルミニウム酸化物の組成、および、各プリカーサの性質に応じて適宜選択する。また、ALD法における反応温度は、特に限定されないが、例えば150℃〜350℃の範囲内である。   The amount of each precursor used is appropriately selected according to the composition of aluminum oxide and the properties of each precursor. Further, the reaction temperature in the ALD method is not particularly limited, but is, for example, in the range of 150 ° C. to 350 ° C.

本発明の被覆負極活物質は、通常、全固体リチウム電池に用いられる。そのため、本発明においては、正極活物質層と、負極活物質層と、上記正極活物質層および上記負極活物質層の間に形成された固体電解質層を有する全固体リチウム電池であって、上記負極活物質層が、上述した被覆負極活物質を含有することを特徴とする全固体リチウム電池を提供することもできる。通常、負極活物質層に含まれる固体電解質材料、および、固体電解質層に含まれる固体電解質材料の少なくとも一方が、被覆負極活物質と接している。   The coated negative electrode active material of the present invention is usually used in an all solid lithium battery. Therefore, in the present invention, it is an all solid lithium battery having a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer. It is also possible to provide an all solid lithium battery characterized in that the negative electrode active material layer contains the above-mentioned coated negative electrode active material. Usually, at least one of the solid electrolyte material contained in the negative electrode active material layer and the solid electrolyte material contained in the solid electrolyte layer is in contact with the coated negative electrode active material.

負極活物質層は、負極活物質を少なくとも含有し、固体電解質材料をさらに含有していても良い。負極活物質については、上述した通りである。一方、固体電解質材料としては、例えば、硫化物固体電解質材料、酸化物固体電解質材料、窒化物固体電解質材料、ハロゲン化物固体電解質材料等の無機固体電解質材料を挙げることができる。   The negative electrode active material layer may at least contain a negative electrode active material and may further contain a solid electrolyte material. The negative electrode active material is as described above. On the other hand, examples of solid electrolyte materials include inorganic solid electrolyte materials such as sulfide solid electrolyte materials, oxide solid electrolyte materials, nitride solid electrolyte materials, and halide solid electrolyte materials.

硫化物固体電解質材料としては、例えば、LiS−P、LiS−P−LiI、LiS−P−LiCl、LiS−P−LiBr、LiS−P−LiO、LiS−P−LiO−LiI、LiS−SiS、LiS−SiS−LiI、LiS−SiS−LiBr、LiS−SiS−LiCl、LiS−SiS−B−LiI、LiS−SiS−P−LiI、LiS−B、LiS−P−Z(ただし、m、nは正の数。Zは、Ge、Zn、Gaのいずれか。)、LiS−GeS、LiS−SiS−LiPO、LiS−SiS−LiMO(ただし、x、yは正の数。Mは、P、Si、Ge、B、Al、Ga、Inのいずれか。)、Li10GeP12等を挙げることができる。 As a sulfide solid electrolyte material, for example, Li 2 S-P 2 S 5 , Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5- LiBr, Li 2 S-P 2 S 5 -Li 2 O, Li 2 S-P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2, Li 2 S-SiS 2 -LiI, Li 2 S- SiS 2 -LiBr, Li 2 S- SiS 2 -LiCl, Li 2 S-SiS 2 -B 2 S 3 -LiI, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-B 2 S 3 , Li 2 S—P 2 S 5 —Z m S n (where m and n are positive numbers, and Z is any of Ge, Zn, and Ga.), Li 2 S—GeS 2 , Li 2 S— SiS 2 -Li 3 PO 4, Li 2 S-SiS 2 -Li x MO (However, x, y is a positive number .M is, P, Si, Ge, B , Al, Ga, either an In.), May be mentioned Li 10 GeP 2 S 12 or the like.

特に、硫化物固体電解質材料は、Li、A(Aは、P、Si、Ge、AlおよびBの少なくとも一種である)、およびSを含有するイオン伝導体を備えることが好ましい。さらに、上記イオン伝導体は、オルト組成のアニオン構造(PS 3−構造、SiS 4−構造、GeS 4−構造、AlS 3−構造、BS 3−構造)をアニオンの主成分として有することが好ましい。化学安定性の高い硫化物固体電解質材料とすることができるからである。オルト組成のアニオン構造の割合は、イオン伝導体における全アニオン構造に対して、70mol%以上であることが好ましく、90mol%以上であることがより好ましい。オルト組成のアニオン構造の割合は、ラマン分光法、NMR、XPS等により決定することができる。 In particular, the sulfide solid electrolyte material preferably includes an ion conductor containing Li, A (A is at least one of P, Si, Ge, Al and B), and S. Furthermore, the above ion conductor has an anion structure (PS 4 3- structure, SiS 4 4- structure, GeS 4 4- structure, AlS 3 3- structure, BS 3 3- structure) of ortho composition as a main component of anion It is preferable to have. This is because a sulfide solid electrolyte material having high chemical stability can be obtained. It is preferable that it is 70 mol% or more with respect to the total anion structure in an ion conductor, and, as for the ratio of the anion structure of an ortho composition, it is more preferable that it is 90 mol% or more. The proportion of the anion structure of the ortho composition can be determined by Raman spectroscopy, NMR, XPS or the like.

硫化物固体電解質材料は、上記イオン伝導体に加えて、LiI、LiBrおよびLiClの少なくとも一つを含有することが好ましい。LiI、LiBrおよびLiClの少なくとも一部は、通常、それぞれ、LiI成分、LiBr成分およびLiCl成分としてイオン伝導体の構造中に取り込まれた状態で存在する。また、硫化物固体電解質材料は、X線回折測定において、LiIのピークを有していても良く、有していなくても良いが、後者が好ましい。Liイオン伝導性が高いからである。この点については、LiBrおよびLiClについても同様である。硫化物固体電解質材料におけるLiX(X=I、Cl、Br)の割合は、例えば10mol%〜30mol%の範囲内であり、15mol%〜25mol%の範囲内であることが好ましい。LiXの割合とは、硫化物固体電解質材料に含まれるLiXの合計の割合をいう。   The sulfide solid electrolyte material preferably contains at least one of LiI, LiBr and LiCl in addition to the above ion conductor. At least a portion of LiI, LiBr and LiCl is usually present in the structure of the ion conductor as a LiI component, a LiBr component and a LiCl component, respectively. The sulfide solid electrolyte material may or may not have a peak of LiI in X-ray diffraction measurement, but the latter is preferable. It is because Li ion conductivity is high. The same applies to LiBr and LiCl in this respect. The proportion of LiX (X = I, Cl, Br) in the sulfide solid electrolyte material is, for example, in the range of 10 mol% to 30 mol%, and preferably in the range of 15 mol% to 25 mol%. The proportion of LiX refers to the proportion of the total of LiX contained in the sulfide solid electrolyte material.

正極活物質層は、正極活物質を少なくとも含有し、固体電解質材料をさらに含有していても良い。正極活物質としては、例えば、酸化物活物質を挙げることができる。酸化物活物質としては、具体的には、LiCoO、LiMnO、LiNiO、LiVO、LiNi1/3Co1/3Mn1/3等の岩塩層状型活物質、LiMn、Li(Ni0.5Mn1.5)O等のスピネル型活物質、LiFePO、LiMnPO、LiNiPO、LiCuPO等のオリビン型活物質等を挙げることができる。一方、固体電解質層は、固体電解質材料を少なくとも含有する層であれば、特に限定されるものではない。 The positive electrode active material layer may at least contain a positive electrode active material and may further contain a solid electrolyte material. As a positive electrode active material, an oxide active material can be mentioned, for example. Specific examples of the oxide active material include rock salt layered type active materials such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , and LiMn 2 O 4. And spinel type active materials such as Li (Ni 0.5 Mn 1.5 ) O 4 , and olivine type active materials such as LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCuPO 4, and the like. On the other hand, the solid electrolyte layer is not particularly limited as long as it is a layer containing at least a solid electrolyte material.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above embodiment is an exemplification, and it has substantially the same configuration as the technical idea described in the claims of the present invention, and any one having the same function and effect can be used. It is included in the technical scope of the invention.

以下に実施例を示して本発明をさらに具体的に説明する。   Hereinafter, the present invention will be more specifically described by way of examples.

[実施例1]
出発材料として、非晶質炭素コートが施された球形の黒鉛粒子を用意した。次に、黒鉛粒子の構造欠陥部に、原子層堆積法(ALD法)により、アルミニウム酸化物の粒子を堆積させた。まず、原子層堆積装置のチャンバー内に黒鉛粒子を設置し、チャンバー内を真空引きし、その後、チャンバー内を窒素ガスでパージした。次に、チャンバー内温度を300℃まで昇温し、1時間保持した。次に、第一のプリカーサとしてトリメチルアルミニウム(Al(CH)を用い、窒素ガスと共にチャンバー内に導入し、黒鉛粒子の表面と反応させた。その後、チャンバー内を窒素ガスでパージした。次に、第二のプリカーサとして水蒸気を用い、窒素ガスと共にチャンバー内に導入し、黒鉛粒子の表面と反応させた。その後、チャンバー内を窒素ガスでパージした。プリカーサを導入し、窒素ガスでパージする上記操作を計10回繰り返した。これにより、被覆負極活物質を得た。
Example 1
As a starting material, spherical graphite particles coated with amorphous carbon were prepared. Next, particles of aluminum oxide were deposited on the structural defects of the graphite particles by atomic layer deposition (ALD). First, graphite particles were placed in the chamber of the atomic layer deposition apparatus, the inside of the chamber was evacuated, and then the inside of the chamber was purged with nitrogen gas. Next, the temperature in the chamber was raised to 300 ° C. and held for 1 hour. Next, trimethylaluminum (Al (CH 3 ) 3 ) was used as a first precursor, introduced into the chamber together with nitrogen gas, and reacted with the surface of the graphite particles. Thereafter, the inside of the chamber was purged with nitrogen gas. Next, steam was used as a second precursor, and was introduced into the chamber together with nitrogen gas to react with the surface of the graphite particles. Thereafter, the inside of the chamber was purged with nitrogen gas. The above operation of introducing the precursor and purging with nitrogen gas was repeated a total of 10 times. Thus, a coated negative electrode active material was obtained.

[比較例1]
プリカーサを導入し、窒素ガスでパージする上記操作を行わず、黒鉛粒子を比較用サンプルとした。
Comparative Example 1
Graphite particles were used as a comparison sample without introducing the precursor and performing the above operation of purging with nitrogen gas.

[比較例2]
プリカーサを導入し、窒素ガスでパージする上記操作を計30回繰り返したこと以外は、実施例1と同様にして、被覆負極活物質を得た。
Comparative Example 2
A coated negative electrode active material was obtained in the same manner as Example 1, except that the above operation of introducing the precursor and purging with nitrogen gas was repeated a total of 30 times.

[比較例3]
ゾルゲル法により、被覆負極活物質を作製した。まず、アルミニウムエトキシド1×10−4mol、および、アセト酢酸エチル2×10−4molをエタノール2mlに溶解させた。得られた溶液を撹拌し、加水分解反応および脱水縮合を行い、ゲル状の反応物を得た。その後、大気雰囲気において、500℃、3時間の条件で焼成し、被覆負極活物質を得た。
Comparative Example 3
The coated negative electrode active material was produced by the sol-gel method. First, 1 × 10 −4 mol of aluminum ethoxide and 2 × 10 −4 mol of ethyl acetoacetate were dissolved in 2 ml of ethanol. The resulting solution was stirred and subjected to hydrolysis reaction and dehydration condensation to obtain a gel-like reaction product. Then, it baked on conditions of 500 degreeC and air | atmosphere atmosphere for 3 hours, and obtained the covering negative electrode active material.

[比較例4]
アルミニウムエトキシド1×10−3mol、および、アセト酢酸エチル2×10−3molをエタノール2mlに溶解させた溶液を用いたこと以外は、比較例3と同様にして、被覆負極活物質を得た。
Comparative Example 4
A coated negative electrode active material is obtained in the same manner as in Comparative Example 3, except that a solution of 1 × 10 −3 mol of aluminum ethoxide and 2 × 10 −3 mol of ethyl acetoacetate in 2 ml of ethanol is used. The

[評価]
(SEM観察)
実施例1および比較例1〜4で得られたサンプルを、走査型電子顕微鏡(SEM)により観察し、アルミニウム酸化物の平均粒径を算出した。なお、平均粒径が小さいアルミニウム酸化物の平均粒径は成膜レートからも算出した。代表的なSEM画像を図3に示す。図3(a)は実施例1の結果であり、図3(b)は図3(a)の拡大図である。一方、図3(c)は比較例1の結果であり、図3(d)は図3(c)の拡大図である。図3(b)に示すように、実施例1では、黒鉛粒子の表面に白い斑点(堆積したアルミニウム酸化物)が確認された。これに対して、図3(d)に示すように、比較例1では、白い斑点は確認されなかった。
[Evaluation]
(SEM observation)
The samples obtained in Example 1 and Comparative Examples 1 to 4 were observed by a scanning electron microscope (SEM) to calculate the average particle size of the aluminum oxide. The average particle diameter of the aluminum oxide having a small average particle diameter was also calculated from the deposition rate. A representative SEM image is shown in FIG. Fig.3 (a) is a result of Example 1, FIG.3 (b) is an enlarged view of Fig.3 (a). On the other hand, FIG. 3 (c) is the result of Comparative Example 1, and FIG. 3 (d) is an enlarged view of FIG. 3 (c). As shown in FIG. 3B, in Example 1, white spots (deposited aluminum oxide) were confirmed on the surface of the graphite particles. On the other hand, as shown in FIG. 3 (d), no white spots were confirmed in Comparative Example 1.

(抵抗測定)
実施例1および比較例1〜4で得られたサンプルを用いて、評価用電池を作製した。まず、得られた負極活物質と、硫化物固体電解質材料(LiI−LiS−P)とを、負極活物質:硫化物固体電解質材料=60:40の体積比で、分散媒である脱水ヘプタンに投入した。その後、超音波ホモジナイザーを用いて10分間撹拌した。その後、分散液の脱水ヘプタンを80℃のホットスターラーを用いて除去し、分散液を乾固させ、負極合材を得た。
(Resistance measurement)
Evaluation batteries were produced using the samples obtained in Example 1 and Comparative Examples 1 to 4. First, a negative electrode active material obtained, and a sulfide solid electrolyte material (LiI-Li 2 S-P 2 S 5), the negative electrode active material: sulfide solid electrolyte material = 60: at a volume ratio of 40, the dispersion medium Was charged into dehydrated heptane. Then, it stirred for 10 minutes using the ultrasonic homogenizer. Thereafter, dehydrated heptane of the dispersion was removed using a hot stirrer at 80 ° C., and the dispersion was dried to obtain a negative electrode composite.

次に、正極活物質(LiNi1/3Co1/3Mn1/3、岩塩層状型活物質)と、導電化材(カーボンブラック)と、硫化物固体電解質材料(LiI−LiS−P)とを、正極活物質:導電化材:硫化物固体電解質材料=62.5:37.5:5の体積比で、分散媒である脱水ヘプタンに投入した。その後、超音波ホモジナイザーを用いて10分間撹拌した。その後、分散液の脱水ヘプタンを80℃のホットスターラーを用いて除去し、分散液を乾固させ、正極合材を得た。 Next, a positive electrode active material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 , rock salt layered type active material), a conductive material (carbon black), and a sulfide solid electrolyte material (LiI-Li 2 S) -P 2 S 5 ) was charged into dehydrated heptane as a dispersion medium at a volume ratio of positive electrode active material: conductive material: sulfide solid electrolyte material = 62.5: 37.5: 5. Then, it stirred for 10 minutes using the ultrasonic homogenizer. Thereafter, dehydrated heptane of the dispersion was removed using a hot stirrer at 80 ° C., and the dispersion was dried to obtain a positive electrode composite material.

次に、硫化物固体電解質材料(LiI−LiS−P)を、マコール製のシリンダの中に200mg入れ、98MPaでプレスすることで固体電解質層のペレットを得た。その後、固体電解質層の一方の表面に、正極合材を200mg入れ、98MPaでプレスすることで正極活物質層を得た。その後、固体電解質層の他方の表面に、負極合材を200mg入れ、98MPaでプレスすることで負極活物質層を得た。ステンレス棒を両極に入れ、1tonで拘束して電池とした。これにより、評価用電池を得た。 Next, the sulfide solid electrolyte material (LiI-Li 2 S-P 2 S 5), placed 200mg in Macor cylinder, to obtain pellets of a solid electrolyte layer by pressing at 98 MPa. Thereafter, 200 mg of the positive electrode mixture was put on one surface of the solid electrolyte layer, and pressed at 98 MPa to obtain a positive electrode active material layer. Thereafter, 200 mg of the negative electrode mixture was put on the other surface of the solid electrolyte layer, and pressed at 98 MPa to obtain a negative electrode active material layer. A stainless steel rod was inserted into both electrodes and restrained by 1 ton to make a battery. Thus, a battery for evaluation was obtained.

得られた評価用電池に対してエージングを行い、その後、SOC(State Of Charge)を85%に調整した。その状態で交流インピーダンス測定を行い、反応抵抗を測定した。その結果を表1および図4に示す。   The obtained evaluation battery was aged, and then SOC (State Of Charge) was adjusted to 85%. The alternating current impedance measurement was performed in that state, and reaction resistance was measured. The results are shown in Table 1 and FIG.

(発熱量測定)
上述した方法で得られた評価用電池を、SOC100%の状態で解体し、負極活物質層を取り出した。得られた負極活物質層を乳鉢で破砕し、示差走査熱量測定を室温から500℃の範囲で行った。観測された発熱カーブから、固体電解質材料の還元反応を示すピーク面積を求め、発熱量を算出した。その結果を表1および図4に示す。
(Measurement of calorific value)
The evaluation battery obtained by the above-described method was disassembled in a state of 100% SOC, and the negative electrode active material layer was taken out. The obtained negative electrode active material layer was crushed in a mortar, and differential scanning calorimetry was performed in the range from room temperature to 500 ° C. From the observed exothermic curve, the peak area showing the reduction reaction of the solid electrolyte material was determined to calculate the calorific value. The results are shown in Table 1 and FIG.

表1および図4に示すように、実施例1および比較例2の発熱量は、比較例1の発熱量よりも低くなった。これは、構造欠陥部を被覆するように、微小な被覆部(アルミニウム酸化物)が形成され、負極活物質および固体電解質材料の反応を抑制できたためであると推測される。   As shown in Table 1 and FIG. 4, the calorific value of Example 1 and Comparative Example 2 was lower than the calorific value of Comparative Example 1. It is presumed that this is because a minute covering portion (aluminum oxide) is formed to cover the structural defect portion, and the reaction between the negative electrode active material and the solid electrolyte material can be suppressed.

また、実施例1の反応抵抗は、比較例1の反応抵抗よりも低くなった。被覆部を設けたことによる抵抗低減効果は、厳密には、被覆部(アルミニウム酸化物)のイオン伝導性に起因する抵抗低減効果と、被覆部が活物質のLi挿入脱離を阻害する抵抗増加効果とのバランスによって左右されるが、被覆部の平均粒径が十分に小さい場合には、抵抗低減効果が優位に働くことが確認された。これに対して、比較例2の反応抵抗は、比較例1の反応抵抗よりも高くなった。これは、抵抗増加効果が優位に働いたためであると推測される。このように、アルミニウム酸化物の平均粒径が2nm以下であれば、比較例1よりも低い発熱量および反応抵抗が得られることが確認できた。   Moreover, the reaction resistance of Example 1 became lower than the reaction resistance of Comparative Example 1. Strictly speaking, the resistance reduction effect by providing the covering part is the resistance reducing effect due to the ion conductivity of the covering part (aluminum oxide), and the resistance increasing that the covering part inhibits the Li insertion and detachment of the active material. Although it depends on the balance with the effect, it was confirmed that when the average particle diameter of the coating portion is sufficiently small, the resistance reduction effect is dominant. On the other hand, the reaction resistance of Comparative Example 2 was higher than the reaction resistance of Comparative Example 1. It is presumed that this is because the resistance increase effect is dominant. Thus, it has been confirmed that if the average particle size of the aluminum oxide is 2 nm or less, a calorific value and reaction resistance lower than those of Comparative Example 1 can be obtained.

また、比較例3、4は、ゾルゲル法により作製した被覆負極活物質である。発熱量は比較例1と同程度以下であったものの、反応抵抗は、アルミニウム酸化物の平均粒径の増大に伴って増加した。このように、比較例3、4では、反応抵抗が増大することが確認された。   Moreover, Comparative Examples 3 and 4 are the coated negative electrode active materials manufactured by the sol-gel method. Although the calorific value was less than or equal to that of Comparative Example 1, the reaction resistance increased as the average particle size of the aluminum oxide increased. Thus, in Comparative Examples 3 and 4, it was confirmed that the reaction resistance increased.

[参考例]
平板状の黒鉛(高配向熱分解黒鉛)の表面に、原子層堆積法(ALD法)により、酸化アルミニウム粒子を堆積させた(20サイクル、約4nm)。その結果を図5に示す。図5(a)は、ALD法を行う前の黒鉛表面を、原子間力顕微鏡(AFM)で観察した結果である。図5(a)に示すように、黒鉛に構造欠陥部(エッジ部)が確認できる。一方、図5(b)は、ALD法を行った後の黒鉛表面を、原子間力顕微鏡(AFM)で観察した結果であり、図5(c)は図5(b)の拡大図である。図5(b)、(c)に示すように、黒鉛に構造欠陥部(エッジ部)のみに選択的に酸化物が堆積していることが確認できた。この結果からも、ALD法を用いると、黒鉛の構造欠陥部が選択的に被覆されることが確認された。
[Reference example]
Aluminum oxide particles were deposited (20 cycles, about 4 nm) on the surface of flat graphite (highly oriented pyrolytic graphite) by atomic layer deposition (ALD). The results are shown in FIG. FIG. 5A shows the result of observation of the graphite surface before the ALD method with an atomic force microscope (AFM). As shown to Fig.5 (a), a structural defect part (edge part) can be confirmed to graphite. On the other hand, FIG. 5 (b) is the result of observing the graphite surface after the ALD method with an atomic force microscope (AFM), and FIG. 5 (c) is an enlarged view of FIG. 5 (b). . As shown in FIGS. 5B and 5C, it was confirmed that the oxide was selectively deposited only on the structural defect portion (edge portion) on the graphite. Also from this result, it was confirmed that the structural defect portion of the graphite is selectively covered by using the ALD method.

1 … 負極活物質
2 … 被覆部
3 … 構造欠陥部(エッジ部)
10 … 被覆負極活物質
1 ... negative electrode active material 2 ... coating portion 3 ... structural defect portion (edge portion)
10 ... Coated negative electrode active material

Claims (1)

全固体リチウム電池に用いられる被覆負極活物質であって、
黒鉛構造を有する負極活物質と、前記負極活物質の表面において前記黒鉛構造の構造欠陥部を被覆する被覆部とを有し、
前記被覆部がアルミニウム酸化物から構成され、
前記被覆部が粒子状であり、前記被覆部の平均粒径が2nm以下であることを特徴とする被覆負極活物質。
A coated negative electrode active material used for an all solid lithium battery,
A negative electrode active material having a graphite structure, and a covering portion covering the structural defect portion of the graphite structure on the surface of the negative electrode active material,
The covering portion is made of aluminum oxide,
The coated negative electrode active material, wherein the coated portion is in the form of particles, and the average particle diameter of the coated portion is 2 nm or less.
JP2015176081A 2015-09-07 2015-09-07 Coated negative electrode active material Active JP6536301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015176081A JP6536301B2 (en) 2015-09-07 2015-09-07 Coated negative electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015176081A JP6536301B2 (en) 2015-09-07 2015-09-07 Coated negative electrode active material

Publications (2)

Publication Number Publication Date
JP2017054614A JP2017054614A (en) 2017-03-16
JP6536301B2 true JP6536301B2 (en) 2019-07-03

Family

ID=58317001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015176081A Active JP6536301B2 (en) 2015-09-07 2015-09-07 Coated negative electrode active material

Country Status (1)

Country Link
JP (1) JP6536301B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6848807B2 (en) * 2017-10-18 2021-03-24 トヨタ自動車株式会社 Negative electrode material, lithium ion secondary battery, and method for manufacturing negative electrode material
WO2019146308A1 (en) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 Electrode material and battery
CN108565443A (en) * 2018-05-30 2018-09-21 武汉艾特米克超能新材料科技有限公司 A kind of graphite cathode material and preparation method thereof, cathode pole piece and lithium ion battery
WO2020196610A1 (en) * 2019-03-27 2020-10-01 昭和電工株式会社 Composite particles and negative electrode material for lithium ion secondary batteries
WO2020241105A1 (en) * 2019-05-30 2020-12-03 パナソニックIpマネジメント株式会社 Negative-electrode active material for secondary battery, and secondary battery
WO2021095719A1 (en) 2019-11-11 2021-05-20 昭和電工株式会社 Composite material, manufacturing method therefor, negative electrode material for lithium ion secondary battery, and the like
JP7516834B2 (en) 2020-04-22 2024-07-17 株式会社レゾナック Composite material, its manufacturing method, and all-solid-state lithium-ion secondary battery
JP7516833B2 (en) 2020-04-22 2024-07-17 株式会社レゾナック Composite material, its manufacturing method, and all-solid-state lithium-ion secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686974B2 (en) * 2002-12-17 2011-05-25 三菱化学株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2008041465A (en) * 2006-08-08 2008-02-21 Sony Corp Negative electrode for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous secondary battery
JP2010129363A (en) * 2008-11-27 2010-06-10 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2017054614A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6536301B2 (en) Coated negative electrode active material
JP6536302B2 (en) Coated negative electrode active material
JP5725054B2 (en) Composite active material and method for producing the same
JP6252524B2 (en) Method for producing positive electrode active material for solid state battery
JP6873614B2 (en) Lithium-ion secondary battery and its manufacturing method
JP6102859B2 (en) Positive electrode active material for lithium battery, lithium battery, and method for producing positive electrode active material for lithium battery
WO2012105009A1 (en) Composite active material, method for manufacturing composite active material, and electric cell
KR20160032664A (en) All solid lithium ion secondary battery
WO2015050031A1 (en) Covered cathode active material and lithium battery
JP6738121B2 (en) Lithium ion secondary battery
JP6536141B2 (en) Method of manufacturing composite active material
JP2015162356A (en) Coated positive electrode active material, method for producing coated positive electrode active material, and lithium battery
JP6578189B2 (en) Positive electrode material for non-aqueous secondary battery, method for producing the same, positive electrode for non-aqueous secondary battery using the positive electrode material for non-aqueous secondary battery, and non-aqueous secondary battery using the same
CN109792047A (en) The preparation method of negative electrode active material, mixing negative electrode active material material and negative electrode active material
JP2014146473A (en) Nonaqueous electrolyte secondary battery and positive electrode active material for nonaqueous electrolyte secondary battery
JP6070222B2 (en) Non-aqueous secondary battery having positive electrode for non-aqueous secondary battery and positive electrode active material for non-aqueous secondary battery using the positive-electrode active material
WO2021220927A1 (en) Positive electrode material, and battery
JP2017212123A (en) Electrode body
JP5472952B1 (en) Non-aqueous secondary battery
JP2019207792A (en) Positive electrode, all-solid battery, and method of manufacturing the same
JP7135526B2 (en) Method for producing electrode layer for all-solid-state battery
JP6466145B2 (en) Positive electrode material for non-aqueous secondary battery, method for producing the same, positive electrode for non-aqueous secondary battery using the positive electrode material for non-aqueous secondary battery, and non-aqueous secondary battery using the same
JP2017098181A (en) All-solid-state battery
KR102645493B1 (en) Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, lithium ion battery, positive electrode active material for all-solid lithium ion batteries, positive electrode for all-solid lithium ion batteries, all-solid lithium ion batteries, method for producing positive electrode active materials for lithium ion batteries, and all-solid lithium ion batteries. Method for producing positive electrode active material
JP7586125B2 (en) Conductive Materials and Batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R151 Written notification of patent or utility model registration

Ref document number: 6536301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151